This repo contains codes for the following paper:
Jingfeng Yang, Zhaoran Ma, Diyi Yang: Planning and Generating Natural and Diverse Disfluent Texts as Augmentation for Disfluency Detection. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP'2020)
If you would like to refer to it, please cite the paper mentioned above.
These instructions will get you running the codes.
- Python 3.6 or higher
- Pytorch >= 1.3.0
- Pytorch_transformers (also known as transformers)
cd disf_gen_coarse2fine &&
python train.py -learning_rate 0.001 -no_share_emb_layout_encoder -seprate_encoder -batch_size 64 -max_grad_norm 0.1 -layout_weight 1 -optim adam &&
python evaluate.py &&
cd ..
CUDA_VISIBLE_DEVICES=0 python transformers/examples/run_language_modeling.py --output_dir=news3m_ml_finetune_st --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=news_3m --do_eval --eval_data_file=swbd_LM_val --line_by_line --eval_all_checkpoints --num_train_epochs 6 --logging_steps 6000 --save_steps 6000 &&
python createFakeLMdist.py -infile news_to_fake_3m -outfile news_fake_3m_newstune360000_mp -model_path news3m_ml_finetune_st/checkpoint-360000 -gpu 2222333333555555 &&
python writePretrain.py
Please run ./code/train.py
to train the MixText model (use both labeled and unlabeled training data):
python trainBertPretrain.py ||
python trainBertPretrain.py -p
Disfluency generation code is adapted from OpenNMT and Coarse2fine Semantic Parsing