-
Notifications
You must be signed in to change notification settings - Fork 0
/
mixup.py
118 lines (98 loc) · 4.47 KB
/
mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mixup: Beyond Empirical Risk Minimization.
Adaption to SSL of MixUp: https://arxiv.org/abs/1710.09412
"""
import functools
import os
import tensorflow as tf
from absl import app
from absl import flags
from libml import data, utils, models
from libml.utils import EasyDict
FLAGS = flags.FLAGS
class Mixup(models.MultiModel):
def augment(self, x, l, beta, **kwargs):
del kwargs
mix = tf.distributions.Beta(beta, beta).sample([tf.shape(x)[0], 1, 1, 1])
mix = tf.maximum(mix, 1 - mix)
xmix = x * mix + x[::-1] * (1 - mix)
lmix = l * mix[:, :, 0, 0] + l[::-1] * (1 - mix[:, :, 0, 0])
return xmix, lmix
def model(self, batch, lr, wd, ema, **kwargs):
hwc = [self.dataset.height, self.dataset.width, self.dataset.colors]
xt_in = tf.placeholder(tf.float32, [batch] + hwc, 'xt') # For training
x_in = tf.placeholder(tf.float32, [None] + hwc, 'x')
y_in = tf.placeholder(tf.float32, [batch] + hwc, 'y')
l_in = tf.placeholder(tf.int32, [batch], 'labels')
wd *= lr
classifier = lambda x, **kw: self.classifier(x, **kw, **kwargs).logits
def get_logits(x):
logits = classifier(x, training=True)
return logits
x, labels_x = self.augment(xt_in, tf.one_hot(l_in, self.nclass), **kwargs)
logits_x = get_logits(x)
post_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
y, labels_y = self.augment(y_in, tf.nn.softmax(get_logits(y_in)), **kwargs)
labels_y = tf.stop_gradient(labels_y)
logits_y = get_logits(y)
loss_xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_x, logits=logits_x)
loss_xe = tf.reduce_mean(loss_xe)
loss_xeu = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_y, logits=logits_y)
loss_xeu = tf.reduce_mean(loss_xeu)
tf.summary.scalar('losses/xe', loss_xe)
tf.summary.scalar('losses/xeu', loss_xeu)
ema = tf.train.ExponentialMovingAverage(decay=ema)
ema_op = ema.apply(utils.model_vars())
ema_getter = functools.partial(utils.getter_ema, ema)
post_ops.append(ema_op)
post_ops.extend([tf.assign(v, v * (1 - wd)) for v in utils.model_vars('classify') if 'kernel' in v.name])
train_op = tf.train.AdamOptimizer(lr).minimize(loss_xe + loss_xeu, colocate_gradients_with_ops=True)
with tf.control_dependencies([train_op]):
train_op = tf.group(*post_ops)
return EasyDict(
xt=xt_in, x=x_in, y=y_in, label=l_in, train_op=train_op,
classify_raw=tf.nn.softmax(classifier(x_in, training=False)), # No EMA, for debugging.
classify_op=tf.nn.softmax(classifier(x_in, getter=ema_getter, training=False)))
def main(argv):
utils.setup_main()
del argv # Unused.
dataset = data.DATASETS()[FLAGS.dataset]()
log_width = utils.ilog2(dataset.width)
model = Mixup(
os.path.join(FLAGS.train_dir, dataset.name),
dataset,
lr=FLAGS.lr,
wd=FLAGS.wd,
arch=FLAGS.arch,
batch=FLAGS.batch,
nclass=dataset.nclass,
ema=FLAGS.ema,
beta=FLAGS.beta,
scales=FLAGS.scales or (log_width - 2),
filters=FLAGS.filters,
repeat=FLAGS.repeat)
model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10)
if __name__ == '__main__':
utils.setup_tf()
flags.DEFINE_float('wd', 0.02, 'Weight decay.')
flags.DEFINE_float('ema', 0.999, 'Exponential moving average of params.')
flags.DEFINE_float('beta', 0.5, 'Mixup beta distribution.')
flags.DEFINE_integer('scales', 0, 'Number of 2x2 downscalings in the classifier.')
flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
FLAGS.set_default('dataset', 'cifar10.3@250-5000')
FLAGS.set_default('batch', 64)
FLAGS.set_default('lr', 0.002)
FLAGS.set_default('train_kimg', 1 << 16)
app.run(main)