-
Notifications
You must be signed in to change notification settings - Fork 56
/
began.py
220 lines (183 loc) · 6.98 KB
/
began.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import numpy as np
import math
import cv2
import jittor as jt
from jittor import init
from jittor import nn
jt.flags.use_cuda = 1
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=62, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=500, help="number of image channels")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
init.gauss_(m.weight, 0.0, 0.02)
init.gauss_(m.bias, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
init.gauss_(m.weight, 1.0, 0.02)
init.constant_(m.bias, 0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.init_size = (opt.img_size // 4)
self.l1 = nn.Sequential(
nn.Linear(opt.latent_dim, (128 * (self.init_size ** 2))))
self.conv_blocks = nn.Sequential(
nn.BatchNorm(128),
nn.Upsample(scale_factor=2),
nn.Conv(128, 128, 3, stride=1, padding=1),
nn.BatchNorm(128, 0.8), nn.Leaky_relu(0.2),
nn.Upsample(scale_factor=2),
nn.Conv(128, 64, 3, stride=1, padding=1),
nn.BatchNorm(64, 0.8),
nn.Leaky_relu(0.2),
nn.Conv(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh()
)
for m in self.modules():
weights_init_normal(m)
def execute(self, noise):
out = self.l1(noise)
out = jt.reshape(out, [out.shape[0], 128, self.init_size, self.init_size])
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.down = nn.Sequential(
nn.Conv(opt.channels, 64, 3, 2, 1),
nn.Relu()
)
self.down_size = (opt.img_size // 2)
down_dim = (64 * ((opt.img_size // 2) ** 2))
self.fc = nn.Sequential(
nn.Linear(down_dim, 32),
nn.BatchNorm1d(32, 0.8),
nn.Relu(),
nn.Linear(32, down_dim),
nn.BatchNorm1d(down_dim),
nn.Relu()
)
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv(64, opt.channels, 3, 1, 1)
)
for m in self.modules():
weights_init_normal(m)
def execute(self, img):
out = self.down(img)
out = self.fc(jt.reshape(out, [out.shape[0], (- 1)]))
out = self.up(jt.reshape(out, [out.shape[0], 64, self.down_size, self.down_size]))
return out
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
# Configure data loader
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
train_loader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=False)
# Optimizers
optimizer_G = nn.Adam(
generator.parameters(),
lr=opt.lr,
betas=(opt.b1, opt.b2)
)
optimizer_D = nn.Adam(
discriminator.parameters(),
lr=opt.lr,
betas=(opt.b1, opt.b2)
)
# ----------
# Training
# ----------
# BEGAN hyper parameters
gamma = 0.75
lambda_k = 0.001
k = 0.0
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(train_loader):
# Configure input
real_imgs = jt.array(imgs)
# -----------------
# Train Generator
# -----------------
# Sample noise as generator input
z = jt.array(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))).float32()
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
g_loss = jt.mean(jt.abs(discriminator(gen_imgs) - gen_imgs))
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
# Measure discriminator's ability to classify real from generated samples
d_real = discriminator(real_imgs)
d_fake = discriminator(gen_imgs.stop_grad())
d_loss_real = jt.mean(jt.abs(d_real - real_imgs))
d_loss_fake = jt.mean(jt.abs(d_fake - gen_imgs.stop_grad()))
d_loss = d_loss_real - k * d_loss_fake
optimizer_D.step(d_loss)
# ----------------
# Update weights
# ----------------
diff = jt.mean(gamma * d_loss_real - d_loss_fake)
# Update weight term for fake samples
k = k + lambda_k * diff.data[0]
k = min(max(k, 0), 1) # Constraint to interval [0, 1]
# Update convergence metric
M = (d_loss_real + jt.abs(diff)).data[0]
# --------------
# Log Progress
# --------------
if i % 50 == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] -- M: %f, k: %f"
% (epoch, opt.n_epochs, i, len(train_loader), d_loss.data[0], g_loss.data[0], M, k)
)
batches_done = epoch * len(train_loader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.numpy()[:25], "images/%d.png" % batches_done, nrow=5)