-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathinference.py
executable file
·148 lines (134 loc) · 5.44 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#codin:utf8
from config import opt
import os
import models
import face_alignment
from skimage import io
from torch.autograd import Variable
from torchnet import meter
from utils import Visualizer
from tqdm import tqdm
from torchvision import transforms
import torchvision
import torch
from torchsummary import summary
import json
import numpy as np
import cv2
class DataHandle():
def __init__(self,scale=2.7,image_size=224,use_gpu=False,transform=None,data_source = None):
self.transform = transform
self.scale = scale
self.image_size = image_size
if use_gpu:
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False)
else:
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False,device='cpu')
def det_img(self,imgdir):
input = io.imread(imgdir)
preds = self.fa.get_landmarks(input)
if 0:
for pred in preds:
img = cv2.imread(imgdir)
print('ldmk num:', pred.shape[0])
for i in range(pred.shape[0]):
x,y = pred[i]
print(x,y)
cv2.circle(img,(x,y),1,(0,0,255),-1)
cv2.imshow('-',img)
cv2.waitKey()
return preds
def crop_with_ldmk(self,image, landmark):
ct_x, std_x = landmark[:,0].mean(), landmark[:,0].std()
ct_y, std_y = landmark[:,1].mean(), landmark[:,1].std()
std_x, std_y = self.scale * std_x, self.scale * std_y
src = np.float32([(ct_x, ct_y), (ct_x + std_x, ct_y + std_y), (ct_x + std_x, ct_y)])
dst = np.float32([((self.image_size -1 )/ 2.0, (self.image_size -1)/ 2.0),
((self.image_size-1), (self.image_size -1 )),
((self.image_size -1 ), (self.image_size - 1)/2.0)])
retval = cv2.getAffineTransform(src, dst)
result = cv2.warpAffine(image, retval, (self.image_size, self.image_size), flags = cv2.INTER_LINEAR, borderMode = cv2.BORDER_CONSTANT)
return result
def get_data(self,image_path):#第二步装载数据,返回[img,label]
img = cv2.imread(image_path)
ldmk = np.asarray(self.det_img(image_path),dtype=np.float32)
if 0:
for pred in ldmk:
for i in range(pred.shape[0]):
x,y = pred[i]
cv2.circle(img,(x,y),1,(0,0,255),-1)
ldmk = ldmk[np.argsort(np.std(ldmk[:,:,1],axis=1))[-1]]
img =self.crop_with_ldmk(img, ldmk)
if 0:
cv2.imshow('crop face',img)
cv2.waitKey()
return np.transpose(np.array(img, dtype = np.float32), (2, 0, 1)), image_path
def __len__(self):
return len(self.img_label)
def crop_with_ldmk(self,image, landmark):
ct_x, std_x = landmark[:,0].mean(), landmark[:,0].std()
ct_y, std_y = landmark[:,1].mean(), landmark[:,1].std()
std_x, std_y = self.scale * std_x, self.scale * std_y
src = np.float32([(ct_x, ct_y), (ct_x + std_x, ct_y + std_y), (ct_x + std_x, ct_y)])
dst = np.float32([((self.image_size -1 )/ 2.0, (self.image_size -1)/ 2.0),
((self.image_size-1), (self.image_size -1 )),
((self.image_size -1 ), (self.image_size - 1)/2.0)])
retval = cv2.getAffineTransform(src, dst)
result = cv2.warpAffine(image, retval, (self.image_size, self.image_size), flags = cv2.INTER_LINEAR, borderMode = cv2.BORDER_CONSTANT)
return result
def inference(**kwargs):
import glob
images = glob.glob(kwargs['images'])
assert len(images)>0
data_handle = DataHandle(
scale = opt.cropscale,
use_gpu = opt.use_gpu,
transform = None,
data_source='none')
pths = glob.glob('checkpoints/%s/*.pth'%(opt.model))
pths.sort(key=os.path.getmtime,reverse=True)
print(pths)
opt.parse(kwargs)
# 模型
opt.load_model_path=pths[0]
model = getattr(models, opt.model)().eval()
assert os.path.exists(opt.load_model_path)
if opt.load_model_path:
model.load(opt.load_model_path)
if opt.use_gpu: model.cuda()
model.train(False)
fopen = open('result/inference.txt','w')
tqbar = tqdm(enumerate(images),desc='Inference with %s'%(opt.model))
for idx,imgdir in tqbar:
data,_ = data_handle.get_data(imgdir)
data = data[np.newaxis,:]
data = torch.FloatTensor(data)
with torch.no_grad():
if opt.use_gpu:
data = data.cuda()
outputs = model(data)
outputs = torch.softmax(outputs,dim=-1)
preds = outputs.to('cpu').numpy()
attack_prob = preds[:,opt.ATTACK]
tqbar.set_description(desc = 'Inference %s attack_prob=%f with %s'%(imgdir, attack_prob, opt.model))
print('Inference %s attack_prob=%f'%(imgdir, attack_prob),file=fopen)
fopen.close()
def help():
'''
打印帮助的信息: python file.py help
'''
print('''
usage : python {0} <function> [--args=value,]
<function> := train | test | help
example:
python {0} train --env='env0701' --lr=0.01
python {0} test --dataset='path/to/dataset/root/'
python {0} inference --images='image dirs'
python {0} help
avaiable args:'''.format(__file__))
from inspect import getsource
source = (getsource(opt.__class__))
print(source)
if __name__=='__main__':
import fire
fire.Fire()