-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinit.py
58 lines (45 loc) · 1.84 KB
/
init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import json
import argparse
import math
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from data_utils import TextMelLoader, TextMelCollate
import models
import commons
import utils
from text.symbols import symbols
class FlowGenerator_DDI(models.FlowGenerator):
"""A helper for Data-dependent Initialization"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for f in self.decoder.flows:
if getattr(f, "set_ddi", False):
f.set_ddi(True)
def main():
hps = utils.get_hparams()
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
torch.manual_seed(hps.train.seed)
train_dataset = TextMelLoader(hps.data.training_files, hps.data)
collate_fn = TextMelCollate(1)
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=True,
batch_size=hps.train.batch_size, pin_memory=True,
drop_last=True, collate_fn=collate_fn)
generator = FlowGenerator_DDI(
len(symbols) + getattr(hps.data, "add_blank", False),
out_channels=hps.data.n_mel_channels,
**hps.model).cuda()
optimizer_g = commons.Adam(generator.parameters(), scheduler=hps.train.scheduler, dim_model=hps.model.hidden_channels, warmup_steps=hps.train.warmup_steps, lr=hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps)
generator.train()
for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(train_loader):
x, x_lengths = x.cuda(), x_lengths.cuda()
y, y_lengths = y.cuda(), y_lengths.cuda()
_ = generator(x, x_lengths, y, y_lengths, gen=False)
break
utils.save_checkpoint(generator, optimizer_g, hps.train.learning_rate, 0, os.path.join(hps.model_dir, "ddi_G.pth"))
if __name__ == "__main__":
main()