-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathtrain.py
executable file
·448 lines (362 loc) · 19.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import argparse
import time
import csv
import datetime
from path import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import models
import custom_transforms
from utils import tensor2array, save_checkpoint
from datasets.sequence_folders import SequenceFolder
from datasets.pair_folders import PairFolder
from loss_functions import compute_smooth_loss, compute_photo_and_geometry_loss, compute_errors
from logger import TermLogger, AverageMeter
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='Structure from Motion Learner training on KITTI and CityScapes Dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--folder-type', type=str, choices=['sequence', 'pair'], default='sequence', help='the dataset dype to train')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers')
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N', help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=4, type=int, metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M', help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float, metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH', help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH', help='csv where to save per-gradient descent train stats')
parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs at validation step')
parser.add_argument('--resnet-layers', type=int, default=18, choices=[18, 50], help='number of ResNet layers for depth estimation.')
parser.add_argument('--num-scales', '--number-of-scales', type=int, help='the number of scales', metavar='W', default=1)
parser.add_argument('-p', '--photo-loss-weight', type=float, help='weight for photometric loss', metavar='W', default=1)
parser.add_argument('-s', '--smooth-loss-weight', type=float, help='weight for disparity smoothness loss', metavar='W', default=0.1)
parser.add_argument('-c', '--geometry-consistency-weight', type=float, help='weight for depth consistency loss', metavar='W', default=0.5)
parser.add_argument('--with-ssim', type=int, default=1, help='with ssim or not')
parser.add_argument('--with-mask', type=int, default=1, help='with the the mask for moving objects and occlusions or not')
parser.add_argument('--with-auto-mask', type=int, default=0, help='with the the mask for stationary points')
parser.add_argument('--with-pretrain', type=int, default=1, help='with or without imagenet pretrain for resnet')
parser.add_argument('--dataset', type=str, choices=['kitti', 'nyu'], default='kitti', help='the dataset to train')
parser.add_argument('--pretrained-disp', dest='pretrained_disp', default=None, metavar='PATH', help='path to pre-trained dispnet model')
parser.add_argument('--pretrained-pose', dest='pretrained_pose', default=None, metavar='PATH', help='path to pre-trained Pose net model')
parser.add_argument('--name', dest='name', type=str, required=True, help='name of the experiment, checkpoints are stored in checpoints/name')
parser.add_argument('--padding-mode', type=str, choices=['zeros', 'border'], default='zeros',
help='padding mode for image warping : this is important for photometric differenciation when going outside target image.'
' zeros will null gradients outside target image.'
' border will only null gradients of the coordinate outside (x or y)')
parser.add_argument('--with-gt', action='store_true', help='use ground truth for validation. \
You need to store it in npy 2D arrays see data/kitti_raw_loader.py for an example')
best_error = -1
n_iter = 0
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
torch.autograd.set_detect_anomaly(True)
def main():
global best_error, n_iter, device
args = parser.parse_args()
timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M")
save_path = Path(args.name)
args.save_path = 'checkpoints'/save_path/timestamp
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
training_writer = SummaryWriter(args.save_path)
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path/'valid'/str(i)))
# Data loading code
normalize = custom_transforms.Normalize(mean=[0.45, 0.45, 0.45],
std=[0.225, 0.225, 0.225])
train_transform = custom_transforms.Compose([
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize])
print("=> fetching scenes in '{}'".format(args.data))
if args.folder_type == 'sequence':
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length,
dataset=args.dataset
)
else:
train_set = PairFolder(
args.data,
seed=args.seed,
train=True,
transform=train_transform
)
# if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping
if args.with_gt:
from datasets.validation_folders import ValidationSet
val_set = ValidationSet(
args.data,
transform=valid_transform,
dataset=args.dataset
)
else:
val_set = SequenceFolder(
args.data,
transform=valid_transform,
seed=args.seed,
train=False,
sequence_length=args.sequence_length,
dataset=args.dataset
)
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
disp_net = models.DispResNet(args.resnet_layers, args.with_pretrain).to(device)
pose_net = models.PoseResNet(18, args.with_pretrain).to(device)
# load parameters
if args.pretrained_disp:
print("=> using pre-trained weights for DispResNet")
weights = torch.load(args.pretrained_disp)
disp_net.load_state_dict(weights['state_dict'], strict=False)
if args.pretrained_pose:
print("=> using pre-trained weights for PoseResNet")
weights = torch.load(args.pretrained_pose)
pose_net.load_state_dict(weights['state_dict'], strict=False)
disp_net = torch.nn.DataParallel(disp_net)
pose_net = torch.nn.DataParallel(pose_net)
print('=> setting adam solver')
optim_params = [
{'params': disp_net.parameters(), 'lr': args.lr},
{'params': pose_net.parameters(), 'lr': args.lr}
]
optimizer = torch.optim.Adam(optim_params,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
with open(args.save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_loss', 'smooth_loss', 'geometry_consistency_loss'])
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
for epoch in range(args.epochs):
logger.epoch_bar.update(epoch)
# train for one epoch
logger.reset_train_bar()
train_loss = train(args, train_loader, disp_net, pose_net, optimizer, args.epoch_size, logger, training_writer)
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
# evaluate on validation set
logger.reset_valid_bar()
if args.with_gt:
errors, error_names = validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers)
else:
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_net, epoch, logger, output_writers)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors))
logger.valid_writer.write(' * Avg {}'.format(error_string))
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, epoch)
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
decisive_error = errors[1]
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error < best_error
best_error = min(best_error, decisive_error)
save_checkpoint(
args.save_path, {
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': pose_net.module.state_dict()
},
is_best)
with open(args.save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
logger.epoch_bar.finish()
def train(args, train_loader, disp_net, pose_net, optimizer, epoch_size, logger, train_writer):
global n_iter, device
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
w1, w2, w3 = args.photo_loss_weight, args.smooth_loss_weight, args.geometry_consistency_weight
# switch to train mode
disp_net.train()
pose_net.train()
end = time.time()
logger.train_bar.update(0)
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(train_loader):
log_losses = i > 0 and n_iter % args.print_freq == 0
# measure data loading time
data_time.update(time.time() - end)
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
# compute output
tgt_depth, ref_depths = compute_depth(disp_net, tgt_img, ref_imgs)
poses, poses_inv = compute_pose_with_inv(pose_net, tgt_img, ref_imgs)
loss_1, loss_3 = compute_photo_and_geometry_loss(tgt_img, ref_imgs, intrinsics, tgt_depth, ref_depths,
poses, poses_inv, args.num_scales, args.with_ssim,
args.with_mask, args.with_auto_mask, args.padding_mode)
loss_2 = compute_smooth_loss(tgt_depth, tgt_img, ref_depths, ref_imgs)
loss = w1*loss_1 + w2*loss_2 + w3*loss_3
if log_losses:
train_writer.add_scalar('photometric_error', loss_1.item(), n_iter)
train_writer.add_scalar('disparity_smoothness_loss', loss_2.item(), n_iter)
train_writer.add_scalar('geometry_consistency_loss', loss_3.item(), n_iter)
train_writer.add_scalar('total_loss', loss.item(), n_iter)
# record loss and EPE
losses.update(loss.item(), args.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), loss_1.item(), loss_2.item(), loss_3.item()])
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
@torch.no_grad()
def validate_without_gt(args, val_loader, disp_net, pose_net, epoch, logger, output_writers=[]):
global device
batch_time = AverageMeter()
losses = AverageMeter(i=4, precision=4)
log_outputs = len(output_writers) > 0
# switch to evaluate mode
disp_net.eval()
pose_net.eval()
end = time.time()
logger.valid_bar.update(0)
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
intrinsics_inv = intrinsics_inv.to(device)
# compute output
tgt_depth = [1 / disp_net(tgt_img)]
ref_depths = []
for ref_img in ref_imgs:
ref_depth = [1 / disp_net(ref_img)]
ref_depths.append(ref_depth)
if log_outputs and i < len(output_writers):
if epoch == 0:
output_writers[i].add_image('val Input', tensor2array(tgt_img[0]), 0)
output_writers[i].add_image('val Dispnet Output Normalized',
tensor2array(1/tgt_depth[0][0], max_value=None, colormap='magma'),
epoch)
output_writers[i].add_image('val Depth Output',
tensor2array(tgt_depth[0][0], max_value=10),
epoch)
poses, poses_inv = compute_pose_with_inv(pose_net, tgt_img, ref_imgs)
loss_1, loss_3 = compute_photo_and_geometry_loss(tgt_img, ref_imgs, intrinsics, tgt_depth, ref_depths,
poses, poses_inv, args.num_scales, args.with_ssim,
args.with_mask, False, args.padding_mode)
loss_2 = compute_smooth_loss(tgt_depth, tgt_img, ref_depths, ref_imgs)
loss_1 = loss_1.item()
loss_2 = loss_2.item()
loss_3 = loss_3.item()
loss = loss_1
losses.update([loss, loss_1, loss_2, loss_3])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.valid_bar.update(i+1)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Loss {}'.format(batch_time, losses))
logger.valid_bar.update(len(val_loader))
return losses.avg, ['Total loss', 'Photo loss', 'Smooth loss', 'Consistency loss']
@torch.no_grad()
def validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers=[]):
global device
batch_time = AverageMeter()
error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
errors = AverageMeter(i=len(error_names))
log_outputs = len(output_writers) > 0
# switch to evaluate mode
disp_net.eval()
end = time.time()
logger.valid_bar.update(0)
for i, (tgt_img, depth) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
depth = depth.to(device)
# check gt
if depth.nelement() == 0:
continue
# compute output
output_disp = disp_net(tgt_img)
output_depth = 1/output_disp[:, 0]
if log_outputs and i < len(output_writers):
if epoch == 0:
output_writers[i].add_image('val Input', tensor2array(tgt_img[0]), 0)
depth_to_show = depth[0]
output_writers[i].add_image('val target Depth',
tensor2array(depth_to_show, max_value=10),
epoch)
depth_to_show[depth_to_show == 0] = 1000
disp_to_show = (1/depth_to_show).clamp(0, 10)
output_writers[i].add_image('val target Disparity Normalized',
tensor2array(disp_to_show, max_value=None, colormap='magma'),
epoch)
output_writers[i].add_image('val Dispnet Output Normalized',
tensor2array(output_disp[0], max_value=None, colormap='magma'),
epoch)
output_writers[i].add_image('val Depth Output',
tensor2array(output_depth[0], max_value=10),
epoch)
if depth.nelement() != output_depth.nelement():
b, h, w = depth.size()
output_depth = torch.nn.functional.interpolate(output_depth.unsqueeze(1), [h, w]).squeeze(1)
errors.update(compute_errors(depth, output_depth, args.dataset))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.valid_bar.update(i+1)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
logger.valid_bar.update(len(val_loader))
return errors.avg, error_names
def compute_depth(disp_net, tgt_img, ref_imgs):
tgt_depth = [1/disp for disp in disp_net(tgt_img)]
ref_depths = []
for ref_img in ref_imgs:
ref_depth = [1/disp for disp in disp_net(ref_img)]
ref_depths.append(ref_depth)
return tgt_depth, ref_depths
def compute_pose_with_inv(pose_net, tgt_img, ref_imgs):
poses = []
poses_inv = []
for ref_img in ref_imgs:
poses.append(pose_net(tgt_img, ref_img))
poses_inv.append(pose_net(ref_img, tgt_img))
return poses, poses_inv
if __name__ == '__main__':
main()