-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclip_model.py
71 lines (55 loc) · 2.95 KB
/
clip_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import clip
from PIL.Image import Image
import torch
class ClipModel:
def __init__(self, model_name: str = 'RN50') -> None:
"""
Available models
['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32',
'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
"""
self._model, self._img_preprocess = clip.load(model_name)
def predict(self, images: list[Image], prompts: list[str]) -> dict:
if len(images) == 1:
return self.compute_prompts_probabilities(images[0], prompts)
elif len(prompts) == 1:
return self.compute_images_probabilities(images, prompts[0])
else:
raise ValueError('Either images or prompts must be a single element')
def compute_prompts_probabilities(self, image: Image, prompts: list[str]) -> list[float]:
preprocessed_image = self._img_preprocess(image).unsqueeze(0)
tokenized_prompts = clip.tokenize(prompts)
with torch.inference_mode():
image_features = self._model.encode_image(preprocessed_image)
text_features = self._model.encode_text(tokenized_prompts)
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self._model.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
probs = list(logits_per_image.softmax(dim=-1).cpu().numpy()[0])
return probs
def compute_images_probabilities(self, images: list[Image], prompt: str) -> list[float]:
preprocessed_images = [self._img_preprocess(image).unsqueeze(0) for image in images]
tokenized_prompts = clip.tokenize(prompt)
with torch.inference_mode():
image_features = torch.cat([self._model.encode_image(preprocessed_image) for preprocessed_image in preprocessed_images])
text_features = self._model.encode_text(tokenized_prompts)
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self._model.logit_scale.exp()
logits_per_image = logit_scale * text_features @ image_features.t()
probs = list(logits_per_image.softmax(dim=-1).cpu().numpy()[0])
return probs
if __name__ == "__main__":
from app import load_default_dataset
model = ClipModel()
images = load_default_dataset()
prompts = ['Hello', 'How are you', 'Goodbye']
prompts_scores = model.compute_prompts_probabilities(images[0], prompts)
images_scores = model.compute_images_probabilities(images, prompts[0])
print(f"Prompts scores: {prompts_scores}")
print(f"Images scores: {images_scores}")