Skip to content

Latest commit

 

History

History
94 lines (81 loc) · 2.73 KB

README.MD

File metadata and controls

94 lines (81 loc) · 2.73 KB

#Sparse Local Patch Transformer

PyTorch training code for SLPT (Sparse Local Patch Transformer).

Installation

Install system requirements:

sudo apt-get install python3-dev python3-pip python3-tk libglib2.0-0

Install python dependencies:

pip3 install -r requirements.txt

Run training code on WFLW dataset

  1. Download and process WFLW dataset

    • Download WFLW dataset and annotation from Here.
    • Unzip WFLW dataset and annotations and move files into ./Data directory. Your directory should look like this:
      SLPT
      └───Data
         │
         └───WFLW
            │
            └───WFLW_annotations
            │   └───list_98pt_rect_attr_train_test
            │   │
            │   └───list_98pt_test
            └───WFLW_images
                └───0--Parade
                │
                └───...
      
  2. Modify ./Config/default.py.

     _C.DATASET.DATASET = 'WFLW'.
     _C.TRAIN.LR_STEP = [120, 140]
     _C.TRAIN.NUM_EPOCH = 150
    
  3. python ./train.py.

Run training code on 300W dataset

  1. Download and process 300W dataset

    • Download 300W dataset and annotation from Here.
    • Unzip 300W dataset and annotations and move files into ./Data directory. Your directory should look like this:
      SLPT
      └───Data
         │
         └───300W
            │
            └───helen
            │   └───trainset
            │   │
            │   └───testset
            └───lfpw
            │   └───trainset
            │   │
            │   └───testset
            └───afw
            │
            └───ibug      
      
  2. Modify ./Config/default.py.

     _C.DATASET.DATASET = '300W'.
     _C.TRAIN.LR_STEP = [80, 100]
     _C.TRAIN.NUM_EPOCH = 120
    
  3. python ./train.py.

##Citation If you find this work or code is helpful in your research, please cite:

@inproceedings{SLPT,
  title={Sparse Local Patch Transformer for Robust Face Alignment and Landmarks},
  author={Jiahao Xia and Weiwei Qu and Jianguo Zhang and Xi Wang and Min Xu},
  booktitle={CVPR},
  year={2022}
}

License

SLPT is released under the GPL-2.0 license. Please see the LICENSE file for more information.

Acknowledgments

  • This repository borrows or partially modifies the models from HRNet and DETR