-
Notifications
You must be signed in to change notification settings - Fork 1
/
Stiefel_fedmanifold.py
271 lines (244 loc) · 10.9 KB
/
Stiefel_fedmanifold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import manifolds
import random
import numpy as np
import time
from scipy.linalg import subspace_angles
import matplotlib.pyplot as plt
class problem_PCA(object):
"""
This is the class for testing the manifold fedprox and fedlin algorithm
"""
def __init__(self, n, K, d, p, r=5, A=None):
self.n = n # number of clients
self.K = K # number of clients selected each iter
self.d = d # dim
self.p = p # dim
self.r = r # dim
self.manifold = manifolds.stiefel.Stiefel(d, r)
if A is None:
# np.random.seed(3432)
A = np.zeros((n, d, d))
for i in range(n):
temp = np.random.normal(size=(d, p))
A[i] = temp.dot(temp.T)
self.A = A
print("Create problem class: kpca with d=%d, r=%d" % (d, r))
# below we calculate the true PCA
fullA = np.zeros((d, d))
for i in range(n):
fullA += A[i]
self.fullA = fullA / self.n
s, v = np.linalg.eig(self.fullA)
idx = s.argsort()[::-1]
s = s[idx]
v = v[:, idx]
self.x_star = v[:, 0:r]
self.f_star = - sum(s[0:r]) / 2
print("true function value %f" % (self.f_star))
def fi(self, x, i):
return - np.trace(x.T.dot(self.A[i]).dot(x)) / 2
def f(self, x):
return sum([self.fi(x, i) for i in range(self.n)]) / self.n
def grad_fi(self, x, i):
return - self.A[i].dot(x)
def grad_f(self, x):
grad = np.zeros((self.d, self.r))
for i in range(self.n):
grad += self.grad_fi(x, i)
return grad / self.n
def grad_dist(self, x, x0):
"""
calculate the gradient of the distance square d^2(x, x0)
where x is the variable
i.e. calculate Exp^{-1}_{x}(x_0)
this is hard for the Stiefel manifold
we use inverse of the retraction mapping instead
the distance is calculated by manifold.dist(x, x0)
"""
return self.manifold.inv_retr(x, x0)
def karcher_mean(self, x, x_list, eta=1e-8, max_iter=100, eps=1e-8):
"""
compute the mean of given x points, using only the Riemannian gradient descent
:param x_list: d by K, each column is one vector
"""
K, d, r = np.shape(x_list)
time0 = time.time()
for i in range(max_iter):
grad = np.zeros((d, r))
# loss = 0
for j in range(K):
xj = x_list[j]
# loss += self.manifold.dist(x, xj)
grad += self.grad_dist(x, xj)
grad /= K
grad = self.manifold.proj(x, grad)
norm_grad = np.linalg.norm(grad, 'fro')
# print("iter %d, grad for karcher mean = %f" % (i, norm_grad))
if norm_grad <= eps:
break
# loss /= K
# print("iter %d, loss value for karcher mean = %f" % (i, loss))
x = self.manifold.retr(x, -eta * grad)
return x, time.time() - time0
def tangent_space_mean(self, x, x_list):
"""
compute the mean of given x points on the tangent space
:param x: reference point
:param g_list: d by K, each column is one vector
"""
K, d, r = np.shape(x_list)
g = np.zeros((d, r))
time0 = time.time()
for j in range(K):
# loss += self.manifold.dist(x, xj)
g += self.manifold.inv_retr(x, x_list[j])
return self.manifold.retr(x, g / K), time.time() - time0
def fedprox(self, outer_iter, inner_iter, mu, eta=1e-2, epsilon=1e-8, flag=0, x0=None):
fval_list = np.zeros(outer_iter + 1)
norm_list = np.zeros(outer_iter + 1)
angle_list = np.zeros(outer_iter + 1) # the principal angles
time_list = np.zeros(outer_iter + 1)
if x0 is None:
x = self.manifold.rand()
else:
x = x0
fval_list[0] = self.f(x)
angle_list[0] = sum(subspace_angles(x, self.x_star))
norm_list[0] = np.linalg.norm(self.manifold.proj(x, self.grad_f(x)))
x_list = np.tile(x, (self.K, 1, 1))
# g_list = np.zeros((self.K, self.d, self.r))
for iter in range(1, outer_iter + 1):
time0 = time.time()
# optimization for each client
batch = random.sample(range(self.n), self.K)
count = 0
aveg_inner = 0
aveg_norm = 0.0
for i in batch: # do gradient descent for each client
xi = x_list[count]
t = 0
for t in range(inner_iter):
grad = self.grad_fi(xi, i) + mu * self.grad_dist(xi, x)
grad = self.manifold.proj(xi, grad)
if np.linalg.norm(grad) <= epsilon:
break
xi = self.manifold.retr(xi, -eta * grad)
aveg_inner += t + 1
aveg_norm += np.linalg.norm(grad, 'fro')
# g_list[count] = -eta * grad
x_list[count] = xi
count += 1
# consensus step
# x, _ = self.karcher_mean(x, x_list)
x, _ = self.tangent_space_mean(x, x_list)
# x_true = (x_list[:, 0]+x_list[:, 1])
# x_true = x_true / np.linalg.norm(x_true)
# print(np.linalg.norm(x - x_true))
x_list = np.tile(x, (self.K, 1, 1))
# print values
fval_list[iter] = self.f(x)
angle_list[iter] = sum(subspace_angles(x, self.x_star))
norm_list[iter] = np.linalg.norm(self.manifold.proj(x, self.grad_f(x)), 'fro')
time_list[iter] = time.time() - time0 + time_list[iter - 1]
if flag and iter % 10 == 0:
print("iter %d, loss value %f, norm of grad %f, average inner loop %d, average norm %f" %
(iter, fval_list[iter], norm_list[iter], aveg_inner / self.K, aveg_norm / self.K))
return x, fval_list, norm_list, time_list, angle_list
def fedlin(self, outer_iter, inner_iter, mu, eta=1e-4, epsilon=1e-8, flag=0, x0=None):
fval_list = np.zeros(outer_iter + 1)
norm_list = np.zeros(outer_iter + 1)
angle_list = np.zeros(outer_iter + 1)
time_list = np.zeros(outer_iter + 1)
if x0 is None:
x = self.manifold.rand()
else:
x = x0
fval_list[0] = self.f(x)
angle_list[0] = sum(subspace_angles(x, self.x_star))
norm_list[0] = np.linalg.norm(self.manifold.proj(x, self.grad_f(x)))
x_list = np.tile(x, (self.K, 1, 1))
# g_list = np.zeros((self.K, self.d, self.r))
for iter in range(1, outer_iter + 1):
time0 = time.time()
gt = self.manifold.proj(x, self.grad_f(x))
# optimization for each client
batch = random.sample(range(self.n), self.K)
count = 0
aveg_inner = 0
aveg_norm = 0.0
for i in batch: # do gradient descent for each client
xi = x_list[count]
t = 0
gti = self.manifold.proj(x, self.grad_fi(x, i))
for t in range(inner_iter):
grad = self.grad_fi(xi, i) + mu * self.grad_dist(xi, x)
grad = self.manifold.proj(xi, grad)
if np.linalg.norm(grad) <= epsilon:
break
xi = self.manifold.retr(xi, -eta * (grad + self.manifold.transp(x, xi, -gti + gt)))
aveg_inner += t + 1
aveg_norm += np.linalg.norm(grad)
# g_list[count] = -eta * grad
x_list[count] = xi
count += 1
# consensus step
# x, _ = self.karcher_mean(x, x_list)
x, _ = self.tangent_space_mean(x, x_list)
# x_true = (x_list[:, 0]+x_list[:, 1])
# x_true = x_true / np.linalg.norm(x_true)
# print(np.linalg.norm(x - x_true))
x_list = np.tile(x, (self.K, 1, 1))
# print values
fval_list[iter] = self.f(x)
angle_list[iter] = sum(subspace_angles(x, self.x_star))
norm_list[iter] = np.linalg.norm(self.manifold.proj(x, self.grad_f(x)))
time_list[iter] = time.time() - time0 + time_list[iter - 1]
if flag and iter % 10 == 0:
print("iter %d, loss value %f, norm of grad %f, average inner loop %d, average norm %f" %
(iter, fval_list[iter], norm_list[iter], aveg_inner / self.K, aveg_norm / self.K))
return x, fval_list, norm_list, time_list, angle_list
if __name__ == "__main__":
n = 10 # number of clients
K = 5 # number of clients selected each iter
d = 20 # dim
p = 15 # dim
PCA = problem_PCA(n, K, d, p, r=5)
# x_list = np.zeros((d, 2))
# for i in range(2):
# x_list[:, i] = PCA.manifold.rand()
# x_k = PCA.karcher_mean(x_list)
# x_true = (x_list[:, 0]+x_list[:, 1])
# x_true = x_true / np.linalg.norm(x_true)
# print(np.linalg.norm(x_k - x_true))
print("Start testing on Steifel manifold")
print("Test on fedavg")
x0, fval_list0, norm_list0, time_list0, _ = PCA.fedprox(outer_iter=800, inner_iter=1, mu=0.0, eta=1e-3, flag=1)
print("Test on fedprox")
x1, fval_list1, norm_list1, time_list1, _ = PCA.fedprox(outer_iter=800, inner_iter=1, mu=20.0, eta=1e-3, flag=1)
print("Test on fedsvrg")
x2, fval_list2, norm_list2, time_list2, _ = PCA.fedlin(outer_iter=600, inner_iter=1, mu=0.0, eta=1e-3, flag=1)
print("Test on fedrlin")
x3, fval_list3, norm_list3, time_list3, _ = PCA.fedlin(outer_iter=600, inner_iter=1, mu=10.0, eta=1e-3, flag=1)
plt.plot(time_list0, fval_list0)
plt.plot(time_list1, fval_list1)
plt.plot(time_list2, fval_list2, linestyle='--')
plt.plot(time_list3, fval_list3, linestyle='-.')
plt.axhline(y=PCA.f_star, linestyle=':')
plt.xlabel("CPU time")
plt.ylabel("Function value $f(x_k)$")
plt.legend(["Fedavg", "Fedprox", "FedSVRG", "FedRegSVRG", "Optimum"])
# plt.legend(["Fedprox", "FedSVRG", "FedRegSVRG", "Optimum"])
plt.show()
# plt.savefig('pca_sphere_time_function_val_' + str(n) + '_' + str(K) + '_' + str(d) + '_' + str(p) + '.pdf')
plt.clf()
plt.plot(time_list0, norm_list0)
plt.plot(time_list1, norm_list1)
plt.plot(time_list2, norm_list2, linestyle='--')
plt.plot(time_list3, norm_list3, linestyle='-.')
plt.yscale("log")
plt.xlabel("CPU time")
plt.ylabel("Norm of $\operatorname{grad} f(x_k)$")
plt.legend(["Fedavg", "Fedprox", "FedSVRG", "FedRegSVRG"])
# plt.legend(["Fedprox", "FedSVRG", "FedRegSVRG"])
plt.show()
# plt.savefig('pca_sphere_time_grad_norm_' + str(n) + '_' + str(K) + '_' + str(d) + '_' + str(p) + '.pdf')