-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy patheval_depth.py
231 lines (183 loc) · 8.17 KB
/
eval_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import os
from tqdm import tqdm
from path import Path
################### Options ######################
parser = argparse.ArgumentParser(description="NYUv2 Depth options")
parser.add_argument("--dataset", required=True, help="kitti or nyu", choices=['nyu', 'kitti'], type=str)
parser.add_argument("--pred_depth", required=True, help="depth predictions npy", type=str)
parser.add_argument("--gt_depth", required=True, help="gt depth nyu for nyu or folder for kitti", type=str)
parser.add_argument("--vis_dir", help="result directory for saving visualization", type=str)
parser.add_argument("--img_dir", help="image directory for reading image", type=str)
parser.add_argument("--ratio_name", help="names for saving ratios", type=str)
######################################################
args = parser.parse_args()
def mkdir_if_not_exists(path):
"""Make a directory if it does not exist.
Args:
path: directory to create
"""
if not os.path.exists(path):
os.makedirs(path)
def compute_depth_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
Args:
gt (N): ground truth depth
pred (N): predicted depth
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
log10 = np.mean(np.abs((np.log10(gt) - np.log10(pred))))
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
if args.dataset == 'nyu':
return abs_rel, log10, rmse, a1, a2, a3
elif args.dataset == 'kitti':
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
def depth_visualizer(data):
"""
Args:
data (HxW): depth data
Returns:
vis_data (HxWx3): depth visualization (RGB)
"""
inv_depth = 1 / (data + 1e-6)
vmax = np.percentile(inv_depth, 95)
normalizer = mpl.colors.Normalize(vmin=inv_depth.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
vis_data = (mapper.to_rgba(inv_depth)[:, :, :3] * 255).astype(np.uint8)
return vis_data
def depth_pair_visualizer(pred, gt):
"""
Args:
data (HxW): depth data
Returns:
vis_data (HxWx3): depth visualization (RGB)
"""
inv_pred = 1 / (pred + 1e-6)
inv_gt = 1 / (gt + 1e-6)
vmax = np.percentile(inv_gt, 95)
normalizer = mpl.colors.Normalize(vmin=inv_gt.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
vis_pred = (mapper.to_rgba(inv_pred)[:, :, :3] * 255).astype(np.uint8)
vis_gt = (mapper.to_rgba(inv_gt)[:, :, :3] * 255).astype(np.uint8)
return vis_pred, vis_gt
class DepthEvalEigen():
def __init__(self):
self.min_depth = 1e-3
if args.dataset == 'nyu':
self.max_depth = 10.
elif args.dataset == 'kitti':
self.max_depth = 80.
def main(self):
pred_depths = []
""" Get result """
# Read precomputed result
pred_depths = np.load(os.path.join(args.pred_depth))
""" Evaluation """
if args.dataset == 'nyu':
gt_depths = np.load(args.gt_depth)
elif args.dataset == 'kitti':
gt_depths = []
for gt_f in sorted(Path(args.gt_depth).files("*.npy")):
gt_depths.append(np.load(gt_f))
pred_depths = self.evaluate_depth(gt_depths, pred_depths, eval_mono=True)
""" Save result """
# create folder for visualization result
if args.vis_dir:
save_folder = Path(args.vis_dir)/'vis_depth'
mkdir_if_not_exists(save_folder)
image_paths = sorted(Path(args.img_dir).files('*.png'))
for i in tqdm(range(len(pred_depths))):
# reading image
img = cv2.imread(image_paths[i], 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w, _ = img.shape
cat_img = 0
if args.dataset == 'nyu':
cat_img = np.zeros((h, 3*w, 3))
cat_img[:, :w] = img
pred = pred_depths[i]
gt = gt_depths[i]
vis_pred, vis_gt = depth_pair_visualizer(pred, gt)
cat_img[:, w:2*w] = vis_pred
cat_img[:, 2*w:3*w] = vis_gt
elif args.dataset == 'kitti':
cat_img = np.zeros((2*h, w, 3))
cat_img[:h] = img
pred = pred_depths[i]
vis_pred = depth_visualizer(pred)
cat_img[h:2*h, :] = vis_pred
# save image
cat_img = cat_img.astype(np.uint8)
png_path = os.path.join(save_folder, "{:04}.png".format(i))
cv2.imwrite(png_path, cv2.cvtColor(cat_img, cv2.COLOR_RGB2BGR))
def evaluate_depth(self, gt_depths, pred_depths, eval_mono=True):
"""evaluate depth result
Args:
gt_depths (NxHxW): gt depths
pred_depths (NxHxW): predicted depths
split (str): data split for evaluation
- depth_eigen
eval_mono (bool): use median scaling if True
"""
errors = []
ratios = []
resized_pred_depths = []
print("==> Evaluating depth result...")
for i in tqdm(range(pred_depths.shape[0])):
if pred_depths[i].mean() != -1:
gt_depth = gt_depths[i]
gt_height, gt_width = gt_depth.shape[:2]
# resizing prediction (based on inverse depth)
pred_inv_depth = 1 / (pred_depths[i] + 1e-6)
pred_inv_depth = cv2.resize(pred_inv_depth, (gt_width, gt_height))
pred_depth = 1 / (pred_inv_depth + 1e-6)
mask = np.logical_and(gt_depth > self.min_depth, gt_depth < self.max_depth)
if args.dataset == 'kitti':
gt_height, gt_width = gt_depth.shape
crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height,
0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32)
crop_mask = np.zeros(mask.shape)
crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
mask = np.logical_and(mask, crop_mask)
val_pred_depth = pred_depth[mask]
val_gt_depth = gt_depth[mask]
# median scaling is used for monocular evaluation
ratio = 1
if eval_mono:
ratio = np.median(val_gt_depth) / np.median(val_pred_depth)
ratios.append(ratio)
val_pred_depth *= ratio
# val_pred_depth *= 31.289
resized_pred_depths.append(pred_depth * ratio)
val_pred_depth[val_pred_depth < self.min_depth] = self.min_depth
val_pred_depth[val_pred_depth > self.max_depth] = self.max_depth
errors.append(compute_depth_errors(val_gt_depth, val_pred_depth))
if eval_mono:
ratios = np.array(ratios)
med = np.median(ratios)
print(" Scaling ratios | med: {:0.3f} | std: {:0.3f}".format(med, np.std(ratios / med)))
print(" Scaling ratios | mean: {:0.3f} +- std: {:0.3f}".format(np.mean(ratios), np.std(ratios)))
if args.ratio_name:
np.savetxt(args.ratio_name, ratios, fmt='%.4f')
mean_errors = np.array(errors).mean(0)
if args.dataset == 'nyu':
print("\n " + ("{:>8} | " * 6).format("abs_rel", "log10", "rmse", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 6).format(*mean_errors.tolist()) + "\\\\")
elif args.dataset == 'kitti':
print("\n " + ("{:>8} | " * 7).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 7).format(*mean_errors.tolist()) + "\\\\")
return resized_pred_depths
eval = DepthEvalEigen()
eval.main()