-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
73 lines (56 loc) · 2.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.conv_layers = nn.ModuleList([nn.Conv2d(1, 16, 5, 2),
nn.Conv2d(16, 32, 5, 2),
nn.Conv2d(32, 64, 5, 2),
nn.Conv2d(64, 128, 5, 2),
nn.Conv2d(128, 256, 5, 2),
nn.Conv2d(256, 512, 5, 2)])
self.conv_batch_norms = nn.ModuleList([nn.BatchNorm2d(16),
nn.BatchNorm2d(32),
nn.BatchNorm2d(64),
nn.BatchNorm2d(128),
nn.BatchNorm2d(256),
nn.BatchNorm2d(512)])
self.deconv_layers = nn.ModuleList([nn.ConvTranspose2d(512, 256, 5, 2),
nn.ConvTranspose2d(512, 128, 5, 2),
nn.ConvTranspose2d(256, 64, 5, 2),
nn.ConvTranspose2d(128, 32, 5, 2),
nn.ConvTranspose2d(64, 16, 5, 2),
nn.ConvTranspose2d(32, 1, 5, 2)])
self.deconv_batch_norms = nn.ModuleList([nn.BatchNorm2d(256),
nn.BatchNorm2d(128),
nn.BatchNorm2d(64),
nn.BatchNorm2d(32),
nn.BatchNorm2d(16),
nn.Sigmoid()])
self.decoder_dropouts = nn.ModuleList([nn.Dropout(p=0.5),
nn.Dropout(p=0.5),
nn.Dropout(p=0.5)])
def forward(self, input_tensor):
tensor = input_tensor
intermediate_tensor = list()
for layer, norm in zip(self.conv_layers, self.conv_batch_norms):
tensor = layer(tensor)
tensor = F.leaky_relu(tensor, 0.2)
tensor = norm(tensor)
intermediate_tensor.append(tensor)
for i, (layer, norm) in enumerate(zip(self.deconv_layers, self.deconv_batch_norms)):
if i == 0:
tensor = intermediate_tensor.pop()
else:
past_tensor = intermediate_tensor.pop()
tensor = torch.cat((tensor, past_tensor), 1)
tensor = layer(tensor)
tensor = F.relu(tensor)
tensor = norm(tensor)
if i < 3:
tensor = self.decoder_dropouts[i](tensor)
output_tensor = input_tensor * tensor
return output_tensor, tensor.detach()
if __name__ == "__main__":
model = UNet()