forked from xiaolongma/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
nswc.html
2860 lines (2834 loc) · 87.9 KB
/
nswc.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
NSWC - Naval Surface Warfare Center Mathematical Library
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
NSWC <br> Naval Surface Warfare Center Mathematical Library
</h1>
<hr>
<p>
<b>NSWC</b>
is a FORTRAN90 library which
contains an extensive collection of mathematical
software.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/blas1/blas1.html">
BLAS1</a>,
a FORTRAN90 library which
contains basic linear algebra routines for vector-vector operations,
combining the single and double precision, real and complex arithmetic
libraries.
</p>
<p>
<a href = "../../f_src/eispack/eispack.html">
EISPACK</a>,
a FORTRAN90 library which
carries out eigenvalue computations;
superseded by LAPACK;
</p>
<p>
<a href = "../../f_src/fftpack5.1/fftpack5.1.html">
FFTPACK5.1</a>,
a FORTRAN90 library which
implements the Fast Fourier Transform
using single precision arithmetic,
by Paul Swarztrauber and Dick Valent;
</p>
<p>
<a href = "../../f_src/fn/fn.html">
FN</a>,
a FORTRAN90 library which
approximates elementary and special functions using Chebyshev polynomials,
by Wayne Fullerton.
</p>
<p>
<a href = "../../f_src/linpack_s/linpack_s.html">
LINPACK_S</a>,
a FORTRAN90 library which
solves linear systems using single precision real arithmetic;
</p>
<p>
<a href = "../../f_src/test_values/test_values.html">
TEST_VALUES</a>,
a FORTRAN90 library which
supplies test values of various mathematical functions.
</p>
<h3 align = "center">
Software Compiler and Maintainter:
</h3>
<p>
Alfred Morris,<br>
Engineering and Information Systems Department,<br>
Naval Surface Warfare Center,<br>
Dahlgren, Virginia, 22448-5000.
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "nswc.f90">nswc.f90</a>, the source code.
</li>
<li>
<a href = "nswc.sh">nswc.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "nswc_prb.f90">nswc_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "nswc_prb.sh">nswc_prb.sh</a>,
commands to compile, link and run the sample calling program.
</li>
<li>
<a href = "nswc_prb_output.txt">nswc_prb_output.txt</a>, output from the sample
calling program.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ABCON</b> calculates the abscissa of convergence of a given function
</li>
<li>
<b>ABCON1</b> calculates the abscissa of convergence of a given function
</li>
<li>
<b>ABSLV</b> solves the real matrix equation A*x + x*B = c.
</li>
<li>
<b>ABSLV1</b> solves the real matrix equation a*x + x*b = c.
</li>
<li>
<b>ACOND</b> tests whether X lies to the right of the abscissa of convergence
</li>
<li>
<b>ACONDF</b> is the function integrated along the X axis in ACOND.
</li>
<li>
<b>ACONDG</b> is the function integrated along the line X = C in ACOND.
</li>
<li>
<b>ADAPT</b> computes a piecewise polynomial approximation.
</li>
<li>
<b>ADAPT1</b> computes a piecewise polynomial approximation
</li>
<li>
<b>ADCHK</b> checks for discarding interval, applies various tests
</li>
<li>
<b>ADCOMP</b> computes the piecewise polynomial approximation on the current interval.
</li>
<li>
<b>ADPUT</b> puts intervals on the stack or discards them.
</li>
<li>
<b>ADSET</b> checks the input data and initializes the computation.
</li>
<li>
<b>ADTAKE</b> takes an active interval off the top of the stack.
</li>
<li>
<b>ADTRAN</b> converts polynomial representation from divided difference to power form.
</li>
<li>
<b>AI</b> evaluates the Airy function.
</li>
<li>
<b>AIA</b> calculates the Airy function and its derivative.
</li>
<li>
<b>AIE</b> computes the scaled Airy function.
</li>
<li>
<b>AII</b> calculates the Airy function ai and its derivative aip
</li>
<li>
<b>AIMP</b> computes the Airy modulus and phase for x >= 1
</li>
<li>
<b>AIRM</b> calculates the Airy functions ai and bi and their
</li>
<li>
<b>AIRY_VALUES</b> returns some values of the Airy function for testing.
</li>
<li>
<b>ALGDIV</b> computes ln(gamma(b)/gamma(a+b)) when b >= 8
</li>
<li>
<b>ALLOT</b> checks for sufficiency the declared dimensions of the
</li>
<li>
<b>ALNREL</b> evaluates the function ln(1 + a)
</li>
<li>
<b>AORD</b> reorders the elements of a so that abs(a(i)) <= abs(a(i+1))
</li>
<li>
<b>ARCEBE</b> performs the backward elimination step in the solution phase of arceco.
</li>
<li>
<b>ARCEBM</b> performs the backward modification step in the solution phase of arceco.
</li>
<li>
<b>ARCEBS</b> performs the backward solution step in the solution phase of arceco.
</li>
<li>
<b>ARCECO</b> solves the linear system a*x = b where a is
</li>
<li>
<b>ARCEDC</b> supervises the modified alternate row and column decomposition
</li>
<li>
<b>ARCEFE</b> performs the forward elimination step in the solution phase of arceco.
</li>
<li>
<b>ARCEFM</b> performs the forward modification step in the solution phase of arceco.
</li>
<li>
<b>ARCEFS</b> performs the forward solution step in the solution phase of arceco.
</li>
<li>
<b>ARCEPC</b> performs nclpiv column eliminations on the matrices topblk and botblk
</li>
<li>
<b>ARCEPR</b> performs nrwpiv row eliminations on the matrix block
</li>
<li>
<b>ARCESL</b> supervises the solution of the linear system
</li>
<li>
<b>ARTNQ</b> ??? looks like a variation of the arc-tangent function.
</li>
<li>
<b>ASIK</b> computes Bessel functions I and K for positive argument and high order.
</li>
<li>
<b>ASJY</b> computes Bessel functions J and Y for positive argument and high order.
</li>
<li>
<b>ASSGN</b> solves the assignment problem.
</li>
<li>
<b>ASSGN1</b> solves the square assignment problem.
</li>
<li>
<b>ATN</b> calculates complex function atn(z) = z*atan(z) using double precision.
</li>
<li>
<b>BADD</b> adds real banded matrices
</li>
<li>
<b>BALANC</b> balances a real matrix before eigenvalue calculations.
</li>
<li>
<b>BALBAK</b> is a translation of the algol procedure balbak,
</li>
<li>
<b>BALINV</b> inverts the similarity transforms used by BALANC.
</li>
<li>
<b>BANFAC</b> computes the LU factorization of a banded matrix.
</li>
<li>
<b>BANSLV</b> solves a linear system factored by BANFAC.
</li>
<li>
<b>BASIZ</b> finds the size of a basis required for polynomial approximation.
</li>
<li>
<b>BASYM</b> carries out asymptotic expansion for ix(a,b) for large a and b.
</li>
<li>
<b>BCHFAC</b> computes the Cholesky factorization of a banded matrix.
</li>
<li>
<b>BCHSLV</b> solves a linear system factored by BCHFAC.
</li>
<li>
<b>BCORR</b> evaluates a correction term used to approximate log ( gamma ( x ) ).
</li>
<li>
<b>BESI</b> computes a sequence of I Bessel functions.
</li>
<li>
<b>BESI0_VALUES</b> returns some values of the I0 Bessel function for testing.
</li>
<li>
<b>BESI1_VALUES</b> returns some values of the I1 Bessel function for testing.
</li>
<li>
<b>BESIN_VALUES</b> returns some values of the IN Bessel function for testing.
</li>
<li>
<b>BESJ</b> computes a sequence of J Bessel functions.
</li>
<li>
<b>BESJ0_VALUES</b> returns some values of the J0 Bessel function for testing.
</li>
<li>
<b>BESJ1_VALUES</b> returns some values of the J1 Bessel function for testing.
</li>
<li>
<b>BESJN_VALUES</b> returns some values of the JN Bessel function for testing.
</li>
<li>
<b>BETA</b> computes the Beta function.
</li>
<li>
<b>BETA_INC_VALUES</b> returns some values of the incomplete Beta function.
</li>
<li>
<b>BETA_VALUES</b> returns some values of the Beta function for testing.
</li>
<li>
<b>BETALN</b> evaluates the logarithm of the beta function
</li>
<li>
<b>BFRAC</b> continued fraction expansion for ix(a,b) when a,b > 1.
</li>
<li>
<b>BGRAT</b> asymptotic expansion for ix(a,b) when a is larger than b.
</li>
<li>
<b>BI</b> evaluation of the Airy function BI(X).
</li>
<li>
<b>BIA</b> calculates the airy function bi and its derivative bip for
</li>
<li>
<b>BIE</b> computes the scaled Airy function BI(X).
</li>
<li>
<b>BII</b> calculates the airy function bi and its derivative bip
</li>
<li>
<b>BIM</b> calculates the modified Bessel function of the first kind
</li>
<li>
<b>BJM</b> calculates the Bessel function of the first kind
</li>
<li>
<b>BLKORD</b> reorders a sparse matrix into block triangular form.
</li>
<li>
<b>BLKTR1</b> solves a block triangular linear system.
</li>
<li>
<b>BLKTRI</b> ???
</li>
<li>
<b>BLND</b> ???
</li>
<li>
<b>BLSQ</b> solves a linear system using least squares.
</li>
<li>
<b>BPOSE</b> transposes a real banded matrix.
</li>
<li>
<b>BPROD</b> multiplies real banded matrices
</li>
<li>
<b>BPSER</b> power series expansion for evaluating ix(a,b) when b <= 1
</li>
<li>
<b>BRATIO</b> evaluates the incomplete beta function IX(A,B).
</li>
<li>
<b>BRCMP1</b> evaluates exp(mu) * (x**a*y**b/beta(a,b))
</li>
<li>
<b>BRCOMP</b> evaluates x**a * y**b / beta(a,b).
</li>
<li>
<b>BSL2</b> produces the b-spline coefficients bcoef of the piecewise
</li>
<li>
<b>BSLV</b> employs gauss elimination with row interchanges to solve
</li>
<li>
<b>BSLV1</b> employs gauss elimination with row interchanges to solve
</li>
<li>
<b>BSPEV</b> evaluation of b-splines
</li>
<li>
<b>BSPP</b> converts from b-spline representation to pp representation
</li>
<li>
<b>BSRH</b> ???
</li>
<li>
<b>BSSLI</b> modified Bessel function of integral order
</li>
<li>
<b>BSSLJ</b> ordinary Bessel function of integral order
</li>
<li>
<b>BSSLK</b> modified Bessel function of integral order
</li>
<li>
<b>BSSLY</b> ordinary Bessel function of integral order
</li>
<li>
<b>BSTRP</b> produces the b-spline coeff.s bcoef of the piecewise
</li>
<li>
<b>BSUBT</b> subtraction of real banded matrices
</li>
<li>
<b>BTPRD</b> product of a real vector and a real banded matrix
</li>
<li>
<b>BTPRD1</b> setting y = x*a + y where a is a real banded matrix and
</li>
<li>
<b>BTSLV</b> ???
</li>
<li>
<b>BUP</b> evaluation of ix(a,b) - ix(a+n,b) where n is a positive integer.
</li>
<li>
<b>BUPD</b> backtracking step updating
</li>
<li>
<b>BVIP</b> performs bivariate interpolation when the pro-
</li>
<li>
<b>BVIP2</b> performs smooth surface fitting when the pro-
</li>
<li>
<b>BVPRD</b> product of a real banded matrix and a real vector
</li>
<li>
<b>BVPRD1</b> sets y = a*x + y where a is a banded matrix, x and y are vectors.
</li>
<li>
<b>CAI</b> calculates the airy function ai and its derivative aip
</li>
<li>
<b>CALCSC</b> calculates scalar quantities used to
</li>
<li>
<b>CALCT</b> computes t = -p(s)/h(s)
</li>
<li>
<b>CAUCHY</b> computes a lower bound bnd on the moduli of the zeros
</li>
<li>
<b>CAXPY:</b> constant times a vector plus a vector.
</li>
<li>
<b>CBABK2</b> is a translation of the algol procedure
</li>
<li>
<b>CBADD:</b> addition of complex banded matrices
</li>
<li>
<b>CBAL</b> is a translation of the algol procedure
</li>
<li>
<b>CBCRT</b> computes the roots of the real polynomial
</li>
<li>
<b>CBFA</b> factors a complex band matrix by elimination.
</li>
<li>
<b>CBI</b> calculates the airy function bi and its derivative bip
</li>
<li>
<b>CBPOSE:</b> transposition of complex banded matrices
</li>
<li>
<b>CBPROD:</b> multiplication of complex banded matrices
</li>
<li>
<b>CBRT:</b> cube root of a real number
</li>
<li>
<b>CBSL</b> solves the complex band system a*x = b or trans(a)*x = b
</li>
<li>
<b>CBSLV</b> employs gauss elimination with row interchanges to solve
</li>
<li>
<b>CBSLV1</b> employs gauss elimination with row interchanges to solve
</li>
<li>
<b>CBSPL:</b> cubic spline interpolation
</li>
<li>
<b>CBSSLJ:</b> ordinary Bessel function of first kind
</li>
<li>
<b>CBSSLK:</b> calculation of the modified Bessel function of the
</li>
<li>
<b>CBSUBT:</b> subtraction of complex banded matrices
</li>
<li>
<b>CBTPD:</b> product of a complex vector and a complex banded matrix
</li>
<li>
<b>CBTPD1:</b> setting y = x*a + y where a is a complex banded matrix and
</li>
<li>
<b>CBVPD:</b> product of a complex banded matrix and a complex vector
</li>
<li>
<b>CBVPD1:</b> setting y = a*x + y where a is a complex banded matrix and
</li>
<li>
<b>CCOPY</b> copies a vector, x, to a vector, y.
</li>
<li>
<b>CDET:</b> evaluation of the determinant of a-xi where a is an nxn matrix,
</li>
<li>
<b>CDIVID:</b> double precision complex division c = a/b avoiding overflow
</li>
<li>
<b>CDOTC:</b> forms the dot product of two vectors, conjugating the first vector.
</li>
<li>
<b>CDOTU:</b> forms the dot product of two vectors.
</li>
<li>
<b>CEEZ</b> determines the coefficients c1, c2, and c3
</li>
<li>
<b>CEIG:</b> eigenvalues of complex matrices
</li>
<li>
<b>CEIGV:</b> eigenvalues and eigenvectors of complex matrices
</li>
<li>
<b>CERF:</b> computation of the complex error function
</li>
<li>
<b>CERFC:</b> computation of the complex coerror function
</li>
<li>
<b>CERR:</b> compute the approximation error at point t
</li>
<li>
<b>CEXPLI:</b> evaluation of the complex exponential integral
</li>
<li>
<b>CFLECT:</b> reflects z with respect to the origin if real(z)
</li>
<li>
<b>CFOD</b> defines coefficients needed in the integrator package sfode
</li>
<li>
<b>CFRNLI:</b> computation of the complex Fresnel integral e(z)
</li>
<li>
<b>CGAMMA:</b> evaluation of the complex gamma and loggamma functions
</li>
<li>
<b>CGECO</b> factors a complex matrix by gaussian elimination
</li>
<li>
<b>CGEDI</b> computes the determinant and inverse of a matrix
</li>
<li>
<b>CGEFA</b> factors a complex matrix by gaussian elimination.
</li>
<li>
<b>CGESL</b> solves the complex system
</li>
<li>
<b>CHEBY:</b> rational chebychev approximation of continuous functions
</li>
<li>
<b>CHEBY1</b> ???
</li>
<li>
<b>CHKPRM</b> checks the input parameters for errors
</li>
<li>
<b>CHKSNG</b> checks if the pde sepell must solve is a singular operator
</li>
<li>
<b>CI_VALUES</b> returns some values of the cosine integral function.
</li>
<li>
<b>CIN</b> computes the integral of (1-cos(t))/t on (0,x)
</li>
<li>
<b>CIN_VALUES</b> returns some values of the cosine integral function.
</li>
<li>
<b>CIRCV:</b> circular coverage and circular error functions
</li>
<li>
<b>CK</b> calculates the complete elliptic integral f(k) for complex modulus K.
</li>
<li>
<b>CKE</b> calculates the complete elliptic integrals f(k) and e(k)
</li>
<li>
<b>CKM</b> calculates the modified Bessel function of the second kind
</li>
<li>
<b>CKML</b> calculates the modified Bessel function of the second
</li>
<li>
<b>CKPROD:</b> kronecker product of complex matrices a and b
</li>
<li>
<b>CL1</b> ???
</li>
<li>
<b>CLE:</b> solution of complex linear equations with reduced storage
</li>
<li>
<b>CLI:</b> computation of the complex logarithmic integral
</li>
<li>
<b>CLOC2</b> determines if two arrays begin at the same spot.
</li>
<li>
<b>CLUIMP</b> tries to improve the solution of a complex linear system.
</li>
<li>
<b>CMADD:</b> addition of complex matrices
</li>
<li>
<b>CMADJ</b> copies the complex conjugate transpose of a matrix.
</li>
<li>
<b>CMCONJ</b> copies the conjugate of a complex matrix.
</li>
<li>
<b>CMCOPY</b> copies a complex matrix.
</li>
<li>
<b>CMCVBS:</b> conversion of complex matrices from banded to sparse form
</li>
<li>
<b>CMCVSB:</b> conversion of complex matrices from sparse to banded form
</li>
<li>
<b>CMIMAG</b> ???
</li>
<li>
<b>CMPROD:</b> product of complex matrices
</li>
<li>
<b>CMREAL</b> ???
</li>
<li>
<b>CMSLV:</b> partial pivot gauss procedure for inverting complex matrices
</li>
<li>
<b>CMSLV1:</b> partial pivot gauss procedure for inverting complex matrices
</li>
<li>
<b>CMSUBT:</b> subtraction of complex matrices
</li>
<li>
<b>CMTMS:</b> product of complex matrices
</li>
<li>
<b>CNSPIV</b> uses sparse gaussian elimination with
</li>
<li>
<b>COMPB</b> computes the roots of the b polynomials using tqlrt0,
</li>
<li>
<b>COMQR</b> is a translation of a unitary analogue of the
</li>
<li>
<b>COMQR2</b> is a translation of a unitary analogue of the
</li>
<li>
<b>CONEW</b> updates the value of the condition number in iegs.
</li>
<li>
<b>CONSTR</b> constructs the elements of a 3 by 3
</li>
<li>
<b>CORTH</b> is a translation of a complex analogue of
</li>
<li>
<b>COS0:</b> computation of cos(x*pi/2) for abs(x) <= 0.5
</li>
<li>
<b>COS1:</b> evaluation of cos(x*pi)
</li>
<li>
<b>COSQB:</b> ???
</li>
<li>
<b>COSQB1:</b> ???
</li>
<li>
<b>COSQF</b>
</li>
<li>
<b>COSQF1:</b> ???
</li>
<li>
<b>COSQI</b> ???
</li>
<li>
<b>COVAR</b> uses results from the orthogonal decomposition
</li>
<li>
<b>CPABS:</b> evaluation of sqrt(x*x + y*y)
</li>
<li>
<b>CPOSE:</b> transposing a sparse complex matrix
</li>
<li>
<b>CPOSE1:</b> transposing a sparse complex matrix
</li>
<li>
<b>CPROD0</b> applies a sequence of matrix operations to the vector x and
</li>
<li>
<b>CPRODP</b> applies a sequence of matrix operations to the vector x and
</li>
<li>
<b>CPSC:</b> evaluation of complex power series coefficients or derivatives.
</li>
<li>
<b>CPSI:</b> evaluation of the complex digamma function
</li>
<li>
<b>CQEXT:</b> epsilon algorithm
</li>
<li>
<b>CQZHES</b> is a modification of the eispack subroutine
</li>
<li>
<b>CQZIT</b> is a modification of the eispack subroutine qzit.
</li>
<li>
<b>CREC:</b> complex reciprocal u + i*v = 1/(x + i*y)
</li>
<li>
<b>CROUT:</b> procedure for inverting matrices and solving equations
</li>
<li>
<b>CROUT1:</b> crout procedure for inverting matrices
</li>
<li>
<b>CSADD:</b> addition of sparse complex matrices
</li>
<li>
<b>CSCAL:</b> scales a vector by a constant.
</li>
<li>
<b>CSCOPY:</b> copying a sparse complex matrix
</li>
<li>
<b>CSEVL:</b> evaluate the n term chebyshev series a at x.
</li>
<li>
<b>CSIMAG:</b> imaginary part of a sparse complex matrix
</li>
<li>
<b>CSINT:</b> integrating a cubic spline
</li>
<li>
<b>CSINT1:</b> integrating a cubic spline
</li>
<li>
<b>CSINT2:</b> integrating a cubic spline
</li>
<li>
<b>CSLOOP:</b> closed curve cubic spline fitting in n-dimensional space
</li>
<li>
<b>CSLOP1:</b> closed curve cubic spline fitting in n-dimensional space
</li>
<li>
<b>CSLV:</b> solution of complex sparse matrices
</li>
<li>
<b>CSLV1</b> solves a factored system of complex sparse matrices.
</li>
<li>
<b>CSLVMP:</b> solution of complex linear equations with iterative improvement
</li>
<li>
<b>CSPLU</b> employs gaussian elimination with column interchanges
</li>
<li>
<b>CSPROD:</b> multiplication of sparse complex matrices
</li>
<li>
<b>CSPSLV:</b> solution of complex sparse matrices
</li>
<li>
<b>CSREAL:</b> real part of a sparse complex matrix
</li>
<li>
<b>CSROT:</b> applies a plane rotation, where the cos and sin (c and s) are real
</li>
<li>
<b>CSSCAL:</b> scales a complex vector by a real constant.
</li>
<li>
<b>CSSUBT:</b> subtraction of sparse complex matrices
</li>
<li>
<b>CSVDC</b> is a subroutine to reduce a complex nxp matrix x by
</li>
<li>
<b>CSWAP</b> interchanges two vectors.
</li>
<li>
<b>CTIP</b> transposes a rectangular matrix in situ.
</li>
<li>
<b>CTPOSE</b> makes a transposed copy of a complex matrix.
</li>
<li>
<b>CTPRD:</b> product of a vector and a sparse matrix
</li>
<li>
<b>CTPRD1:</b> set y = x*a + y where a is a sparse matrix and x,y are vectors
</li>
<li>
<b>CTRANS</b> finds the complex conjugate of an input matrix.
</li>
<li>
<b>CTSLV:</b> solution of complex sparse matrices
</li>
<li>
<b>CTSLV1:</b> ???
</li>
<li>
<b>CUBRUL:</b> basic cubature rule pair over a triangle
</li>
<li>
<b>CUBTRI:</b> adaptive cubature over a triangle
</li>
<li>
<b>CURV1</b> determines the parameters necessary to
</li>
<li>
<b>CURV2</b> interpolates a curve at a given point
</li>
<li>
<b>CURVD</b> differentiates a curve at a given point
</li>
<li>
<b>CURVI</b> integrates a curve specified by a spline
</li>
<li>
<b>CVBC:</b> conversion of complex matrices from banded to standard form
</li>
<li>
<b>CVBR:</b> conversion of real matrices from banded to standard form
</li>
<li>
<b>CVCB:</b> conversion of complex matrices from standard to banded form
</li>
<li>
<b>CVCB1:</b> conversion of complex matrices from standard to banded form
</li>
<li>
<b>CVCS:</b> ???
</li>
<li>
<b>CVDS:</b> ???
</li>
<li>
<b>CVPRD:</b> product of a sparse matrix and a vector
</li>
<li>
<b>CVPRD1:</b> set y = a*x + y where a is a sparse matrix and x,y are vectors
</li>
<li>
<b>CVRB:</b> conversion of real matrices from standard to banded form
</li>
<li>
<b>CVRB1:</b> conversion of real matrices from standard to banded form
</li>
<li>
<b>CVRS:</b> ???
</li>
<li>
<b>CVSC</b> ???
</li>
<li>
<b>CVSD:</b> ???
</li>
<li>
<b>CVSR:</b> ???
</li>
<li>
<b>CXP:</b> computation of exp(-r*(pi/2)*i)
</li>
<li>
<b>CYCHG</b> ???
</li>
<li>
<b>DABSLV</b> solves the real matrix equation ax + xb = c.
</li>
<li>
<b>DABSV1</b> solves the real matrix equation ax + xb = c.
</li>
<li>
<b>DAORD</b> is used to reorder the elements of the double precision array a
</li>
<li>
<b>DARTNQ</b> ???
</li>
<li>
<b>DASUM</b> takes the sum of the absolute values.
</li>
<li>
<b>DAWSON</b> computes single precision values of dawsons integral,
</li>
<li>
<b>DAWSON_VALUES</b> returns some values of Dawson's integral for testing.
</li>
<li>
<b>DAXPY:</b> constant times a vector plus a vector.
</li>
<li>
<b>DBABK</b> forms the eigenvectors of a real general matrix by back transforming
</li>
<li>
<b>DBAL</b> balances a double precision real matrix and isolates eigenvalues.
</li>
<li>
<b>DBALNV</b> ???
</li>
<li>
<b>DBCORR:</b> evaluation of del(a) + del(b0) - del(a) + b0)
</li>
<li>
<b>DBETLN:</b> evaluation of the logarithm of the beta function
</li>
<li>
<b>DCBABK</b> forms the eigenvectors of a double precision complex matrix
</li>
<li>
<b>DCBAL</b> balances a double precision complex matrix and isolates eigenvalues.
</li>
<li>
<b>DCBCRT</b> computes the roots of a real cubic polynomial
</li>
<li>
<b>DCBRT:</b> cube root of a number.
</li>
<li>
<b>DCEIG:</b> eigenvalues of double precision complex matrices
</li>
<li>
<b>DCEIGV:</b> eigenvalues and eigenvectors of double precision complex matrices
</li>
<li>
<b>DCERF:</b> computation of the complex error function
</li>
<li>
<b>DCERFC:</b> computation of the complex coerror function
</li>
<li>
<b>DCFACT</b> decomposes a complex matrix by partial pivot gauss elimination
</li>
<li>
<b>DCGAMA</b> evaluates the complex gamma and loggamma functions
</li>
<li>
<b>DCMINV</b> inverts a matrix using the lu decomposition obtained by dcfact.
</li>
<li>
<b>DCMQR2:</b> eigenvalues/vectors of double precision complex upper hessenberg matrix
</li>
<li>
<b>DCMSLV:</b> partial pivot gauss procedure for double precision complex equations.
</li>
<li>
<b>DCOMQR:</b> eigenvalues of a double precision complex upper hessenberg matrix
</li>
<li>
<b>DCOPY</b> copies a vector, x, to a vector, y.
</li>
<li>
<b>DCORTH</b> reduces a double precision complex matrix to upper hessenberg form.
</li>
<li>