-
Notifications
You must be signed in to change notification settings - Fork 56
/
lsgan.py
156 lines (129 loc) · 5.99 KB
/
lsgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import jittor as jt
from jittor import init
from jittor import nn
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
import argparse
import os
import numpy as np
import math
import cv2
import time
jt.flags.use_cuda = 1
os.makedirs('images', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=1000, help='number of image channels')
opt = parser.parse_args()
print(opt)
def save_image(img, path, nrow=10):
N,C,W,H = img.shape
img2=img.reshape([-1,W*nrow*nrow,H])
img=img2[:,:W*nrow,:]
for i in range(1,nrow):
img=np.concatenate([img,img2[:,W*nrow*i:W*nrow*(i+1),:]],axis=2)
img=(img+1.0)/2.0*255
img=img.transpose((1,2,0))
cv2.imwrite(path,img)
def weights_init_normal(m):
classname = m.__class__.__name__
if (classname.find('Conv') != (- 1)):
jt.init.gauss_(m.weight, 0.0, 0.02)
elif (classname.find('BatchNorm') != (- 1)):
jt.init.gauss_(m.weight, 1.0, 0.02)
jt.init.constant_(m.bias, 0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.init_size = (opt.img_size // 4)
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, (128 * (self.init_size ** 2))))
self.conv_blocks = nn.Sequential(nn.Upsample(scale_factor=2), nn.Conv(128, 128, 3, stride=1, padding=1), nn.BatchNorm(128, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Upsample(scale_factor=2), nn.Conv(128, 64, 3, stride=1, padding=1), nn.BatchNorm(64, eps=0.8), nn.LeakyReLU(scale=0.2), nn.Conv(64, opt.channels, 3, stride=1, padding=1), nn.Tanh())
for m in self.modules():
weights_init_normal(m)
def execute(self, z):
out = self.l1(z)
out = out.view((out.shape[0], 128, self.init_size, self.init_size))
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv(in_filters, out_filters, 3, stride=2, padding=1), nn.LeakyReLU(scale=0.2), nn.Dropout(p=0.25)]
if bn:
block.append(nn.BatchNorm(out_filters, eps=0.8))
return block
self.model = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128))
ds_size = (opt.img_size // (2 ** 4))
self.adv_layer = nn.Linear((128 * (ds_size ** 2)), 1)
for m in self.modules():
weights_init_normal(m)
def execute(self, img):
out = self.model(img)
out = out.view((out.shape[0], (- 1)))
validity = self.adv_layer(out)
return validity
adversarial_loss = nn.MSELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
# Configure data loader
transform = transform.Compose([
transform.Resize(size=opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = jt.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = jt.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
warmup_times = -1
run_times = 3000
total_time = 0.
cnt = 0
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for (i, (real_imgs, _)) in enumerate(dataloader):
valid = jt.ones([real_imgs.shape[0], 1]).stop_grad()
fake = jt.zeros([real_imgs.shape[0], 1]).stop_grad()
# -----------------
# Train Generator
# -----------------
z = jt.array(np.random.normal(0, 1, (real_imgs.shape[0], opt.latent_dim)).astype(np.float32))
gen_imgs = generator(z)
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (0.5 * (real_loss + fake_loss))
optimizer_D.step(d_loss)
if warmup_times==-1:
print(('[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]' % (epoch, opt.n_epochs, i, len(dataloader), d_loss.numpy()[0], g_loss.numpy()[0])))
batches_done = ((epoch * len(dataloader)) + i)
if ((batches_done % opt.sample_interval) == 0):
save_image(gen_imgs.data[:25], ('images/%d.png' % batches_done), nrow=5)
else:
jt.sync_all()
cnt += 1
print(cnt)
if cnt == warmup_times:
jt.sync_all(True)
sta = time.time()
if cnt > warmup_times + run_times:
jt.sync_all(True)
total_time = time.time() - sta
print(f"run {run_times} iters cost {total_time} seconds, and avg {total_time / run_times} one iter.")
exit(0)