-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_for_cd33.py
240 lines (193 loc) · 7.5 KB
/
cnn_for_cd33.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
# @Time :7/17/18 4:01 PM
# @Auther :Jason Lin
# @File :cnn_for_cd33$.py
# @Software :PyCharm
import pickle as pkl
import numpy as np
import matplotlib.pyplot as plt
from scipy import interp
from sklearn.model_selection import train_test_split
from keras.layers import Input, Dense, Conv2D, Flatten, BatchNormalization
from keras.models import Model
from keras.models import model_from_yaml
import keras
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import mean_squared_error
from sklearn import metrics
np.random.seed(5)
from tensorflow import set_random_seed
set_random_seed(12)
def load_penghui_data():
ph_data = pkl.load(open("./encode_cd33_data/penghui_code_data.pkl", "rb"))
ph_code = ph_data[0]
ph_label = ph_data[1]
train_data = []
for code in ph_code:
train_data += code
train_data = np.array(train_data).reshape(len(ph_code), 1, 23, 4)
# print(train_data[0])
return train_data, ph_label
def split_data_for_validation(data):
skf = StratifiedKFold(n_splits=5)
# print(skf.get_n_splits())
def load_crispor_data():
crispor_data = pkl.load(open("./encode_cd33_data/crispor_code_data.pkl", "rb"))
crispor_code = crispor_data[0]
crispor_label = crispor_data[1]
merged_list = []
for seq in crispor_code:
merged_list += seq
my_code = np.array(merged_list).reshape(len(crispor_code), 1, 23, 4)
print(len(my_code))
print(len(crispor_label))
return my_code, crispor_label
# pass
def load_crispr_data_for_training():
crispor_data = pkl.load(open("./encode_cd33_data/crispor_all_code_data.pkl", "rb"))
crispor_code = crispor_data[0]
crispor_label = crispor_data[1]
merged_list = []
for seq in crispor_code:
merged_list += seq
my_code = np.array(merged_list).reshape(len(crispor_code), 1, 23, 4)
print(len(my_code))
print(len(crispor_label))
return my_code, crispor_label
def load_cd33_data():
data = np.array(pkl.load(open("./encode_cd33_data/cd33_code_pam_data.pkl", "rb")))
my_codes = data[0]
ele_codes = data[1]
reg_labels = data[2]
# print(my_codes)
merged_list = []
for l in my_codes:
merged_list += l
print(len(my_codes))
my_codes = np.array(merged_list).reshape(len(my_codes), 1, 23, 4)
# print(my_codes)
# For leave-out testing
# X_train, X_test, y_train, y_test = train_test_split(my_codes, reg_labels, test_size = 0.2, random_state = 1)
# print(X_train.shape)
# return X_train, X_test, y_train, y_test
return my_codes, reg_labels
def cnn_model(X_train, X_test, y_train, y_test):
# X_train, y_train = load_cd33_data()
inputs = Input(shape=(1, 23, 4), name='main_input')
conv_1 = Conv2D(10, (1, 1), padding='same', activation='relu')(inputs)
conv_2 = Conv2D(10, (1, 2), padding='same', activation='relu')(inputs)
conv_3 = Conv2D(10, (1, 3), padding='same', activation='relu')(inputs)
conv_4 = Conv2D(10, (1, 5), padding='same', activation='relu')(inputs)
conv_output = keras.layers.concatenate([conv_1, conv_2, conv_3, conv_4])
bn_output = BatchNormalization()(conv_output)
pooling_output = keras.layers.MaxPool2D(pool_size=(1, 5), strides=None, padding='valid')(bn_output)
flatten_output = Flatten()(pooling_output)
x = Dense(100, activation='relu')(flatten_output)
x = Dense(23, activation='relu')(x)
x = keras.layers.Dropout(rate=0.45)(x)
prediction = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs, prediction)
crispor = load_crispr_data_for_training()
crispor_data = crispor[0]
crispor_label = crispor[1]
adam_opt = keras.optimizers.adam(lr = 0.0001)
model.compile(loss='mean_squared_error', optimizer = adam_opt)
print(model.summary())
model.fit(X_train, y_train, batch_size=100, epochs=250, shuffle=True)
# adam_opt = keras.optimizers.adam(lr = 0.00001)
# model.compile(loss='mean_squared_error', optimizer = adam_opt)
# X_train, y_train = load_cd33_data()
# model.fit(X_train, y_train, batch_size=50, epochs=50)
# model.fit(crispor_data, crispor_label, batch_size=100, epochs=150, shuffle=True)
"""
# evaluate the model
scores = model.evaluate(crispor_data, crispor_label, verbose=0)
print(scores)
# serialize model to YAML
model_yaml = model.to_yaml()
with open("model.yaml", "w") as yaml_file:
yaml_file.write(model_yaml)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
"""
# later...
# X_test, y_test = load_crispor_data()
y_pred = model.predict(X_test).flatten()
print(y_pred)
print(y_test)
fpr, tpr, threshold = metrics.roc_curve(y_test, y_pred, pos_label=1)
auc_score = metrics.auc(fpr, tpr)
print(auc_score)
auc_info = [auc_score, fpr, tpr, threshold]
return auc_info
def load_trained_model():
# load YAML and create model
yaml_file = open('model.yaml', 'r')
loaded_model_yaml = yaml_file.read()
yaml_file.close()
loaded_model = model_from_yaml(loaded_model_yaml)
# load weights into new model
loaded_model.load_weights("model.h5")
print("Loaded model from disk")
# cnn_model()
def kfold_validataion():
ph_data, ph_label = load_penghui_data()
ph_label = np.array(ph_label)
# print(ph_label)
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=66)
skf.get_n_splits(ph_data, ph_label)
auc_info = []
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
i = 1
for train_index, test_index in skf.split(ph_data, ph_label):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = ph_data[train_index], ph_data[test_index]
y_train, y_test = ph_label[train_index], ph_label[test_index]
auc_s = cnn_model(X_train, X_test, y_train, y_test)
auc_score, fpr, tpr, threshold = auc_s
auc_info.append(auc_s)
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
aucs.append(auc_score)
plt.plot(fpr, tpr, lw=1, alpha=0.3,
label='ROC fold %d (AUC = %0.2f)' % (i, auc_score))
i += 1
plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Luck', alpha=.8)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = metrics.auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
plt.plot(mean_fpr, mean_tpr, color='b',
label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
label=r'$\pm$ 1 std. dev.')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
def crispor_test():
ph_data, ph_label = load_penghui_data()
ph_label = np.array(ph_label)
crispor_data, crispor_label = load_crispor_data()
crispor_label = np.array(crispor_label)
auc_s = cnn_model(ph_data, crispor_data, ph_label, crispor_label)
print(auc_s)
# X_train, X_test, y_train, y_test = load_cd33_data()
# print(X_train[0][0])
# load_crispor_data()
# print(len(crispor_data[0][0]))
# load_crispr_data_for_training()
# load_crispr_data_for_training()
kfold_validataion()
# crispor_test()