diff --git a/.travis.yml b/.STALL.travis.yml similarity index 100% rename from .travis.yml rename to .STALL.travis.yml diff --git a/.vscode/settings.json b/.vscode/settings.json index 6bd136b..a625774 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -1,4 +1,3 @@ { - "python.pythonPath": "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\python.exe", "restructuredtext.confPath": "${workspaceFolder}\\docs" } \ No newline at end of file diff --git a/conflict_model/__init__.py b/conflict_model/__init__.py index 56496f9..c3050dc 100644 --- a/conflict_model/__init__.py +++ b/conflict_model/__init__.py @@ -7,4 +7,4 @@ __author__ = """Jannis M. Hoch""" __email__ = 'j.m.hoch@uu.nl' -__version__ = '0.0.1' +__version__ = '0.0.2b3' diff --git a/conflict_model/get_var_from_nc.py b/conflict_model/get_var_from_nc.py index e7fffb6..f1e2ce4 100644 --- a/conflict_model/get_var_from_nc.py +++ b/conflict_model/get_var_from_nc.py @@ -7,7 +7,7 @@ import matplotlib.pyplot as plt import os, sys -def nc_with_integer_timestamp(extent_gdf, config, var_name, sim_year, stat_func='mean'): +def nc_with_float_timestamp(extent_gdf, config, var_name, sim_year, stat_func='mean'): """This function extracts a statistical value from a netCDF-file (specified in the config-file) for each polygon specified in extent_gdf for a given year. By default, the mean value of all cells within a polygon is computed. The resulting list does not contain additional meta-information about the files or polygons and is mostly intended for data-driven approaches such as machine learning. @@ -35,7 +35,7 @@ def nc_with_integer_timestamp(extent_gdf, config, var_name, sim_year, stat_func= list: list containing statistical value per polygon, i.e. with same length as extent_gdf """ # get path to netCDF-file. - nc_fo = os.path.join(config.get('general', 'input_dir'), + nc_fo = os.path.join(os.path.abspath(config.get('general', 'input_dir')), config.get('env_vars', var_name)) print('calculating mean {0} per aggregation unit from file {1} for year {2}'.format(var_name, nc_fo, sim_year)) @@ -66,7 +66,7 @@ def nc_with_integer_timestamp(extent_gdf, config, var_name, sim_year, stat_func= return list_out -def nc_with_continous_regular_timestamp(extent_gdf, config, var_name, sim_year, stat_func='mean'): +def nc_with_continous_datetime_timestamp(extent_gdf, config, var_name, sim_year, stat_func='mean'): """This function extracts a statistical value from a netCDF-file (specified in the config-file) for each polygon specified in extent_gdf for a given year. By default, the mean value of all cells within a polygon is computed. The resulting list does not contain additional meta-information about the files or polygons and is mostly intended for data-driven approaches such as machine learning. diff --git a/conflict_model/machine_learning.py b/conflict_model/machine_learning.py deleted file mode 100644 index 7b0a2c7..0000000 --- a/conflict_model/machine_learning.py +++ /dev/null @@ -1,17 +0,0 @@ -import pandas as pd -import seaborn as sbs -from sklearn import svm -import matplotlib.pyplot as plt -import numpy as np -import os, sys - -def prepare_data(df, Xvars, Yvar): - - if len(Xvars) < 2: - raise ValueError('at least 2 variables need to be specified!') - if len(yvar) > 1: - raise ValueError('maximum 1 target variable must be specified!') - - Y = np.append(Y, df[yvar].values) - - return X, y diff --git a/conflict_model/selection.py b/conflict_model/selection.py index b694ddc..9172f33 100644 --- a/conflict_model/selection.py +++ b/conflict_model/selection.py @@ -73,7 +73,7 @@ def clip_to_extent(gdf, config): geodataframe: geodataframe containing country polygons of selected continent """ - shp_fo = os.path.join(config.get('general', 'input_dir'), + shp_fo = os.path.join(os.path.abspath(config.get('general', 'input_dir')), config.get('extent', 'shp')) print('reading extent and spatial aggregation level from file {}'.format(shp_fo)) @@ -97,10 +97,10 @@ def climate_zoning(gdf, config): geodataframe: geodataframe containing filtered entries """ - Koeppen_Geiger_fo = os.path.join(config.get('general', 'input_dir'), + Koeppen_Geiger_fo = os.path.join(os.path.abspath(config.get('general', 'input_dir')), config.get('climate', 'shp')) - code2class_fo = os.path.join(config.get('general', 'input_dir'), + code2class_fo = os.path.join(os.path.abspath(config.get('general', 'input_dir')), config.get('climate', 'code2class')) look_up_classes = config.get('climate', 'zones').rsplit(',') diff --git a/conflict_model/utils.py b/conflict_model/utils.py index da240a6..e944628 100644 --- a/conflict_model/utils.py +++ b/conflict_model/utils.py @@ -18,7 +18,7 @@ def get_geodataframe(config, longitude='longitude', latitude='latitude', crs='EP """ # construct path to file with conflict data - conflict_fo = os.path.join(config.get('general', 'input_dir'), + conflict_fo = os.path.join(os.path.abspath(config.get('general', 'input_dir')), config.get('conflict', 'conflict_file')) # read file to pandas dataframe diff --git a/data/IMAGE/extensiveGrazing.nc b/data/IMAGE/extensiveGrazing.nc new file mode 100644 index 0000000..f03294c Binary files /dev/null and b/data/IMAGE/extensiveGrazing.nc differ diff --git a/data/IMAGE/intensityGrazing.nc b/data/IMAGE/intensityGrazing.nc new file mode 100644 index 0000000..3158bbd Binary files /dev/null and b/data/IMAGE/intensityGrazing.nc differ diff --git a/data/PCRGLOBWB/gwRecharge_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc b/data/PCRGLOBWB/gwRecharge_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc new file mode 100644 index 0000000..a185163 Binary files /dev/null and b/data/PCRGLOBWB/gwRecharge_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc differ diff --git a/data/PCRGLOBWB/precip/cruts321_erainterim_daily_precipitation_2000_to_2010_yearmean_Africa.nc b/data/PCRGLOBWB/precip/cruts321_erainterim_daily_precipitation_2000_to_2010_yearmean_Africa.nc new file mode 100644 index 0000000..ff1b164 Binary files /dev/null and b/data/PCRGLOBWB/precip/cruts321_erainterim_daily_precipitation_2000_to_2010_yearmean_Africa.nc differ diff --git a/data/PCRGLOBWB/precip/precipitation_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc b/data/PCRGLOBWB/precip/precipitation_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc new file mode 100644 index 0000000..43e00e1 Binary files /dev/null and b/data/PCRGLOBWB/precip/precipitation_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc differ diff --git a/data/PCRGLOBWB/storUppTotal_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc b/data/PCRGLOBWB/storUppTotal_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc new file mode 100644 index 0000000..11d2196 Binary files /dev/null and b/data/PCRGLOBWB/storUppTotal_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc differ diff --git a/data/PCRGLOBWB/surfaceWaterStorage_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc b/data/PCRGLOBWB/surfaceWaterStorage_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc new file mode 100644 index 0000000..862ccae Binary files /dev/null and b/data/PCRGLOBWB/surfaceWaterStorage_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc differ diff --git a/data/PCRGLOBWB/temperature_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc b/data/PCRGLOBWB/temperature_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc new file mode 100644 index 0000000..0074b01 Binary files /dev/null and b/data/PCRGLOBWB/temperature_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc differ diff --git a/data/run_setting.cfg b/data/run_setting.cfg index e3214a0..69bee82 100644 --- a/data/run_setting.cfg +++ b/data/run_setting.cfg @@ -1,6 +1,6 @@ [general] -input_dir=C:\Users\hoch0001\Documents\_code\conflict_model\data -output_dir=C:\Users\hoch0001\Documents\_code\conflict_model\data\OUT +input_dir=..\data +output_dir=..\data\OUT [settings] y_start=2000 @@ -23,4 +23,14 @@ code2class=KoeppenGeiger/classification_codes.txt [env_vars] #variable name here needs to be identical with variable name in nc-file GDP_per_capita_PPP=GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc -total_evaporation=PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc \ No newline at end of file +total_evaporation=PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc +precipitation=PCRGLOBWB/precip/precipitation_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc +surface_water_storage=PCRGLOBWB/surfaceWaterStorage_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc +upper_soil_storage=PCRGLOBWB/storUppTotal_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc +groundwater_recharge=PCRGLOBWB/gwRecharge_monthTot_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc +temperature=PCRGLOBWB/temperature_monthAvg_output_2000-01-31_to_2015-12-31_Africa_yearmean.nc +int_grazing=IMAGE/intensityGrazing.nc +ext_grazing=IMAGE/extensiveGrazing.nc + +[machine_learning] +train_fraction=0.9 \ No newline at end of file diff --git a/environment.yml b/environment.yml index 210a1b1..3b4859d 100644 --- a/environment.yml +++ b/environment.yml @@ -7,7 +7,7 @@ channels: dependencies: - python>=3.6 - - geopandas>=0.7.0 + - geopandas>=0.8.0 - xarray>=0.15.0 - pandas>=0.25.1 - numpy>=1.16.5 @@ -25,6 +25,6 @@ dependencies: - ConfigParser - click - pip - pip: - - rasterstats>=0.14.0 + - pip: + - rasterstats>=0.14.0 \ No newline at end of file diff --git a/example/example_notebook.html b/example/example_notebook.html index 552a3fe..8ae080e 100644 --- a/example/example_notebook.html +++ b/example/example_notebook.html @@ -13078,6 +13078,9 @@

This notebook

This notebook contains first bits and pieces of the yet to be developed model correlating climate/environmental factors with conflict occurrence.

+

This notbook is under constant development. Please be aware of the version number of the conflict model used in each of the notebooks.

+

In its current form, we first make a selection of conflicts to be used for training and testing the model. Selection criteria are amongst others minimum number of fatalities and climate zones. Subsequently, annual statistics (now: mean) of a range of environmental variables are determined per geographic unit (now: water provinces) and stored along with a 0/1 conflict value. This dataset is then scaled, split, and applied in a machine learning model (now: support vector classification).

+

All model settings need to be defined in the run_settings.cfg file.

@@ -13085,7 +13088,8 @@

This notebook
-

Import libraries and file with settings

+

Import libraries and file with settings

Import all required python packages for this notebook.

+
@@ -13102,12 +13106,14 @@

Import libraries and file with import matplotlib.pyplot as plt import numpy as np import datetime +import csv import netCDF4 as nc import rasterstats as rstats import xarray as xr import rasterio as rio import seaborn as sbs -from sklearn import svm, preprocessing, model_selection, metrics +from sklearn import svm, tree, preprocessing, model_selection, metrics +from shutil import copyfile import os, sys @@ -13115,6 +13121,14 @@

Import libraries and file with + +
+
+
+

For better reproducibility, the version numbers of all key packages are provided.

+ +
+
@@ -13139,8 +13153,8 @@

Import libraries and file with
Python version: 3.7.7 (default, Apr 15 2020, 05:09:04) [MSC v.1916 64 bit (AMD64)]
-conflict_model version: 0.0.1
-geopandas version: 0.7.0
+conflict_model version: 0.0.2b3
+geopandas version: 0.8.0
 xarray version: 0.15.1
 rasterio version: 1.1.0
 pandas version: 1.0.3
@@ -13206,44 +13220,32 @@ 

Import libraries and file with
config = RawConfigParser(allow_no_value=True)
-config.read(settings_file)
+config.optionxform = lambda option: option
+config.read(settings_file);
 

-
-
- - -
- -
Out[5]:
- - - - -
-
['../data/run_setting.cfg']
-
-
+
+
+
+

Create the output folder as specified in the settings, in case it does not exist yet.

-
In [6]:
-
#out_dir
-out_dir = config.get('general','output_dir')
+
out_dir = os.path.abspath(config.get('general','output_dir'))
 if not os.path.isdir(out_dir):
         os.makedirs(out_dir)
-print('for the record, saving output to folder {}'.format(out_dir) + os.linesep)
+print('for the record, saving output to folder {}'.format(out_dir))
 
@@ -13260,8 +13262,7 @@

Import libraries and file with
-
for the record, saving output to folder C:\Users\hoch0001\Documents\_code\conflict_model\data\OUT

-
+
for the record, saving output to folder C:\Users\hoch0001\Documents\_code\conflict_model\data\OUT
 

@@ -13273,13 +13274,42 @@

Import libraries and file with
-

Applying functions

+

Make a copy of the settings file in the output file to always get an idea on what settings the output is based.

+
In [7]:
+
+
+
copyfile(settings_file, os.path.join(out_dir, 'copy_of_run_setting.cfg'));
+
+ +
+
+
+ +
+
+
+
+

Applying functions

+
+
+
+
+
+
+

First, get the conflict data base and convert it into a georeferenced dataframe. This is needed for all following steps where this data is combined with other data sources.

+ +
+
+
+
+
+
In [8]:
gdf = conflict_model.utils.get_geodataframe(config)
@@ -13312,10 +13342,18 @@ 

Applying functions
+
+
+

Second, get the subset of conflicts based on user-defined conditions in the settings file.

+ +
+

-
In [8]:
+
In [9]:
+
+
+
+

Analysis per year

This is the core of the code. Here, we go through all model years as specified in the settings-file and do the following:

+
    +
  1. Get a 0/1 classifier whether a conflict took place in a geographical unit or not;
  2. +
  3. Loop through various files with environmental variables and get mean variable value per geographical unit.
  4. +
+
-

Analysis per year

In a first step, we want to know in which countries there was conflict or not. To that end, we first accumulate the number of fatalities per country and use this as proxy whether there was a conlfict or not (guess there is a rather strong like...).

+

This is all stored in a dictionary for easy processing. We first need to initialize this dictionary containing a pandas Series per provided environmental variable. Then, add a pandas Series for the conflict data.

-
In [9]:
+
In [10]:
-
print('simulation period from', str(config.getint('settings', 'y_start')), 'to', str(config.getint('settings', 'y_end')))
-print('')
-
-X1 = pd.Series(dtype=float)
-X2 = pd.Series(dtype=float)
-Y  = pd.Series(dtype=int) # not bool, because otherwise 0 is converted to False and 1 to True but we need 0/1
-
-# go through all simulation years as specified in config-file
-for sim_year in np.arange(config.getint('settings', 'y_start'), config.getint('settings', 'y_end'), 1):
-    
-    print('entering year {}'.format(sim_year) + os.linesep)
-    
-    list_boolConflict = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year)
-    Y = Y.append(pd.Series(list_boolConflict, dtype=int), ignore_index=True)
-    
-    list_GDP_PPP = conflict_model.get_var_from_nc.nc_with_integer_timestamp(extent_gdf, config, 'GDP_per_capita_PPP', sim_year)
-    X1 = X1.append(pd.Series(list_GDP_PPP), ignore_index=True)
-    
-    if not len(list_GDP_PPP) == len(list_boolConflict):
-        raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_GDP_PPP), len(list_boolConflict)))
-    
-    list_Evap = conflict_model.get_var_from_nc.nc_with_continous_regular_timestamp(extent_gdf, config, 'total_evaporation', sim_year)
-    X2 = X2.append(pd.Series(list_Evap), ignore_index=True)
-    
-    if not len(list_Evap) == len(list_boolConflict):
-        raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_Evap), len(list_boolConflict)))
-        
-print('...simulation DONE')
+
XY = {}
+for key in config.items('env_vars'):
+    XY[str(key[0])] = pd.Series(dtype=float)
+XY['conflict'] = pd.Series(dtype=int)
+XY
 
@@ -13418,608 +13446,285 @@

Analysis per year -
- +
Out[10]:
-
-
simulation period from 2000 to 2011
 
-entering year 2000

 
-determining whether a conflict took place or not
-...DONE

 
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2000
-
-
+
+
{'GDP_per_capita_PPP': Series([], dtype: float64),
+ 'total_evaporation': Series([], dtype: float64),
+ 'precipitation': Series([], dtype: float64),
+ 'surface_water_storage': Series([], dtype: float64),
+ 'upper_soil_storage': Series([], dtype: float64),
+ 'groundwater_recharge': Series([], dtype: float64),
+ 'temperature': Series([], dtype: float64),
+ 'int_grazing': Series([], dtype: float64),
+ 'ext_grazing': Series([], dtype: float64),
+ 'conflict': Series([], dtype: int32)}
-
- -
- +
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-

-
+
+
+
+
+

Now let's go through all years and all files and data and assign the values to the corresponding Series in the dictionary.

-
+
+
+
+
+
+
In [11]:
+
+
+
%%capture
 
+print('simulation period from', str(config.getint('settings', 'y_start')), 'to', str(config.getint('settings', 'y_end')))
+print('')
 
-
-
...DONE

+# go through all simulation years as specified in config-file
+for sim_year in np.arange(config.getint('settings', 'y_start'), config.getint('settings', 'y_end'), 1):
+    
+    print('entering year {}'.format(sim_year) + os.linesep)
+    
+    # go through all keys in dictionary
+    for key, value in XY.items():
+        
+        if key == 'conflict':
+            data_series = value
+            data_list = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year)
+            data_series = data_series.append(pd.Series(data_list), ignore_index=True)
+            XY[key] = data_series
+            
+        else:
+            nc_fo = os.path.join(config.get('general', 'input_dir'), 
+                                 config.get('env_vars', key))
+            
+            print('calculating mean {0} per aggregation unit from file {1} for year {2}'.format(key, nc_fo, sim_year))
+
+            nc_ds = xr.open_dataset(nc_fo)
+            
+            if (np.dtype(nc_ds.time) == np.float32) or (np.dtype(nc_ds.time) == np.float64):
+                data_series = value
+                data_list = conflict_model.get_var_from_nc.nc_with_float_timestamp(extent_gdf, config, key, sim_year)
+                data_series = data_series.append(pd.Series(data_list), ignore_index=True)
+                XY[key] = data_series
+                
+            elif np.dtype(nc_ds.time) == 'datetime64[ns]':
+                data_series = value
+                data_list = conflict_model.get_var_from_nc.nc_with_continous_datetime_timestamp(extent_gdf, config, key, sim_year)
+                data_series = data_series.append(pd.Series(data_list), ignore_index=True)
+                XY[key] = data_series
+                
+            else:
+                raise Warning('this nc-file does have a different dtype for the time variable than currently supported: {}'.format(nc_fo))
+                
+print('...simulation DONE')
+
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2000 -
+
-
- -
+
+
+
+
+

Machine Learning

Data preparation

+
+
+
+
+
+
+

First, create a pandas dataframe from the dictionary and kick out rows with missing values (they do not work with ML)

+
+
+
+
+
+
In [12]:
+
+
+
XY = pd.DataFrame.from_dict(XY)
+print('number of data points including missing values:', len(XY))
+XY = XY.dropna()
+print('number of data points excluding missing values:', len(XY))
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
+
+
+
+ +
-
...DONE

-
-entering year 2001

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2001
+
number of data points including missing values: 5790
+number of data points excluding missing values: 5760
 
-
+
+
-
+
+
+
+
+

Then, convert them to numpy arrays, separately for the variables (X) and the target conflict (Y).

+
+
+
+
+
+
In [13]:
+
+
+
X = XY.to_numpy()[:, :-1] # since conflict is the last column, we know that all previous columns must be variable values
+X
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
+
+
+
+ +
-
+
Out[13]:
-
-
...DONE

 
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2001
-
-
+ +
+
array([[2.36193426e+03, 4.23162297e-02, 5.90158959e-02, ...,
+        1.69482798e+01, 4.27550003e-02, 4.27550003e-02],
+       [3.10405169e+03, 4.05202232e-02, 4.38823540e-02, ...,
+        2.62989597e+01, 4.27103449e-02, 4.27103449e-02],
+       [1.19202521e+03, 3.92765536e-02, 3.85574701e-02, ...,
+        2.41465799e+01, 4.27550003e-02, 4.27550003e-02],
+       ...,
+       [1.70019058e+03, 4.56631968e-02, 7.90373737e-02, ...,
+        1.99556426e+01, 2.07449999e-02, 2.07449999e-02],
+       [1.71027506e+03, 4.38179032e-02, 5.47764229e-02, ...,
+        2.20619215e+01, 2.07449999e-02, 2.07449999e-02],
+       [1.71202357e+03, 5.35152570e-02, 5.75030690e-02, ...,
+        2.21496095e+01, 2.07449999e-02, 2.07449999e-02]])
-
+
-
+
+
+
+
+
+
In [14]:
+
+
+
Y = XY.conflict.astype(int).to_numpy()
+Y
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
+
-
+
+
-
+
-
-
...DONE

+    
Out[14]:
-entering year 2002 -determining whether a conflict took place or not -...DONE -calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2002 -
+ +
+
array([0, 0, 0, ..., 0, 0, 0])
+
-
+
+
-
+
+
+
+
+

Target evaluation

Let's have a closer look at what we actualy work with. This is essential to select and tune the right ML model, for instance.

+
+
+
+
+
+
In [15]:
+
+
+
print('the total number of data points for our target is', len(Y))
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
+
+
+
+ +
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2002
+
the total number of data points for our target is 5760
 
-
- -
+
+
+
+
+
+
In [16]:
+
+
+
print('from this, {0} points are equal to 1, i.e. represent conflict occurence. This is a fraction of {1} percent.'.format(len(np.where(Y != 0)[0]), round(100*len(np.where(Y != 0)[0])/len(Y), 2)))
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
+
-
- -
- - -
-
...DONE

-
-entering year 2003

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2003
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2003
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2004

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2004
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2004
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2005

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2005
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2005
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2006

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2006
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2006
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2007

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2007
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2007
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2008

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2008
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2008
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2009

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2009
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2009
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-entering year 2010

-
-determining whether a conflict took place or not
-...DONE

-
-calculating mean GDP_per_capita_PPP per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc for year 2010
-
-
-
- -
- -
- - -
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
- -
- -
- - -
-
...DONE

-
-calculating mean total_evaporation per aggregation unit from file C:\Users\hoch0001\Documents\_code\conflict_model\data\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc for year 2010
-
-
-
- -
- -
- +
+
-
-
C:\Users\hoch0001\AppData\Local\Continuum\anaconda3\envs\conflict_model\lib\site-packages\rasterstats\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly
-  warnings.warn("Setting nodata to -999; specify nodata explicitly")
-
-
-
@@ -14041,257 +13744,54 @@

Analysis per year
-

Machine Learning

Data preparation

+

This small fraction indicated we have an imbalanced problem and thus will need to account for this in the settings of the model used and data pre-processing.

+

-

First, create a pandas dataframe from all variables and targets and kick out rows with missing values (they do not work with ML)

+

Data pre-processing

Before we can train and predict with the model, we need to scale the variable data and create trainings and test data for both variables and target.

+

There are different scaling algorithms available. For our application, the MinMaxScaler and StandardScaler are the most obvious choices, the RobustScaler is follow-up. Depending on how incoming data looks like and is distributed, the scaling decision may need to be updated.

+

Depending on which scaler is chosen, the standardization of the data follows different approaches and may eventually influence model results. See here for some info: https://scikit-learn.org/stable/modules/preprocessing.html and https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html.

-
In [10]:
-
-
-
XY_data = list(zip(X1, X2, Y))
-XY_data = pd.DataFrame(XY_data, columns=['GDP_PPP', 'ET', 'conflict'])
-print(len(XY_data))
-XY_data = XY_data.dropna()
-print(len(XY_data))
-
- -
-
-
- -
-
- - -
- -
- - -
-
4246
-4224
-
-
-
- -
-
- -
-
-
-
In [11]:
+
In [17]:
-
XY_data
+
# scaler = preprocessing.MinMaxScaler()
+# scaler = preprocessing.StandardScaler()
+# scaler = preprocessing.RobustScaler()
+scaler = preprocessing.QuantileTransformer()
 
-
-
- - -
- -
Out[11]:
- - - -
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
GDP_PPPETconflict
02361.9342640.0423160
13104.0516870.0405200
21192.0252150.0392770
31275.8594900.0253050
41182.2020260.0363080
............
42413277.1567380.0609970
42423277.1567380.0686960
42431381.9669010.0483290
42441390.2114880.0521570
42451391.6898340.0528720
-

4224 rows × 3 columns

-
-
- -
- -
-
-
-

Then, convert them to numpy arrays

- -
-
-
-
-
-
In [12]:
-
-
-
X = XY_data[['GDP_PPP', 'ET']].to_numpy()
-X
-
- -
-
-
- -
-
- - -
- -
Out[12]:
- - - - -
-
array([[2.36193426e+03, 4.23162297e-02],
-       [3.10405169e+03, 4.05202232e-02],
-       [1.19202521e+03, 3.92765536e-02],
-       ...,
-       [1.38196690e+03, 4.83292063e-02],
-       [1.39021149e+03, 5.21571179e-02],
-       [1.39168983e+03, 5.28718745e-02]])
-
- -
- -
-
- -
-
-
-
In [13]:
-
-
-
Y = XY_data.conflict.astype(int).to_numpy()
-Y
-
- -
-
-
- -
-
- - -
- -
Out[13]:
- - - +

The scaler is then used to fit the data and transform it according to scaler-specific method. I don't scale Y since it is either 0 or 1 already.

-
-
array([0, 0, 0, ..., 0, 0, 0])
-
+
+
-
In [14]:
+
In [19]:
-
In [15]:
+
In [20]:
-
In [16]:
+
In [21]:
@@ -14412,17 +13924,18 @@

Model

-

Create Support Vector Classification (SVC) model with balanced weight since data is unbalanced (e.g. many negative and few positive)

+

Create Support Vector Classification (SVC) model with balanced weight since data is unbalanced (e.g. many negative and few positive).

+

Note that there are many many settings in the svm.SVC class to be altered. At the moment, we stick to defaults besides the class_weight: since we have an imbalanced problem, we try to add extra weight on all classes 1 by specifing this class-weight explicitely.

-
In [17]:
+
In [22]:
-
clf = svm.SVC(class_weight='balanced', C=0.9)
+
class_weight = {1: 100}
 
@@ -14430,160 +13943,204 @@

Model

-
-
-

Fit the model with the scaled training data and the boolean conflict data

+
+
+
In [23]:
+
+
+
# clf = svm.SVC(class_weight='balanced')
+clf1 = svm.SVC(class_weight=class_weight, kernel='rbf', random_state=42, probability=True)
+
+
+
-
In [18]:
+
In [24]:
-
clf.fit(X_train, y_train)
+
clf2 = svm.NuSVC(nu=0.1, kernel='rbf', class_weight=class_weight, random_state=42, probability=True)
 
-
-
- - -
- -
Out[18]:
- - - - -
-
SVC(C=0.9, break_ties=False, cache_size=200, class_weight='balanced', coef0=0.0,
-    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
-    max_iter=-1, probability=False, random_state=None, shrinking=True,
-    tol=0.001, verbose=False)
-
-
+
+
+
In [25]:
+
+
+
clf3 = svm.LinearSVC(class_weight=class_weight, random_state=42, max_iter=10000000)
+
+
-
-
-
-

Predict something with the scaled predition data

+
+
+
In [26]:
+
+
+
clf4 = tree.DecisionTreeClassifier(class_weight=class_weight, random_state=42)
+
+
+
-
In [19]:
+
In [27]:
-
y_pred = clf.predict(X_test)
-y_pred
+
clfs = [
+    clf1,
+    clf2,
+    clf3,
+    clf4
+]
 
-
-
- - -
- -
Out[19]:
- - - - -
-
array([1, 0, 0, ..., 0, 1, 0])
+
+
+
In [28]:
+
+
+
predictions = []
+scores = []
+
+for clf in clfs:
+    # Fit the model with the scaled training data and the boolean conflict data
+    clf.fit(X_train, y_train)
+    # Predict with the scaled prediction data
+    y_pred = clf.predict(X_test)
+    # Determine score
+    try:
+        y_score = clf.decision_function(X_test)
+    except:
+        pass
+    # Append
+    predictions.append(y_pred)
+    scores.append(y_score)
+
+
+
+
+
+
+
+

Evaluation

-
-

No clue right now what this does... look it up!

+

The accuracy is either the fraction (default) or the count (normalize=False) of correct predictions.

+

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

+

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

-
-
-
In [20]:
-
-
-
y_score = clf.decision_function(X_test)
-y_score
-
+
+
+
+

The main classification metrics are nicely summarized in the classification report:

-
- -
-
- - -
- -
Out[20]:
- - - - -
-
array([ 0.71345701, -2.26722865, -1.34963997, ..., -1.12775605,
-        0.6524443 , -0.24453507])
+
+
+
+

Precision-Recall is a useful measure of success of prediction when the classes are very imbalanced. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned.

+

The precision-recall curve shows the tradeoff between precision and recall for different threshold. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall).

+

A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly.

-
+
+
+
+

Another nice way to vizualize the accuracy of our results is the confusion matrix. The confusion_matrix function evaluates classification accuracy by computing the confusion matrix with each row corresponding to the true class. https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix

+
+
-

Evaluation

+

Yet another metric is the Brier score (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html#sklearn.metrics.brier_score_loss). The smaller the Brier score, the better, hence the naming with “loss”. Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated

+
-

The accuracy is either the fraction (default) or the count (normalize=False) of correct predictions.

-

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

-

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

+

Last but not least, the F1 score, also known as balanced F-score or F-measure. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html?highlight=f1%20score#sklearn.metrics.f1_score)

-
In [21]:
+
In [29]:
-
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
-print("Precision:", metrics.precision_score(y_test, y_pred))
-print("Recall:", metrics.recall_score(y_test, y_pred))
+
orig_stdout = sys.stdout
+f = open(os.path.join(out_dir, 'out.txt'), 'w')
+sys.stdout = f
+
+for pred, score, clf in zip(predictions, scores, clfs):
+
+    # Evaluate
+    print(clf)
+    print("Accuracy:", metrics.accuracy_score(y_test, pred))
+    print("Precision:", metrics.precision_score(y_test, pred))
+    print("Recall:", metrics.recall_score(y_test, pred))
+    
+    print(metrics.classification_report(y_test, pred))
+    
+    average_precision = metrics.average_precision_score(y_test, score)
+    print('Average precision-recall score: {0:0.2f}'.format(average_precision))
+    
+    print('Brier score: to be implemented!')
+    
+    print('F1 score: {0:0.2f}'.format(metrics.f1_score(y_test, pred)))
+    
+    fig, ax = plt.subplots(1, 1, figsize=(20,10))
+    disp = metrics.plot_precision_recall_curve(clf, X_test, y_test, ax=ax)
+    disp.ax_.set_title('2-class Precision-Recall curve with {} and {} (class weight={})'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0], class_weight))
+    plt.savefig(os.path.join(out_dir, 'precision_recall_curve_{}+{}.png'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0])), dpi=300)
+    
+    fig, ax = plt.subplots(1, 1, figsize=(8, 7))
+    ax.set_title('confusion matrix with {} and {} (class weight={})'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0], class_weight))
+    metrics.plot_confusion_matrix(clf, X_test, y_test, ax=ax)
+    plt.savefig(os.path.join(out_dir, 'confusion_matrix_{}+{}.png'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0])), dpi=300)
+    
+    print('')
+    
+sys.stdout = orig_stdout
+f.close()
 
@@ -14599,77 +14156,105 @@

Evaluation

-
-
Accuracy: 0.669259384511329
-Precision: 0.09933142311365807
-Recall: 0.7482014388489209
-
-
-
-
-
+
+
-
-
-
-

Precision-Recall is a useful measure of success of prediction when the classes are very imbalanced. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned.

-

The precision-recall curve shows the tradeoff between precision and recall for different threshold. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall).

-

A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly.

-
-
-
-
-
In [22]:
-
-
-
average_precision = metrics.average_precision_score(y_test, y_score)
 
-print('Average precision-recall score: {0:0.2f}'.format(average_precision))
-
+
-
+
+ + + + +
+
+
-
-
+
+ +
+ + + + +
+ +
+
-
-
Average precision-recall score: 0.12
-
-
+ + +
+
+ +
+ +
+ + + + +
+
-
-
-
In [23]:
-
-
-
disp = metrics.plot_precision_recall_curve(clf, X_test, y_test)
-disp.ax_.set_title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precision));
-
-
+
+ +
+ + + + +
+
+
-
-
+
+ +
+ + + + +
+ +
+
@@ -14679,7 +14264,7 @@

Evaluation -Evaluation
-

Results are pretty crappy, but that is okay give we use not very sensible input data at the moment...

+

Documentation

Let's safe some settings used in this run to csv-files so results can be assessed in light of these settings.

+ +
+
+

+
+
+
In [30]:
+
+
+
scaler_params = scaler.get_params()
 
+out_fo = os.path.join(out_dir, '{}_params.csv'.format(str(scaler).rsplit('(')[0]))
+w = csv.writer(open(out_fo, "w"))
+for key, val in scaler_params.items():
+    w.writerow([key, val])
+
+ +
+
diff --git a/example/example_notebook.ipynb b/example/example_notebook.ipynb index c45e3eb..c52ba1c 100644 --- a/example/example_notebook.ipynb +++ b/example/example_notebook.ipynb @@ -6,19 +6,27 @@ "source": [ "# This notebook\n", "\n", - "This notebook contains first bits and pieces of the yet to be developed model correlating climate/environmental factors with conflict occurrence." + "This notebook contains first bits and pieces of the yet to be developed model correlating climate/environmental factors with conflict occurrence.\n", + "\n", + "This notbook is under constant development. Please be aware of the version number of the conflict model used in each of the notebooks.\n", + "\n", + "In its current form, we first make a selection of conflicts to be used for training and testing the model. Selection criteria are amongst others minimum number of fatalities and climate zones. Subsequently, annual statistics (now: mean) of a range of environmental variables are determined per geographic unit (now: water provinces) and stored along with a 0/1 conflict value. This dataset is then scaled, split, and applied in a machine learning model (now: support vector classification).\n", + "\n", + "All model settings need to be defined in the run_settings.cfg file." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Import libraries and file with settings" + "## Import libraries and file with settings\n", + "\n", + "Import all required python packages for this notebook." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -30,15 +38,24 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import datetime\n", + "import csv\n", "import netCDF4 as nc\n", "import rasterstats as rstats\n", "import xarray as xr\n", "import rasterio as rio\n", "import seaborn as sbs\n", - "from sklearn import svm, preprocessing, model_selection, metrics\n", + "from sklearn import svm, tree, preprocessing, model_selection, metrics\n", + "from shutil import copyfile\n", "import os, sys" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For better reproducibility, the version numbers of all key packages are provided." + ] + }, { "cell_type": "code", "execution_count": 2, @@ -49,8 +66,8 @@ "output_type": "stream", "text": [ "Python version: 3.7.7 (default, Apr 15 2020, 05:09:04) [MSC v.1916 64 bit (AMD64)]\n", - "conflict_model version: 0.0.1\n", - "geopandas version: 0.7.0\n", + "conflict_model version: 0.0.2b2\n", + "geopandas version: 0.8.0\n", "xarray version: 0.15.1\n", "rasterio version: 1.1.0\n", "pandas version: 1.0.3\n", @@ -103,21 +120,18 @@ "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['../data/run_setting.cfg']" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "config = RawConfigParser(allow_no_value=True)\n", - "config.read(settings_file)" + "config.optionxform = lambda option: option\n", + "config.read(settings_file);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create the output folder as specified in the settings, in case it does not exist yet." ] }, { @@ -129,30 +143,51 @@ "name": "stdout", "output_type": "stream", "text": [ - "for the record, saving output to folder C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\OUT\r\n", - "\n" + "for the record, saving output to folder C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\OUT\n" ] } ], "source": [ - "#out_dir\n", - "out_dir = config.get('general','output_dir')\n", + "out_dir = os.path.abspath(config.get('general','output_dir'))\n", "if not os.path.isdir(out_dir):\n", " os.makedirs(out_dir)\n", - "print('for the record, saving output to folder {}'.format(out_dir) + os.linesep)" + "print('for the record, saving output to folder {}'.format(out_dir))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Applying functions" + "Make a copy of the settings file in the output file to always get an idea on what settings the output is based." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, + "outputs": [], + "source": [ + "copyfile(settings_file, os.path.join(out_dir, 'copy_of_run_setting.cfg'));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Applying functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, get the conflict data base and convert it into a georeferenced dataframe. This is needed for all following steps where this data is combined with other data sources." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -171,9 +206,16 @@ "gdf = conflict_model.utils.get_geodataframe(config)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Second, get the subset of conflicts based on user-defined conditions in the settings file." + ] + }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -184,7 +226,7 @@ "...filtering key best with lower value 5\n", "...filtering key type_of_violence with value 1\n", "...passing key country as it is empty\n", - "focussing on period between 2000 and 2011\n", + "focussing on period between 2000 and 2015\n", "\n", "reading extent and spatial aggregation level from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\waterProvinces/waterProvinces_Africa.shp\n", "...DONE\n", @@ -206,7 +248,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Functions" + "# Functions\n", + "\n", + "Add functions to be tested here." ] }, { @@ -215,741 +259,334 @@ "source": [ "# Analysis per year\n", "\n", - "In a first step, we want to know in which countries there was conflict or not. To that end, we first accumulate the number of fatalities per country and use this as proxy whether there was a conlfict or not (guess there is a rather strong like...)." + "This is the core of the code. Here, we go through all model years as specified in the settings-file and do the following:\n", + "\n", + "1. Get a 0/1 classifier whether a conflict took place in a geographical unit or not;\n", + "2. Loop through various files with environmental variables and get mean variable value per geographical unit." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is all stored in a dictionary for easy processing. We first need to initialize this dictionary containing a pandas Series per provided environmental variable. Then, add a pandas Series for the conflict data." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "simulation period from 2000 to 2011\n", - "\n", - "entering year 2000\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2001\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2002\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2003\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2004\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2005\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2006\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2007\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2008\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2009\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "entering year 2010\r\n", - "\n", - "determining whether a conflict took place or not\n", - "...DONE\r\n", - "\n", - "calculating mean GDP_per_capita_PPP per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\GDP_HDI/GDP_per_capita_PPP_1990_2015_Africa.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "calculating mean total_evaporation per aggregation unit from file C:\\Users\\hoch0001\\Documents\\_code\\conflict_model\\data\\PCRGLOBWB/totalEvap/totalEvaporation_monthTot_output_2000_2015_Africa_yearmean.nc\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\hoch0001\\AppData\\Local\\Continuum\\anaconda3\\envs\\conflict_model\\lib\\site-packages\\rasterstats\\io.py:301: UserWarning: Setting nodata to -999; specify nodata explicitly\n", - " warnings.warn(\"Setting nodata to -999; specify nodata explicitly\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "...DONE\r\n", - "\n", - "...simulation DONE\n" - ] + "data": { + "text/plain": [ + "{'GDP_per_capita_PPP': Series([], dtype: float64),\n", + " 'total_evaporation': Series([], dtype: float64),\n", + " 'precipitation': Series([], dtype: float64),\n", + " 'surface_water_storage': Series([], dtype: float64),\n", + " 'upper_soil_storage': Series([], dtype: float64),\n", + " 'groundwater_recharge': Series([], dtype: float64),\n", + " 'temperature': Series([], dtype: float64),\n", + " 'int_grazing': Series([], dtype: float64),\n", + " 'ext_grazing': Series([], dtype: float64),\n", + " 'conflict': Series([], dtype: int32)}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ + "XY = {}\n", + "for key in config.items('env_vars'):\n", + " XY[str(key[0])] = pd.Series(dtype=float)\n", + "XY['conflict'] = pd.Series(dtype=int)\n", + "XY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's go through all years and all files and data and assign the values to the corresponding Series in the dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "\n", "print('simulation period from', str(config.getint('settings', 'y_start')), 'to', str(config.getint('settings', 'y_end')))\n", "print('')\n", "\n", - "X1 = pd.Series(dtype=float)\n", - "X2 = pd.Series(dtype=float)\n", - "Y = pd.Series(dtype=int) # not bool, because otherwise 0 is converted to False and 1 to True but we need 0/1\n", - "\n", "# go through all simulation years as specified in config-file\n", "for sim_year in np.arange(config.getint('settings', 'y_start'), config.getint('settings', 'y_end'), 1):\n", " \n", " print('entering year {}'.format(sim_year) + os.linesep)\n", " \n", - " list_boolConflict = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year)\n", - " Y = Y.append(pd.Series(list_boolConflict, dtype=int), ignore_index=True)\n", - " \n", - " list_GDP_PPP = conflict_model.get_var_from_nc.nc_with_integer_timestamp(extent_gdf, config, 'GDP_per_capita_PPP', sim_year)\n", - " X1 = X1.append(pd.Series(list_GDP_PPP), ignore_index=True)\n", - " \n", - " if not len(list_GDP_PPP) == len(list_boolConflict):\n", - " raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_GDP_PPP), len(list_boolConflict)))\n", - " \n", - " list_Evap = conflict_model.get_var_from_nc.nc_with_continous_regular_timestamp(extent_gdf, config, 'total_evaporation', sim_year)\n", - " X2 = X2.append(pd.Series(list_Evap), ignore_index=True)\n", - " \n", - " if not len(list_Evap) == len(list_boolConflict):\n", - " raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_Evap), len(list_boolConflict)))\n", + " # go through all keys in dictionary\n", + " for key, value in XY.items():\n", " \n", + " if key == 'conflict':\n", + " data_series = value\n", + " data_list = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year)\n", + " data_series = data_series.append(pd.Series(data_list), ignore_index=True)\n", + " XY[key] = data_series\n", + " \n", + " else:\n", + " nc_fo = os.path.join(config.get('general', 'input_dir'), \n", + " config.get('env_vars', key))\n", + " \n", + " print('calculating mean {0} per aggregation unit from file {1} for year {2}'.format(key, nc_fo, sim_year))\n", + "\n", + " nc_ds = xr.open_dataset(nc_fo)\n", + " \n", + " if (np.dtype(nc_ds.time) == np.float32) or (np.dtype(nc_ds.time) == np.float64):\n", + " data_series = value\n", + " data_list = conflict_model.get_var_from_nc.nc_with_float_timestamp(extent_gdf, config, key, sim_year)\n", + " data_series = data_series.append(pd.Series(data_list), ignore_index=True)\n", + " XY[key] = data_series\n", + " \n", + " elif np.dtype(nc_ds.time) == 'datetime64[ns]':\n", + " data_series = value\n", + " data_list = conflict_model.get_var_from_nc.nc_with_continous_datetime_timestamp(extent_gdf, config, key, sim_year)\n", + " data_series = data_series.append(pd.Series(data_list), ignore_index=True)\n", + " XY[key] = data_series\n", + " \n", + " else:\n", + " raise Warning('this nc-file does have a different dtype for the time variable than currently supported: {}'.format(nc_fo))\n", + " \n", "print('...simulation DONE')" ] }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning\n", + "\n", + "## Data preparation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, create a pandas dataframe from the dictionary and kick out rows with missing values (they do not work with ML)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of data points including missing values: 5790\n", + "number of data points excluding missing values: 5760\n" + ] + } + ], + "source": [ + "XY = pd.DataFrame.from_dict(XY)\n", + "print('number of data points including missing values:', len(XY))\n", + "XY = XY.dropna()\n", + "print('number of data points excluding missing values:', len(XY))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, convert them to numpy arrays, separately for the variables (X) and the target conflict (Y)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2.36193426e+03, 4.23162297e-02, 5.90158959e-02, ...,\n", + " 1.69482798e+01, 4.27550003e-02, 4.27550003e-02],\n", + " [3.10405169e+03, 4.05202232e-02, 4.38823540e-02, ...,\n", + " 2.62989597e+01, 4.27103449e-02, 4.27103449e-02],\n", + " [1.19202521e+03, 3.92765536e-02, 3.85574701e-02, ...,\n", + " 2.41465799e+01, 4.27550003e-02, 4.27550003e-02],\n", + " ...,\n", + " [1.70019058e+03, 4.56631968e-02, 7.90373737e-02, ...,\n", + " 1.99556426e+01, 2.07449999e-02, 2.07449999e-02],\n", + " [1.71027506e+03, 4.38179032e-02, 5.47764229e-02, ...,\n", + " 2.20619215e+01, 2.07449999e-02, 2.07449999e-02],\n", + " [1.71202357e+03, 5.35152570e-02, 5.75030690e-02, ...,\n", + " 2.21496095e+01, 2.07449999e-02, 2.07449999e-02]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = XY.to_numpy()[:, :-1] # since conflict is the last column, we know that all previous columns must be variable values\n", + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 14, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 0, ..., 0, 0, 0])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Machine Learning\n", - "\n", - "## Data preparation" + "Y = XY.conflict.astype(int).to_numpy()\n", + "Y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "First, create a pandas dataframe from all variables and targets and kick out rows with missing values (they do not work with ML)" + "### Target evaluation\n", + "\n", + "Let's have a closer look at what we actualy work with. This is essential to select and tune the right ML model, for instance." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4246\n", - "4224\n" + "the total number of data points for our target is 5760\n" ] } ], "source": [ - "XY_data = list(zip(X1, X2, Y))\n", - "XY_data = pd.DataFrame(XY_data, columns=['GDP_PPP', 'ET', 'conflict'])\n", - "print(len(XY_data))\n", - "XY_data = XY_data.dropna()\n", - "print(len(XY_data))" + "print('the total number of data points for our target is', len(Y))" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 16, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
GDP_PPPETconflict
02361.9342640.0423160
13104.0516870.0405200
21192.0252150.0392770
31275.8594900.0253050
41182.2020260.0363080
............
42413277.1567380.0609970
42423277.1567380.0686960
42431381.9669010.0483290
42441390.2114880.0521570
42451391.6898340.0528720
\n", - "

4224 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " GDP_PPP ET conflict\n", - "0 2361.934264 0.042316 0\n", - "1 3104.051687 0.040520 0\n", - "2 1192.025215 0.039277 0\n", - "3 1275.859490 0.025305 0\n", - "4 1182.202026 0.036308 0\n", - "... ... ... ...\n", - "4241 3277.156738 0.060997 0\n", - "4242 3277.156738 0.068696 0\n", - "4243 1381.966901 0.048329 0\n", - "4244 1390.211488 0.052157 0\n", - "4245 1391.689834 0.052872 0\n", - "\n", - "[4224 rows x 3 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "from this, 310 points are equal to 1, i.e. represent conflict occurence. This is a fraction of 5.38 percent.\n" + ] } ], "source": [ - "XY_data" + "print('from this, {0} points are equal to 1, i.e. represent conflict occurence. This is a fraction of {1} percent.'.format(len(np.where(Y != 0)[0]), round(100*len(np.where(Y != 0)[0])/len(Y), 2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This small fraction indicated we have an **imbalanced problem** and thus will need to account for this in the settings of the model used and data pre-processing." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Then, convert them to numpy arrays" + "## Data pre-processing\n", + "\n", + "Before we can train and predict with the model, we need to scale the variable data and create trainings and test data for both variables and target.\n", + "\n", + "There are different scaling algorithms available. For our application, the MinMaxScaler and StandardScaler are the most obvious choices, the RobustScaler is follow-up. Depending on how incoming data looks like and is distributed, the scaling decision may need to be updated.\n", + "\n", + "Depending on which scaler is chosen, the standardization of the data follows different approaches and may eventually influence model results. See here for some info: https://scikit-learn.org/stable/modules/preprocessing.html and https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 17, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2.36193426e+03, 4.23162297e-02],\n", - " [3.10405169e+03, 4.05202232e-02],\n", - " [1.19202521e+03, 3.92765536e-02],\n", - " ...,\n", - " [1.38196690e+03, 4.83292063e-02],\n", - " [1.39021149e+03, 5.21571179e-02],\n", - " [1.39168983e+03, 5.28718745e-02]])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "X = XY_data[['GDP_PPP', 'ET']].to_numpy()\n", - "X" + "# scaler = preprocessing.MinMaxScaler()\n", + "# scaler = preprocessing.StandardScaler()\n", + "# scaler = preprocessing.RobustScaler()\n", + "scaler = preprocessing.QuantileTransformer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scaler is then used to fit the data and transform it according to scaler-specific method. I don't scale Y since it is either 0 or 1 already." ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 0, ..., 0, 0, 0])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "Y = XY_data.conflict.astype(int).to_numpy()\n", - "Y" + "X_scaled = scaler.fit_transform(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Before we can train and predict with the model, we need to scale the variable data and create trainings and test data for both variables and target." + "The scaled variable data X_scaled is, together with the target data Y, split into trainings and test data. The fraction of the total data that is used for training is user-defined." ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ - "X_train, X_test, y_train, y_test = model_selection.train_test_split(preprocessing.scale(X),\n", + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X_scaled,\n", " Y,\n", - " test_size=0.7)" + " test_size=1-config.getfloat('machine_learning', 'train_fraction'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The scatterplot of the (two) variables in X looks like this. Also the sample size n is provided." + "The scatterplot of the first two variables in X_train looks like this. Also the sample size n_train is provided used to train the data alongside with the total variable sample size n_tot." ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAJOCAYAAACA3sJZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3iV9fnH8fdz9khyTjbZhARC2HvIEARx4LbiqBOttu7ZXdv6s9XWLketWlelKM6KE1RUZMsKK+yZAdnr7PX8/kg4ZAEBEiCc+3VdufR8zznPeRK8zIfvuG9FVVWEEEIIIUTX0JzqGxBCCCGEOJNJ2BJCCCGE6EIStoQQQgghupCELSGEEEKILiRhSwghhBCiC0nYEkIIIYToQhK2hBBCCCG6kIQtIcQZSVEUg6Io7ymKskdRFFVRlEmtnn9EUZSNiqI0KIqyW1GUR9q5xn1NzzkVRdmsKEqfpvFfKoriaPblVhQlpChKwkn69oQQ3YiELSHEmWwxcD1woJ3nFOBGIBY4H7hbUZRrwk8qym3ArcB0IAq4CKgEUFX1j6qqRh38Av4EfKuqamVXfjNCiO5JkQryQojTkaIoe4DnaAxEWcA84CZVVT3Hca1i4HpVVb89wmueofH/ifcoiqIB9gI3q6q64CjXVoAdwGOqqv7nWO9NCHHmk5ktIcTpbAaNs07ZwCDgZkVRMhVFqT3C13XH+iFNgWkCsKlpKL3pa4CiKEVNS4m/bwphrU0AkoH3j+cbFEKc+XSn+gaEEOIInlFVtRRAUZSPgSGqqr4A2Dv5c35H418+X2t6nN70z2nAwKbP+wIoBv7d6r03Ae+pquro5HsSQpwhZGZLCHE6a77XykXj3qlOpSjK3TQuVU5XVdXbNOxu+uefVVWtVVV1D/AicGGr95qBqwBZPhRCHJaELSFEt9K0jOg4wtcPj+FaM4GfA1NUVS1u9tRWwAccbVPrFUA18O0xfhtCiAgiy4hCiG5FVdV9dHCGS1EUI42nDgEMiqKYAK+qqmpTKPsjMFlV1V2tPsOlKMrbwE8VRVkL2IAfAU+1+oibgDdUOWkkhDgCmdkSQpzJttK4JJgGzG/696ym5x4H4oGVzWbFXmj23rsBB1AKLAPeBF49+KSiKGnAOcAbXf1NCCG6Nyn9IIQQQgjRhWRmSwghhBCiC0nYEkIIIYToQhK2hBBCCCG6kIQtIYQQQogudFqXfkhISFB79ux5qm9DCCGEEOKoVq9eXamqamLr8dM6bPXs2ZNVq1ad6tsQQgghhDgqRVH2tjcuy4hCCCGEEF1IwpYQQgghRBeSsCWEEEII0YVO6z1bQgghhIgcfr+f4uJiPB7Pqb6VIzKZTKSnp6PX6zv0eglbQgghhDgtFBcXEx0dTc+ePVEU5ehvOAVUVaWqqori4mKys7M79B5ZRhRCCCHEacHj8RAfH3/aBi0ARVGIj48/ptk3CVtCCCGEOG2czkHroGO9RwlbQgghhBBdSMKWEEIIIUQz8+bNIy8vj9zcXJ588skTvp6ELSGEEEKIJsFgkLvuuovPP/+cwsJC3nrrLQoLC0/omnIaUQghhBDd0odrS3hq/lZKa92k2s08cl4elw1NO6Frfv/99+Tm5tKrVy8ArrnmGubOnUu/fv2O+5oysyWEEEKIbufDtSX84oMNlNS6UYGSWje/+GADH64tOaHrlpSUkJGREX6cnp5OScmJXVPClhBCCCG6nafmb8XtD7YYc/uDPDV/6wldV1XVNmMnekJSwpYQQgghup3SWvcxjXdUeno6RUVF4cfFxcWkpqae0DVPOGwpipKhKMo3iqJsVhRlk6Io97XzGkVRlGcURdmhKMp6RVGGnejnCiGEECJypdrNxzTeUSNHjmT79u3s3r0bn8/HnDlzuOSSS07omp0xsxUAHlJVNR8YA9ylKErrXWQXAL2bvm4H/tUJnyuEEEKICPXIeXmY9doWY2a9lkfOyzuh6+p0Op577jnOO+888vPzmTFjBv379z+xa57QuwFVVfcD+5v+vUFRlM1AGtD8nOSlwBtq40LockVR7IqipDS9VwghhBDimBw8ddjZpxEBLrzwQi688MITvs5BnVr6QVGUnsBQYEWrp9KAomaPi5vG2oQtRVFup3H2i8zMzM68PSGEEEKcQS4bmtYp4aqrddoGeUVRooD3gftVVa1v/XQ7b2m73R9QVfUlVVVHqKo6IjExsbNuTwghhBDilOiUsKUoip7GoDVbVdUP2nlJMZDR7HE6UNoZny06LhAMtTkmK4QQQoiu1RmnERXgFWCzqqp/O8zLPgJubDqVOAaok/1aJ9eBOg9/nr+V++cUsHh7BXVu/6m+JSGEECIidMaerXHADcAGRVEKmsZ+CWQCqKr6AvAZcCGwA3ABt3TC54oOKm/wcOk/F1NW7wVg/qYDPHfdUKYPTDnhQm1CCCGEOLLOOI24mPb3ZDV/jQrcdaKfJY7P7gpnOGgd9OLCXYztFU98lPEU3ZUQQggRGaSCfAQwtapDAmAxaNFqZFZLCCGEaG7mzJkkJSUxYMCATrumhK0znKqqpMWaGZRuC49pNQo/v6AvdovhFN6ZEEIIcfq5+eabmTdvXqdes1PrbInTg6qqlNV7mbNyH1UOLzePy+blm0awrqiOfVVOpvZLJjFalg+FEEJ0c+vfgQWPQV0x2NJhyqMwaMYJXXLixIns2bOnc+6viYStM1BFg5eLnl1EpcMHwOwV+/jwrnGc2y/5FN+ZEEII0UnWvwMf3wv+psbTdUWNj+GEA1dnk2XEJrUuH5UOL8Fg6FTfyglbtbcmHLQAQio89/UOnN7AKbwrIYQQohMteOxQ0DrI724cP81E/MyW1x9kR4WDxz/ZTKXDy/VjsrhkSCqx3Xg/U3v73jUaBanyIIQQ4oxRV3xs46dQxIetapePK55fijfQOKP12482YTZouWp4eretQTUsK5YUm4n9dR4AdBqF+6b0xmKI+D9uIYQQZwpbeuPSYXvjp5mIX0Ys2FcbDloHzfm+iFpX962wnhRtYu5d4/jdxf25a3IOXz54Nj3jLaf6toQQQojOM+VR0JtbjunNjeMn4Nprr2Xs2LFs3bqV9PR0XnnllRO6HsjMFql2c5uxjDgzRl33zqFJMSZuHtfzVN+GEEII0TUOboLv5NOIb731VifcXEsRH7bSY81cPyaTs3ISiI8yoFUUUm1mLMYz60fj9QfxBELEmHTddnlUCCGEaGHQjNPu5GF7zqxEcRzio4zcMTGHm19byc4KB0adhl9Pz+eyoWlEm/Sn+vY6xf46N//6Zifbyhu4bGga0/r1IM7afQ8ACCGEEN1JxIetBo+fP3y6mZ0VDgC8gRCPfrSJc/omnRFhq6LBy4wXl1FU3Xg8dvmuairqvfz47Bz03XypVAghxJlHVdXTfgWmseVzx0X8b1u3P8iGkroWY6oKpbWeU3RHnavG5QsHrYNmLd9Ljdt3mHcIIYQQp4bJZKKqquqYw8zJpKoqVVVVmEymDr8n4me2NIrCmJw43l9dEh7TaxUy4tpunO+O2tvob7fo0Zzmf2sQQggRedLT0ykuLqaiouJU38oRmUwm0tM7XmIi4sPWou0V3DimJ+l2C/M27afOFeDxywZgM3f/JUSAGLOeiwal8Mn6/UBjE+rfXtyfhCjpjSiEEOL0otfryc7OPtW30ekiPmxFGXT4gyG0GoVHpvUlJ8nK4u0VmA1nRh/BWIuBxy4dwK3js9lV4WRUdhzxUbI5XgghhDhZIjpsBUMqDl+AH81aHR6bkp/Eby/qdwrvqvPFWQ3EWQ0MzYw91bcihBBCRJyI3iBf6fDyl/nbWowt2FzO6bstTwghhBDdTUSHrWAohMcfbDMeCErcEkIIIUTniOiwZdZruX5MVoux/qkxmA3aU3RHQgghhDjTRPSerVirkSuHpZFqN/PN1nJyk6K4dHAq0aaI/rEIIYQQohNFfKroYTMxNT+J4Zl2okw6zHpdm8rx9W4/Dm+ABk+AWKueeKsRrUbqVAkhhBDi6CI+bBl0WuKjtMQ31Z3yB4Psr3WzcFsFdoueIRl23vx+H89+vQNVhXirgXd+PJacxKhTfOdCCCGE6A4iPmy1Vlzt4cJnFuH2B9FrFd798VieWbAj/HyV08ejczfy/A+HYTNLvSohhBBCHFlEb5BvzeMP8vSCbbibTihaDDrK671tXrerwokvEDrZtyeEEEKIbkhmtpoJhlTqPYHw4zq3n/goI1aDFqfvUImICwb0aLOv62iqnV6Kqt0U1bgYlhlLnNWASS+nHoUQQogznYStZqxGHbdP7MXXW8rDYy8v2sXsH43ht3M3sq/axfRBKdw5OfeYglKN08ev/reRzzceABobXb9zx1ip6C6EEEJEAAlbreQlR/PGzFH8d/le7BY9M8dls6DwAC9cPxytRiHapD/mOlw1Ll84aAH4gyqPfVzIKzePIM7a8YbQHn+Qeo8fALvZgEEnq8BCCCHE6U7CViuxVgP5PaKZ1j+Z7WUOXly4kwen5ZFiNx/3NRuaLU0eVOX04faFwNqxa9Q4fbyxfA8vLdyFVqNwz5TeXDU8HbtFNukLIYQQpzOZGmmlxuXj5x9sYPP+BvJ6RJMRb+GRd9dR6Wi7Ub6jUuwmEqNbzmBdPjSNrWX1qGrHWgMVFNfy9y+34/QFqfcE+MOnm9lR7jjuexJCCCHEySFhqxV/IMRdk3Opcfn46xfb2HqggZ9d0JdA8PhPHyZGGZl16yguG5LG8KxYfnlhPnk9ovl4XSmB0NHDViik8sm60jbj8zcdaOfVQgghhDidyDJiKyFV5ekF21m4rQKAklo3uyqc/GfmqOO+pqIoqCrEWfX07ZHM0h2VLNxeweu3jESvPXre1WgURveK5/01JS3GR/SMO+57EkIIIcTJITNb7fhue0WLx9vLHQSCHVvuO5w0u5kBaTZmLd9L4f56fjO9H4PS7B1+/5S+SZzdJzH8+PwByYzI6prTjIFgiP11bt5csZf3VxdTXu/pks8RQgghIoHMbLWi0ShcNDCFa0dnolUa+x/OWr73hE/+xZj1XDo4lQm9EwCwWwwdmtU6KD7KyD+uHoLLF0BRFCwGbZdtjj9Q7+GCfyyiwdu4sT85xsjHd48nKcbUJZ8nhBBCnMkkbLUSZ9Zz41k9ue0/q6hz+7EatDxz7VCiTSf+o9JqNSRGH39gibUaiLV27enDYCjEa4v3hIMWQFm9l682l3Hd6Kwu/WwhhBDiTCTLiK3UuP088HYBde7GelZOX5CH3l2H09u2fMOZKKRCg9ffZtwRId+/EEII0dkkbLUSCKkU17hbjNW6/HgjpBeiXqvh1vHZaJRDYya9hukDU07dTQkhhBDdmCwjtmLQahiQFsPGkvrwWEacOaL6GGbEWfj03gm8sHAnJp2Wn0zKaVMnTAghhBAdo3S0qOapMGLECHXVqlVd/jmVDV62HGigwuFhXG4CXn+IB94uYNXeGgakxfD01UPplWhFUZSjX6wZfzBIjdOPqoLZoCXGfGzNq081rz+IoijSFkgIIYToAEVRVquqOqL1eMTPbFU6vNz6xkrWFdUBjUtm8+6bwL9vHIE/GEKrUYiPOvZZHYcnwDdby3l07kZq3X6m5ifxx8sHdasZImMEzeYJIYQQXSXipyx2VTjDQQvA4w/xx8+2oNcpJMWYjitoQWPbn3vnrKXG1Tiz9WVhOS8v2oU3EOysWxdCCCFENxDxYevgqcPmat3+Ey5iurWsgdYrtAu3VeBopym1EEIIIc5cER+2BqXbiGlVQ+vW8dknXDA0NzGqzdjwrFgsxohfuRVCCCEiSsSHrQSrgU/uncBVw9OZ0DuBV28eyZjsE+85GGs18Ovp+RibNpcPTrdx75TemGUflBBCCBFR5DRiE48/SEhVsRjazjx5/UEavAEseu0xzUy5fAHq3QECoRBmvfaI+79UVaWiwcu32yrw+IOc2y+ZxCgjumNo6SOEEEKIU0dOIx6ByxugvMHLN1vLyUm00j/VFg5GlQ1eXli4k2+3VTAkw84vLshDp9Vi1muPWhLBYtC1G97aU97g5eJnF1Pe4AXgz/O2Mu++CaTHWU7smxNCCCHEKSVhCygoruX6l1cQaprkOysnnueuG4pOq+E3H23k8w0HMOo0/GZ6Pm+vLGbR9koGZ9iYOS6705ozL9hcFg5a0Nge59Ulu/nV9Hy0GpndEkIIIbqriA9bVQ4vf/xsczhoASzdWUWVw0eMWc/8jQcAuH5MFl8UljF7xT4Alu2qYtH2St6YOeq4y0M05/S2LQnh8AYIqSC7vIQQQojuK+KnTEJq+0HHGwihVQ4VNJ2cl8R7q4tbvGZTaT1OX+fUzbpwYAomfeMfh6KARoFbx/dCfwJ7tmpdPrYcqOedVUVsL2tot8yFEEIIIbpWxM9sxVn03DY+m199uBGN0hi+0mPNJMeYiLXoeeLygdw+axVufwCbWd9iqU9RQKc5thY+h5MYbWDBg2dT5w4QVFXsZj0J1uMvP+HyBpi9Yh9Pzd8aHvvdxf24ZlRmRPV5FEIIIU61iA9bWq2GCwakMC43gSqnj2iTDptJH26rMzYnnsU/O4fKBi+/viife98qCL/3htFZRHVS3ax6T4DffLiRr7dWADAwzcarN4/EfJzXr/cEeGbB9hZjT83fygUDUyRsCSGEECdRxIetQDDE5gP13PqflXj8IYw6Df+6fjixVj0GnRarUYfVqCPVbiY70co3D5/N97tryE+JJiPW0mnNpQuKasNBC2BDSR0fFpRw2/jscANstz9Ig9sPCthM+iP2LgypKt5AqMWYyx9sU9VeCCGEEF0r4sNWtdPH/XMK8Pgbg4k3EOLBdwqYf/9EkmNahplok55ok57shLbV4U/UppK6NmPrimrxB1UMOoUap49XFu/ilcV70Chw1+Rcrh2dSexhKt1bDFom9k7gu+2V4bHz+/fAYpBZLSGEEOJkivgN8r5giAqHt8VYrcuPPxg6zDu6xrn9ktuMXT40LVzLa82+Gp77ZidufxCnL8if529le5njsNezWwz87eoh3D+1N6Oz43jkvDwev2zACc/E1bn9rC+u5dG5G3lzxV4qGrxHf5MQQggRwSJ6ZssXCFHe4GVgmo0NzWaW+iRHnfR9TWmxFv5+9WCemrcVXzDE7RNzGJYVC0AopPLZhv1t3vPFpgOMOkJroYQoI3dPzuWWcdnoNQr1ngAltW4sei2xx7H5XlVVlu6o5Cez14THZi3fy6xbR5PQCeUvhBBCiDNRRIetWrePxz7exGOX9udvX25j1Z4ahmTaeeLygZ0WHnyBELUuHyG1cWkvxqzHHwxR6/Jj0muINjXONNnMei4ZlMr43ISmx4bwrJZGozA2J57315S0uPboXkfv4ajTalDVAK8s2cOzC3bgC4Y4Kyeep68ZGj4E0FFVTh9//2pbi7HN+xuoaPBK2BJCCCEOI6LDloJCWb2XO2ev4aaxPZk5LpsdFY5wyPEHQ9Q4fVQ5fdjMeqJNunA46ogGj5/5mw7w2MeFNHgDnN8/md9dMoC3Vxbx0bpSesZb+PX0fmTGWdBoFLRaDYnR7Vekn5yXxLn5yXy5uQyASwanMjyzYw2zy+o9/PWLQyFp6c4qZi3bwz1Tep9QHS8hhBBCHF1Eh604i56Hp+Xx0LvreHLeFgAm5yVy8aAUlu2swqTXcNOr31PvCaAo8PML+nLdqMwOB64ap49vt1ZwyZA0luyoxGY28PKi3fx70S4AdpQ7WLuvls/vm3DUtj/xUUaeumoQTm8ARVGwGLTYD7M5vrUNxW033y/fXc1Mb6DD1wCItxp4YGqfFsuI+SnRxzxDJoQQQkSSiA5bWq2Gc/sl8+k945m36QCD0mwMTLdzx6xVzBiRwZyVRdR7AgCoKvzp8y1cMji1w2ErBPSwmSiv9/LLC/uSEGXkx/9d3eI1VU4f5Q3eDvVYtFsMxxSODhqSGdtm7Ow+iUSZju2PX1EUzspN4KO7xvHemmL69ojm3H49ZAlRCCGEOIKIDlsAMWY9/dNs9E+zAfBVYRnriuu4Z0pv9lU5uXFsFucP6IFWUVi4rQKnJwC2o1+3osHDNS8u50C9B4CP1pXy0d3jSLGZKatveYLP1sETgg0eP/XuABUODyk2M3bzkWttHZQYbeTxywbw5OdbcPkCXDAghWtGZqA7jgbXNrOeQRl2Bqbb8PiDGHVSSkIIIYQ4kk4JW4qivApcBJSrqjqgnecnAXOB3U1DH6iq+lhnfHZnO9g/cN2+Wt6+YyzzNh1g5usrCYZUfjAsHatJR43Ld9j6VgdtL3eEg9ZBry/Zw+8v6c+jH21kVM94at0+Yow6ojsww+T0BnhnVRGPf7oZVQWTXsPs20YzPOvo+7ZsZj1XjUjn3H7JqM026h+vKoeXLwrLWLC5jPG5iVw8OKVTmnELIYQQZ6LO2h39OnD+UV6zSFXVIU1fp2XQAhiXG4/VoGVYViz76z3846vtePwh/EGVt1YW8c2Wct5asY9al++I1zHq2v5o99d50GsVHpjah71VTqwGHbeMz+7QzFaDJ8ATn20JV4D3+EM88u56KjtY58qo05IcY6KHzXRCQcvhCfDE51v4xQcb+GpzOb/7eBO//GDDUX8eQgghRKTqlLClqup3QHVnXOtUi48y8sUDE4mzGFiyo7LN88t2VlFa66bG5T/idbLirPRJPlRpXqtReGhaHwr313Pzayv5orCM15fu4bJ/LmlTVLU9bn+QQKhlr5191S5CnNz+Ow5vgP+tbVmCYn5hGW5f8KTehxBCCNFdnMw9W2MVRVkHlAIPq6q6qb0XKYpyO3A7QGZm5km8vUZ6rYa0WAuLtlcyMK3t5qwRPWOZt6msaSbHetjrJEQbefO2MSzZWcneKidjeiVQ6/bz5op9LV5X6fCx9UADSYcp+XBQlFHLlL5JXDIklR4xJgr317OrwoFFf3K33SkK6LUKwWbBT6dRwv0bhRBCCNHSySqytAbIUlV1MPAs8OHhXqiq6kuqqo5QVXVEYmLiSbq9tgal29EqCjNGZKBpyhHn9U9mYJqdzaX1pNrNR71GQrSRS4ekcdPYbP74WSF1Lh8WQ9twZO7AJne7Rc+9U3rzzILtXP3Scr7YVMaPz8455hOFJyrGpOeec3q3GLt1fDZRJtkoL4QQQrRHUdXOWYZSFKUn8El7G+Tbee0eYISqqm3X6ZoZMWKEumrVqk65v2NV5/bx+Yb91Lr8jMyOw2rUoQD/+Go7M8dnc6DezficxA63valo8OL0BiiucXHL6yvxBxt/7v1TY3j5xhGkHCW8ldd7mPaP76httnw5oXcCz107DJvlxPodHqtal4991S6W7qxiZM9YeiVEHVf7H3Hm8gVC1Ll96DQa+W9DCBExFEVZrarqiNbjJ2VaRFGUHkCZqqqqoiijaJxRqzoZn328bGYDVwzLoNbtAxVCqsq3WyvIT4nhgbcLKK5x88pNI5iS37aBdHsSo42oamOPw7dvH8uSnZUkRZtIs5vb7MVqj8MbaBG0AJbsqMQbDAInN2wdrPc1KN1+Uj9XdA/VTh+zV+zl7ZVFJEWb+N0l/chLju5QmRIhhDgTdVbph7eASUCCoijFwG9pSgCqqr4A/AD4iaIoAcANXKN21pRaFzLoNOG9VP/8ZgdPzd8KwOB0Gz+a0AuNouD1B4/6SyQYDFHt8qPVKMRaDfzw5RUMzrBR6/ITCKnMuX3MUe/FatRh1GnwBkLhsX6pMWhlr5Q4jQSDIf63tjjcHqq4xs1VLyxj4SOT6WGTsCWEiEydErZUVb32KM8/BzzXGZ/VFdy+ANVOH9/vqSYzzkJ6rIXdlU4WFJYxJieeIZl2+qVEA3DtqAwm5SXx/Dc7cHgD3DIum+mDUg5bd6vW5WPepgO88O1OLAYt/7xuGOmxFj5eV8rE3oncOiG7QxXYY0w6/nHNEB56Zx0uX5DkGCN/nzFE6luJ00qt288HrRqmewMhNpXW0cN29C4JQghxJor4CvIAhfsbuPrFZQRCKtePycJu1vPcNzsA+Pfi3Vw5LI2fnd+X8/olc+WwdK5+aXn4NN6vP9xIYrSR8/r3aPfaG0vq+Pn7G8KPz/nbQr57ZBLTB6Zg1mvRt1OPqz1mg47JeUl88/AkPP4gZoOWeKsELXF6Mem19Iy3sqm0vsV4Rw6UCCHEmepknUY8bVU7ffzfJ4XhfVPn9+/BK4t3t3jNB2tLCIZUnrpqMJtK6lqUPQCY830RDm+gzbX9wRBvryxqMaaqsHh7JSFVxeFr+54jMekbC5NmxVtJijah1ZyaJUS3L0h5vYdqZ8cKqorIYTXq+Nn5eSREHZrpvWxIKskd6P0phBBnqoif2QqGQtQ0q36u0TRuhm9OVUGlsY9idmIUreUkWTFq2+ZWraKQnxLDx+v3h8dmjutJepyFH72xipAK90/pzZBMe4ebW59qVQ4vT3+1nU827Cc91swfLx9In+QoDNIjUTRJj7Xw2X0T2F/rIcasx27RH7W9lRBCnMkifmYr1mLghjFZ4ccLNpdz3aiWxVTPH5CMxaAlEAyRFGNkbK/48HPDMuzMHJdNjcvXpmWNRqNw1YgMcpMaA1pClIELB6Zw46vfs3JPDav31nDDq9+zt8rVhd9h5/H4g/xr4U7eWL6XaqeP9cV1zHhx2VGr6YvIotEoJEWbGJxhJzvBKkFLCBHxIn5mS6fVcOWwdOwWA++uKsLjC3LPlN6MzYln3qYDjMtJYFJeInaLgYoGD/e8uYZ7zunN3efkolEgOcbET99bx+q9tQzPsvPklYNIj7WEr58YbWTO7WOodHixmfX8Z+keWp/DnL1iL3+8fOBpX4W93u3n8w0HWoy5fEGKql2yTCSEEEIcRkSHLY8/SL3bjwpMH9iDafnJGPQaTHotPWw9mJqfjKbFvigFtz/EvXMKsBi0PHnFQP7vk80U7m/cDLx4RxW3v7GaWbeOanFKMCHKSEKUkTq3nx8Mz2Bin0T+t7aEd1cVA5AVbz3tgxaARoHsBCslte4W43IiUgghhDi8iF1GrHH6+Pd3u7jg6UUs3FbB9nIHuyod1Hv8OL0BDtR5KK51U9msSXSc1cBD0/oAjTM6yWWDN7cAACAASURBVDZTOGgdVLi/Hk+zWlgHVTZ4efDtAqb+bSE/+s8qchKjeGBqb9JjzVwxNK1rv9lOoigK90/tTXxTRXBFaWzV0/rAgBBCCCEOidiZrW1lDfz1y2384+ohrNhdRTCk0ivRSmWDjzVVNdw7pwBfMERuUhRvzBxFqt2MVqMwpW8yn94zns827ifeaiDOaqDaeWivVpzVgL7VKUFfIMTry/awYEs5AE5fkCc/38L8+yfww9FZJER3j5khi0HHyr3VPHfdMAKhEFFGHUt3VhJ9kvszCiGEEN1JxM5sfVlYRkKUgYQoIzNGZPDOyiKufnE517+yAncgxMWDUwDYUe7gic82U+9uDFQxZj3902w8cl5fsuKt/OPqIZj0jT9Gk17DP64e0qYXnNMbYMn2tm0gtx5o6DZBC8Bs0PKDYen8d8Vebp+1mgfeLmBkzzjsJ7k3oxBCCNGdROyUxJiceL7bXoFBp+H5b3eytqgWaKy79dP31vHOHWN5v6kS9oaSOmrdfmLMLUOUXqthVHYcCx+ZTIPHT7RJj82sR9+qDESUUceYXnHhzzioX6qtC7/DrpEYbeJPVwzC5QugKAoJUYZusd9MCCGEOFUiNmwNzbAzKMNOQpSB1XtrWjznD6rUuPxYDFpcviBjc+LZUFxPZpy1zXVMem242Ojh6HUaZo7vxfqSOpbsqMKk1/DwtDwSu9GsVnNRJh1RsnQohBBCdEjE/saMjzLym+n5uH1BhmXa+Wpzefg5naZxxsYbCDKtqUXP4u2VQMpxf15itJHnrxtGgzeAokCcxYjZIIVAhRBCiDNdxO7ZArCZDfSwmfnV9H70T40BIMas45lrhhIMqbx52xgGptu4b04B0/ons2JXJfXu4yvgWeP08e7qYq54finXvLScrzaXUe85ecVAKx1ePl5Xyp8+38KmkjrqjvP7EEIIIcSxUdTWFTZPIyNGjFBXrVrVpZ8RCIZ48vMt5KfGkB5rxhcIsXJ3NRcPTuWrzWU4vUGm5ifxly+2sXhHJbNuHcWE3onH/DkLNpdx639afi/z7ptA35SYzvpWDqvK4eXH/13Nyj2HlkufvXYo0wemtKojJoQQQojjpSjKalVVR7Qej9hlxIN0Wg2ZcRYeemddi/HBGTYm9E7gb19u5+XFu/D4G2tn/fu7XQzJOLZehl5/kA+aNts392VhWYfDVo3TR5XTR0WDh16JUY0lJtrpx9ieOre/RdAC+OsXWxnTK77b7hsTQgghuouIXkY86MJBKYzqGRt+PK1fMkMyYql2+vl6S3k4aEFj6QftMZ6+02s1DExve/KwX2oHg5bLxx8+K2Tq3xZy7b9XcM5fvmVXhaPDn99ezdFASKWxvbYQQgghulLEh60Gj5+d5Q5uPzuHj+4exzcPn80fLh9IfJSRfikx9EmOCr/WrNfywNQ+WIzHNiGo0ShcOSw9vC8MYFKfRIZk2Dv0/hqnj/dWH5oZc/qC/O7jQupaNb4+HLtF3+KzAe6clEucNAgWQgghulzELyPurXJx9UvLw481CnzxwNkkRhtJiDYy+7YxrC+upcrpY0JuAgnRxxdQEqONvHLTSJzeAFqNQoxJR9wRegp6/UFq3X7cviBajcLYnHiW7awKP7+/1o0v2LGZqYQoI6/fMopP1peyoaSOq4ank58Sg7aDy5BCCCGEOH4RHbZCIZVZy/a0HFPhf2uLuX1CL9yBEBa9lin5ySf8WSU1bu56cw0bSupIiTHx9LVDiDLpMOgOlX/wBULUunwoCmwqreeu2Wtw+oLEWQ08c80Q3L4gBU2FUa8cnn7Eyu3VTi+ltR7K6z30S7MRb9Vzy7hsgqEQWo2ELCGEEOJkiejfuhqNQkacpc14qs1McY2bvZVOdlc6WzSjPh6VDV6qnF5+cWFfZo7L5kC9h5tfXUmt61D5hVqXj9kr9jL1bwvZWeHknjfX4vQFgcaq9r+Zu4mHzu1DTmIUPz0vjx+OzjrsBvlqp5efvreei55dzMz/rOKcv3zL7koXgAQtIYQQ4iSL+N+8V43IIM1uDj/ulWBlQp8Ebnrte65+aTk3vLKComoXZXUeKhu8hNrbbX4EVQ4vT36+hcv+uYQbXv6ekKryxBUDafAGcHgD4dftrXLx+48Lqfc0Fj1taPYcwO5KJzlJUbx9xxhun9iLOOvhlzPL6r0tirS6fEH+8GnhcdcIE0IIIcTxi+hlRIDkGBPv/+QsPP4gIVUlyqjlnjkFVDoaN5/fOTmXTaX1PPTOOhRF4YFzezOxdyIx5o6Vfvh2awXvrSkGwBcM8cri3Tz/w2H0SYrC2myj/ddbDoUjpzdIjxgTB+o94bFhmXZMeg1x1qOXaqh2tt04X97gxe0Pdvi+hRBCCNE5In5ma3+tmyc+38w7q4r4fMN+Sms92JpqaGXEmclJtPLrDzeyq9LJzgoHd7+5lu3lDqqdR19a9AWCLULUQQX7avnLjMHYmgWf4VmHSk889/V2/nHNEPJTogEY2TOWZ64d2qGgBZCTaCWmVe/CGSMy0GsUGk5i1XohhBBCRPjMVr3bzxeFB7h0SBqzV+xFqygMzrDzyHl5fFFYxsiecSzY3DYs/W9tCdFGHbeOzybhCEVBDTotk/IS+aLwAAPTbLh8QbYcaGBy30T69ohusTm+f1oMVwxL44M1JazZV8tHBSW8evNItIqCXqsh9gjLhq3ptAqv3jySl77bxf46Dz+akE1ejxge+6SQGpefmeOzGZJhw2aW0g9CCCFEV4vosOULBOmdFM0PX1nBwa5FX28pZ979ExmfG095vZfxvRPavC8r3sJXhWUML4plar8jn1Scmp/EwLTxLNpRSYxJx+B0Oyk2U4ugBRBvNfLoRf14eFoeIVXFYtAdcV/WkRi0Wt76fh99ekQztlc8fZKjufJfS8N7xBZuq+D1W0YyKS/puK4vhBBCiI6L6LBl0mv5aF0pzdtDBkIqcwtK+NvVQ1DVxvIQHxWUUri/HoCBaTYGpdn442ebuWhQ6lE/o84d4Mp/LQ2fLMxJtDLn9rEtXuMLBAkEVewWA/a2hyOPWYxZz4Pn5nHL69+j12qwW/QtNuMDvLxoN8OzYo+p7ZAQQgghjl1Eh60ok56kmEPLgLlJUSRFG4mzGnB7A2QlRFHr8vLcdUNxegM0eAPUuf3c89Za9BoNZ+cduSG11x/k2a+3h4MWwM4KJwVFtZzbL5lgMERpnYd/fbuTKqeXW8dn0zclhphOCEBpsWbe/NEYQqrKppL6Ns/bzXpO5ybkQgghxJkiosMWwHWjMvl0/X5+Nb0fNU4fxTVuJvROwKDXUunwEm81UNHgRaNRSIwyokHh8qFpnJOf1GYTemuBkEpdO+UWapva7FQ6fUx/ZhH1nsZZp/mbynjzttGclXto6TIQDBFS1TbLjh2R0FShviE+QL+UmPDsnMWg5bYJ2WiOscfjQaGm78uo0xxz6yIhhBAi0kT8b8rkGBP/vXU0D7xTwPJd1QD8Y8E2XrtpJIt3VDA5L4n4aCN3zFpNcY2bMdlxPH75AMwGbbsNnpuzGnXcPjGnRc0ri0HL6Ow4SmpcrNlXEw5aB72wcCcD021YDDoO1Hl4edEuqlw+bhufTa8EK1HHMesVbdTyq+n5lDd4qXX5GJphR0U9rmvVOH18sn4/H6wpJivewkPT8kiPNaMcZ3ATQgghznQRH7YURaHO4w8HLYBrR2YSH2Xg7Lwkkm1mvioso7jGTf/UGB6clsd9cwrYVFrP4HQbT187lJ7x1sNev2+PaN65YwwvfbeLKKOeu8/J4cXvdrJsZzV3nZPb5vXRZj1ajUKlw8sFz3xHvbsxjH1UUMoHd57FsMzYNu85mjirkTR7iO+2VeDxB8lJjGJwhu2Yr+MPhpizch9/mrcVgLVFtSzZUcWn944nKcZ0zNcTQgghIkHEh61gKIS72Z6qaf2SGZZl57LnlxIMqSgK/OrCfK4emcHZfRL56Xvr2FPV2PpmXXEdd7yxmjd/NJr4wzSVjjHrGZUdjy8QorzBy7uripm9ogiAvORocpOi2FHuAMCo0/DA1N5YDDq+2FQWDloHPf/NDp6+ZmiLYqgdodNq6Jlg5f6pfQiEQse9Kb7W5eet74tajFU4vOyv80jYEkIIIQ4j4sOWgkJStJHMOAv7ql1cOyqTh99dR7BpjVBV4a9fbOP1W0ai02rCQeugrWUNuP3B9i7d5nUef4hVe2sAmJKfRFG1i8cvG8DuSie1Lh9T85NJbgotFkPbPVpWo+6w+6wcHj8hlSNWiDcbtMCx7/06SKdRSIgysK+65c8g+ih714QQQohIFvEV5KudPj7buJ9Xbx7ZWKQ0ykhVq3Y3bn8QvVaDWa8lvlXtqxSbiYNbt47UN3H6wFS2lzUwoalu17WjMvnN3I1c89Jy3li2h6+3lHPFv5bi9DYGt6GZdjKbNck26jTcc07vpsDU7N58ATaW1HHPWwX8ZPZqlu2s6rIq8bFWA7+9uD+GZg2wpw9MIdYixVGFEEKIw4n4KYkvN5fxxGdbSLNZmNA7AX8wyPjcBBbvqAy/pn9qDCl2E4oKT145kIfeWUe9J4DdoucPlw+k3uVns6ee/yzdQ88EK1cMTWuzrJYYbeRX0/NxeANkJ1iJs+jDoW7z/obw6/zBUNPrTbz/k7Es3lFFjdPHef2Tw6cLmytv8HLZP5cQaAp6S3ZU8dHd4xiUbu/0nxVA35Rovn1kEuuLa0mzW0iLNR1TdXshhBAi0kR82Nq6v57kGBP3v13A8KxYJuUl8vhlA/jXtztYtquaoZl2fnZ+X1JsZvyBEA2eAC/cMBytohAIqfxn6R5+d0l/Ln1uCRWOxn6Js1fs5YOfjCOxWSufOrefrzaX897qYnrGW7h3Sm9mntWTV5bsCb8mPyW6xcxVYrSJy4emHfH+P1m/Pxy0Dnp96R7+dOUg9NrOn7g06rSk2s2k2s2dfm0hhBDiTBTRYcvp9TNzQi9GZsfRo+nU4ROfbyE/JZpJeYlcPiyNnMQoEqMbZ6n0Og1n90nktaV7+HhdKWl2M/dO6c0LC3fy20v6cfebawEoqnazu9IZDlseX4D3Vhfxx8+2ALB6bw3fbavko7vHEQipLNpeyZDMxp6M7c1eHUmPdjamp9hMaKUUgxBCCHFaiNiwVefysXB7BffPKQjXy3r0on7MmjmKTaX1PDlvC+f378FfrhrU4n0htbEy/N2Tc6l0ePn5++vZU+Vi+sAUDFoNvqZlwOaTSlVOH2+u2NfiOgdP8f3iwnzucHqpc/uZvXwfo7LjGJAWQ5y1Y6FrYp9EshOs7K50ApAYZeT6MVloNBK2hBBCHFLp8OLyBtBpNViNWmxm2QJyskRk2AoGQ5TVe3l07qYWhUmfmr+VObeP4cl5W0iOMfLL6fntFP5Umb+pjH8v2t1q9JCcRCtZcYdqb7n9QeKsxjYnGc0GLcXVLlbtreHnH2xoHPwGZo7ryYPT+hBlPHqJhsRoI+/cMZYtB+rxBUIMTLO1WL7sbF5/kGqXj8LSelLtZpJjTMfdMFt0D75AkFqXH4c3gNWow27RYzyOjgZCiFOnvN7Dza+tDHcS+eHoTB6alif//z5JIjJsVbt8NHgD1Lpantpz+4PEWvV89eBEYsx6EttZ0ouzGrl3Sm8efnddeGxIho30WDMzx2eTFW9han4yCc0Cj8Wg455zcrlj1urwzNeUvkl4/EEufXE5c24fg9WgDfdQnLV8Lz+ZlIsv4CMYCmHQarAd4cRfYrSRxOgj92nsLNvKHfzgX0vxBhq/j0sGp/L7S/rLJvkzVDCkUlBUy8zXV+HwBrAYtLxw/XDG5sSh10rgEqI78AVCvLJkdzhoAcxesY8ZIzIkbJ0kERm2QGFHeUObU4eD0m1YDToy4w4/M6TVKJzbL5n3f3IWH6wpZmCajan9Gk8K/vyCvu2+R69V8PiDfHbfBDaW1JFqN9Ejxsxts1biC4b4srCMs3IT+LKwDIB+KTHUuf088u46NpbWMTYnnievGHTKN6XXOH387qNN4aAF8NG6Uu6f2lvC1hmqyuHlnrfW4vA2Fth1+YLcO2ctX9w/kaQYCVtCdAcef5D1xXVtxrccqGdwRtecXBctRWTYircasJsNPHhuH1LsJkpr3Fw8KJXJfRMprnERbdKFGz/XOH3Uefx4/SHirHoSo03YzHqGZ8UyPKtjrXO0ikL/tBh+9v4Gapw+zAYtD53bhx7RJrYdcGCz6FtUsf/txf25+bXvKa5xA/Ddtkruf7uAF68ffkpDTSCkUt7gaTPeur+jOHMEQypl9d4WY7Uuf3iGVghx+osy6rhwQA+W7axqMT4qO+4U3VHkiciwpdEojMmJp6jayfWjM/EFVOas3Me+GhfnDehBgydAfJSWKoeXX/1vI/M2HQAgI87Mu3ecRQ/bsbWmKXd4efyTzS3+Q7/zzTW8dMMIthxo4NIhqWTFWeidHMXInnHEWQ3hoHXQ97ur8Z7iX3B2i55rRmby1Pyt4bF4q4HUY/x5iO7DoNPQPzWGTaWHlh96JVgx6WVWS4juQqNRmD4ohb1VLmav2IfNrOfRi/u1u1VGdI2IDFsANrOeoM3M0p1V3P3W2vD43IJS3rljDAC7Kp3hoAWNJR3+u3wP907pg0HX8RpW0UY9y3a1/BtFvTtAtEnH/+48C4tew6AMOzFmPT0TrGgVpcUeLoDMOMspL+eg12q4dlQmFoOW99cU0zPeyk+Po1yF6D7io4y8eMNwHn53Hav21DA4w85fZww+6p+52x+kwd24JzLGrJdwJsQpFmc18tC0PO44O6fxsUWPtgtqMYr2RWzYCgZDVLt8vLqk5anCklo3RdVu0mIt7KpwhMfzU6J59KL+uP0BtpU1kGIzHbb5dGtaDQxIjWFdszVzk15DMKTy96+2MS4ngQffXYeqgqLA32cMYdato7n238vxBkLEmHQ8fc0QEqJOzhJiMKRS6fCyfGcVRr2G4Vmx4VpjcVYDN47J4pLBqZj02mNuii26n/RYCy9cPxxfMIReoznqUna108eri3fxyuI9aBS4c3Iu143KxGLUUtng47vtFfSIMTEwzdbiIIkQomuZDdo2Ld/EyRGxvynrPQFCIdC1k+z1usYZpLG94tEoYNZreeLygfz4v2s4UN+4Z2l4Viwv3jC8Q7M6qgp/uHwgt7+xitI6D1aDlt9d0p/XluzhB8PT+fGs1ajqodc+OncjXzwwke8emYzTFyDKqCPWqkc5gZkthydASa2Lt1cWkRFnYfrAlDYthQ4qq/dwwdOLqGuamUiPNfPBnWeR1BS4tFpNh4OmODPYj6H/ZcG+Gp77Zmf48VPztzIiK5aEKCMXPL0ovN+rf2oM/5k5SmZGhRBnvIgMWzVOH++vKWbhtgp+fHYOq/ZUh+tt9U6KIt3e2ADaZtbz0o0jKNhXwwdrSsJBCxqrwG8qqePsvKQjfpbbF+Cp+VvZWeFobPOjUTDptbh8QXolRhFl1NLgbbnBvN4TIKRCqr3z9kIV7q/n6peWhUPda0v28P5PzmpTkysYCvH6kj3hoAVQXOPm2y0VzBiZ0Wn3I85MoZDKpxv2txn/YtMBEqKNLTbWbyqtZ3elU8KWEOKMF5ELtmuLanj8080s2l7J6r3VfHbfBO6alMOfrhzIizcM59MNpdQ4fXgCQUpqXEzsk0hJnbvNdVoXKW2PJxBib7WLdcV1fLK+FLvFwANvF3Dxs4uZ8eIyqp0+RrQ61TiyZywmfef90dS5ffzty63hoAWwr9rFzmbLpAeFVKhyetuMVzc1zRbiSDQahbNyEtqMj+oVH+5y0FyDnGQVQnSCYDBERYOHigYvgdDpd1o64sKWLxDkgzUlAJzdJ5HxuQmYdBp6J0czb+MBHni7gNykaOo9fpbtrGJwup2/zN/KhQNSWlxHq1GYnHf0QqJ2s54ZI9IZmxPP+f1T+Pd3O8P1ToIhlQffWcffZgzm8qFpZMVbmDEineeuG9bhdj0d4T/MKUZVVduM6bUabh3fi+YrlgathumDUtq8Voj2TMpL5Nz85PDjiwelMiIrlqnNxqDxdOuA1JiTfXtCiDNMncvH/9aWcNk/l3LJc4uZ830Rta7Ta4JAae8X7ulixIgR6qpVqzr1mqGQyr8X7SLGrMfjD/Le6mJsZj0/PjuHd1YV8cn6/VgMWj6/bwIOT4An523hp+f3xeMLsK3cwaxle7Eaddw9OZcBaTHhjeOHU+P04fIFqXZ6Wb23ho/X72f13poWr/m/S/vj9gdJiDIyPjeBxGjjCe3Pam1/nZuColrunL0mPLuVHmvmf3ee1e79O7wBdpY7+Oc3OzDptdwzJZfMOIu0aBEdVuvy4fQGUBQFi0GL3WKgzu1nXVEtry/dQ4rNxE8m5ZBqM0sfTyHECSnYV8Nlzy9tMTbn9jGM6RV/0u9FUZTVqqqOaD0ecXu2NBqFGSMz+LKwjN9/XBgeX7Wnhjm3j+GLTWW4fEEqGrzkJEaRZjezbEcldR4/WkXhprN64vQG+MsXW/nD5QOPGLaqnV5+3VSn68O7xrFyTzVn5cS3CVt5PWK45bXv8QVDzL9/In+ev5UpfZMY3Su+U1opfLetgh3lTmbNHM28jftJjDYytV8yOk37E5tRRh19e0Tzh8sHAI2bo/VyRLgFty9InduPPxjCbNDKvqNW7BZDm031NrOeiX0SGZ4Vi16rhAsHCyHEifhoXWmbsQ/WFDM6O65TJy5ORMSFLWhcApxbUNJizBcMsWZfDfkp0awrriMp2kis1cAvLsjH4fVz5+w1LUo3ALh8h99vEgqpOLxBbhrXkx9N7EVlgxezXsO5+cmU1rqZW1CKzaznwXP78M2Wcpy+IDOGp/Pe6uLw1/WjM/n5BX3baYZ9bDLjLPzs/Q3MLShhbE48xbVuDtS5+fmF+e2+vsbp47Wle3hl0S70Og0PT8vj4sGp2Mwndh9nigaPn7kFpfzfJ4V4AyHykqN57ZaRp7ydUnch5UKEEJ1pUHrblkNDMuynTdCCCNyzBY17kNJjLW3Ge8SYqHH5uH9qb8wGHaW1bhy+ABajjjsnNxaCG5AWw6S8RHKToshNjDrsZ+yrdnHVC0u5+sXl/OCFZWwsree+qX34ems5Fw1K4dtHJvHRPeMxG7Ss2VfDr6bnc8mQNF5bsid8jTkri3B4g4f9jI7qmWBlSn4S5Q1e5haUsvVAAz+elIvN3P6s2YrdVTyzYDtOX5Bal59ff7iRvVVtNzdHqjq3n9/M3RjuEbm1rIEnPtuMw+s/yjtPf9VOH8t2VvHneVtYtrPqpB+MqHP5KK11U1rrPu32XAghTk/jeycwulnroaGZdqb173EK76itiPwrpkmv5Z5zcvmysCz8y2RUdiz902J49tphJMcY+f1Hm/ik6Qj7OX2T+NOVA1n4yCS+311NUY2LX16Yj+UwxeHq3D5+M3djuKfcweKlE3on8OzXOwiGVOwWPfPum8hFg1KZkp9MIBhi7JNf42vW5FlRoDOCeXK0iccvHcB9U7w4vAEyYi3EWdufpfIFQny8ru3R/QWby8N/e6hs8OLyBzFoNdjM+ogrkldS46b1VseC4lrcviBRxu47++fwBnjh2528tGgXAM9/u5M7Jvbi3im9T8psVJXDy/99UsjcdaWoKlw0MIXfX9pfaroJIY4oIcrI89cPo8ETQFUhxqQ77f6/EZFhCyDVZubz+yaweX9jz7dYi4Fal5/kaBMFRbXhoAXw9ZZyqpw+fvHBBtbuqwXg2a93MGvmKMb3bnsi0esPsa2socWYqkKlw0dGrJnSWg+1Lj/zNh7g5nE9Meg0ODx+rhmZwRvL9obfc+PYnkR1wi85jUYhxW4mMcZIKMQRWw3ptQoje8a1qZU0LLMxaJXUurnxle/ZWeHAqNPw24v7ccng1BNe6uxOMuMs6DQKgdChxDUhN6FbBy1oLHz72tKWHRVeXbKbmeOyT0rYWrW3mg8LDu29+GTDfs4b0IOLB6d2+WcLIbq3eKuR+E48xd/ZIjZsaTQKyTEmYow66r1+nlmwg7dXFnHRoBRiW23sjTLqqHcHwkELGsPTk/O28EZqTJsyDdEmPVPyk3lzxb7w2KA0G/1SYnjxhhGY9Vq2ldWzt/pQna4ok56Hp/XhulGZVDq8xJj0pMdZOvWXnE6jOerCsaIoXDQ4hc837mfF7moALhqUwoA0Gw0eP499vClcn8sbCPGrDzdydp+kiApbNrOel24Yzs8+2EClw8vZfRJ54Nw+Z8AMn0ow1HLKLhhSUTk5J5aX7KhqM7Z4e4WELSFEtxexYesgs1HHV1vKmd0UjNYW1fLzC/ry2tI94ddoNI1frXn9Ibz+tjWszAYtD0ztg8sbYN6mAwzJsPPEFQP54cvL2VPlQq9VeOjcPlw6NC38Hoc3wPqSev48bwu+QIg7J+WQlWDt9O+3IxKijPzr+mE4vUE0ioLV2Hh0v6LBw/riOkZkxXLn5FysBi0ef5B6t4+02MjZHG4x6ji7TyKf3jMeFTDpNNiOoZ3N6cpi1HHZ0LRwHTqAK4aln7QN7ef179FiZhfg/AFS300I0f1FfNjyB0N8WVgWfry3ykWN08dD0/rw4sJdhFSVm8b2xG42kBVvYW+zqvE/HJOFN9D+BvbEaCOPXz6AX07PJxRSeXTuJvZUubBb9Dx0bh79UmMIhFTqPX5iTHoO1Hm44ZUV4b1A984pYM6PxjAm5+TUCalyeAmqKiadlhiznjirkbhWWc9q0HHdqAyGZsbx0LsFlNV7SYgy8ML1wwkGQxHVQV6r1Ry2t2R3FWPS/z975x0eVZ3+7ftM7yW9F5IQaoAQOiKCiiBrRwTsWLGvu7pFt+jqq2v3Z0dXsSMqqCgiotJBQodQUyC9J9P7ef8YGBkTECki5NzX5eU131PmnMmQ88lTPg9/n9CTkblxfL+jgTE9EjgzPwG1Qk6DzYMvGEKrmWL89gAAIABJREFUlJ+wWoheySbuHJvHa0tLEUWYPjKb/ukdu4wkJCQkTjW6nKlpZ3y8rpI/zdkceS0IMP+OkcQb1QSCIu+s3suiknqevKyAr7fVUdXqZtLAdCqanWTF6n5xPmJVq4srXltNTZubD24cyovf72Hp7iZkAkwdksH95/XgrRUVPLVoV9RxF/RL4anL+51Qjyt/MMSOOjv3frSRskYno/PjeeTiviQeQkjUtLm54rXV7DsoBRpvUPPlXSMjg6olTn38wRBKuQyXL8DSXY3c9/FmbJ4APZONvH7NIFJPkM2F2xfE5gl3dZo0Xa/5QkJC4tRGMjU9DGPyE5h323Cc3iDfbq9HDEGyWUOMXk2D3cPMpWUEQiKTZ67mqUn9mFSUjs3tp1+6hYwjSJ/5AiFG5sZRb/OypryFpbubgPAcwndX7+OKQelkx3dMGeYmGJAfRTtiq9NHrc3D3iYnBekWYvRKtMrOf9QtTh/TZq7Gtn9G3bfbG1ArSnj80r6HrMM6WGgBNDq8+DpJp0qcuhwQ+DZ3gDs+2IA/GP6jbHutnQfnbeHZyQMwnQDfNa1KLgksCQmJ044uL7baXD4+2VDN89/uxh8Kce3wLKaPzI4UveuUcs4vSOazjTVcNzyLHXV2bn9/AwBqhYyZVxdR2+5mWLc4Es3qDiNt2t1+muxe7jo7jyU7G/l+ZwMAGqWMsT0S0ank/FjewgX9UumbamZLddg4NSNGxxWD0n/1KJM2l4/Hv97Bh2srAVDIBN69YQgDM6207vct0qsUkTocm9sfEVoH+GFnAy5fsFOxpVLIyE0wsKfhpyHWqRYtaqX0gDwdaXZ6I0LrAOv3teHxBzFplYRCIs1OHyBiUJ+ekahQSCQoitIUBQkJiaPmuIgtQRD+B0wEGkRR7NPJdgF4DpgAuIBrRVFcfzze+1gpb3LyyJfbI69fWVJGz2QTo/MTMGuVKOSy8BzEFBNjeyayqKSegjQzm6va8QZC/PPzbdw1No+zn17CgrvPIOdnRqeBYIi3V+9l/d5Wnp8yALlMoMHm5Z8X9Gb+5hocngCDs2ORCSJvXjeIBpsHf1AkxaIl3vjra2Mc3kBEaAEEQiJbq9upbXPz8JfbsXv8XFKYxn3j8ok1qDFqFB1sDPKTTId8sMQZ1Lx21UBufmcduxscZMfpefnKQmKPw1ghid8fcQY1KrkM30HDzIdkx6BVyXF6/awua+Gfn2+j2eHj8qJ07jo797gOUT/ZNNo9zCmuoqTWxuVF6RSkmTuMIZKQkJD4JY5XZOst4AXg7UNsHw/k7f9vCPDy/v+fdBZvb+iw9m1JPSaNgpF58dg8fj7bWE1hhpW/frqFkChy06hubK1u55UlZVS3uokzqPEFQ7z8/R4eubhvVJTHEwgxf3PYs+qyV1ax9M+jKUgzc8Vrq2l1hWtTPiquZN5tIyhIsxzzjD23L7pg36hW0C/dwqRXVkXWZq+tJDfewPUjsjBqlDxycR8enLcNXzBEvFHNfy/ri/Uw4qlbvIEPbhoaruuRyYg7ClEocWpg0ih47eqB3PvRJpqdPgakW/jXH3pj1CipbHFx49vFHNDps1ZVkGrVMH1E9mnRLNHk8DJ15hp274/izt9cy6MX92FyUfppcX8SEl2BFqeXBruXVqePnHgDsXrVSfn3e1zEliiKSwVByDrMLhcCb4vhavzVgiBYBEFIFkWxo1X5b0xRlrXDWu8UM19sqqVPqgWZACNy45j6+k+dgmsrWnn7+sHM21DD4OwYVpeH/YECnfQaHPAtUsllnNc7Dr3Mx+oqR0RoQbh266XvS3l6cj90qmP7kVh0StKsWqpa3QBkx+vZUWvvsN+i7fVMKkrDolPxh34pjM5PwOULolfLj8gYThq83DXQqhSMyI1jwV1nEBRF1Ap5ZDj6xso2fmbLxddb65g0MP2wYv1UocXpiwitA7y8pJRzeiUedgC9hITE74Nmp5e/frKFb/Y7Dpg0CubdNoJuhxm1d6L4rWq2UoHKg15X7V/rILYEQbgJuAkgIyPjhF9YQaqFiwekMndD2FvojLw4+qVbWFRSj0IuYNQoWVRS32E8y9db6/jjOd3JitNzw6y1yGUCt57ZDbVSjiiKNDl82D1+1Ao5T1xWQFFcgPjdH2JY8QG6lNs7XIdCLiDQsT7L7vETDIZrRrbV2ChvCncMJhg1ndbHxBs1fHTzMJ79dhe76h1cNjC10/b5wgwL+v3CTqdSHLHI8/iDNDt9rKtoJT1GS0as7nft2itx7CgPYXORk9DxF1bvFPNpU7cl76ReUiWXd/rvVEJC4vdHXbsnIrQAbJ4Ajy3YwdOX9/vNjbh/K7HV2W+nTj0nRFF8DXgNwtYPJ/KiAGIMKv46vgc3ntENjz/I9lobd324gZlXF0Wc5DNjO3YKZsXpGNU9jtlrK7loQCrXDMsi2RJ+IFW2upn86ipq2z1kxen4cFp3Er+5C6F8CQgCgwtuIsmkoc7mAcIjcu4ckxf1kPL6g5Q1OXn86x1cOzyLl38oZXNVO+cXJNPu9nFuryR6JJs6vacUi5aHL+yDNxBCr5Jj8wa4eVQ3Zi4rIyRCvzQz14/IRnmYsT2HoqTWxuRXV0WKpsf1TuThi/pItg9dkGSThmuHZzFrVQWiCDnxBm47KxfNadIsYdUpGZIdE5mkAHD/efnEGk79qJ2ERFegYf984oOpaXfjDYT4rWNbv5XYqgLSD3qdBtQcYt/fnASTBoVcoKbNQ6xRzWe3jyBGryIUEmmwexnbM4E3V5RTsd/QNM2qZXhOHCXVNq4ZnoVJoyQkirS5/Lh9QV78bje17R4ePz+DsbGtxNIcFloAokjCl9fz2VVvs2CfjNp2L5cXpXdwYG9y+rjoxRUo5TKmj8ymus3N+zcOYd7GGlaVtqCUy4jRq5DLBLRKObr93YXtbj97m53M31RL3zQzw3JiiTOouX1MLteOyCIQFNGpjs6YssXp46EvSqK60xZuq+fOsXmYNMrT5iErcWRY9Sr+eE53bhrVDX8whF6tOK3SyzF6NS9OK2Td3lZ21Nk5r3cSKRYNwvGYDi8hIXHC6ZliQqeS4zqolvmKQRkdRvL9FvxWYutz4HZBED4kXBjf/nuo1zqYsGO6mj6p5shavc3D+OeW8uFNQ3nrusFUt7kRRZEYvZo7PljPW9cNxuEN4A2EmLu+mk83VJFm1XLbWbnE6pWMV63H9NFtcP1CUBnx9boUe9JgdM3bSPz4EsZM+oqHv2vB5vGTo4zW2Sv2NOENhNCp5Hj8If4yvgd/n7uVkv2Ds1eVNdNg85JoVrOrzsG94/JJMmlYvL2eP360KXKeod1ieGlaITF6NcZjDJsGQyItTl+H9VanD5vBf1zEls3tp7LFxZdbaumVYmJot9jT6gF+umHSKk+I39bvhTiDmnG9kxjXO+lkX4qEhMSvJFavZN6METzyVQl17V6mDslgQt/kX22pdDw4XtYPHwCjgThBEKqAfwJKAFEUXwG+Imz7sIew9cN1x+N9jwd2j5/qNjefb6whN8HAqLz4SHfddzsaMGuVCAhMfm0VCpmAQi4wZVAm5/dNptHuYeWeRi7JVzMhM0hPczwPf9/I9W8Vs2RGb0wfPhN+k/JlNE1fw8w1DSxb46AwtQd3XPlH3D7YWWcnzarrcF3J5nBartXl3x+JUkWE1gE+WLuPmVcX8diCnfxY0cKcm4fx9M9c6FeXtWBzB45LO75eLefyonSe/GZnZC3BqCYzVo8/eOympqGQyJJdjdzxwYbI2pBsKy9dOfCUqwuze/w4vUEEIVyUqT3GxgcJCQkJiV+HUi6ne5KR56cU4g+GsGqVJ62T+Hh1I075he0icNvxeK/jTXFFK9e9tTbyuneKiXenD0EUYVCWlf7pA3nm2108OLEXiSYNMkGgrNHBxJxk/D4vt/T0o7CXg1pPhsFDwZRcLn63ItyFKOx34ZaZeOCbGr7eFraZKKm1sbnOzQtTC5k7Y1inKb2eySb6p5vZWNnOQ1+U8NrVAzvsY9YqcXrD4dGqVjf2n5mTHuB4Fb45PAF6JBl54PyeLNxWR3qMjquGZlLd5qJ7gvGYz9/s9EUJOYA15a20u/ynlNhqdnr5f1/tYO6GahQygVtH53DN8KyTErqWkJCQ6OqYfwfR9y5tFtPs8HZ4uHv8IVpdPq5760fOfnopKrmMG0d147WlZUx6ZRWXvrySzzbWEAiKKPx2FN5W+Pp+eGsifPUnrL5aHhmfjldlJTT67wC4089gYUm0n9fmqnbsHj8mbecP4DiDmtevGcTcGcP524QeaBQypg2J7s6855zuzFn3U5OnXi3nllHdovYpSDNj0hyfqIpaKeed1RUs3dXIWfkJmDRKrntrLUlmLTHHIdUnIkasMg6mk6XfLaIosnh7Ax+vqyIYEvEGQjz77W7KG50n+9IkJCQkJE4SXTq3IQKBg4q9e6eY+OM53bnjgw1sqwmn7NQKgVWlzWyuao/st3xPE9tq2jk3XQGzboO2veENrRUw9xYGXT0fp0qJLPcsuHkpQkiDRauk1eWPuLWr5LJwi+ZhhEScQR1Vr3TvuflMHpTOjjo7/dMtzF1fFTFlnTYkA4NaycR+KeQkGPh4XRX90iz8oV/KcfM8MmuV/PMPvbn81VUU720lzapl+ohsrIcQjL+WGJ2KGaNz+NvcrZG13ikmLLqT/1fJkeINhDo1yl1R2kRhZkdPNwkJCQmJ058uLbZi9Sr+3yV9CIbCswidvgAygYjQAnB4g+ys62gKWlJrY3y29SehdYC2vSiF0H6Bo4LkfliDQf5vigmFXCAkiuiUctpcfowaZbT9QtAPrmbwu0CpA10syH8SGjF6FTF6FQVpFty+AFcNy2JAhpXMWB0JRg3m/aJkWE4cQ7JjaXH52FDZSm2bhzPz44kzqI+5iD0rVs+Xd4zE4Quyo9ZGjyRT58YeR4FCLmNC32Sy4vTMKa6iIM3MxIKUU6pAXq2QcWb3OBZuq4taH5Id+6vP5fD4cfuDCIJArF4ldcFJSEhInKJ0abHV7vazobKNgjQLH62rpLTByUX9U3hx6gBu/2ADoghvrazgwv4pfL4p2qni3F5J1NmdpFgyoG3fTxssGQjK6IJ3pVyOVa9k6sw1tLv9yGUCf5vQg14pB9U5BQNQtRY+mAKeNtBaYcpsSCsCWUeBpFWFi65TLNoO2wBaXD6ue3NtZLC1Si5j7m3D6Z1i7nT/IyUQElm6u4k/f7w5svbgxJ5MHZx5VGaWbS4fe5tdLN/TRFGmlbxEA8Nz4hicHYNCdupluQVBYFzvJFaWNvPllloUMoHrR2ST14kB6OFosnt55KsSvtxcR4pFw38vK6AgzSLZa0hISEicggjiz63Rf0cUFRWJxcXFJ+z8W6vbKW9y8sbycjZWtkXWHzi/J4OzY7jp7XUYNXJeu7qILzbV8s7qvajkMu45pzvdEw3UtLkZkKIjcf7VUPYDmNNhyvuQ0AcOEgqNdg/Xv1UcET4Qdqf+7t4zUchkJJhUKF2N8NkMmntMI6iNw1Q2H03ZN3D9N2BMjBwXCIZodfkREdGrFOjVnevl9ftaueSllVFro/LieGFq4RG36rt9AQRBiHrA19s8nPP0EmwHFeOrFTKW3ncWiZ24jB8Ojz/IrJUV/L8FOyJr1wzL5E/j8o/ZpuJk0+724fIFERAwaBQYDvFz6gy3P8jjC3bw1sqKyJpaIWPJfWeR9Cs/YwkJCQmJ3w5BENaJolj08/UuHdn6sbyFgjRzlNACeHVJGd0TDXw6YzgqhYzF2+spbXTwnwv70D3JwCs/lPKnOWEvqxSzho9vfo9EmpErNaCPjxJaEI4GlTZGz1gLhkRsngAPf7GNZ64YQKwgo6ToCR5YWEOD3cNl/aZy04RJxIR+mqFo9/hZuquRf31eQpvbxyWFadw3Lr/TbkZHJ52JDm+g0wL0n+P0BihrdPDSD6VolHJuOyuXdKs2MorI7o0+tzcQInAUVew2t5/nFu+OWntn9V5uHZ1zyosts1aFufOg4y9i9/j5dnt91Jo3EKKy2SWJLQkJCYlTkFMvT3McGZRl7bQORiEXsHuCLNvdRJxBzaCsGOZvruWDH/fx+cYaZhdXRfataffw+ZZ6Asa0cASqk9SXQaXg7J6JUWtWnZIYnZJNVe18vrGaNlHPFe/soqTWRpPDxysraphdoSVwkNlpi9PHbe9voNHhxR8Umb22kjnrqgh04nHVI8lI7M8K4288o9sRFcvva3FxwYsrWLC1jrkbqjn/+WU0OsJjD7RKBeN7J9E/3ULaftf7wdkxaJW//qskQgd/rpB4anUfngi0Sjk9kjpaaSSZJaElISEhcSrSpcVWWowOURQZkRtdvHzX2Dy6JxqQCyIuX4DF2+v5vykD6JFspLkTB/WqVjduf7DD+gGMWiX3n5fPHwqSMagVDEi38NK0gdS1e0i1aInVq9he58R3kPAQBAjINTT41NS1u7G7/WzY19bh3ItK6jtEmiDcyfj5HSO5elgmY3sm8Pb1gxmeG/eLn4k/GOKN5WVRg7e9gRDzN4cN/5UKgb+M78mlhan8Y2Iv5s4YzotTBxyVaapBreDyovSotbE9EtCdJoOMjxajJtz1eUDMymUC95+X/7vwipGQkJCQ+PV06TSiVaciN17P45cWsKmyjc1V7QzLicUbCOHyBUm16mlx+DizezxuX5C8hDSCIZF3V++NRF8EASb0TaKkxnZYMfPphirSY3Q8d0V/ato8/OOzrfRNMzM6P54zuyfQ7vFH7f/3CT1x+oKMeeoHvIEQFw9IZfrI7A7n7Z9u6VScyGQCqRYtD5zfKzK37lA0O7zYPQEEASw6Zafmm9b9nY7bamxMeW11JG04Jj+eJy/vf8hzHw69WsG953anMMPKNyX1DM+JZWJBMhbJ/JM0q5a5M4bj9AZRK2UY1YrffEq9hISEhMTxoUuLLQCXP8SkV1bx0c3DmL+5lnqbhzE9Erj05ZUEQiJqhYx3pw9Br5bjDQSJ0at494YhvPJDKSJw86hufLOtnqk/Mxw9mGAwRJpFxz0HzSwEuLB/CpcXpaNRylEpZVw5JIN31+wjVq+iR7KJK19fE9n30/XVTB2cwc2jujFzWRkhMexBdfOobqgVh44EqRQyVIpDBzCb7F6mz1rLpv0+YmN7JPDvC3szu7gSmzscMUsxazgrP4EWp4//zC+Jqs/6bmcjrU4fMUfp5RWjV3PpwDTOL0hGJZedlJlVv0cEQSDeqCH+2I35JSQkJCROMl1abLW5fCzb3cRZ+fHUtLlZsLWOmVcP5O9zt0YExQPn9+Kj4krmbaxmzi3DuWFWMSNy4xjfN5lmh5cUq5bxfZIwaRSUNznRq+RYdEpUBwmgRoePFIuWfmnmiKjJTTBwbq8kRj/xA7NvGUbfVDN/GpfPLWfmEBJh6e6OxpjPfbubZ67oz7XDs/CHRPQqeafF8UdKKCRS2+7mzrF5fL+zkY/WVrJ4RwPTR2az6J4zWbGnCbVCxqDsGBKMGhrtHtrd/g7ncfk6HxP0a5AsDSQkJCQkTle6tNiyuQM8sXAH824bQZPDS7xRjUmjpMEeLgbXq+TkJhh48LOtjMiNxeUL8Mdz8/lhZyNuX5DCTCvvr9nLmPxEHluwnXkbazGqFbx61UAGZceg3D/w8sfyFh6eX8JDF/XGqFYSEkW0KjlLdjfi8geZU1xJ31QzFp0qkkIr9MVEXev4PkncOTYPfyCERiUn+RhTbU6vnzXlLeHORle4s/GVqwZyw6y1LN3dxPDcOC4pTIs6xqpXcfXwLB76oiSylmTSSIXbEhISEhISh6FLi61gSOT1q4tYU9ZMj2QTc2cMZ3NVO2d2j2fJrkbMWiX1Ng8AAzOsVDQ5o0bJDMy08udx+azY08jg7FhWl7Vy9zl5qJUyGmweYvRqtCo5BrWcRoeXW99dj04lRyYIjM6PJyNGh04lZ9LANHbX22lz+8mM0RFrUJNi1vDncfk8v3g3k4rS6Z9uZsrM1bS5/AzJjuH5KQN+ta/VwTQ7fEyfVRwphH9rZQUJRjWj8xM4v29yp8coZDIu7p9KjE7FR8WV5MQbuHV0DvHG8HW0OH24fUHkMgGj5tAeYBISEhISEl2JLv001KhkVLUFqG7z8O7qfWTF6bn77Dz+e1lfnly4i1WlTfROMaFRyshLNPL412HzTZ1KzsS+yfRNM5Mdp+OtFU5i9RpevrKQ/3y5nXV7W9EoZfzlvB5cUphG3zQL3eL0lDU5cfmCqBUypo/MpsXpoyDNzMs/lPLV1vB4F7NWybzbRpAdp+e6EVlcNjANfyDEqCe+jxTlrylv4YmFO3nogt7ojlLQrK1o5ed+tj/sauQv5/UgI/bQBlFWvYqLBqQypkcCaoUM9f70X6Pdw63vrqd4bytKucAdY/K4elimVOwuISEhIdHl6dLWD15/iB92NvL0ol1sqGxj7oZqpr2+Bo8/xPkFycy6fghGtYKZVxVhUCsQxbB/1ce3DMeiU7F8TxMb97Xxjz/0wqJT8OHaStbtbQXA4w/xry9KaHH6MGkUvDitkP9c1Ic/j8tn9k1DefmHUsxaJWlWXURoQXiE0OMLduDw+tGpFCSaNFS3uTt4T60ua8Z5DLVSeYkdx8f0TjbRK9mI+QgGS5u0yojQ8gVCvL6snOL99+4Pijy9aBcNNu9RX5+EhISEhMTpQpeObMlkAp9trI5aq2p10+L08ac5m1DIZDxycR+eWLiTP+8vXs9LNDB91lpq28PpxYXb6nnowt6M75PE/1aUd3iP3Q0O4gwqHppfgs3tx6BW8Pzi3WE7h8JUNJ10Ela2uvD6QxyofU+L0SETos0+B2XGoFMd/Y8vzapjclE6s4srAciJ13PL6Bw0R3HOZqeX8X2SOKdXInM3VPPemvCsyO21Nrp3Ys4pISEhISHRlejSkS2lXCC2EzNOq07Fm9cOwqJToFbI2VFnZ/qsYpTysC3BAaF1gA9/rKSs0cnlA8MGnXkJBh69uC/v3ziEXslG9GoFlxWmsa3GxpryFryBEHKZQJ8UMz2Tw2nKg5k0MC0q/WbWKnlyUr/IfL1+aWbuH59/TDVRMXoVf53Qg5V/GcP3fxrN7JuGHXENWJPDy5ziSv4zv4TNVW18ubmWi15aybTX15AVp4/4gRWkW476+iQkJCQkJE4XuvQg6lBIZE15M1e98WPE6uGi/qmM6RGPQaOg1elHLhP4fFMN3+1owKxV8trVA5n86uro68y0ctfYPJItGpbtauSMvHjeXFnB7OJKhmXH8t9JBeiUcj5aV8XbqyqwaFU8OLEnfVLNKGQCpY1OHppfQoPNw+RBGUwamNZhrI7XH6TN7ScQFNGoZJ2KxN+CZoeXq//3I9tqbJG1Jy4rYO6GalaWNiMTYO6MEeyqtzOud9IRD72WkJCQkJA41TnUIOouK7bqbR7WlDXTPdGILxhiU2U76TFaGuxeHpy3lbenD0aGwJx1ldw9tjtVbW6qWl0MyY7h9vc3sGH/8Gq5TOCVKwvJsOqos3lodflYvL2BYTmxjMiN41+fb8PlC/LqVQMxqOQ0OX2ERBBFEYtOFYlOtbl8BIIhLHoVik7mK/5eKKmxMeH5ZVFr+YlGrh2RxV8/3QLAvBnD6ZViPqyZqoSEhISExOnGocRWl6zZarB7+Osnm/nLhJ60OHz8de5m8hKMZMXpqWxxoZQLhEIQY1Dyp3Pz2VVv5+7ZGzFrVTg8AZ6bMoDtNTZKGx2cmR+PWi5jfWUbG/a18sGP4RqoLzbXMq53In85rwcPfr4NbyCE2xfE7Q/yyJfb2V5rY3R+Aveck0e8UXNKdO05vH7sno6mpkFRRL5/oLdaISPZou0gtNrdflzeACFRRKdWdDoSSEJCQkJC4nSkS0a2istbQIB/fL6Npy4rwOUP0mDzolbKSTKpUcplJKu9OJxONrfIWLyzlYpmJxMLUtAow2IiK0aHXq3AHwxy+wcb+OM5+Vz1xhr8wejPc96M4dg8AbJidbQ4fdzx4QYqW9yR7RP6JPP4ZX0xnsS5d6Io4vIF0ShkyOWHjkY12D1sr7XzyJcl7Kp3RNafvrwfi7fXs6mqnacm9aN/uiXSqQjQ4vDy6IIdfLK+ClGEs/LjeXJSv2Nyv5eQkJCQkPi9IUW2DsKsU/LfhTspqbEhAqWNTjQKGfM21uDzeXniLB2Grx/E0F6FtfcVDD3rGhbvDfDG8nIeurAP//16B6vLWwAYkRvLfy/tB4RTigeLLZkAgZAYHgg9bysPTuwVJbQAFpbU8S9/r5MmtlqcPr7bUc+Xm+sozLRwxaAM4o2diyC9SsEPO+p59OK+rCprprLFzTm9EuiTYmZkbhyCIBCrV3WYb7i1xsbH66oir7/f2cjX2+qYNiTzhN6bhISEhITE74EuKbb0qvAcQwinvT5ZV8UNZ2SzcFsdy27tSdx7Z4AvHLlRL3sUhULOsprRGDVK1u1rjQgtgBV7mlmyqxF/MMTNo3J4bvHuyLbLBqazqaqNHkkmlu5uQimXoZRHC7JUi5ZQSKSu3R0exaOUEwIEwqJQKZPR7PThC4ZQyWXEGVQIwvEZ1uz2B3l1SSmvLi0D4PudDSze3sAb1xR1GnXSqxXcPDqXO99fj1alIDM2nC4065SHtaFYW9HSYW1VaTOXF6VHRhpJSEhISEicrnRJsRVnVHN+32RmrapApZCRZNawt9lFglGN2lYeEVoHkG/5kPGDx7Fwr5Ld9Y4O5ytrcnD7WbnIBBiWE8vi7fX0STWjVykwahX8Z/52AHzBEHeMyeOZb3chimGh9/ilBSzd1cgDn23jzWsH8dHaSuZvqUWnlHPfefmMzIvnqjfWUNXqJjNWx8yrishLNBwXwWX3+Hl71d6otY2VbTh9QWIPcUySScMrVw3E4w+hkAkdhm53xpgeCfzfd3ui1sb3TZaEloSEhITGsehdAAAgAElEQVREl6BLii2VQsbVwzLpm2rm43VVnN0jkRSrFrc/CPqOcwFFcwY1jhAb9rVxz9l5fLTfCPQAI3Li2FTZztCcWIZ2i6VXsgm718+GvW088+0uttXYmDYknVWlTcTqVXx15xm0u3ykWXXI5TBl5mrO6ZVIcUULn22qAcDuDfDgZ9v44MYhDMmO4Z5z4vD6gzz/3W7+Or4HcUY16l8QOb+EgIBeLQ/f90EoZIcXcjG/0nYiO07P3yb05PnFu/EHQ1wzPIth3Q4l5yQkJCQkJE4vuqTYAog1qOmTaub2D9ZzzbAsuiXoeXZyf3bY27D0vQLVlg/DO2rMBM55lO+/Cncf2jx+/jwun/8tL0cQ4LazcnF6A/xxziaW3z8Gg1qBSatE5m1jUKybuDFJJMTkY2nfiT8xk6Wlbby6pJRx+Ra6xWnZXG0HoGeykR87SbftrLMzIjeO5xbvRq9SMGN0DjZPgFaXnz6p5mP6DCw6Ja9fU0Sby8/OOjuzVlYwPDcO/S+4yDu8AdpcPkobHHSLN2DRKQ9bc2bRqbhmWCYX9U8BwKhRoD0G9/tD0eTwEgyJKGSCVHwvISEhIfG7ocuKLYBgSCQn3sCrS8uYs66KSQPTKMyw4BvzMJ4hd4OzCWVcN/6ysJarhmVy7YgsAAozrJzTKxFEkMnCEaJbRuWwt9lJqiU8xFmQyYlb8ncS7VUEJz6HTfTz6MJSPttUC8C8jTVcMcjOnWPzkAlQ1uikb6qZFXuao66xd6qZGe+up9ERnjN4x4cbWHDXGTz9zS6emdwP8zFYKNTbPDy5cCfr9rYxMNPKezcOwapTYdYdWjj5AiG+39HAnR9uiAyyfvTiPlxSmIpGeeivk1opJ0F5bJG4QyGKIuVNTm57fz3ba+30TjHxwtRCsuP0J+T9joQGm4cWp49Gh5ducQaMGsVpa/Da6vQRCIlY9crftUechISExMmiy/9m/NuEnpi0ClqcPl5fXk5Zk5NnVjQx+NUKZten0KaIYXlpKwu21JJg1GDUKDBoFJi1Cv40ZxNnP72Uc59dSkgUyYrVRc4rqE34zn0Mgn7s2lRa4gbx+ebaqPees79D741rBrGpso2zeyYyLCecXlPIBGaMzqF1/wP7AKII35bUE29U4//5dOpfQbPDyw2zilm+pxm3P8jyPU3c/v4Ggr9wzjaXjwfmbeVgx5CH52+n3X30Q7GPlSaHj+mzitleG44SbquxccOstTTZT84g7Ea7h39+sY3znlvGVW/8yITnl1Hd5sYbCP7ywacQ3kCQTZVt3PB2MZe/uopZKytodfpO9mVJSEhI/O7o0pEtQYC3V5bzwQ1DkcmEcGfi+ireWlnBHwqSGdszHL2aN2M4Zc1OLn5pBd5AuDD86cv78cK0QmatrOCN5eW8urSMSUXpkXPr1Arc5jS8V36GM2igxelDLggEDlIpCplAMCTSL93MpzNGgCDy/BX98QXDJqE6lZy5G6oYnB3Dxn1t+IIhAFKtOrLj9MQcQ1TL4w+xo84etbatxoY3EIq8bnP5kAlCVEQmJIq0u6ONTd3+IIHgyfNr8wWCke7SA5Q2OvEGQ4c44sTSYPOyYEtd5HW7288zi3bx8EV9SDSdmOjeyaDZ4WPSK6si38uH52/HoFZweVH6ceuYlZCQkDgd6NKRrXijmutGZrOyrAmtUo4owlVDM5k7YzhZcXoueGEFDXYPCAJ/mrM5IkQCIZG/zd2K1x9keE4s43onAlDeFN2pqFUpUJuTqLP5WLK7kcmD0qO2Xzs8iyW7Gthc2Y5BoyDeoMGkVaKUCyjlAh5/kFiDmjH5Ccy+eShjeyYwIieWfmlmhufGRfysmp1eyhod7K630+Q4smiOUi5g/Vm6MFavQiETsLn9LN3VyE3vrOPBz7ZS1eri0/VVPLd4N4GgyKjucVHHDUi3oFWdvK+SUi4j4WfeYEkmDaqT1O1Yb/N0WKtucxM4SeLvRLF+X2tEaB3go+KqDmJcQkJCoqvTpSNbSrmM7DgDC7bUcc4zS5AJAtNHZjM4O4bceAMzry7CoFbgD4Zo/FlKyuENYPcGaHJ4mTwog0Ul9fRMNuH2B/EHQ5gOKhhPtep4Y1kZj11awJDsGDZVtTOsWyxmrZIpr6/mvRuGYPf48fiCvLt6L68tLeN/1w3ivo83RyI2GqWML24fSawqQEzjKlD1Ap+FJp+C299fz+qycHF9fqKRd28YTLxRc9h7t+qVPHtFf256ex3eQAiNUsazV/THqlextbqdq//3IwCzrhvE9W+tjTjGv7e6gk9njOC1pWWs2NPMwEwL956b/6s7FI8nsXoVL19ZyPRZxbS5/Fh1Sl6+spAY/ckZCdQj2YRWGd3lObEg+bSr2Uqz6jqsZcXqj7lLVkJCQuJ0o0uLLY8vwNryFmZFvKZEqlrdDMsR+O/CnVS3uRnXK5H7x/fgjNw4lu1pihybl2CgzeXH4w9h0ih4cWohAvCPeVupaXdz9bAshmTHYNGpMGkUvHzlQLZUtTO0Wyy5CQZi9CpueLuYvHgDKrkMAVi3t5WnFu0iP9FIaaMjKjXm8Yd48fvdPNSrhlpLTyr3tZOWYqDB6YsILYCd9XY+WV/NTWd06+DkfjBKuZwh2bEsve8s7B4/Ro0S834xMGtVBQAJRjWeQChqNE+D3ccL3+3h7rPzuPXMHOQygQTT4YVdZ7h9QexePxqlPEqYHg1yuYyCNAvf3D0Ktz+IVinHqlch/wULixNFnEHFJ7cO4+H522mwe7h4QCqXFqad1JFMJ4L0GC3n9EpgUUkDEL7vu8/OQ6uSxJaEhITEwXRpsRUSRRbvaIi8FgS4bkQWk19dHUmPfLW1DotOyROTCvjHZ9v4saKFfukW7jm7Oy1OHy1OLyatkvQYLeOeXUabK5xCWbGnmeeu6M8F/VLQqRX0SjHxxaYaXvh+D2lWHf+6oBf/nNiLVKuOd1ZVYNIqIwXeGqUMl7djMbXdG2SvaRAXvbKOYEhEEMp59OI+XFqYyifrqyP7ldTYCIoiYQl3aDRKORqlnMSDxFIoJJK2v6NSIRPwB6LTRDnxBqYMzuCWd9ezsbKN3ikmnr9iAN3i9Udcp9Nk9/Lst7v4bkcDPZKN/OuCPqRbtcdU56OUy45K9J0IVAo5vVLMvDRtAB5/iFiD6heNX09FYvVqHr+0H/ef58Pu8ZNq1RIvWW5ISEhIdKBL12yBwOAsa+RVjE5Fnc3ToQ5lya4miita6ZVi4rFLCji3VyKJRjUahcDkQRmo5FBSa48IrQO8uaKCepuHRruH5xfv5pP11XgDIUobHdwwqxiFXMYby8sJhGB1WQvdE41AeJZgYYYFozpaC988MpN/f10a6RgURfjP/O1cNjC6FmxSUdpRu7PLZAJXDs0iwaimpt1DnFFNsvknETPjrBz+8ulmNla2AeGi+uveWnvEtWJ2j59/f7GNd9fso6bdw3c7Gpk6c/URH38qYdWrSbZoT0uhdYAYvYrcBAMDMqwkGDVSYbyEhIREJ3TpyJY7EGRYThxTBqWRYtUxOCuGBFPHv8x7JIfTes9++9Pcw3euH0ySWcOikjqKsmKw/CxFZFQr6Jdmoc3lZ2+zix92NkZt9wZC1LZ7+HJzLc9N6c8by8uYcVYOg7KsrK1o5b8Ld/LBTUN5d/Ve2tx+rhueQYYBiitao87j9AWJN6rIidfjDYS45cwc+h6j2alaIfDmdYPYWWfH6w8y55ZhzCmuoq7dw8AMK/fWRncx7mtx4fUfWfG32x9kwda6qLWqVjcOb5B44zFdtoSEhISExO+SLi22gkERCHHn2d359+clPLNoF/eP78FfJ/TgyYU78QdF0mO03Dkmj5vfWRd1rCcQ5MHPtjJpYDoXvrCCebeN4LzeSXy9rY67xuYxLCeWimYn/pCIWackL8FIVas76hyJJk3EXiEzVo9CJvCvC3qjVshRKWQ4PH4SjGqyYvXoVUrUKhjWLZZVZT8Zn/ZJNWHVqZh98zBEUSRGp0J+jF14X2+r56+fbiEjRkcgGKJXiol/XdCbdpcfpVwg1aKluu2ne4nRq1Apjuw9BQTSrFoqml2RNYVMQPszw1OvPxjpajNqlFIdkISEhITEKYsgiifPH+mXKCoqEouLi0/Y+RtsHpocXt5aWcFHxWGDUUGAG0Zmc/WwLNpcfhxeP05vkBveDl9Htzg9D0zsRUaMlnZ3AINKznnPL+PcXkn8bUIP2lx+tlS388C8rZH3uffc7oztkcD0WcXUtnuQCXDLmTlolHLKm5xkx+kZnhPLHz/axL6WsAiJ0auYf8dIlHIBQRCI218L09Du5r8Ld7K6vIUBGRb+NqEnyWbtcftMfIEQ98zeyJdbwgasvVNM3H9eD257bz12b4DB2TH88Zzu3PLuOtpcfkwaBa9eNZCirJgjSl2KokhxRStXvrEmYqXx9/N7MnVwBvr9adM2l4+Piit5fvEe/MEQ143I4qZROSetu1BCQkJCQuJIEARhnSiKRR3Wu7LYWrqrkRanj8e/3kFte7Q30jvTB/P+mn0s2FrHPWfnMSI3ji831zJlSAYz3lvPngYHCpnA3WfnAQKbqtrIjTcwqSiNi15age0gR3W9Ss5HNw+l2ekn0aRBIRfYsK8Vm9vPmB4JBESR1aUtUQIN4JYzu3HfuB4dugpd3gAOXwCdSoFBffyDk/M2VHP37I0APHZpX95ZtZdtNbbI9lHd43jskr74AiJalRyrTvmr6pI8+6NWVS0uEs0aTBpllC3Cur2tXPryyqhjXrmykPP6dBwSLiEhISEh8XvhUGKry6YR7R4/bywvpzDTSs9kE7XtHqYMTufC/qnIZQLJZg2XDEhhwdY6nvl2NxXNTu4e252nFu1kT0PYCiEQEnnym118cfsI+qWZ+MfnJUzsl4yAwMSCZEbkxtE72US7x49Vr8aoUaJRyZEJAs12LyO7x/PDriZUcoGh3WLpm2pmS3V75Bob7N5Ouwp1agW6EyCyDjCqezxXDc3kw7X7SDZrOrizL93VhNsfIifecFTn76wL8mAWb6/vsPbVljrG9kw86sJ/CQkJCQmJk0WXFVsKmQyrTskHa/bx4rRChufE4g+GuPbNH/H4QxRlWnlmcn/+fUEv3l61l4omF/5giG019g7nOtDBWN7kRCbAhzcN5dP1Veyut9M90ch7a/axZGcjM68eSEgU6ZlkYkJBCpe8tDIy9zDeoOat6wbx2cYaTFoly/c0ct2I7Ii48AdDtLt8KBXyiB/WL+HxB/H6Q5i0il/VJRajV3H/+B7cPiYXATi3VyLzNtZEtscZVBg1J+6rMzg7hpd+KI1aG5YTe9oKrVAoPAJJpZBFUqkSEhISEqcPXfY3u1Yl5/YxeXxTspyHvtjGE5P6ce4zSyPbi/e28sqSUnomGXlhaiHba218tbWWUXlxlDb+ZPIpl/1UTzUyNw6jRsm4Z5bi9IV9st5bs4/3bxzK6rJm7vt4M/+7bhDfbK+n3eWPGjCdHa9HLhOot3vYXN3G5EHpEcuFFqePD37cxyfrqki1anlwYi+6xelRHEZ81La7eeG7PexpcHBJYSrn9Eo6bM1Ti9NLICSilMmw6lUY1D+lKP9+fi9UChnfbm8gL8HAIxf3JfYEOsb3TTVzSWEqczdUI4owpkcC5/ZKPGHvdzS0OL3498+wjDMe/WfR6vTxTUk9s9fuI82q5d5z80mz6k6aIauEhISExPGnS9ds1ds8NNg8VLW6CYZEbv9gQ9T2nslGbjkzh81VbdTbvCze3sDXd5/B41/vYOG2euINav46oQerSpuZOiSDNIuW2cVVPP71jqjzXDkkA5c/yKfrq1n659F8ubmWFpefmcvKIvt8cutwrn9rbdRcuScnFXBR/xRmLivn8a93AmFxp1XKWXzvmR3ScMGQSLPDiz8ksnJPE88s2kXN/lq0P4/L58YzunXaNVjR5OSe2RvZUNlGYYaVZyf3JyM2ehSLyxfA4QmgUsiwHMMA7MPR5vIBYNGpaHf7cHqDiKKITqXA+jsqjt/X7OS29zewpbqd3AQDL0wdQF6C8VcLpGBI5L3Ve/nH59siaxadkm/uHvW7MWiVkJCQkDhypJqtn2H3+CltcLBgay390i0UpFo67DM0Oxa9SsHUwZl8VFwZ9ojaUsuEvslcPyKbZqeP91bvZU15C5MHpfOXT7fQP73jeWT7BdK70wfT6vJTmGkl2aJlZWkT22pspMdo2dvs7DDAd9bKvQzJjuXT9dXcc3YeZ+Yn4PYFCYZEGmyeiNhqtHuoaHLi8ge5/+Mt1Nk8DM6O4cVphdz09joaHV7eWbWXUXnxfL2tlksL00gya9CpFDTZvUyftZbSxnBd1vp9rdz0TjHv3TCE2IPcwHUqBTrVifm6ODwBtta088yiXYREkbvP7k5BmpkUy/HrsjxeNDu83Pre+kjDwJ4GB9f+by2f3zGChF+YR/lzWl0+3luzL2qtzeWnrMkpiS0JCQmJ04jTswjmCGh1+bl+1lrO7Z1EWaOTvS0uHr+0L6b9tUhndo9n8qB0VpU18shX2xmRG8uw7Bi6JxlJNmtodvjomWziqqGZvDitkLdWVrBkVyMjcuMwaX8SJVqlnEsGpHLZwDSeW7ybC19cweTXVnP5K6t4aVohFw9IYVh2LFmx+g7XGKNX4fD4mTE6B7s3wMUvrWDKzNXc89HGSIF8g93DxS+tRCaTcfM766izhSNZP5a38NIPpVw5NAMID57eWtPOi9+Xcs4zSynfL67CjvbRBfA76uy4fEHWlrewsbLtiN3dHV4/LU4v7W4fy3Y38uTCnRRXtNDq9B32uOo2N1NmrmZNeQtrK1qZ9voaKltchz3mZBGu27NFrdXZPHiO0NT1YJRygVhDx4idRXd6zVCUkJCQ6Op0WbFV1ujA4w9x/VtrqWp1U9XqwqJV8emM4Sy77yz+PqEnCrmAVaemKNNKZqyepy7vz6tLSrn05VXc/O46Jj6/jASThjSLlk2VbXgDIR75ajtf3XkG943L556z81h49xmkWjW0On2sPcj9vc7m4Y1l5ZzZPQGTTok/FGJodkxku1oh49bROexrcdM3zczry8o5kPFttHt59Mvt2Dx+ftjRSKPdi9Mb6PDAX1PeTM9kE3KZwJ1j85iz30ssGBJ5dvEunN5A+IH/sxRdoklNeZOTSa+u4qIXV3DVG2tosh9acAX3Nwf8ec5mrn1zLZ+sr6bd5eelH/Zw2SureGd1BW5/x1mPB5hTXMnPs9nv/7iv851PMnKZjKyfpVgtOiXqIzR1PRizVsUDE3tFHTsmP56EY6gBk5CQkJD4/dFl04h5iQamDs4gwaRmTXkL//6ihOkjsynKsvDumn2cmRfPlW/8iMMb9suat7Gahy/sw5rynwSTzRNg5rIy+qWZuXV0Lvd/spnSBgcqhYwZZ+X+9GaOBvbVdbQzqGl3o62V87/l5Uzom8ztY3K5xhugwealX5qZ8iYna8pbEISEDsfubnDg9QdpdvrwBkKYNAqUcgF/8CfVUpBqJsGkZuHdo5i5rIz1+3669kAwbDBq1at4YeoAbnx7HQ5vAJNGwZOT+vHyQd2A22vtrCxt4oL+qZ1+ls1OHxe+uDziLba5qp37xuUztmcii0rqeemHUiYPyujgEn+An9eHAWR2Eun7PRBnUPHitEKufXMtjXYvZq2Sl6cVEqM/umhUbryeJX8ezcaqdpJNGtKsWmJOYPOBhISEhMRvT5cVWwICMiGcbju3VyK3n5VLboKBepuXskYndk8gIrQgXJi+r5PUVqPdizcgkhWno3uigeeuGECMToXbF8Tm8RMMiWhkOkb3yUa+qCoyRBrgsoFpNNg8LLxnFCa1guo2D2+uqMAXCNHk8FCYEcMn66u4vCgdjVIWFbk6r3cSJo2SiQXJPLNoF7OLK/n3BX145MsSnL4g3eL0PHpJARkxOhpsHr7b0fDTvQtw59hcAkERQQgxMNPK4nvPxLXfKPXT9dWsLG2Ous+9B43XcfuD2N1+lHIZ/mCIrTW2KBNXgM831TBtSCaLSuqj7rkzxvdJ4n/LyyMjfNKsWi7sl3LYY04WgiCQn2jkyztG4vYH0SjDpq5K+dGNE1Ip5CSZtZx3iCkAgWAIEU5b2wsJCQmJrkCXFFuNdi+Xvbwy0qm3srSZv03oQYvDS790CzKEDgJhV72DfumWDqLngn4prCxt5pIBKbx/41DiDGpsbj+frq/isa934PGHGJRl5bFLC3j7+sE89U04fTdtaAb5SSYsWiVef4gRz31PfqKR60ZkMbRbLEa1gsXb60k2a/l0QxWzrhvMv78ooarVxcR+Kdx8ZjfUSjkJJjVf3jmS57/bjd3rZ8FdZyACepUiYkkQb1Tzxe0j+ah4H/U2L1cOzaS2zc0D87aSE6/nvnE9SLVqEYRwUXZRljXq3mUCnF8Qdm9vdnh54fs9LNvVxDOT+3HTO+t4/NKCDp9xvFFNmztcqzV1cOZhne7jjRrm3DKc8iYHIRFy4g3E/45TaQq57IQXsPuDIeraPby+vAyXN8gNZ2STbtWdUDNbCQkJCYkTQ5e0fthW0875zy+PWkuzapl5dRFLdzXS7PAyrk8yU2eujszv0yhlfHbbCBzeIC9+t4cWl4+LB6SiV8ux6lTUtrm5dGAaWpWC6lYXTy3axbBusTQ7fMwuruSSAakUZVkpqbWhVcr5pqSeVaXNzL5pKMt3N7Gt1saCrXVAOOL18IW9USnktDh9CISL5VtdPoIhEaNGgfZnnYFuX5CQKP6iKabXH2TmsjKe/GZXZC3ZrOGz23/qpmt3+1ld1syL3+9BJZdx33k96J1iQiETePKbXcxcVsYVg9IRgdlrK3lmcn8+21DND7sagXBTwIc3DeWzjdUUZloZnhMnzTX8ldS2uzn7qSURvza5TOCrO0eSn2Q6yVcmISEhIXEoJOuHg+isdsisDRc5P/nNTp6dPAC7x88ntw5nTnElMpkQHl/z4z4WbKvj3nO60yvFjEYho9Hh4/8W72ZVWTNn9UhkxaYaBmfHkmrR8sL3e0ixaHn04r60urzMXFYelc4DWFPeQlmTk2E5sRGxtb3WhssXRKtSREV4DrZi6HBPqiNLY7V7/Ly1siJqrbbdQ5vLT4JRgz8QQqOQMa53EoOyrAiCgHW/r1aj3cNX+wdUa5Rymvd3KT44byuPXtyHa4Zn4fQFKMqMIdagpFdKTyn9dZQs3FoXEVoQbmp4bWkZj11aIH2mEhISEqcYXVJsWXQqzumVwKKSsPCRywT+MbEXepUCUYTb3l9Pn1QThRlWMqxaLhyQiicQZPKgDK4bkY0nEAQRFmyt4/8tCBuY6lRyKpqdrCprobzJxctLwgXme5tdbKlqZ/4dI0kwNnW4lliDCr1GHmWvML5P0hGP5Pm1yAWBBKOGJke0HYNOKWdvs5NXl5bh8ga4aVQOWbHRaSuVXEZmrI7qNjeLd9Tznwv7MH9LLQ5vgDs/3EiqRcunM4YfcuahxJHTmXg+UT5nEhISEhInli75J3KMXsVjlxQw55ZhPHFZAT/8aTR908zoVHLuGpsHwNZqG++s3kuyRUu7y8+0mT9SUmvj3TX7uOzlVVz1vx8x65TMGJ0DwPQR2SzYUsuwnFi+3lYX9X4Ob4DadjdTh2REeXD1TDaSatFy5ZBMVpc2o1fJuXpYJlMGZ3QYxdPk8PL9joZwIXmTE6c3uiD9SIk1qHnowt6oDjr/tCEZyGUC5z27jPfX7GPexhom/t8y9v6sIcCsU/HQhX2w6pRUtrhZuruJ928Ywvg+SUwamMZ7NwzBKnlEHRfOyk+IsoDQqeTcOKqbFNWSkJCQOAXpkjVbneHw+PEGgoiiQJPTy556B31SzZQ1Ofh8Yy2VrS4uHpDKA/O2Rh03b8Zw/EGRZqeXGe+t50/n5rOytJnle6KjWIvuGcWXm2v4Q79UdtbbMaoVpMfo0ChlxBnUtLr8iKKIUaPsENVodni59d11/Ljfp0smwAc3DmVIt9ijulePP0ir00dJrY00q44Eo5ovNlXzj89Lova7eEAqj19aEDXi58BIoCaHF5NWiUWrRC6TIRNAfQhrB4lfjyiKNNq9fLejAacvwPg+ycQbVf+fvfsOj6rMHjj+vdNbZtJ7Iwkh9N67qAgqdhFEUey9193frrvrrq7r2l2sKFZQFMUCVkBAei8BAiSEhPQ2mV7u/f0xYSQEMEgCKO/nL/JOuXcSnmfOc97znvObTz0KgiAI7U/UbB1BVaOHHeWNrC+uZ0hODLKikBVrIc6ixxuQ2VvtZFdVI4OzYlm0o7LF61cW1hIfoUerUSErMHvNPv59SQ82ldRj94SyT5f3S8WkUyMDf5q7mbO6xNMlLwGtSiLSpEOjVh319F1VozccaAHICjwxfzszrunfovA8EJSpdoQ6uJv1GvpnRhF3yBgZg1ZNUqSRpIPG4RxacA9g0WuQDhn3p1ZJxFsNYpxMO5Ok0O/5igHpJ/tWBEEQhON0WgdbNQ4v/16wnTlrSwH473fwl/O7UO/yMzI3Hq0/iCcgMzI3nr01TrLjLHyf3zzgyogx8+8F2/ng+oG8dU1/Zi4vYnNJA/PvGk5RjZMEqwGDVs2z3+3kq83l2Ixa/vn1dr7dVsnLk3tjaEU26MCJyIM5vQGc3tBwaLNBTUxTI8yyBg/jn19CY9M2Y2qUkbm3DmkRcB1qZG4ciVZDeNyPWafmRrFtJQiCIAjH7bQOttz+IJ+sK2229tz3O/n4piHUu33ERxi4uE8qZQ1uPltXyrjuSSzeWcX28kYAzuwc6uyuU6vQaVSMzosnKMt0iLOwYEsZQ3LiePjTTTx4dh5dkq1c1j+N8gYP6dGmUCG678gjbA6WHBnqLF5S5w6vXTkonb/O28qP2yvpmxHFq1P6YjNpeWPJnnCgBVBS52bprmou6p161GvEWw3Mu30oSwqqcYPWJaMAACAASURBVPmCnNklntijnH4UBEEQBKF1TutgKyArLWbyef0yBq0KfVNGJ8FqwKhVc/sZOSDBG1P7ISugyDLLd9fyxpI9vHpV33BbBrNew1VvrGTGtf2ZOmMVFfZQbVNhtYu/f5kPhOYeTp/SF7dfptrh/dWgJi7CwJybh/D2z4XsrnJyad9UahzecBuJtXvr+HpzGVcMSKPO7W/x+gZXy7XDibcauKTv0YMyQRAEQRCOzWm9R6TXqBic3bzIfPKAdPQaFTbTL7VQkqSwubSBTSV2bnp3LRe9vIx3VxQzunM8r17Vl8zYX+b45SVZmTQwnUa3n24pNv40Pg+tRsW7K/aGn+MNyPz32x3UOr24WnmqMNFm4P4RCbwwQqK8tpFH5zYv1F9bXIdKkrhheFazOiuDVsXZXROP5dciCIIgCEIbOq0zW9EmHU9d0oO560vZut/O2K4JDOwQTSCoUN7gZk1RHYU1Ti7slUKkSccVr/3SUf6NpYVYDBpuHZVDjcNLQaWDgopGhnWMY+rgDJy+IP0yothd5WRwdhC9RoUvKIczafvr3Ti8ARRgZ0UjMRZduO7qsByVaGZPQaNS03vICy0evqh3Chq1ig4xZubeOpRXFu/GrFNz++iOxFpE9/bfqs7po97lw+UPEh+h/9XaN0EQBEE41GkdbOm1apIjjUwdnMG+OhcK8PqSQr7bVkFGjIkHz8njw1XFDM6KYV+du0Wh+pebyri8XxqPzdvKt9sqgNCQ54X3jWLa26vZU+1kYIdoIgwaZlzTH7NOzcIdVbz4YwEX9EpBp1bx1rIi3v65iAGZUfxvSt8jbinWBnSUD3+JMruPLtHR/HtCR/67sJiArHDzyGx6pkYCYDFo6JUWybOX90QlSb/LdgyyrNDoCaDXqlp1gKC91Di9/OnTLeG+aUk2A5/cMoTkyMMPjRYEQRCEw2mTYEuSpHOA5wE18IaiKE8e8vg1wH+AA9XoLymK8kZbXPt4qVUS3oDMFxvLcPmC4e2+0no3U2es4rWr+6IoCsm2lhmNnDgLCko40AKINGopqnGyp9pJVqyZe8/K5cKXl1Hn8iNJcMvIbF6/qh85CRaKa5zMXF4EwKqiOlYV1jK+e1L4vaodXraXNVJS56JHqo0f9ykMS9bid9RyficzZ6Wl4IvIICBDrdNHQFbCLSQO18rh96DW6eObreV8tr6U3IQIbh2dTZLt5AQ3xTWuZg1qyxo8vPRjAX85v+tJDQIFQRCE35fj/kaWJEkNvAycBZQAqyVJmqcoyrZDnjpbUZTbj/d67cEflOmeYuPvXza/5Qa3H5c3yIerinnwnE5MHpDGB6v2ARAXoeeBsZ3wHHKiUFbgQMnU5IHpPPPdTuqaCtQVBf63aDfz7xpOtcNLtdPfrEB/e7k9HGzVOLzc9O5a1u4N9dc6t2sMzw2T0c69Duz7Iakn+sve4d/LinhtSSEAmTEmPrxx0EkLTo6XPyDz7ooinv2uAAj1MFu4o7JVrSvaQ1GNs8Xa7ionXn9QBFuCIAhCq7VFgfwAYJeiKHsURfEBs4AL2uB9TwhFUXD7QwFTWrQJgESrgWcnpLPopk70j/Pj9fupdfq4anAmix8Yxdxbh/DCFb2496MN1Dr9dDioQL7B7ScuQk+XJCuJNgN7qlt+YVc1evEHZLaX2ZutH5zVKq13hwMtgPuGxaGdNTEUaAGUbUT9+S3kRf4S7BXVuHhl0W68/ta1lDjV1Ll8vL+iuNlaSZ2bWmfrTlO2tf6Z0WhUzbu6XtI3FWs7za0UBEEQ/pjaIthKAfYd9HNJ09qhLpEkaZMkSXMkSUo70ptJknSjJElrJElaU1VV1Qa3d3TVDi+LtlfRLcXKkxd3JyvWzKdTOnDRzkfInNkXyztn88YoP6XV9awsrOWe2Rt45NPNbNzXwOSBGczfUsZ71w3k5pFZjMqN48VJvUiOMjJz2gDiI/Sc1dSL64AIvYYOsWbSok10jLeQHm0iO87Cq1P6knJQLZDD0/yUohk3eJsHZxSvoHuiqdlSfnljOHg8XsGgTGWjh5I6F1WNXtp7tJNKJRFlalnMf7ihzCdCjEXHhzcMoluKldQoIw+Py+OszglIh7bVFwRBEISjaIvCnsN98xz6rfwF8KGiKF5Jkm4GZgJnHO7NFEV5DXgNQrMR2+D+jsgbCFLr9NHg8fPo3C0Myoph1g0DsBV8Sl3W+USY4tHsmId21uUMvXYFJX4rO8rsnNczmZcW7qKiwcO5PZJQULjv7E54A0Esei0ubwBHwIcsK9w5JheQmL+ljIwYM49f2I29NQ7u/WgTX945lGEd4wjIMo0ePw5PALVKwqTTkBNvIcaso8bpA8AtGUFnBt9BmbKUPuyocjf7TBN6JqMAn60vpbLRy7huicRF6I952ysQlNlU0sBN762lqtFLWrSRN6f2Jzch4jh/60cWa9Hz1/O7cNWMVQTl0J/+/J7JRBhOTv2ZUauhf4doZl47AFlRiDLpUIByu4cdZXZiI/Qk2gxHP0UqCIIgnPaOexC1JEmDgccURRnb9PMjAIqiPHGE56uBWkVRbL/23u09iLrC7uH/PtsSLnBPtBqYcU1/5q4tZu0+O2OyTFyRCzGzz8M95UsqjR3RqCXOevanZt3f/zS+M9cMyUCrUaMoCst2VTP1rdUEZQWzTs0TF3cnO97C2r11vL+imB0VjdiMWhbcNZxlu6t5YM4mFCVUrD/9yj6MzotDLanY3+Bm+qLdlNS5uX9MBl39W1F9Mg3cdRCTjTz5Y9bao3jok03UuXxMHpjO1MGZTH59BbuqQkGZVi0x7/ZhdE6yHtPvptLuYdzzS8LBHkBOvIVZNwwi9ihzHI+Xyxug1uljVVEtWXGhDOCpFMwUVDRy4cvLcDb9/c/sHM9Tl/Yg+hS6R0EQBOHkaM9B1KuBjpIkdSB02vAKYPIhF09SFKWs6ccJQH4bXPe4BWWF7/J/OUl4/9hc/jR3M+v31QOwrriOXXUJ/GPQ/WBNw+0O0mD388H1A/lw9T5mrw7tnn6yroTseDPFNS7O6ZbESz/uCmdmnL4gd87awML7R/LE19tx+0M9tx6b0AWVCv7y+dZwkXxQVnj4080suGs48VYDqVEm/jS+M76gTKRJB8FouHUFBLygNaKyxNMvWuGjmwYjKwo2o5ZVRbXhQAvAH1R45rsdPDexN2Z96//cnkCwWaAFsKvSgV9uOaexLZn0Gkx6DanRpl9/8glm9/j559f54UAL4Pv8SirsXhFsCYIgCEd03MGWoigBSZJuB74h1PphhqIoWyVJ+juwRlGUecCdkiRNAAJALXDN8V63LahVEnqNCo8/FEBkxJjDgdYB8zZX8tDZU1lT5OLu2SsJyAoalcQTF3enwe1nwZZyUqKMbNzXwPM/FDBr9T4eHNuJFYW1zd7HF5B557oBBIIKOo2KLzaUMrBDDHeckYOiwFeby9i6306t00dQUQgGZcoaPLy2ZA+1Th/XD8siJ96MJaJ5N3hJkpplmg43b9Htk5GPMYNp0KiJs+ipcnjDa50SItAdZjB1rdPHhn31zN9SxtDsWIZ3jA2PL/oj8QdkKu3eFus1jpZrgiAIgnBAmxTDKIryNfD1IWt/OejfjwCPtMW12pLVoOXuM3N5cv52IFR8plFJBGTloOdoCKr0/Omz1eH1gKzw+Ff5vDipNz/vruaeM3O56d21AGwvb8Rq1GLSqcOBT0aMCb1GzXVvL6fRG0BR4OnLelLT6OWnndUA3HFGR1YX1bKtzI5Rq6ba6WP8C0uwNxXKf7mpjDk3D6ZfZvRRP1OvtEiizTpqD8pK3TY6hwjDsZ2gizHrePOaftzy3jpK691kx5mZPqVPiyDK7QvyxpI9/G/RbgA+XlPC+O6JPHFR92Yjj/4IIk06ruifxl/mbQ2vReg1dGzHOjZBEATh9+/32fmyjRh1aq7on8bwjrGsLKzFpFNzw/Aspi/eHX7O/53XBbVKRcMhA54b3H5SIkNF4yW1brqn2iitDxWrG7VqbhuVzXf5lXSMtzB5YDoOr59XpvSh3h0gNcqIVi0x/oWl4S3EFYU1fHzTYG4ZmUWkScdn60vDgdYB0xfv5oUk61G3A+Mser68YxhvLSukotHLtCEdyI43H/H5R6JWq+iWbOOz24bgDyro1KrD1mrZPX5mLCtstvb15nL+fG4XbKfeTuBxUaskzu+ZjEol8eGqYpJsBh4Z15kY8x8rqBQEQRDa1mkdbEEoW+ELyvy0o5KPV+/jHxd2Y3yPRPLLGumbEUVpnQtZkemZamNjSUP4dT1TbWwubeDu2RuIMet46tIeLNhSTs80G1qNik2lDYzrlkhQUViwpZxrhmZSWO1iTVEtcmY0STYDOrUqPAJIUeDbrRU8em5nFEUh0tQyExWh16D6lbYDKpVEcqSRh8blIcsKOs1vb5ugUkm/2kxUAqRDDqRK0uGPqP4RRJl1TBqQzrhuieg0qmPOGAqCIAinn9M+2AIIBBW27Lfz+tX9ePrbHWzdb6d7io0km4E5a0tZv6+O968byL++3s6avbX0SY/illHZ3DlrPQCNngDJkUb+e3lPRubGoVOruG5oB5BCDUw1sRIzlhbx+pI9AMxcvpdJA9K4ZVQ2z30f6pY+ODuGy/ql8tSC7bh9QaYMyuCaoZm8vayIOIueqUMymNArGX9QxsivB1Aalaptuqj9igijlptGZoU/B4TaT5hOUm+sE0Gtkv6QNWmCIAhC+zju1g/tqb1bPxxQUNHIltIGvs+v5KvNZeF1vUbFrBsHcfH0n+mXEcUzl/dEVuCnnVW88MOucPH45f3SGJ0Xx6CsmHBTTrvbzz++3MbHa0uYfeMgrnpzFb7gLyf51CqJT24ZwoUvL0OnVjHnlsFc+fpKGr2hrUOtWmL+XcMprfeQGmnkqQXbWVVUS+/0SP5xQXdSon5pgFpp97B0VzW+gMyoTvHEWXSoD1PI3l7qnD7yy+x8u62Cwdkx9M+IJtoittYEQRCE00t7tn743VNJ0CM1kn9+3bwjhTcgU+P0YdZpaHD7cftlrpu5mucn9ub8nknklzUypnM8XZOtXPv2ap66pAcTeoWa5zu9AeasKwm9kUSL04CKohBt1vHTA6PwB2UW7awOB1oQatkwY2kR952dy/Uz14RPSf64vYryhjW8e90AYix6Ku0ezn9pKRVNp+Qi9BoW3D2iWTDW3qLMOobkxDIkJ/aEXVMQBEEQfi9OXPrjFBZt1lNud9M9pXmfVbVKItaso1uKlZcm9yEoK9w2OodHPt1EvdvPoKxo1BJ8vmE/Hr9MYbWTomonLl8ABcLF74t3VHFp39Rm731ej2S+2Lifc19Yitsvk3CY4nO1SsIbkFu0o9hWZg+P5Pk+vyIcaAE0egO8tayQYDv3w/qtap1eyurdVNo9BIMn9h4DQZmyBjezVhXzxcb9VDZ6Tuj1BUEQhNOTyGwBUdgZ7FxIxtihTK11s7vKgVGr5i/nd6Ha4eXuM3O5d/YGCqudZMdbeOLiHtw5az2frivlphFZOL0BNCqJoTmxXPbKz3x221DUKolx3RKZv6WcN5cW8sKk3gzoEM2yXdX0TIskNcrEbe+vw+0P8uCcTbwxtR+RJi1atQqNSgr11hreAY1Kaja2B8Bq1KBt2iZsPOjE4qCsaG4f3RGrUUNVow+bUYNRd+r8iffXu7n5vbVsKmkgLkLPcxN70S8zCv1xFPEf0/UbPIx77qdwU9LUKCOf3jqE+F85BCAIgiAIx0PUbHkb4ds/w9q3IS6P6pFP4I7siGKIZGOJnb6ZUZTWeah1+oi36ok263B6A9Q5/dw9ewPvXDeA/367g6sGZfDV5jLO7Z7ED9srmb+ljBeu6ENxrYsVe2o4p1sig7Ji8PgD3PLeOtYV/5KtMmhV/PTAaIKKwu5KB76gTF6ilTiLDiSJZbuqufGdtfiCMlq1xIuTenNGXgI6jYqSOhdj/ruYnHgLj4zrzF2z1lPj9GHQqnj28l6M6hR3SgRcDW4fd3y4PtxXDEItMhY9MIoEa/sHO/6AzF+/2MoHK4ubrT8/sRcX9D7c3HRBEARBODaiZutIfE5Y/17o31XbiZ1zEQD7p63hsS+K+Pjmwdz83tpwZmlUbhyX908jv8zOZ7cNoaLRQ/fUSP7+ZT7ZcWY2lDTwzvK9AEx6fQWX903lwbGdcPmDOL0BVCoorWs+PPqszglIwDUzVrOjohGAJJuBubcOJdFmYGCHaJY8NJrqRi8xFj1WgwadJpTZio/Qs+DuEeyvd/O3L7aG79Pjl7nnow0svn/0KRFsef0yqwvrmq25/UHsbv8JCbZkFOyH9EqDUJ8wQRAEQWhPJ/9b+FSgNeJPG0bd0D/hwIRZ8qHSWbiwdwovLdzVbAtv0c4qrhyUzkdr9jEwK4a0KCPvrdhLVaOXi/uksHB7JZIENwzPYnz3JCx6NTsrGvnn1/kUVDq4eWQWH98ymPs+2khBpYMzOsXzyPg8VhfVhgMtgLIGD++v3Ms9Z+Zi1IW2Aw8XlOg0ajrEmjHp1OyscDR7zOOXw7VdJ5tOo6JXeiTLd9eE1/QaFVbjielTpdeouXFEFl9tLgvX0hm1asZ0Tjgh1xcEQRBOXyLYMkYhT3iJzeruXDNzF3ZPAKNWzXMTI+mTHslby4pavGR/vYdos46lBVXcNiqbr+4cxrq9dSTaDFQ1ehmeG0dQlrl0+s8EZIWMGBPPXt6Lm95by/RFexjbNYn7zs4lLdpMpFGLWa9hz0HDow8ornURVBRUrWgRqteoGJoTw7JdvwQzsRYdJv2p0e8q0qTjqUt6MO3t1RRUOrAZtTxzeU+shmP7L+jw+lFL0m/K1mXFWvj8tqG8sng3EXott47OJi5CtKgQBEEQ2peo2QKqGpxcOH1leNwOhIrQ3752AJtK6nls3rbwuk6tYvZNg5j42nLevW4gAzvENHuvCruHCruHCS8ta7Y+tmsCHRMieOnHXTw7sRf/WbCdfplR/POi7kQYtBRWOxjz38UcNJaRj28aTP8OR5+FeLCyejcPfrKJpbuqyUuM4NmJvegYH4Fader0c69u9OIJBNGqVUSZtK3ucN/o8bO9vJHpi3Zj1qu5a0wuKZEGnL4g+mPs5O72B1FLHFd3fUEQBEE4lKjZOoJ6l48Gr9ws0AKwuwNY9BrO6ZqEosB7K4qJsei4bVQ2i3ZUMu/2YRTXuFhZWEOHGDPxVgP1Lh8SUO9qWQe0vbyRMZ0T0KlVZMaYqGj08uWmMv50bhciDFpsBi1vXzuAlxfuwheQmTIog2qHl0aPv9WBRFKkkRcn9cYXkE/ZLueHm6/YGrsqHVz2yvLwz99ureCLO4Zx7+wNJNoM/OncLqRHm1oVWBq1IsgSBEEQTpzTPthavLMKtz/YYvZherQJm1FLgtXA1YMyGNs1EX9QRlYU0qJNXPjysvCg6J6pNqZP6cvbywrJiDHTJdmKVi3hD/6SphqWE0tFg4c5twxGlhX+d2Uf5m/ez4FRh96gzJPz85nQMwWNOjToeF1xHT8/POaYsjaRphOzLWZ3+/H4g+g1amyHmePYljz+IG8ubT7s2huQ+WZrORFGLd/nV7J2bx3f3D2C+BNQbN9a9S4fgaBMpFkXGp8kCIIgnJZO62Cr3uXj3eV7qXJ4eW5iL/69YDurCmvpmRrJXyd05YsNpVzYO5XYCD3JkaGO7I0eP3/9fGs40ALYWNLAuuI6uqVE8tLCArok2Xj+it48MT+fsnoP47sncccZHQkEZd5cVsjs1fuw6DU8PC4PXVO/LAmJgkoHTy7YDoTmCz40Lg+nN0Cl3UOUWRfurXWyVdo95Jfb2VPlZOv+Bu4ak0tatKndrqeWJKLNLYNIm1GLq6nrfp3Lz/4GzykRbPkCQfZUOfnbF9uobPRwef80LuubdtjPIAiCIPzxndbBllatIt5qYM3eOp7/voD7zu5ElEmLRqWiwu7h1Z8KWbevgb9N6MrGffX8sL2CyQMzqGz0tnivqkYv8REGtGoVn20opcLu4aFz8ogx60m06tlSUkeV0x8uuHf5gtz70UZ+uHckkSYdFoOGaUM78OpPexjfPZFRneK4+s1VuP1BIk1a3pk2gO4pNiTp5NZfVdo9TF+8m2+2lJMabeLuMzvy4o8FPHhOHrHttG2p1ai4cUQWn20oxe4OBVcdYs3kJVqbZSMjT9DJxl9T6/Rz0f9+Dp8EfeLr7ejUKq4elHFCZ1YKgiAIp4bTOtgy6zU8MLYTNoOGs7om8u/522lw+7lqUAaJNgPPT+rFlDdWcs+Yjmzd38DADjGsKarlqkEZLN31S3NOg1bFkOwY1u/Zz31n5XLdO2tYvqeG5Xtq6J5i418XdcMTUJh/0JDrA37eXU12vAWLXsPNI7M5s3MCEQYNl76yPPxlXe/yc+eH65lz85DfXPPUFryBIDOWFYYDxv0NHm56Zy1vXdsfTzu2mLC7/U2DuUewprAWi0FDXmIE097+5fDExH5pRLbzdmZrbS+3t2i5MWdtCRN6Jp+SdXSCIAhC+zqtgy2AtCgjt4zO4YynFxFoOgr4l3lb+eeF3VAUuGJAOiq1xObSBmat3sfg7BjO7JzAC1f04t0Ve7EZtTx4dkcyij6m076FOONvYeld/fhwUx3JNiOZsWbmrivl7K4J9EyL5KeC6mbX75JsDf87yqyjf4doimtdOA4aSg1QVOMicJJPjtrdfr7Y2DxgbPQGqHP5SI9p/Taiw+NHpZIwtaJ9Q63Dxz++2sZnG0pRSXDLyGyuH56FSafmnesGUFDRSILVQKxFf8Lq1X7N4fqhpUQa0WtEVksQBOF0dNoHWxq1ihV7asKB1oGZhvFWA2lRRm5PyWbKm6vYUx3qg/XpulLqXX7+c2kP+mdGY5Y8WN8fD5VbATDnf4Fu6tekRKYxe/U+MmJM3H1mLltL65nYP40ft1eydb8dCGVjOsSaw/fiCwSpc/nxB2Q+vnkw0xft5sftlQD0zYgK13edLFq1ivRoU4uTm5kx5lZt4Tk8fvLLG3l54S7MOjV3nZlLRrQJ/VFOB64sqmHu+lIAggq8tHA3XZJtjO+eRIJVfUK6zx+rBKuBc7sn8VVTJtNm1PLI+M5YjuGggyAIgvDHcdoHWwAZTcXdKglenNSbgopG/vV1PnERev58bmdyEyPCwRbAwh2V+IIydm8AY9FX4UDrAO3yFwik/IUok5aJ/dM4+9nF+IMKyTYDT1/Wk5QoI1q1CrNOja0pGxMIyqwrrueGmWto9AawGjQ8N7EXHn8QRYGnL+950gusI006/n5BVy555edw7dS0YZlEm3Wt6lm1q8rZrH3D9/mV/HDfSFKjjpwVW7arusXakoIqxndP+g2f4MSINut4/MJu3HNWLnUuHxnRJrF9KAiCcBoTwRaQE29hWHYsOq2K4hoXz35fAEBhdSg4mHXjIL7bVkGwKfuVZDWgKPB/czczvb+lxfvJugj6ZMbQOyeVP3+2JdwCYn+Dh8lvrGThfSNJjjE2e02t08ftH6yjsWn70O4J8MjczXx661DMOvUps0WWFWvmu3tGUtbgIdqkxWbUtar1g9cf5M2le5qvNbVvuG5Y1hFfd1bnBN5b0Xx49Niuib/t5k+gKLOOKHH6UBAEQQBEEQmh1gKPX9SNh87pxIKt5c0e8wZk9tW6wtt9OrWK/1zWE5UEq4rqqIvuATE5v7xAa8Q+8F6ufW8LOysacfr8XNo3lTvH5DAsJxZJokU9FoAvKFPt8DVbq7CHTj2eKoEWgFqtIsFqoFdaJOkx5lb32FKrJOIOk92JMR8949MjNZJbRmWj16jQa1TcPDKLHqmRv+neBUEQBOFkEJktQoGOrCgEZJmUSAMb9jV/vEOsmfevH0Bj09xEq0GD3Rsk2qxj2sd7eXfiHJLtG5Gd1fg6nEllMIIrB2nZUtrA9Cv78e6KvazdW8foTvFMG5pJgq1lnZFBoyY7zszug2YkdkqIOOWKqhVFodrhxeENYtSqsBg0WPS/HnBp1CquG5bFJ+tKaXCHOuxnxpgYmhNz1NdFmXXceUYO1wzJBMBq0PymuYiCIAiCcLKIby3AqFPzzdZyXvhxF69M6cvyPbXUOkNZprFdE0i0GfD4ZV5euIv8skZGd4rn/J5JvDSpN3fP3sAOp5F5VV2pdfr46OvtOH1Bnr+iF5m5sdz07lp2VzkAWLarhjvOyDlsgBEboefNqf25e/YGNuyrp096JM9O7NVuvat+q321bq54bTn7GzyoVRIPjO3E5AHpWFtRIJ9oM/DtPSNYXVSLUaumR2okca1oZWHUiQBLEARB+P0Sg6gJNSSd8NJSyho89EmP4qFxnah3+cmMMRFh0BIIylw9YxVFNa7way7rm0qPNBs9U2xEmfV8vmE/AMNyYnj8q3waPX5evrIvZz6zuNm1okxaFtw94oin6GqdXgKygkalOukF8Yeyu/3cNWs9C3dUNVtf8uDoVneQ9wdlGj1+JCRsRi2qU2hIdmt5A0HqXX7qXX4iTVqsRg1GrQgGBUEQTndiEPVRKchNQee64jomvrqCGLOOz28bypKCKrLiLM0CLYB5G/dzxxk5+GWF815cGt4ae32JlpnTBvDo3M3oDrMFaDVqw4X2hxP9KzVMJ5M3EGRHeWOL9Uq7p1XBVp3Tx6frS3j9p0KMOjUPndOJoTmxxzT7sT3UOr2UNXgornHRMy2SKJP2iJm0YFBmbVEd02auxuOX0alVvDS5N/0zo1BJqnafEykIgiD8/pxaBUEnSZRJx22jcpqtdYg1owD/+no7GpXEoVNyEqwGimtdzD2oBgmgwe3n263l/O38rujUEuce1KJAkuCuMR3Rqn89myPLCvUuH25f+3VmP1YWvZYxnROarek1KlJamdVau7eOf3yZT7ndQ2G1k5vfW0dZg6c9brXV6l0+/vlVPue+sJRb3l/HiKcWsqXUfsTnNOfk8wAAIABJREFU1zh93D17Ax6/DITq/e7/eCOF1S5ufn8ta4pqcR7mAIQgCIJw+hKZLcAfVMhLiuDlyX1YvLOK7DgzwzvGISsKDW4/i3ZUce2QTGY0jalRqyQeHNuJNUV1uHwtv1gDskLXFCsuX5CLeqcwoVcyhVVO+mREsWFfHeojbJ01evw4PAE8ARmvP8gri3ej06i4a0wuyZGGkz4X0ahTc9eYjjR6/Hy9uZy0aCP/vqQHUa2o1/L4g8xZV9Ji/Yf8CnITItrjdlvF7gnwybrS8M8BWeGxL7byzrQBh+2NFVSUFrMx7Z4Afllm+e4aLtuznO/uGUlOfKgliNcfpMHtR+G3Fff7g0HqnH4c3gBmvYZIkxZ9K3qaCYIgCKcOEWwRqkW6esYqkm1GeqdHsmhnFU99s50lD57ByNw4Xlq4i0fH5zHrxkHsr3fTOz2K6Yt2s2BLGW9dO4D3VhTjC4YyHTq1iisHpmPSaTDpNOQlRfD0tzuobvSxsaSO/zuv62G3CutdPl5fsofpi3YjK6HM2jOX9+S6mWtYvLOKL+8Y3qpi8vYWG6Hn8Qu78ei5nVEhtXpWo1atoluylQVbmrfWyEu0HuEVJ8bhguWqRi/BI9Qy6jVq+qRHsq64PryWE2+hqqlNh6LAp+tKePCcPOpdPj5aU8Lz3+8kICtcPTiTW0ZltXqrWJYVNpU0cO1bq7F7Aph0aqZP6cPgrJhWNZEVBEEQTg0i2CKUrQjKCnuqnc06xaskePLi7kxfvJtZq/YxONvFDcM7cOXrKymuC42smflzIV/fNZwZSwsBuGF4FolNrR0aPX50ahWPjOuMRiWhVauOeGqvxunj5YW7wz8XVjt5a1kRF/dJ4Y0lhZQ3eE6JYAvAYtAe8+gZtUpiYv905m3cz86K0OnMkblx9Ei1tccttlqMWU+SzdBsO/OKAelEGg9/OCHarOOlyX3482ebWVVYR880G/ee1YmHPtkUfk5qVKhhbVmDmx+3VyAroX5try/ZQ880G+f1SG7VvVU7vdzxwXrsnlBA6PIFufPDDXx3zwjirSLYEgRB+L0QwRahAu9L+qQya/UvDbbO7pKARi0RDCqY9Wr+dVF3bEYNvoDMdcM78O7yYromW5k6JIPUKCN/u6ArEMrgAJTbPfz18y0sLaimc5KVpy7t0WwO4qH21jhbrO2saKRvRhQAFv3v/8tVo4LHJnRFJUmoVRIVDZ6jHhZoTzWOUPbKZtAy5+YhPPPdTnZXObigVzIX9Eo57OGGA5IjjTw3sTcefxBZUbjtg/XsqgwFkJkxJs7umkC1w0tBhYOhObE8ODaP91bu5dN1pSzYUs7ZXRKP+v4HBGWF/YfUtDW4/XgD8vF9eEEQBOGEEsEWUOfyMaZzAl2SrawurKV7aiSDsqIx6zQEZbi0bxp/m7eVJbuqSYsy8fRlPXhtal/W760nyqTDH5SRJBX1Lj8efxC9RsUDczaxpCA012/N3jqmvLGSz24fSnzE4Vs+5CVaUaukZsHH8I5xbNhXz7huieEZir9nm0oamPrWanRqVVMTWYVbR2Vz71m5aE7QkG23L8CWUjt/mbeFqkYvl/VL4/rhHXj8wm54/EGsRu0Ra+oOZjVqw1nKV6b0paCiEbVKIisuVKt1zVurwoX2z6sKeGNqPzaXNDRtAbbus+rUKrqn2Nhc2hBey4gxYTjK4G5BEATh1COCLaBbSiSXv7qcaLOOzokRLNtVxRl58Rh1GhweP89+t5OfmgKn4loXU2es5t3rBnDfxxsB+M+lPchNsDD59ZU4fUE+vnlwONA6YH+D56gnCyNNWt6+tj+Pzt1Mpd3Lhb1SmDokgxqHj7Ro4ynXc+u3ONAd/0B9G0BBpQNfQD5hwVady8/kN1aE51VOX7SbKJOWaUM7YNT9tt9xXIS+2Rbv+uK6ZicaA7LCaz/t4dZR2YzIjWv1+8ZY9Eyf0of7P97IqsJaeqQeaHT7+/+/IAiCcDoRwRahL8uPbhrMij01VDu8XDO0A2uKalAUhQiDpkXg5PYHcflCGSxvQObxr/J5cVJvnE3BVEWDh8wYU7PeXAatCsNRippNOg09Um08N7EXHr/Mij01fLetnIt6p55SsxGPx+i8eP7x1TYOrj2f2C8Nk/7E/Tfcur8hHGgdMG/jfi7tm9pmPc4O1/rB5QsyJCf2sCccjyY1ysQrU/riC8poVNIp3YdNEARBODwRbDWJi9AzLCeWx77YypPztxOUFS7qncIdZ+Tw1KU9eHXxHtYV1wGhYm+rQROunXF4A81mGM5YVsRfzu/KnR+ux+ENoFVLPHlxD6ymo/+6l+2q4db31zVb65kaRZ+MP0awFR+h493rBvLE1/m4fEGuH9aBfplRJ/QeDtd8tWN8xFED4WOVEWMmzqKnyvFLi4grB6Zj1v22a/xRgm1BEITTlQi2DrKtzM7nG/YjSfDqlL6sL67n0ldC24v3npXL9/mVfL6hlEfHd2Zu03gegPN6JLFx3y+tANYV17FyTw3f3TsChydAhOHXR7r4g3KLtggAP26vpE/GiQ1I2oqiKNQ4fHgCQXTq0PihYTmxvDNtAIoSGl2kPmj7UG6qV2vPET4JEQYmDUjjw1WhwxBJNgP3nZ3bptm1epeP16/uy5y1JVQ0ejm/RxKyAv6TdBhAEARBOLlEsHWQAyN7RubGsafKyfTFoVYMlY1ebnl/Hd/fO5JJA9Kw6DXsrXHSNyOKwVkxjOuWiEYtsbGkga82lzGgQzRXD8kkyWaEQzsbuOvB7wq1kzdEgjbUJkCrVjEoK5p5G/c3e3r/E5z5aUtFNS6mvb2awmoncRY9L1/Zm15pkS220nyBIGUNnnD7jGnDOpBoNaBvh0LwKLOOh87J47bRObh8QaJMWuKOcGjht0q0GbjyjZX0TI2kQ6yZ6Yt38/C4PKKOIUMVCMo0ekJZ0SqHl3eX78Vq1DKxfxrxEYZWFfELgiAIpwYxiPogVY1eLnx5GZMHprNweyVr9tY1e/y5iT3pkx5FQFaIMWvx+GWqHF4a3AGWFFSRmxBB/8xo9BoJs15DgztAUY2TlMhQQJWic6JZ8CBs+ww0Rhj1MPS5GoyhgKrG4eX+jzeycEcVkgQX907h0fGdW1Xn0+jxY/cEqHF4SbAaiDJpT2rjy1qnl6kzVjc7SWc1avjunpEthnDvq3Vx5jOLw9uyeo2K7+4dSXorxwCdiirtHj5ZV0JRtZMrB2XQIdbc6hmQNQ4vH64q5vv8Snqk2kLb2R+up6TOTaRJyzdHGWQuCIIgnDxiEHUrxEXomXvrELaVNbC3xtUi2OoQayE9JtQra3+9m79/sZUJvVKa1Vn1TY9i+pQ+/JBfyd2zNyAroeaob17dh8Tqj9FsnQsqDY2D7sORNp6AU4Up6CXGoidGr/DMxXm4AnlIKhVmnQZbKwqiHZ4As1fv459f56MoYNSq+eCGgfROP3lZsUBQaRZoAdjdgcOeyJy1qrhZ7yhvQObDlXt5aFzndr/P9hJvNXDLqBxkWTmmbVGH18+T87fz8drQaKMN++pZu7eOB8d24s5ZG6h3+Vm0o5KJ/dPb69YFQRCENiaCrUPEWw3EWw3kJlhZtqua0vpQp/gJPZMx6tTsr3djNWiYvWYfZ+TF8/z3BUgSdE0OjZ1Zt6+OaoePx7/axoESHVmBwv1VjN6/EIC6c17m1fJOvP5KAUF5J73TInntqr7EVC4navYkovxu0JpQJs2CjKGgPvqfyeH188T87eFTfm5/kAfnbOLDGwcRe4yn39qKRq2iZ6qNjSW/BFw2oxbTYYrE9dqWbR/+KONojrX+zOUNMnd9abO1rfvtJDVlR4GTPiNTEARBODYi2Goiywq1Ti+yApIKEiL0fHbbUGocXmRFYe3eeia8tJRAUOHd6wZwed9UvAGZ7/Mr+NfF3dnSlMX5+wQbGhU4vc0zOGvKvEzNHIm6fBNlkX155dOd4cfW76tnxrJC7pEXoPOHgjv8LqRPr4eblkBEIhCqbapzhTqIG7UqYi16JEnC7ZdbdGIvrnWFa9BOhmizjucn9eaGmWsoqHSQaDXw8pW9iTK33Eq7tG8abywpDI+lidBrmNg/7UTf8ilBkiSiTLpmJxnVKglVU4AVY9Yx8hh6dQmCIAgnnwi2muyrc1HW4GHDvnq6JltJiTSSHm3CF5AZ+Z+FBA4KZv46byv/u7IPZp2GR8d34bJXloe/HOMseubeNoTRneIoqHSyq8pBUFaocvgJ9JiEylnJtgpXi+uvLa7H3SmdZiXUjkrkoB8V4PEH+Xl3DXfPCs3KS40y8s60AWTFWTDr1SRY9VTYf/mCHts1EdNJ7jSeGWPmwxsH4Q3I6NShHlGHK+xOiNDzzT0j+GpTGbKicH7PZOJPUkautWocXoKygkWvadOTjFEmLX+7oCu3fbAunKm8cUQW9S4fj4zL44JeKcSd4r8bQRAEoTkRbBH64vxmazn/+np7eO2mEVlcOzQTtz/YLNCC0OnEwmoni7ZXkRJlbJaFCCoK9S4/Vw3OZG+ti7zECJYWVDMkO4aJ727lg6vuo49XC1+VNHvPMXlxWFz7mq2R2IOApEMHNLj83Pb+Otz+UMaspM7NPbM38Na1/Yk165l942D+/NlmdlQ4OCMvnvvP7nTMw6LbQ2u2MdVqFUk2I9cPz/pN1/AFZJzeAGa9ptWjcH4rfzDIzgoHD3+ymeJaF+O6JXL/2E5ttl2rUasY0TGOxfePYlNpAx3jI0iw6ok06RjTOaFNriEIgiCcWCLYIpQ1evGHXc3WZiwr5KrBGdiMGlIijeHaLQjVby3eWY3d40fvaP7l/u9LuvPXeVtZ21Rcb9KpmXXjIB76ZBP5ZY0U2NVkxRl55vKe/OPLbTR6AlzcJ4WLeqdSU38t8RWboWQ1cuogPOOfQ28JbRk5fYFwoHXA5tIGAk0F2JmxZl6e3AdvQCbCoMGoOz3+tFWNXmb+XMiyXTUM7RjL1MGZzUbntLU6p5+Jr67A0dQlftbqfejUKh4Z3xnjb2xaeiiLQYPFoAkfxhAEQRB+306Pb+SjcPsCKISCmYP5gwqyAnERBmbfNIhnvt3JjopGRufFMyAzmhveWUOXZCu3n5HDzOV7CcoKCVY9skI40ILQmJaXFu7ihSt6U+/2E2/VE2HQcn7PZIZ1jAUFzHoNWrXEXncy+b2eJXWEGj8aEi1JmJqaflr0GqxGDXb3L/c5sEMMuoOagv4RhlUfi3qXj/s/3sDinaFxSuv31bO1tIFnJ/Zqt67r5XZPONA6YMHWcm4/I6fNgi1BEAThj+XETP89hdk9Acoa3JzXI7nZ+pDsGPRqiRqHl3eWFzG2awLPX9GLomon095ejTcgM6FHMnuqnHx4wyDGdUtkfLekFoXqADUOHz9sr2TKGyv5Mb8Sh8ePVq0iPiJ08jG0/aWmY0IEPXMzscalkpOR1ixgiDJrmXntAFKjQqfSeqdF8vRlPU/rUS5ufzAcaB2wcEdViwxgW4o5zEDw7DhLu29fCoIgCL9fp31mC+CBOZt4//pBdE6K4Ked1fTLjOLKgenEWvS8uayQ134qBAr598XduaRvKlV2L7eOzgZgVWEt/TtEM2lAOksLqsmIMWHRa5plPy7qncJXm8rwBmT+/PkWRuTGsamkga377YzsFEei1YDVGKqvOlLwpFWr6ZkaydxbhxCUFXQaNdGH+eI/nagkCaNW3Sy4MmrV4ZN77SHCoOXes3J59vudKEro1OU/LuxGpElHjdPLnionuyodDMmJwWbQ4gvIqFTSSWvBIQiCIJx8p30HebcvyMsLC3j75yIeHJtHXlIEsqzQJdlKUIHr3l7NuuJf5h4O7BDN05f14PkfdjFnbQkalYTNqOXGEVmckRdPWYObRJuRF74voNLh5aLeKSgKPDp3c/g93r62P3fN2kCD2w/AC1f05tzuic3mBAq/zu0P8uHKYv7+5bbw2mPnd+GKAWkYjjKH8njZ3X4c3gAOb4BIo5YYix67x8//fbaFLzeVYdSqefva/sxZV8JXm8pIiTTy5CXd6ZZsa5cRRIIgCMKpQXSQPwKjTs20YVkMyorlm63lxFv19M+MxmrU4fUH6Z5iY2eFg+RIAyV1blYW1gISn6wr4aYRWYztmkhZg4eUKCOeQJCrZ6wmPkLPraOzGdslkbkbSnlqwY7w9XRqFTajFrvHH157Yn4+g7Nj2rWw+4/IqFVzSZ9URuTGsbW0gW6pNuIs+nYNtACsRm04E3mAwxPgy01lAFzcJ4UvN5Xx8ZrQidOCSgeTX1/JTw+OJkEEW4IgCKed0z7YgtBW0LCOsaGC9YPotWpuGZ3DFQPS2VHeSE68hQq7B0VRmNQ/nRiLnkte+RlFAY1K4pUpfRmVG8einVU8Nm8bnRIiuLRPKmsK61i4s5Ikq4H/XNyFBJ2XARmRrCwKZcxcviCtyTA2evzhZqkWvfqUaO1wstlMWmwmLTnxlpN6HwePG+qdHsnzPxS0eHxvjVPMNBQEQTgNiWDrKJweP19u3M/jX+WH1564uDudEyO4YkAal72yPNx4MiArPDp3M/+8qBuLdlYBsLPCwcsLdzMyN5ZHx3fC4qsi/sebUZVv5MVJ33DOTBe1Th/XDs3EZjp64FTr9PHk/HzmrC1BJUlMGZTBnWNyiG7F7ESh/UUatXSINVNY7aS0zk3H+Aj21bqbPSfRZjzCqwVBEIQ/MlEkdBT1ngD/+WZHs7V/fZWPQqgVw8HZDIAqhxdrU7ZJrwnNBiyqdmIxaKl1BQiY4vFF54K7jti1z/HIWZm8OKk3Uwdnov+VWYDLdlXz0ZoSZCUU2L39c1F4RJBw8sVG6Jl14yCuH96BXVUOHjonj8SmLJZKgnvO7EikUWQiBUEQTkcis3UUgaDcIqBy+AJUObzYjFo6xlsoqHSEHxvZMY59dS5G5cZx08gs3l5WxIuTe/PPr/JZs7cOo1bNn8+6lgnDE4nYv5QLu8ehNUf+6n3IssLCHZUt1n/aWc2I3Pjj/6BCm0iwGnhobB5ufxCLXs0Xdwyl0RPAqFNj0WuIENu+giAIpyWR2ToKrVrFoKzoZmujcuNZVVjHre+t481r+jOuWyIpkUYu75fKYxO6EmvW83/ndWbprmqsJi0frtrHmqYmp25/kD99XUhdzkV4+tyAymBt1X2oVNJhR7WM7CQGEp9qtBoVVqMWlUpFXISBrDgLSTajCLQEQRBOYyKzdQS+gMyOCjuPX9id91fuZU1RHf0zoxjfPYkb3llDncvP1tIGzu+ZxK2jsjFq1dS7fERbdHy3rZKLeqeyq9LBM9/taPHeBXYNVboudPQFsRpbF+8Ozopm8oA0Zq8pQSXB1YMz6Zpsa+uPLQiCIAhCGxPB1hG4fUFeWbSHITkxXD+sA/0yoli4o4or31hJks3AA2Pz6JJsZVNJAwatmpVFNfz32wK8/iCTB2ZQ3eihf2YUQ7Jj2Vnxy1ZjlyQrWYnRFNU4MR3DeJdos55Hx3fmzjG5SITm55n14s8nCIIgCKc6sY14BBaDhrFdE3n2uwIue3U5iTYDi3dUkRxp5JnLezF7dTEj/7OI574vwO0P8tOOKmqdPpy+IK8v2UOZ3UOkSceto7MZ0dRS4qFzOvHA2E787YttfLZhP8W1LvzB1o+WsRi0JNoMJNgMItASBEEQhN+J076D/NHUOn08+90OPlpTwqCsaP5+QTeCssLdszewqeSXk4AJVj3Tr+zLtLdXE2XWUVrnZkzneJ64uDtqlURQVvAFZHZXOZj0+srw64xaNT/eP5Ik0RJAEARBEH73RAf5o3HVQvVO2PkNZA6FpF5gjiXarONP4ztzy6gcAAwacPjkZoEWQFWjl2izjg9uHMSmkno6JURQ4/Dx6uLdbN1v5/6xnciIMfHm0sJmr3P7gywpqObyfmmtu01vAKcvgEknthAFQRAE4fdCfGP73bD6TVj4eOjnpc9A76vg7MdxSGbW7K3j6W93EJQVbh6ZTbdkG1mxZvZUO8NvcfdZHfl47T5eXrgbCPVVeu2qfmwts/NTQTU/765h6UOjiTlMA9LoIwyePlSl3cPT3+7g59019MuI4uFxeaJJpiAIgiD8DrRJzZYkSedIkrRDkqRdkiQ9fJjH9ZIkzW56fKUkSZltcd024WkIBVgH2/Ae+JyU1Lu55q3VbCm1k1/WyF2zNlDt8PCvi7uH5xhajRrO75HC9EW7wy+XFfjL51uYNCAdCDUhnb+lnFtHZ2M5KCPVMd5Cz7Rf77NV5/Jx16wNfLSmhJI6N59t2M8N76ylxuFtg1+AIAiCIAjt6bgzW5IkqYGXgbOAEmC1JEnzFEXZdtDTrgPqFEXJkSTpCuDfwMTjvXabkQPNf1YUQGHehv0tnvrx2lLyEi18dNMgKu1eArJCo8ePfEjpW5XDS5ckK3EWPVWO0DZjSqSR7+8dyco9NdhMWrom2446fFqWFaocXho9fpbvqWn22ObSBjz+1hfXC7+odXoJygqRJh1atTgjIgiCILSvtvimGQDsUhRlj6IoPmAWcMEhz7kAmNn07znAGEmSpDa49vHTW2HADc3X8s4DrZnsuJbDjVMijfy8u5bVRXW8v7KYK99Yyf56D9lx5mbPO69HMgt3VPK3C7qSE29hSHYsGrWKRJuBC3qnMKpT/FEDLYDKRi/nPPcTpXVuog6ZnWjWqdGIQOGYuH0B1u6t49q3VnPR/37mzaWF1Dp9J/u2BEEQhD+4tqjZSgH2HfRzCTDwSM9RFCUgSVIDEANUH/pmkiTdCNwIkJ6e3ga39yt0Jhh+H6QNhPx50GEUcu45+LRWRncy0TXZijcgc+uobDJiTESb9awurGFhfiWPXdCVu8Z0xOULMPPaATzz3U7yy+0My4ljTOd4rp+5ho9uGsSsGwYR+yuB1eHMXV9KncvPB6v28cj4zjz8ySZkBSQJ/nZBV2xi1t4xqXX5ueK15fiDoTTkk/O3YzNqmdgvDZXq1Ij9BUEQhD+etgi2DvctdWg/idY8J7SoKK8Br0Go9cPx3VormWKgywX4csZR3ujnP/N2oFKVcNuoHN66tj+N7gC3fbCO7eWNJNkMPH1ZT3ITLEhILNhSRkGlg5tHZpMVZ6ZHWiSbSuqZOmMV3oCMJEnIioLTGzjmE4QuX2h785ut5cRZdHxyyxBqnT7yEq3YjFoM2tY3RRVg3d66cKB1wCdrSzinWyJRrTyoIAiCIAjHqi2CrRLg4N4FqcChxU4HnlMiSZIGsAG1bXDtNrWvwcfZz/5EsKkA6+vNZcy/aziPzdvK9vJGAMoaPNz6/jrm3zWc62euZluZHQC7J8BZXRJ45NPN4ffrlBCB0xtg2turGZQVw8Pj8kiwGlp9P5f1S+O1n/bgDcj/z959h0dVpQ8c/97pLb0SEpJA6B1CL4IoYsOG2LviWrDvqrv+3F1dXXVd3VXX3l0VxbaInSLSe++QUEJIL5Ppd+69vz8mDAxJSEhCzfk8j4/MmTtz70yA+3LOe96X/y7dwxerCvj5vjNoHyd2ITZHh3hbnbGOSXYsBhG0CoIgCMdOayT9LAc6S5KULUmSCbgSmHHYMTOAG2p/PQmYo51E1VQr3QGqPQH+u2R3ONACkBWNL1YUEH3Ycl21V8btD4YDLYA5W0oIKirTpgxl0sB0Hju/Oy9c0ZetRTU8fUlvuqVG8eS3m6jyND1HKCXKzI/3jubqwR24clAG300dRXL00S9HCiEZ8VbO65UafpwSbebecV2wHkXbpKZy+WWKqn3sKXdTJnaNCoIgtGktntmqzcG6G/gJ0APvapq2UZKkJ4AVmqbNAN4BPpIkaQehGa0rW3re1qCoGnmlLh7+cj0d4q2kx9Wd+YiyGklWIgOcKLOh3hv06/Py+Oau4ZzZNYnuadFUumW+37CfVburGJgZx4PjuyArapOvz2zUk51k568TewJgNIiE+OZw+YJ45CAS8LdLevH7c7ri8iukxJhJcrR+8FrtCfDB4t38e/Z2FFUjJ9nBRzcPpl2smJEUBEFoi1rl7q1p2veapnXRNK2TpmlP1Y49XhtooWmaT9O0yzVNy9E0bbCmaXmtcd6WKnf7ufLNJazaU8m+Si8T+6YRbz+Yu5PkMHNh3zTO75VGVkIoEEuwm3j9uoHkl7qZcMgsCYR6H0rAK3N3ICHxp2/Ws3BHOV5ZYcGOMh77ZgNB5egn9IwG3WkbaMmKQrHTR36Zi2Knr9XLWZS5/Pzx63UM+/scJr6ykHUF1aREW+idHkNylIVjsSm2whPghV+2hWdJd5S4eP6XbXj8wUZeKQiCIJyO2nQF+RpfEKdP5tVrBlDtlZm5rpAvfjeM1XuqkCQYkZOIw6RHQuM/Vw/AbNRhNer5cmUB367bz31ndeGC3u3IK3MzvkcycXYz/qDGs5f1IaiqbN5fE3G+jYXOOvW42jJV1diwz8kN7y3D6Q1iNep59ZoBjMhJwNQKeVT+oMKb8/KYsXY/EMq3u+WDFcz/w1hsx7Dd0a4yT52xDQXVeGTlmJ5XEARBODmdntMlTWQ3GbhpeBZL8sp59Kv1vDRnB2e9MI9txTU4zAZmby5GVjUy4u30bB9Dh3gbiqbhsBi576wumAwSr8/byZq9VcTaTDzzwxbOfnEeD3+5Hp0kRcySQWhWzKgXJQYOKHf7mfrpapze0IyPV1a4d9pqKj1ys99TVTWqPTL+oEKNN8jsLSURzyuqxo4SV4uuuzFdUqPQH1ZKYlz3ZKItolSHIAhCW9Smgy2HxcDluRl8tvxgmTBVgzd+yyPBYeaPX29gbUEVAIGgyu4KDxe9vJAnZm7irk9W8c6CfO4Yk8PAzDhenLWdr1fvwxNQ2LTfyQs/b+X5SX0w1y7/WYw6XryiH3F2UWLgAEWFgkpvxJjTFyQQbHpe26Eq3H4+XbaHKR+t4O/fb0HRNPq0j6lzXH27EltTnNXI29fn0i7GgkEncUkRzgdmAAAgAElEQVT/NG4emY3pNF0KFgRBEI6sTa9pOMwGHBYDusPydg59+MP6/XRNiaLI6Wft3ireuD6XOVuKeX1eHkvyKrhrTA7n927HpNcXRbzHzPVF3DqqI5/eNhS7WU+szUSM1SjawxzCZNDRPyOW1XurwmPpcVYsxqP/jvyywjsL8sPNwJfmV7BmbxWvXN2fdfuq2VnqwqCTeHB8lzozjq3NZjYwuksSM+4eiYaGzajHIWa1BEEQ2qw2HWwBxNpM3DGmEy/8si08dlHf9iyt7UV484iOvPlbHu8u3BV+/ulLenFOz1R+2liEXi8RYzWSk+ygzHWwdJgkhaq2fru2kIfO6XrUBU3bgni7iVeuHsBD09eyNL+c3u1jePGKfiQ2Y4dgtVfmk6V7IsbW7K1C0zQ+mzIUdyCI2aDDYTbisBz7n4VeJzXajkkQBEFoG9p8BGA16rluaCZDOyYwa1MxvdpHYzLouXfaajol2bGZ9by/aFfEa174ZRvPXNaH5bsqyElyEGc38dTFvbnizcWUuQLoJLj/7C7oJYmp4zqLQOsI2sdZee3aAQQUFYNOIt7evABFkiRibaY6+V46SUdilJlETlzgU+UJ4Auq6CWIt5vr5HMJgiAIpzfpJKotWkdubq62YsWK43rOak+AMlcAWVVJtJtx+YOMef7XiGOMeolv7hxBjM1IWowVnU5CUTXK3X5qvEFsJj0Os4GoI/UudJdC5W6oKYL2A8CeBPqTeKlJ9oGvGtDAEgPGk6tmlKZpzNtWys3vLw/v+LxsQHv+74IexJ7AVjzFTh/3f7aGRTvLaRdj4YXJfenfIU60WhIEQTgNSZK0UtO03MPHxZTLYWJsJmIOuTlraPRqH82GfQerxV/crz1JUWaSD2m9o9dJJEdZSI5qwkncZfDFLZA/L/TYZIfb5kBSt9b6GK3LUwGrP4Lf/gGqAsPuhKF3hnpKniQkSWJQVjy/PjSG5bsqyUl2kBFvPaGBlssn8+TMTSzaGVqS3l/t48b3lvPbH8aKYEsQBKENEdnajUiKsvDWdbncODyLgZlx3H9WZ+49qzPP/bSFCncz27BU7T0YaAEE3PDLX8DnbPAlJ1TZNvjlcfDXgOyB356HvctO9FXVYTcb6JBg57KB6fTNiD2qJclAMLK4aiDY8uKqnoDCwh1lEWP+oEpZjWjfIwiC0JaIYKsRFS4/905bjSegcGa3ZLYU1TD109UMzk7AKx+5RIHLFySv1MVbv+Uxd2sJ5Qd65HnK6h7sLgal+fWljqkt39cd2/hVaJbrNKAoKqv3VHHWP+cx9vl5jPvnPFburiR4FK2V6mM26rlheBZDO8ZzIE3LoJNIOAYtggRBEISTl1hGbIQvqLJsVyXLdlVGjD96bnf0jbR6WbG7gpveX86BtLgROQm8dFV/ElJ7gzka/IfMZA26DWzxrX35rSNzGCz6d+RY1mjQnR5LYeWeAHd/upqa2nY6Ln+QqZ+u5vt7RkUsFR8Nrxyk0h1qOn5mt2R+f043HvtmA1NGZxN1HHZDCoIgCCcP8bd+Iwy6UGmHau/BWacYq5FUh4FkqQI2rwRbIiTkgCMpfEyZy88zP2zh0P0HC3eUU+WWSUhIhClzYdYT4NoPubdA5/GRBb6Okk9W0DTqbZDdYumDoNck2PBF6HHnc6DrhNY/zwkSVDRKD1vaK3MFkJvRx/KA/FI3E19ZSLA2Wz8j3srntw8j1mbEamzZHztNC13vgh1lyIrKGV2SSXSYMIgaboIgCCclEWw1ItZm5NnLenP3J6sJqhoGncQLk/uSLpWge+UMCNS2fkkfDFd9EtpVCGhaKGfncAFFBb0hFJxd/CooAbDGNTvQ8ssKBZVeXpm7A39Q4Y4xOXRMtLduuQl7Ipz/Tzj7r6EPZrKfvLNwR6HC7Seoaugk6JoSxdbig70sc5Id4er/R8vll3nhl23hQAtgb4WXrUU1jOma3OLrLqnxc+HLCyipDRCjrQZ+uHc07WNPrh2igiAIQogIthrhCSjkl7mZ/rthlLsCpESbKa+sRJrzt4OBFkDBMijbHg624mxGbh2VzZ9nbMRq1HNW9xRuGpGFUa+jxOkjzm7EaHa0+PpKa/yc99J8/LUtbn7YUMT394yie7voFr93BGts6L/TgKpq5Je5eXD6WjYWVnPZwHRev24gD01fy6o9lfTPiA0VV21mUVJNo95ZscPbEJW7/CiqhtWkJ+ooKsz/tLEoHGgBOL1BPlq8mz+c0xWdqOElCIJw0hHBViMCQZW35ufz3E9bsZsMuANB/jo+HcldUvdgd2n4lwa9jvN7t2N0lyTcviCF1V6ufmspXlkh2mLgg5sH0zc99uDNUVXAVQxrPwPZC/2vgahUMBz5hj9z/f5woAWhG/27C/J5+tLeojVQA8rcfq57ZymF1T4Api3bi8ev8Oo1A5AkMOh0LWrpE2UxMvXMHH7bXhpeRk5ymOnXIRSsKorK9hIXD05fy44SF2O7JvPERT2bnB/m9NbdSOH0BtDQABFsCYIgnGzE3bgRNrOBM7okoWmhxGlNg593elEH3x55oMkRym2qFQgqrNpTxdkvzKPaJ/PAZ2vxyqFlRacvlIBdfmjpCFcJvDYcZv8FfnsW/jMYqgsavb6YegqnxtqMiAmOhnkDSjjQOmDG2kIAkqMsrdI7sVtqNDOnjmRybjpTz8zh26kjSardhVjuDnDVW0vYWOjEH1T5cWMRj/9vIzW+pu1Gvbhf+4glTr1O4sYR2eh14o+zIAjCyUjMbDXCYTbw8IRuuP1BZm0uJivBzv9d0AO/NQfTpA/QL38DzZaENO7/wkuIAJUemYemr0VWNPQ6KbzT7YCCSi/KITk9bP4WvIfseAz6YPGrcN6zoDMQCCpUeWQUTcNi1BNXW6xzXLdk0mIs4eAh2mrgJnHjPSKLUY/NpI/IqctKsDW6u/RoOCwGeqbF8PSlvdFLEtIh713jD9ZpKzR3awleWTnicqKmaZS5AgRVjdkPnsHineXM317KHWNySBf5WoIgCCctEWw1otId4NkfttAnPZabR2aDprG1qIYLp6+jX4cUJvV4lpFd25EanxiRLxNUtfAORqdXJj3OSkGlN/z8gA6xmA5NwNbqqVmlKaCB2x/kt+2lPPrVeqo8MkOy43npqv6kRFtIjrbwzd0jWJZXgS+oMqpzYrMaObclMVYjL0zuy73T1uAPqkRbDfz7yv4kOFq/2ryhnqDXbjJg1EsReV2dUxrP39tb4eHqt5dSUOnFpNfxfxd054mLep3QKvmCIAhC40RvxEYUVHoY+ezc8ONpU4Zyy/vLcR8yK5IeZ+XrO4eTFHUw56bc5eeG95axYZ+TXu2jefyCnjz9/WbWFVQxtGMC/7i8b+Tusep98OrQg7W39Ea4YzEkdqawysuo5+ZGzIRNGpjOExN7YjuFmlwrqkaZy8+SneVYTXr6d4iN+M6aqsYn4/IH8ckqDrOBRIcpYuaoKbyBIE5vEHcgiMNsIM5ualKOW2mNH29AwWTQEW01YDMd/ffv9gf5dl0h//fNBmRFI85m5I3rcpmzpZirBncgPc5Wp1l1tVdm6qer+G3bwYK4OgkWPHwmaWJWSxAE4aQgeiM2RvaF2tGYbKHSBrVUNTIYlSAi0ILaJcHDYtYEh5k3r8vl8f9tYOXuSr5dV8h/rh6A0SBh0uvqzkY4UuHORbDi/VCC/KBbILo9EJrRUA67jiV55bgDwVMq2Cqq9nHuS7/h9IaWVDvE2/jyjuEkRZlRVY1Sl58f1hfhCQS5qF97kqJMmAyRdcOqvTIfLd7FC79sQ9WgfayVaVOGkhFvO6prsZoMWBsJlLwBBV9QIcZiRKeTKKj0cP07y8grc2PS63jsgu5c0r/9Ue0khFBboYl90hjTJZlyt59qr8wLv2xlSV4F05bv5ef7RtdJlvfLCpsLayLGVC1Uz00EW4IgCCe3U+dOfSy5SmDhv2HHrFCS+9g/QnQaELox9suIZc3eKiB0s8+It7K34uCS4JDs+HprMqXFWnnhin74Akrj2/v1eojJgHH/V+ep9HgbOil0cz1gUGZ8s2ZVTpSgovL2/LxwoAWwp8LDgh1lXNK/PaUuP+e/NJ8yV6jq+ktztvPTfaPJTLBHvE+1V+b5n7eFH++r8vLkzE38c3Lfow56jqSwysu/Zm1jR4mbi/ulcW7vVJ7+fjN5ZW4gVC/tzzM2Mq5bcrPOazMb8MgKD3y2NqK+V5VHJq/MXSfYspsNjO6SxJerDm6asBh1pDSzwr0gCIJw/Jw6d+tjxVsFM++DLd+FHpdugaJ1cM2X4EgiwWHm3RtzKanx45NV4mxGPrl1KA9NX8u6gmqGdYrnqUt6hxPWDxdtMRLdwiAgxmLk+cv78vj/NuLyB+mTHsPD53Zt3cKlx5iqaZR7AnXGD7S0mb25OBxoAfhklbfm5/HnC3tGLO/tr/LWeY/NRU58jSSXH43SGh+TXlsU3nSwak8l5Z4AaTGRM0iaBoXVPtrHHd2s2gFGvRTKEyuOHI+11f0cdrOBR87tSo1PZtbmYjLibTw/qS+x9exGFQRBEE4up87d+liRvbD1sEbL+9dCTSHsWw4dhlHlMXLdO8sorfGj10n86bxuvHJ1fzQttLMt+hjf8BwWA+f3bseInESCSqgIZmuUJzieTAY9t47MZsaawvCY2aBjfM8UoG7Bz4bGMhPsmA26iNpi43uktuqsVoVbrlMaYtqyPbx0VX/eXpAfHjPqJTLimr+EF2M18dgFPbjkPwvDn2ds1ySSGiimmhRl4fnL++ILKugIBWpHm6smCIIgHH8i2JIksCWA+2DiMQYzyB749Cqqrv2FP81Rw73zFFXjye82M6FXuyPmynjlIOWuAMvyK8hKtJMZbyOhBbsEzUY9KcZTu/Fzx0Q7X94xjNd+3YnNZOCecZ3DtafO6ZXK8z9vw1VbIsOgk7htVMc6SeuxNiP/vWUIj3y1joJKLxf0SeOOMZ2wtOJ3U19/yQS7mYw4K2d1T2b2lhJSoy08N6lPvXXOjkZOkp15vx/Dmr1VtIuxkh5nJcHe8O+TaKuRaMRsliAIwqlE7EZU5NDM1vQbQaudLRn7x1DwtexNSibP5NwvfZS7I5fAZk4dSa/2MQ2+7fL8Cq58a0k4sf2cnqk8c2lv4k6xGaljwe0PopOkiKAmqKgUO/18sGgX7kCQm0dkkxZraTCJvazGj6pp2M2GVl9OrXQH+Ou3G/mmdhbOoJP4+NYhDOmYgNMr45UVdBLE2811dg0KgiAIbZfYjdgQX3WomOjNP4Xa7djiYddC2DwDJB2OwsWc2W0801fuC7/EbtKTfIS+eeUuP3+duTFiB+FPG4t4ZEJXEWxBvcGRQa+jfZyVR87thobWaFHW5vYtrE8gqFDqCvDD+v04LAbO7JrM4xf25JaRHdld4aZ/RizxtTW4oq3GY75sLAiCIJxeRLC17Wf49l7Qm+C853HKOqozL2Vf7HlkxZlxuPK5p39nfEGVnzcWk51o57lJfepNYj5A1TSqPHVbr3jkegqXChFChWGP72xRYZWPCf/+DZ8cmtlMjbYw4+4R9E6PoXd6w7OXR6KqmmgKLQiCIABtPdhSgpA3G6xx4EjBXVXCNP0wnv54MxBKgH7ruoF8/N0m+qTH8ui53TEZdBEV2stdfmRFRZIkHLVLWrE2E9cNzeTvP2wJH9cuxnLE2bC2SlYUSmsC/LKpmCiLgZGdE0luRqHT5goEVV77dWc40AIocvpYsKOMSwekH9V7qapGSY2PT5btpcLt5/phWbSPtZ5Su0YFQRCE1te27wJ6A5XDH6OozyPkl3vp0zmb5/45P/y0rGg89r+N/PG87tz58Sok4O4zOwOhHKPtJS4emr6W7cUuRndJ5KFzuhJvN5EcZWFybgbxdhNfriqgY5KDu8fmNKta+umusMrHhH/NDzfpbh9r5eu7hh+3gEvTNHzBujOOvibOQpa7/FR5ZTQN7GY9F7y0IJzf98nSPcy4+8i5fYIgCMLpr00HW9VemX8tc/HB4j0AfH57OsHDKrXvr/aFyywcWoqgwh3g6reWhBsKz9pcgk6SOLNbMuN7phJvNzFpYDrje6RiNupadbfc6SIQVHl17s5woAWhIqWLd5ZzUb/2x+UazEY9t4/uxLdrC8NFYx1mA2O7JTf62nKXnykfrWTl7kp6tY/mqkEdIjZSqBq8PGc7L17R75QqQCsIgiC0rjZ9B3D7g+FAC6DKEyArwcauck94bHyPFJbklWMx6picmxEer/EHw4HWAfO2lXLt0MzwrIgkScQcIberrVM1DXcgWGfc7a871pq8cpBSp58fNhSRFmtlSHY8398zircX5BNtMXDziOxwSYojmb+9lJW7KwFQ65YEA0I7GUXmliAIQtvWpoMt/2FFM//x01ZevKIfb87PY+M+J2O6JnHNkEy+WbOPn+8/g+Togzdgu8mAUS8hH9IUsUtKFEXVPrqlRh23z3Aqsxj1/O6MTny3fj8HKpDYTfomzSq1xPZiF5e+uig8i9klxcG0KUP5+6W9kSQwNLIT8oCNhc7wrzftd9I1NYrUaAtFzlBBVINOYuq4zo32YBQEQRBOb236LuAwGyJmsraXuJizpYS/X9IbWdGIshgw6XX8fnzX8M4yWVGodMtYpQBr7u+Dx1WFS7Pyn6UVXDooG7+s1m0yLTQoO9HOzKkjefO3PKIsBm4d1RGr4dgtuTp9Ms//tDViuXhbsYsdJS4GZyfUOV7TNMpcAWRFxajXkXhI1faJfdvz1vyDFeUf+2YD0383jNmbSyh3+7lsYDopYlOEIAhCm9emg62kKDOf3jaUf83ezpb9Ts7r3Y7Jg9KJVasgby6UboZekyC2A1ii8fiDLNhRxm+bCvh9zj7s303BHvSRZI7m2aunU51gx2w0YKqnKbVQP7vZQFqMhaHZ8awtqObi/yxkYIc4npvUp0UV9xuiqhq+etoAeeW6Y5qmsb3YxZSPVrCr3ENmgo03rhtIl+QodDqJzAQbL13Zjxd+2Yaiadw0Iosoi4EbR2S1+nULgiAIpy5RQR7wBhS8skK0xYDBWw4fT4L9a0JPShLO25ZTbWnPviovZoOOBIOPDh8MAn/NwTeJ7QC3zgJHyjG/3tPN9+v3c+fHqyLGXpzcl0uOsvRCU23Z72RzUQ3zt5fy7dpCYq0mvrt3ZJ0dkKU1fi57bRF7Kg7m8KXHWfn6zuHhnaWKqlHhDgAa8TYTer0ItAVBENoqUUH+CKwm/cHWMe7ig4EW4BryAJ9t8fPUz3MBMOl1vH/jQDJS+iDtWXjwTar2gCqKljbH0vyKOmOL88pbPdjyywpbi2v4y4yNlNT4uahfGl/dOYJEh6nehPiAokYEWgAFld6IXD+9TmqwcbQgCIIgAIh/hh/usG1lrh5X8eysgzsWA4rKw19voHz4nyJflzEk1MBaOGrn9kytM3ZBn7RWP0+lR+by1xezak8VBZVe/jN3J8vyy0l2mMN5WIcy6XWkx0U2G0+LsWBupWXicpef/dVeylz+Vnk/QRAE4eQkgq3DRaVCYpfwQ7+qq1N7q7DKh5zcOxRg6U3QcSxMehdsdROshcZ1TY3iD+d0DVXgN+m5/+zO9D4GhUA3FVbX2YH61ap9VHnrtlYCSLCbePO6gbSLCS0Ztoux8Ob1uSTYWx5U55W6uObtpQz7+xyueGMJ24prUNWTd0lfEARBaD6xjFir2hPAr6gYdbGYb5yDu2IfUWXrsEXF0iHeFrGcNKFXKjqDCf/lH2OW1NCMljX2BF79qS3ObuKWkdlMyg0tG0ZbjMekCGy7WGudsawEO+YGziWrKsnRFr743TAUVcNq0hNvN7e452FZbTHUHSUuAHaWurj5/eURuWBNUe7yo2qhtlJiB6wgCMLJSwRbQGGVl0e+WsfSvAp6psXwl4k9eHluDe3jenJPVwef3DqEJ2ZuYtN+J2O7JjN1XA46JIKmOMyi712rMBv1JB/jKvsp0RYu7pfGN2sKgdDM1cMTQjNqh3P5ZH7YUMRfv92Eyx9kSHY8L1/VH30rNJcOBNVwoHXA4blgR6KqGnllLu77bA0bC50MzU7gn5P7klZPMCkIgiCceG1+N2K1V2ZJXjl2k4E1e6t4f1E+VpOe/zu/B1M+Wsm5vVJ57rI+IIFXVtAj8Z95O5izuYQ+7WN58JwuxFqNxBxhZkFWVKq9MmaDjiiLqCh/IlV6AlR7ZJw+mdQYC4kNzFTtrfAw6rm5EWPXDOnAY+f3OLiZ4igEFZVKT6iVj6bBpa8toqDSG34+yWHmu3tGkhzd+MxWaY2Pia8sZH+1LzyWmxnHW9fnEmcXM1yCIAgnSkO7Edt0zlZQUdlb4eHfs7Zz0/vLWL23kreuz8XjV8Jtdn7aWIRHVoiyGDEbdPzf/zaABn++sCdjuyfz8uzt7Ch14WqgxUyFO8Ab83Zy5ZtLuG/aGvJKXSgiN+eEibOZyEq00yc9luQoS4NLgjtLXXXGluRVNKuVUJUnwPSVBUx8ZSETX1nImr1VvHbNgPAuxni7idevG0BCEwMlb0CJCLQAVuyuJKA0bWZMEARBOL7a9BpYhTvAte8spaq2x+HszSXoJYlbRmWHNyUmRZk5cD/2ySpXD8nk+/X7mfrpapKjzDx0TlfsJgMuX7DOclQgqPLewnxenrMDgB0lLlbtqeSn+0Y3aQZDOHFykh11xoZ2jMfejGXj7SUuHv1qffjxlI9W8sO9o/junpH4ZBWLQUe8vek1usxGPQ6zISLAz0qwoatnR6UgCIJw4rXpma0aXzAcaB0wb1spZ3VP4eOlu9HrJB47vweG2pugQSeRV+qiT0YM/76yH2d2T+bRL9dhMerRqDtbVe0N8PXqfRFjlR6ZwsNmJYSTT6zVyPOX9wkH0EM7xnPvuM7NWkL85rDfAwCfLN1NcpSFDvE2kqMt4d9jTRFnM/GvK/phrc1xi7UZeemq/iQ6xBKiIAjCyahNz2zZzXWbSXdNjcKs1zGuewq3jMxm2vK92E16zuyegqZBVqKdZ37YQkGlh3N6pvLG9bls2u9kVOfEOu9v0OlIjbZE5OZA6OYonHhVngBmg67eRtEOi5EL+6YxqnNSaCeiUd/sfKi+GbF8vHRPxFif9ObvXjUZdIzsnMivvx+DJxDEbjIQbzfVWytMEARBOPHadLAVbTHw1CW9eezrDQQUlQS7iScv6oXTJ/P6vB3sLHETVDV6pkUDoVIAUz5aga+2j970lQVYjHqmjM6uN/E9zm7iiYt6ctlri/HKoeryVw7KINZ6egdb1d4AJU4/6wqq6ZMeQ3K0mRjryTPrUukJMH9bKR8v3UO7GAv3n92F9DhbnZ2GZoOelOiW75A8s1syAzPjWLm7EoDcrDjGdktu0XtajPpjUh5DEARBaH1tOtiymQ2M755Cn/QYqj0ysqLx1PebsRr1XD04kz/P2IhRLzG2a+jGWFDhDQdaB/y6rYQbR2SRX+Ym0WGqE3TlJDv49fdj2FniIjnaQoLDdFrXRPLKCl+sLODJmZvDY4+d351rhmQ2awmutamqxqxNxfz+i3XhsblbS/nl/mOXR5foMPPW9QNxeoMgQZTF0CqFUQVBEIRTQ5sOtgD8isqFLy+IWEoEeHB8F4Z3SuCRc7uFc2FSouveIHOSHPy4fj/P/7KN168ZyFk9UiJmSEy1syMpbSQh3umV+cdPWyPGnv95Kxf2TTspgq1KT4APFu+KGKv2ymwtrjmmmxbi7WbiRYAlCILQJrXpBPkDTIclJ+ukUMHL164ZSJ/02HBOT4zNyD3jcjiQGpMUZebOsTl8smwvmgZPfreJCneg+RfiLoXdi2D9F1BdAMFTr2eeqml1Zv98sop6ktRzM+p19ZZYiG3iMqfbH2RvhYfv1hWyeb+Typb8vAVBEIQ2oc3PbMVajdx7Vhee/v7gste1QzKJthrrLAnGWE3cNqojVw7qQI1PprQmwFPfbWZfVSgB3umV692V2CTuUvj8Bti9MPTYYIHbZkNKr+a9XyM8/iDVPpmCCi/t46xEW4w4LC3/7WA16jmzWxI7S91MPTOHjHgbekkK75w70aKtRh49tztL8haGK7YP7RhPWmzjs1qqqrFiVwU3vb+cA6XSbhyexQNndyH6NM/DEwRBEJqvzVeQByhx+thb6WXetlIGZcXRJSWq0WW/Mpefa95aytbimvDYHWd04t6zOjcvcXnfanhrTORYp3Fw+XtgaVlT5gMNjg8U8JQVlblbSrjj41UoqoYkwT8m9eWCPu1aJem6wu2nzBXg/tp2MnE2I/+c3I9hHePr3fl3vAWCCuWuACv3VJIabSE70U6Co/ElvrIaP5e+tiiiT6YkwcKHzxStcgRBEIQGK8if+DvfCeaVFT5Zuodpy/fSNTWKb1bvY1BWHH++sOcRZysSHWY+vGUwC3aU0iU5Cp1OIt5uotmt83xV9VxcBShy3fEmCgQViqr9vLcwH4CbRmSTGmOmyiPzyFfrw5XsNQ0e/98GRnVObJVgy6DT8ffvN7Ox0AmEaovd8d+V/PaHsSdFsGUy6GkXa+WCowyQVDTKXZFLu5oWKl4rCIIgCA058Xe+E8zplXn9t534ZJUiZ6jY6N5KDw+O79ro0lCczUiC3czkN5bglRUcZgPv3TiIAZlxR9+wOLk7WOPAW3lwbPDtYEs42o8UVuz0c/aL88LLZZ8s28OsB87AqJfq5JZ5AgpyK7V78clKuMzBAf6gSoU7cEpvFIgyG5mcm8F7i3aFxzom2ptVVV4QBEFoO9p8gryiaugkiXN7JvH42e25rF8KJr2uSQndlR6Ze6etCdfQcvmDTP10NRXuZiS225Ngyq/Q5yrIGgWXvw9dJkALClV+umxPONCCUMAzbdkezEY9wzpFBnE906JbLa/KYtQzMDMuYsxc25LmVGY16Zk6LodHz+1Gv4xYrh6cwSe3DQn3OBJNkX0AACAASURBVDzeqr0yZS4/QdETURAE4aTW5v9JbtRJzL2jF7Yt04naPRtPu8E8ctdNBJsQhgaCKtXeyGW+IqePYHMaTev0EJcFF7wASgCsza8wfoCxnhYwRoOOOJuJf1/Rj+d+2sqSvHL6d4jlj+d2b1LeUlNEW4387ZLeTPlwRUTOVnQrJOCfaPF2M7eMzGZybgYWk/6EJP7LisLOUjdPztxEidPPlYMzuLR/erMr3AuCIAjH1ql/92shh+TFvPhJdOumAWDbNR9r4RICl34A2I74WqtRT3ainfwyd3isT3oM5qPoc1eHydboeZvqikEZvLsgn5rahsVRZgOTczMASI628MTEnrgCQWwmPQ5z6+2mkxUFo07i5av6YzHqMegl4mxGjPqTY0diSxn0uhMa2JS7ZC75z6LwjOqTMzdj1Om4Zmjm0S9fC4IgCMdcmw+2jKoX3YbpEWPS7oUYFG8DrzgoMcrMezcN4sHP17KuoIrcrHien9SH+FaaIWqplCgzPz8wmhlrCgGY2C+N5EOuzWY2YGvlfCNFUVmzp5pbPlyO0xsk2mrg7etzSegQ1/iLhSbZvN8ZDrQO+GzFXs7v067VZicFQRCE1tPmgy0NCUxRkbsBdQY0XdNmYbIS7Lx9fS6yqmLS606qVjx6vY52MVZuP6PTcTtnuTvAnZ+sCrWmAZzeIHd9sprvpo48phXaTxblbj8ev4JeJ2E3649JT8j6Ohmkx1kxG9p8CqYgCMJJqc0HW0FTLMEzHsf60wPhMd+Qqah6e5O/nFMxV6bSE2BbUQ0/bChiUFY8QzvGt8qsiKxqlNZEbhAorfG32k7Hk1lpjZ/bP1rBqj2hwP3KQRn8YULXVm/TkxpjYULPVH7cWARAtNXAI+d2x1FPM3RBEAThxGvzwZbVasXT82JqMobC3qXo0vqhi83AFtXyBPWTVSCoMn1FQbhq/vuLdnFOzxSeubRPiwNHs15HTrKDHSWu8FinJAdmQ2imsKzGT5nbj1GnI9ZuPKkaMnsDCgFFJaYZ1eCDispny/eEAy2AnzcVc/PI7AaDrUpPAJ3EUc9+xdvNPH1pbx4Y34VKdyBUlPUUDPgFQRDaihYFW5IkxQOfAVnALmCypmmV9RynAOtrH+7RNG1iS87b2mzRCZRKdvYo7Shx+ugfG4VBUevdzXc4v6xQ5ZXxBILYTQbi7Cd/IniVN8Arc7ZHjP20sZjHLwi2ONhKjDLz9g253PvpatYWVNMnPYaXruxPYpSZEqePq95aws7S0IaCYR3jefnqASSe4DwjRVEpqPLywi/bKKnxc+PwLIZmxxNzFEvC/qDKikNqi/3ujI6M7pLEzHWF9GgXQ25WXPhzOn0yq3ZX8vKcHZj0Oh46pwvdUqOPql5XvN10ypfSEARBaCtaOrP1CDBb07RnJEl6pPbxw/Uc59U0rV8Lz3XMlNX4ue6dZWwpCrXesZv0fHnncJIc5iMurcmKwordlUz5cAXugEK0xcB7Nw2iX0Yzipq2ggq3H29ARacDu8lwxKKszalO0VRZCXbeu2kQQUXDoA/V11JUlU+X7QkHWgCL8ypYu7eKcd1Tjt3FNEGZO8CFLy/A6QvlmS3eWc6r1wzgvN7tmvweNpOe83u349etpQzrmECXlCiufmtp+PnBWXG8dt1AEuxmdpa4uPG95eHnLn99MbMeOIOOSY7W+1CCIAjCSaOlGbUXAR/U/voD4OIWvt8JsbGwOhxoAbgDCq/O3ckXKwvqtGc5VKVb5u5PVuEOhHaGOX1B7v6kmUVNW6isxs/dn6xmxLNzGPHMHP41a1udKvEHxFiM3DEmMml+bNckbK3YSifebiY52hKefZEVjc2HfMcHbCuuO3a8rSuoDgdaB7y7IJ8qT93vL6iolNT4yC9zUeT04QmEXidJEmO7JXPLyGwuHdCe1+ftjHjdsl2VVLplgorKR0t2RzynavDt2sJW/lSCIAjCyaKld9cUTdP2A2iatl+SpOQGjrNIkrQCCALPaJr2TUNvKEnSFGAKQIcOHVp4eU1T6ZFJjbagqBqltcGV0yvj8gep9AQanN0KKCqVnsiipvurfchKaNpIVhQq3DK7ytwkR5uJs5mOyW5FRVH5YmUBi3aWA6Gb97sLd3FB37R6l5rMRj1XD+5A3/QYZqwtZEh2Amd0TTqmif4Wo54rcjP4cUNReEyS4OweqcfsnE0Va6s7AxhvN2HQ152d3Fnq5uq3llDuDmDS63j60t6c1zsVm8lAjS+IBPTNiK23X6KsqOgkiQ7xdeuoZdQzJgiCIJweGg22JEmaBdR3R/zTUZyng6ZphZIkdQTmSJK0XtO0nfUdqGnam8CbALm5ucdwseug8zvqGXmRDk1npFifxe1f7eGygem8Pm8nE/umNfg6s0FPVoKNXeWe8FjPtOjwFvztxW4mvb4IT+3M1w3Ds7j/rM5HFXBVeQIoqkaczYSugaVJX1BlSX55nfHVe6oY0EB9qzi7iZGdkxjZOanJ19JS/TvE8reLevLm/HwsRh2PnNu93jIGx1tarJX+GbGs3htKbrca9dw1NgfTYbl3Fa4AD05fQ3ntjGFAUXn0q3WMzEnEpNfxzvw8/rt0D3sqPFwzNJOnvtscfm2nJAdJDjM6ncRVgzvw2fK97K8O9eLMSXYw6jj+HARBEITjq9FgS9O0sxp6TpKkYkmS2tXOarUDShp4j8La/+dJkvQr0B+oN9g63lTnfozvjSexag8ASUnd+Om2r/lwnQerSXfEXV6JDhPv3TSY+6atZt2+agZ2iOPFK/qR4DBT6Qnw2DcbwoEWwAeLdnHLyOwmBVs+WWFrUQ1Pfb8Zp1fm5pHZjO+RUu9rbSY943uk8OvW0ojx4Z2a38T6WIi1mbhqcAfO6dUOSYIEuwmpBb0fW8vGfdVMHdcZjz9ImTtAv/QY/rdmHxnxNuINB7/voKayvdgV8VpZ0UJLidLBz/LzpmJGd0ni31f245dNxXRLjWLyoAwSa3sopkRbmHH3SHaU1GDQ68hOsIefEwRBEE4/LV1GnAHcADxT+///HX6AJElxgEfTNL8kSYnACOC5Fp63dWga2qqPoDbQAqB0C4b82UzodQnjuqewt9KLomkkRdUtyClJEtmJB5PBjYe0cZEVlcKqulXoqzyBepeRDlfm8jPp9UXhJck/fLGO6GsHMqFX3UlGSZKY0CuVDfucTF+5F6tRz4Pju5AWc/IVEdXrdSescXNDOqc4GPv8PNLjrMRYjfxt5iZuGZmN47DdgRajntFdEvll08F/U8TajDgsBgw6HbeOyubzFXvxB1Ue+2YDuZlxvHHdwHpnJZOizCfd9yAIgiAcGy0Ntp4BPpck6RZgD3A5gCRJucDvNE27FegOvCFJkkooIf8ZTdM2tfC8rUJVFaTK/Drjpuo9/LBhP2bFwwXdY1CdEjW6JGxWCzpJqjMbo2mgAap2cNUzxmLk4v5pvD4vLzwWazOS2sQq6gt3lIUDrQM+WbqbETkJRNVTvDLebuaP53fn3rM6IxGaRTKJiuJNkmA388TEnjzz4xYKKr2M6pzIraM61vn+oi1G/nZxbzRtPfO2ldI5OYrnL+9LfO1sY7sYC7MeOIPPV4QC3ksGtCf2CMu/giAIQtsgadpxSYtqltzcXG3FihXH7P1VVcO7ayn2D885OChJ+KcspjBgJXPlM6G+iZZoguOfYR4D2VyhcXluBim1QVNeqYupn65mY6GTHu2ieeXq/mQn2pEkidIaHx8u3s23awvJTLDz+AU9yEq0N6ksxKIdZVz99tKIsWuHduDxC3pgMpzcdbxORT45SLU3iKppWI368HKtyydT7ZXZX+0LzXxZjDj9MoGghiRBjNVYb/ArCIIgtD2SJK3UNC338PE2XUFep5PQEjojXzEN48LnQWfEOfwRioNxZO36GN26T0MHeiowfDOF3jcu5p6v9jBt+V6+vnMEEnDbhyvCtaM27XdyywcrmH77MGJsBjYWOilx+rhzbA5lNX5KXT46JNjQ03iw1TU1iiHZ8SzNrwAgyWHmzjE5ItA6RixGAxZj5B8Hb0Bhxtr9/Omb9WgaZCXYePO6XK6q3Y0IMGV0R+4c06nRPDyXTw6XCIm2GrEaxc9REAShrWjTwRaANSqeivZjmd+tPbKq8flcF69fpmHc8VOdY/X7V5GVmMnGQie7ytykx1sjinQC5Je58QcVKt0a93+2hkqPzGcrCoBQOYEf7x3VpIbMCQ4zr14zgGKnD7dfITPBJnJ8jrNqr8xfv93Igcnfywam89T3m8OBFsCbv+Vx9eAORwy2KtwBnvtxC1+sLMCo13HPuByuauQ1giAIwumjzSf16HUSRoOOzza6efj7AmwmAz7Jgpo+uM6xSlKPcNK7QS9h1El1crCSo8wY9TpkRatTg6vCHSB4FKXbExxmeqTFMCg7nuRoC5IkoaoaPllp/MWtqNoj4/LLjR94mpEVFf8h9bJSoy3kl7nrHFdS42vwPTRNY9bmYqYt30tQ1fDKCs/+uJXdh5QLEQRBEE5vbT7YglAy+UtX9ef353ThhmFZXP3uagq73wLtB4QO0OnxDr2fRSUmKj0ynZMdZMTZiLObee3aAcTVFsWMtRl57doBJNhNmI06eqZFR5zn0BpczVFa4+et+XncO20NM9cVUtlAhfjWUu0NMGdLMbf/dwX3f7aGbUU1BILHN9A7kawmPZ0OaaGzfFclZ/eIbC1kNerJTLA3+B4+WWXWpuI64wt3lLXehQqCIAgntTadIH+4omov5/xrPtVemXYxFp4+px29k4zEOKxUqxbeX1lGVoKdkTmJ7C73EG0N7S6UFRWvrGA16YmzmcINrPdVefnjV+tYtbuKgVlxPHVJb9rHWpt1beUuP7d9tIJVu6vCY1PPzOGusTlYjlH+z/ztpVz3zrLwY7NBx9yHxpDWzM9wKtpX5eWJbzeyvqCaMV2TuHdcF17/bScz1hTSPs7KU5f0pmuKo8FcOk3T+HDxbv48Y2PE+Oe3D2Nwdvzx+AiCIAjCcdJQgrwItg6xu9zNGf/4tc74okfOJMZqxG42sLfcw4SXfsPtD83wnNcrlb9d0rvetjgQyvvxywpmo56YIzWGVjVKanzMWFuIT1a5dEB7kqPM4Zv43goPo56bG/Eah9nA3IfGHJNcLpc/yNRPVjN368GaUpkJNh6e0JXzejdcVf90VOOT8QYUHGYDNrMBn6zg9MkYdBLx9oa/+0BQpdobQNXgT19vYNbmYvQ6iRuHZ3HX2JwGf88IgiAIpyaxG7ERTq8cKkpqM0bkWvVuH4PZoMNuNuD0yjz69fpwoAXw/YYi7ju7S4M3zhirEY4QZB1QUuPn3H/PD5/7P3N38PP9o8NLVPXVarIYj90qsEEnkVwbxGUn2vn7pb3ZX+3DoNNRUuMjuZ4ir8dbIKiGm0U7LIZWbaR9qChLZHkHi+rBYrOAvuGfa5UnwJerCnhp9g4cZj0vTu7HXyb2wKCTcJgNOES5CEEQhDZD5GwBle4Az/+0lT98sY4XJvcLV17vkuLg5av6hxtRB4Iqxc66ydAVrZA79fPGooggzx9UeXt+PkE1lKBtN+m58LA+jX+Y0K3eJsqtwRtQuHZYJrE2A/+8vC9/+GId93+2hikfreTClxfU+z20VGmNn29WF/DGvJ3sqfAccSNAtTfA5yv2ctaL8xj57Fye+WELFW5/q19TBHc5rPkUpt8Ac5+GmqIGD91e4uLJmZup9srsq/Ix+c0l5Je6MRn0dco+lLv8lNb4UY5i84QgCIJw6hAzW8DeSg8fLtkNhJoL/2ViT9LjbCQ5TCQdstsw1mZk8qCMiAbD0RYD2YkNJ0g3VX27FIOqGipNTyiJ/y8X9uCK3AzWFlQxtmsy7WOt4fyw1uYOBHly5iY+nzKcxXnl7Kk4uHuu2Onns+V7uGdcl1Y7X2mNnyveWExe7W6/53/eyv/uGkmPwzYZHFBY5eOxbzaEH3+4eDc906KZnJvRKv0WXT6ZMleAlbsr6ZoaRXasAfuyN2HeM6EDdsyGbT/A9TPAkVzn9d+t219nbMa6Qn7bXkrXlCjO7pmKXiexanclz/ywBa+scPvojkzolSpKQgiCIJxmRLAFbN7vDP96WX4Fy/IrGNYpgTeuHRhxnEGvY9KAdIw6ic9XFJAWa+HR87qT2Aq5N+f2SuXFX7ZR4w8CYNRL3DaqI4ZDgqkEh5mRnc2M7JzY4vM1xlAbCPzzl6317rbbV+VDVbV6lzerPQGKa/ys3VtF34xYUqLMxDQSQGwtcoYDLQg1eH7hl63864p+9S65LdpZXmfsxw3FXNAnDbu5Zb+tFUVl3rZS7vpkdXhswV09sC9/M/LAks3gr6k32BqYGcf7i3ZFjHVNieKXTcW8NT+fr5IcJDhM3PDesnAdr0e+Wk9qjIUxXeu+nyAIgnDqEsEWMCir7q6ws7onY6gnkIizm7huaCYX9k3DZNA1v1WLtwoCLpC9YIkmKSqJH+8bzUdLduOVFW4cnkW7E9hI2mExcufYTnywaDc3j8zmnQX5Ectc1w/LrDfQ8soK01cW8LdDZv/+dH53rh2SidXU8K5Jr6zWM6bQ0Mpa3/SYOmODsuOwtEI/yApPgL9+G9m+c0+Fl3RzNHgqIg9uIG9reKcExnVLZvaW0AaDkTmJdG8XHf5evl69jzFdkzh8f8q05XsZ2jHhmO0wFQRBEI4/EWwBUWYDz13Wh3/8tBWnT2Zybjrje6TiDgSx1TNLotfrwnlczeKpgF+fhWWvhx7HZmK48Tvax2Xw8ISuAK2yFNYSDrOBm0dkc17vdlS5A0z/3TD+PWs7QVXlnnGdyUyw1fs6p1fm+Z+3Roz98+etTOybdsRgq296DAl2U0R19rvH5hDdwOaCjkkOrh+ayX+X7kbVYGjHeCYPzEDfCsuqGqFdpId6Y6WTIWf/Df3n1x4c7HUZmBzUJ8Fh5vnL++IOBPHKCit3V3Lnx6vCz/dOjyHGZuS6oZmc17sdOh0s2lGOXhea1RQEQRBOHyLYInRzHZgZy3OT+mAy6Ji7tYQb31/GRzcPOTYndBUfDLQAqnbD3L/B+S8imeoPYk6EWJspIn/olav7o2k0GAABqJqG77BZKp+sojZSYiQpyszMqSN5f9Euipw+bhqeTafkhnPh4u0mHprQlTvGdAo1jzYZWq2UgsNk4IrcjHAeH0CZS8aXPhL73Sshbw6k9ILELmBruFZWnN1EnN1EmcvPZ8v3hgO4AZmxnNktGUXViLUZuen9ZciKxkX90nh4Qjf0OrFvRRAE4XQigi3Abjbw1vw83pqfHzH+27ZSrhzcofVPWJFfd6x4E8geOImCrcM1ZcnUatRHLJ8BnNktqdHGy5Ik0S7Wyu8ndEVVwdSE5cBoi5HoY1BCwWY28MD4LmQl2vlxYxH90mO5dVQ29mgLEAeJOUf1fokOM29fn0u1V0aSJKItBhIcZtbsreTlOTvCx321ah9DOyZw+cD0Ez6zKQiCILQeEWwRqoxeX/mGUpcfRVFbZWkqQrs+oDOAGjw41vMSsMS27nlOgFibiWcn9eHjJbtZsKOMkTmJXDM0s9EddtVeGb0UyhU7UQVJyl1+lu+qYEleBeN7pnBx/zQuHdAeu8mAsYW5YAkOc52l54U76ib5z9pUzIV9jrzkKgiCIJxaRLBFaJfhTSOy+Wr1vnDCslEvMSInkd0VHjom1Z+XA4DPGUpyNzvA1MQSELZ4uP4bmPkAuEqg39Uw4HrQnx4/jkSHmTvH5nDD8CzsZsMRy1M4fTJr91bx6q87sZn0PDS+K9mJ9uOeIF7lCfDnGRuZWVuy4f1Fu3jw7C7cNrpjvYGWT1Yw6nXo69kk0FT1tesZ2TmxRf0zBUEQhJOPaNdTq8Yns3m/k1fn7sRk0HH9sCy+WFlAhcfPy1cOIKa+4qFVe+HHR6BwFXQcC+Meh6jUpp/UVQKaCpYYMLadfoOHWrGrgkmvLw4/Nuol5jw4hoz447ucWljlZfgzcyLGbCY9v/5+TES1/EpPgOX5FXy5ah+920dzxaAMkppYTT+oqFS4A2iEqv+rKrz2607eXZhPUNWY0DOFpy7p3bLNF4IgCMIJI9r1NCLKYsRmMtAnI4agovHHr9ezp8JDRryVgKIAhwVbrhL4+DIord15t+bjUOL7ZW+DNa5pJ62nPlNLuf1BnF6Z/dU+2sVaiLEY691ReTLwyQrvLozMX5MVjV82FXPzyOwTdFUHaRrhorIAsqIyfUUBT38fKt/w08YiZq7bz39vHUJiIwGSxx9k0c5yHv1qPWVuP+O6JfP3S3tzz7gcbh6ZjaZpWE16UdBUEAThNHRy3oVPkKQoM+/Mz8cdONgmZmLfNGKs9dwAZe/BQOuAnbNB9sEJmqTyBxVmbS7mgc/XoqgaBp3Ea9cOZEzXRIz6458D5A8qOL0yZoO+3h2Mep1EanTdWaGUesaOJU3TkICzeyTzy6aDif23jsom6pDrrvQEeHt+XsRrtxTV4PTKjQZbVV6Z2/+7MlyrbNbmEtrN3sEfz+9OaozokygIgnA6E8khh4i3G5l+x3AGZsaRGm3h9tEduXlEdv074/Smukt/jlSQTtxXWuWR+dPXG8I39KCq8fCX66hwy428svWVu/z8a9Z2LnttMVM/XUVeqatO7z+jXsetozpGlGzISXbUm8t0LJW5/Fz19hKuG5rFXyb25PLcdN68biA3jciO2EUpB9V6E9frK357uPwyd53PP397KS7f8f/ZCIIgCMeXmNk6hFGvp0e7aN6+PhcNjaCioWga/qCC2XDYTdYaA+c+B9/eG8q70hvhov+A/di30mlIUFFx+YMRYxXuAOpxbnDskxVe+3Unby8ILRHuqfAw6fXF/HjfqIj8J4DUaAs/3zeaIqcXo05HYlTdXXst5fTKuANB/EEVh8lAYlTk+28tqmFXmYfr313GwMw4shJs/LihiEGHBH1Or4zTJ3P/WV2477M14fGxXZOaVBKjQz05aP0z4rCZxB9BQRCE0534m74eRoOOpXnlPDlzE05fkGuHZnLDsMzIIMBoC5Vr6HQmOAshJh0scaA7cVv2LUY9PdOi2Vh4sNfjoKw4zK28s6/SE0BWVMwGXb1LrE6vzP/WFEaMVbgDlNX46wRbXlmhpMbP2/PzsZsN3H5GJ6IVtdUabFd5ArwydwfvLMhH06BTkp3/3jqEdjEHZyUth8xWrdxdycrdlZzdPQU0KKnxYTHokRWV79YXAfDJbUNYuKOcnCQ7QzsmENeEYqqxNiN/ndiTp7/fjD+o0i01ij9M6NriPo5Cy5W7/Xj8CnqdhMNsOGLRXkEQhOYQf9Mfptzlp7TGz60frgiXgXhp9nYS7SbGdU8m3m7CemA2whwV+i8m/cRd8CESHGbeviGXJ2duYtXuKoZ0jOfR87qHl+k0TWtRsUxN09hd4eH309eyrqCaoR3j+fulfUiLjVxONeh1tI+zUuryR4zXdxPbXe7h/Jfnh7/rr1fvY/YDZ9AutnUS34qdoUDugJ2lbl6avZ3HL+gZXhLMSrDTvV0Um/fXAJBoN/GXiT34x09bmLu1lO7tonhiYi9mrClkT4Xn/9k778Ao6/uPv57bM7nsQcggCYS9wh6C1kXde+8tpdva2mlrf9XW1lqtu27coqKoqAwBZW8IKwlkr8u8fffc8/vjwpEjAbJZ39df3DfPuofknvd9xvvD/DUljBwQzeIdVaTHmTt1rVaDlqvyB3Lu8GT8cigdeaw6L0HfU9vi5e7X17OxpBFJgusnpvOzc4b02jSCk5F6pw85GCTGrEMjphkIBL2CEFutuH0yDS4f28ubKKp1tBsQvHhnNXEWHaMH2kjrQerH65dpdPspb3STaNWHXNDbiBCnN0Cdw8vqIjs5iRay4s3Emjv/UE6JNvLY5aNw+WRMeg0WvQa7w8vyPbV8X2jnh6NSGJVm69bDpM7h5Zb/rWW/3QXA8j11zJ2/iRdvHh9xjbFmHY9cMoIrn/seV2uzwZ0zsrAaIu+b1y/z3LeFEffa5QsV+d84JbPL19cRxXXOdmvby5tx+wNhsRVv0fP67ZNYV1xPWaObOSOSeWTRLhZtC3luVTZ5uHh0A4lWPSX1LuqdPpbvqQXA1oUoiFGnFmalJxCBYJD5aw6wsaQRCHWfvrGmhMvGp52WYsvtD7C9vJm/fLqTRrefm6dkcOnYtE5FbgUCwdERYotQquiJr/awYl8dM3PjuWj0gHbbDEm20uT2s35/AyaduksCqC3bK5q47oU1eAOh+YG/npPH9RPTsRi0KIrC+gP13PryOg6WWV04OpWHLx5OTBcsASwGbciJnVDK78EPtvFVQTUA720oY95Zudw3K7vLxqEefzAstA6ysaQh/F7akptkYekvZlFid5Fg1WMzadulHFWS1GEarTdTayMGRKGSoG3Z2vkjktuN+Ym36Dl/ZAoQ+n34ckdVxM//u6yQx64YxVXPfR9+vxeMSjktH8qnCh5faED44Wwva2JceiftW04h7A4f1z6/mkDrH8vDnxYQY9Zx6dgTI3IvEJzMnPYx4iaXnwfe38r8taWU1rt5c00pLd4AF41OCW+TnWDhwlEp/PnTAn7yzmaeWVaE67BC9M5Q1+Llgfe3RoiTx77YHS5qtzt9PLxwZ4QwWLilAoen6+c6iMsbCAutg7zwbRHN3eiC02lUWA8TQqnRhg678XQaNUlRBiZkxZIZb+7QP0qrUXHPGdmY2kR7UqMNTM/tvSaDGJOO/90ygbQYIwatihsmp3P1hIFojlITpkIiLSYyNVhU5yAlWs+yX87ipZvzWTRvOg9fPEJ86z+JMes1YYHdlinZccfhao4/a4rqw0LrIO+uLwsPUBcIBN3ntI9seQJyOCV0kB/N38SnP5rOrdOy0KlVuP0yP35nM25/KCX22vf7uWNGVpfNQoMolNa7I9bkoILbHxJfQUUBBdJiP6eH4AAAIABJREFUjJQ3usPptY4iR52loxqt7k6YiTHp+OfVY5g7fyPeQBCzTs2/rxlLXDejfAAp0Qa+/tkZfF1QjVmnYUZufLsi+p5g1muYmZvAgvumoaBg0WmO+f8WZ9Hx9ytGceNLa/EGgkgS/HrOUMx6LWa9JqK4XnDyIkkS5w5PYndVC2+tLcGs1/CbOXn97vN2opAe175jdlC8WYyPEgh6gdNebElAvFkfUcwdVBT8cpBAUCEpSseFjy0h2EbvqFQhb6XaFg8AsWZ9p2bkmbRqzh+ZHNGplxptwKJvrR2SHHxylQ1XQxXemKE8tLiKAw1eonvQHWXSqblgVEp45h/AfbNziDZocXj8uHwyem3HXYWHo9OomJ4Tx7cPzMbhCWA1aLCZtKh6MB9Qq1aRajNyUy/VaHWESiWRYO28IJQkidEDbXz7wGzKG90kWfVEGbWic/AUJNas54Fzh3DfrOzW17qjRj1PZQbFmzkzL5Elu0LGvslRBu6fndPvc0oFglOR0342YkAOsnxPLXe9HnL3liT4w4XDGDvQRlK0Eb1G4q+f7eK9DWXhfd69ewoFlc08u7wQrVrFL84ZwhlDEjolimpbvDz5zV6+LqgmL9nKHy8aTnqsCcllh09+BLsXhTbUW3Hc9BVu6yASonrWtWZ3eFm3v4E1xXbOHZ5MXrIVbyDInz/dyap9dYxMi+Yvl4zs0AuqOzi8AZrcfvbXOcmMNxNt1GIRQkUgOOGpd/pocPpw+gKkRBs6PfdTIBCEONJsxNNebEGorqnJ7afY7sSkVbN4ZzX/XVaIUatm8U9nYtZp2FTawKp9dZw/IhmnT+aWl9dFHGPRvOkMS43u1PncPpkWjx+9Vn1IoFVuhedmRGynDJmDdOlzYIjqlfd5kEaXj/vnb2TVPnt4LTPOxHv3TO1SBKgjfIEgn2+v5CfvbEZRQJLgn1eN5ocjUzt24u8CfjlIg9OHLxBEr1UTb9H1yMoCQgPI6xxeNpU0Miw1iuQog5hPKBAIBIJuIQZRHwWTPlTHs2pfHb9esA2/HBKgbr/Mwi0VXJmfxpBkK3EWHZUNbr7YWd3uGJ9vr+q02OrQAsBZ0247qbkcZF/X39Ax8AaCEUILYL/dFa5J6wkNLh+/XbA9XG+mKPD7j3YwNTu+R7UwvoDMxpJG7n9zI3anj4w4Ey/fMoFBCZYeHDPI4h1V/Py9reG1eWflcNfMQVj0wthSIBAIBL3D6VmccAQa3f6w0AIYmmJlem48176whumPLuXHb28mNcbE7CEJ7fYdltrD6FPicNAdJhzG3QzG3m9BV0mhWrG2GLXqXimElYMKLYd1arZ4A+3mAnaVRpefu15bj90ZEp8H7C5+9NYm7IcZp3btmD7+/FlBxNp/lxa26/6sd3oprHWws6KJ2pbun08gEAgEpydCbLVhzsgUzG0iTveckc3P3t3CvhoHEHrA3/PGBsakxzC8jbiamh3HhMwOhid7HWAvhNXPwL4l4Khtv81BzPFw5xLIPQeSR8Kcx0PjgPpg/E+cWc8/rx4TFldqlcQjl44gytjzQKdBqyI/I1Ig5mfEYND27FfN5ZNpPkwE7aho7pGIU4CWw44ZCCoR7e92h5efvbOFsx5fzpwnV3LZM6uoavJ0+5wCgUAgOP0QacQ2JFj1fPmTmbz83X68fpmx6baw0DpIZZOH2hYvj1wyAotBg0alIsqo6djktGwtvHEZ4ZzaoDPh8hfB3IGPj1oLCUNCP5d9YIztszmLKpXE2PRQt11di5c4iw6rQYtR2/Nfh1iznqevH8fji3ezprieiZmx/OLcId02gT2ISafGZtLS6Drk+TNmoA2Nums1W3UOL40uP3qNCoNWzZX5A3h77aHmh3HpMREp3l1VLSxrYw1SWu/mfyuL+eW5Q9CKlniBQCAQdAIhttqgVatIjjZw18xBeAMyGpWKH45MDg8gBkiw6HF4AizbU8NvfzjsyAOTHbWw+LdEzKIpWgLu+o7F1kEMnav76il6jZqkKHWfeAolRRn444XDcfpkzDp1l/3IOiLGrOPlWyZw/5sbqWjykJds5d/XjOmSiKtu9jDvrY2k2kw0uf2Y9Wp+dV4e10/K4OmlhWTGmbh9elaEb1hRraPdcfbUtOCVZSG2BAKBQNAphNhqQ0AOsqWskbte24Dd6SMpSs+LN+Xj8ct8s6uWBKueRy8fxUsri/jjRcOPLLQACIKv/Vw+AqdHzc/BpoOj4fHLYXdqs04dHjHUEVq1itFpNj6eOw2/rKDXqIjrwiBnXyDInpJKnj5Lj63gVTwJaTTlXkZhrZOXVhbz6OWjiDPr2gmomYMT2o37uSp/oCigFwgEAkGnEWKrDfVOX1hoAVQ3e5n71ibm3zmZh/wyjS4/y/bU8Os5Q0k9lou4MQ4m3wefP3BoLXYQWBL78B2cPDS6fLy7vpQnvt6LLxDkivFp/PLcIUcVUCFz0u5F4gKyzBjNAaxvXgKKggWwbHkZ0/Vf4PQGmL/2APPOym2338Eh1X9dVECLJ8Bt0zKZ2ovjXGqaPazcV4cvEGTWkEQSLDrUp6mppkAgEJyqCLHVBm8gGBZaBzlgd+ELBBmUYMHtC5CXYsWkO/Ztcwcl/MOuIyppBHz3JCQOg4l3hcVWi8ePyyuDBNFGbYRLc5P7UE3RqUppg5u/LtoVfv32ulLGptuYMzKFqiYPXxdUMyTZyug0W5ciWEfCFHTA6n9EpnWbSrE07cXhVbO9vBmvP4hGHyl0zHoN03Liee22iQQViDFpe81hvLrZw0VPraS6ORTtjDJo+PzHMxkQI8YBCQQCwamEEFttMGhVpEQbqGzTbTY4yUJhjYMoo6ZTMwCDQYWKJjdPfrOX0gY310/KYtpFrxBj1II6dLvtDi9/+ayAT7ZUoNeo+NnZg7lifBoAq/bZeWPNAdJsRuadlcsAm7FH43B6ixaPnya3n3qnj6QoAzajFn0PxOB3++qYmRvPrdOyMOnU1LR4qXd4+b7Qzl2vbwhvN3NwAk9cPYbYHg98lkBqL5K8soLDG+CSMQOOOo6nNwTf4XxdUB0WWgDNngCvfFfMg+fnoVaJ6JZAIBCcKgix1YpfDhl6vnBTPvPe2kRRnZO8ZCt/vmQEzy4rZPRAW6eOU+f0ctFTq6hvjZCtKbLz/j1TcVoV6pwtpEQb2XSggQWbygFIiTbS6PbT5PKzr6aF++dvDB/r64JqvvzJTBKP82DcBqePhVsr+OMnOwgqIVH62m0TmZAZ220H95mD48mIM/PL97dQ5/CRnWDhpZvzuf3VSGf+b/fU0uz291xsGW0w+zew/9tD0a2YLGr0mVydLzM9N75nx+8Gh9tOADS5A5zAQx0EAoFA0A2E2GqlqsnLuU98y/w7JvPg+XlEG7WUN7p5aME2bpma2emHfVGtMyy0AOadlctXO6t5ZnkhECoEf/HmfIamWJmUFceM3HheX32AXZXN3DlzEFfmp/He+pAVQYPLz74ax3EXWw5vgL98WhAuEvf4g/zy/a18cM9U4rs53sdm1HHVe6vDBqiFtQ6K6py4fe1d7ANtp4B3gganjwaXjya3nwE2I3GW1kHhSSPg3tWw6U2UmIEE8y7Cporh7oHaHo8S6g4XjErhX1/twRsIvT+VBLdPzzptByELBALBqYoQW4AcDPLKqv1Mz4lnya5qzhuRzDvryyitd/GLc4YwPsNGTYuHsgY3A2xGoo3aI6acrIZD65IEswYncOkz34XXnD6Z//t8F7dNyyLVZuSGl9aEIxlLd9fy1p2TWbyjOtylF9WJ4dZ9TZPbj0+OFDyl9S6C3QjBuP0Bmt0BnL5AO6f5BRvLuGNGFg9/esjVPTfRgs3Y+ahWg9PHw5/uYMGmCiBUY7XgvmlkxptBb4HEPDj3z0iAGujAirbfSLTq+eInM3lm2T48fpl7zshhYKyo1xIIBIJTDfEVmpCT+FUTBpKbZKWs0U15o5spg2K5dVoms4YksHZ/A9MfXcqVz37P9EeX8E1BDb5Ax9GW5CgDkweFHuFalQqnT26XFiqpdzE0JYpPt1ZE/EwOKizeWcXkQaFut0lZsaREH9+oFoBOoyLtsKLtM/MSu1zA7/YFWFJQw8zHllLn8BFliBSsFY1uLhiVyos353PeiGR+fvZg3rxzUpeiZzUtnrDQglB08P8+L8Dh8R9lr+ODTqMmK97MXy4ZwWNXjGZYalSnmi8EAoFAcHIhPtmBBqefO19bT0m9C4APN5bz2BWjyM+MpdHl58EPtoXHwgQVeGjBNiYNiu3QEDTOouep68ZRVOugvNFNVryZWLMuIrX4w5EppMUYO9x/gM3IpKxYrp+UzuAkS58UZneVBIuOp68bx9+/3E1BZTPTcuL59Zy8Lkfdmt0Bfv7eFryBIC+sKOIfV47moY+2U9viZXCShX9ePYbEKAM/iDIwPScerVoVSv91gY5G6ZTUu/AGgnR/ZHXfotOcul2nAoFAIBBiC4CyBldYaB3kte/3c+aQROSgEk7pHaTFG4iYn3c48RY98a0iSQ4qvHf3FH778XaKa52cOzyJe2fnYNCquWZCOm+uKQkPNx5gMzI9Jx6fHGRTSQN+OYgkSV12eW9w+pAVhViTrlc6GWNauzD/eukIgoBZpyGhG7Vabr+Mxx+KCH5TUIPXH+Rvl40kN8mKSacO3zOg27YXQ5KjMGhV4fMAXDY2jehupGPtDi87K5rZXNrIrLxEBsYYsZl62hUpEAgEgtMNIbagw+iJVqVCpZIwqNTkZ8Sw/kBD+GdjBtowdrKgWq2SSIsx8uB5eZTUO1m3v4Hzn/iWp68bx8SsWD6bN53NJY1IUmjMTUm9izteWx9OL84Zmcwjl44kphMPeZc3wM7KZv66qACHN8AdM7I4Z1hyrwiEGLM+LLq6i0mvJsGqD4vLlfvqAIWnrhvXayIm1qzlw3un8seFO6lq8nBVfhqXj0/rctF5o8vHw5/u5OPNoZTk41/t4ZFLRnDVhIHHmBwgEAgEAkEkknIC95nn5+cr69ev7/Pz2B1ebnhpDQWVLUCosP2N2ycxLSdkB1Dd7OFvn+9i04EGzhiSwL2zsjFoVfgCClajFuMxojDVzR5m/2MZrjaddslRBj6ZOy3caVjr8LJyby1PLdlHYW3kmJ8VD8xmYKzpmO+jpN7F7H8sC6c8AV64aTxnD0vu3I3oY+SgQmGNg5++u5mCymam58bz2OWjSD6WG383aHD5CMhBbCZdt8RReaObaX9bErFmM2lZ/NOZJHbTxV4gEAgEpzaSJG1QFCX/8HUR2SJUZ/XabZNYsbeW4jonF41OJaWNAEiKMvC7C4bh8ATYb3fg8Qf5eHM5z31bzMVjUpk7O+eotVW+QDBCaAFUNXsi5u1ZdBpyEiw0u9t7L3mPUIx/OMt31yAHFaJbBWBVs4f5a0qZmh1/VMPO/kKtkhicbOW12yYiKwp6tYroPkrLdSYSeDSCHaSJj9QUIRAIBALB0Tj+T+DjjKIo1Dl8KIrC2cOSsHYwDNnrl/mmoJoHPtiKooQiXw9fNILpOfG8vGo/Rq2an/xg8BG9mozqINkJ5oiI1ZRBcRi0h7Y36tSkx5q4YXI6//p6b3h9ULwZm6lz9UY5CRaevm4cZr0ahzdAotXAtrJGdCdY2utEKPo/Fma9mklZsawprg+v3Totk6ijDMsWCAQCgaAjTus0ol+W2VnRwk/e2UxxnZOp2XH886rRJEcb8cvBcPqputnDmf9YhrNNdCrKoOHp68dx40tryYwz8d49U49cNF6xibJANA99XcPWsmamZNn4/TnpJMfaQBuZkqp3+lhbZKes0U2sSce03PhOF8hXNbmZ9/Zm1rYKhHiLjg/vm0p6rLkbd+fURVEUalq8fLSpnEa3n6vzB5IcbWhXlF/n8PLJ5grW7a/ngtGpTBkU1wtjgwQCgUBwqiLSiB3Q4PRz40traG4dm7K9oonqZi/f7KphdaGd80amMGVQHHJQiRBaEJpjp29t2c9OsEREqdpRvZO0ZX/lyfE/wjtpKKbqFViWbYaLn6Lep8LlDSBJYNJp0KolUmOMfFVQTarNyNScOBRF6dRYnOI6V1hoAdQ5fDy7rIjfXzis34daB4MKbr+MUas+IWY7tqW2xcsFT66k1hEq1H9xRRGfzZvB4CRrxHbxFj23Tsvk+knpPZoDKRAIBILTm9NabLV4A2GhBfDzs4fwr6/3sGx3LQALt1Zy54ws7pgxiPEZMWxo05E4ZVAcBZXNJFj0/O6CYR2mH8NkToeWSqKX/Cr0Wh8FFz1Jk2Jk7vyNfFdoB+C2aZmcNTSJ619cE9717XWlfDZveqeKsssbXO3WSupd+ALBfhVbdoeXhVsqWbanhlmDE7hwdOoJlTpcVWgPCy0Av6zw36X7+Nvlo9rdJ0mShNASCAQCQY84rcWWRa9Bp1ahoPDDkSlMy4lje0UTRq0atz8UyXrt+wNcPj6NJ68Zw5NL9rGuuJ7Jg2KZe2YuLp/M+SOSCARh1b460lp9mNp5OpkT4OZPYcU/qZv0ADW6dIJqPfpmL2UN7vBmsWY9Ty3ZF7FrbUvI6ylxyLHF1pTsOLRqCb98KDV83aT0fh350+T28/uPd/DZtkoAlu2uZe3+ev522agjXoeihKJgeo26yyam3aGj1Ll8FN80gUAgEAh6wmkttqwGDf++ZgxZ8Wa+2FHFA+9vY8SAKN68YxL3vrmB6mYvGpVEbYuX619YzcIfzUCrVmHRazDq1ASDCqsK67j15XVhk9NfnTeEGydnYmk7ikZngoyp1MWM4ZZXN7C9fAMQKn5/4uoxXPXc9wSCCoFgEK26vdjobIF7nEXPh/dO5a+LdtHk9nPrtEymZsf1/EZ1AZcvwKLtlRFrn2+v4ncXDOtQbNkdXhbvrObrgmqmDIrjkrEDIsxN+4JpOfERrv5qlcT9rUazAoFAIBD0Nqe12DLpNEwaFMvvP97Bp1tDAmFjSQPby5v5+TlDeOD9rdw+I4tF2yqxO/28vvoAvzovL7y/3enjwQ+2RbjJP754D5eOTYsUW62sLAwd+yBFdU6W7q5h1pAEvi6oYeGWSv5+xShWFdrDkZaseDO5h9USHQmDVs3INBvP3jCOQFAhppcc5LuCSpLQqVURdhU6tQpVBzVnDq+ffyzezVtrS4GQq/yKvbU8cfVYYvqwED3BomfRvBm8u76EBpefGyZnkGoT3lkCgUAg6BtOa7EF4PEHWbQtMhKzsaSBx68axcK509hZ2cx/WlN7tsMiMwoKVc0eogwa/HIoFRYIKvgCcthSwukNYNCqsZm07K1paXf+8kY3aTFGYkxabpqSTkaciW9+dgYLt1SQEm3gjCEJXR6N01feVZ3Bqtdw36zsCPuKe2dlY+3A58vplXlvfVnE2vI9dbj9MjF9eI0qlURytIF5Zw3uw7MIBAKBQBDitBdbCmA1aCPmH2rVEo0uP2+sPsC1E9OxGkK1XZeMGRCxr0mr5oN7p1Dv9KPXqKhzeHlpZTE6jZqSehfXvbCG8kY3GpXEw5cM58JRqTy9tDDiGNdMSCc7wcx9s3OwGXXoNCriLHp+dFZuf7z9Xsek13DT1Exm5yWytrieiVmxpMeaMHUgtiRAr1ERaNPpqVZJdKLxUiAQCASCk4bTXmxZ9Wp+ee4QfvvR9vDa7dOz+Hx7FR9sLCcgK7xyy0TSYoztIkzNngBz528KF7lPGRTHU9eNRZLg9x9vp7wxtB4IKjy0YDurHpjNK7dO4O9f7iYgK9x/Zg5DkiydikTVtXj5vshOYa2DH45MISXa2GGq8kQgxqQjxqRjVJrtqNtFG7X89OzB/OWzgvDaLVMzsRwnt/tmt58mt5+SehdZ8WZsRm2HIlEgEAgEgq5w2j9Joow6fjA0kdFp09lT3UxSlJHd1c080ioAvtxZxUMXDI2wXpDlIPUuH/9bWRzRTfh9kZ1NJY2Mz4gJz1k8iKJAYZ2T/IwYXrttIgoQZ9Z1yj/L7vBy+2vr2FLaBMC/v9nLa7dOZMbghF64A8cPvVbNFePTmDwoju8K6xifEUNWvOXoNhp9hNMb4P0NZTz86U4gFGF78aZ8ZubGoz7BHPgFAoFAcHJx2j9F3D6Zd9aV8N6GUiZmxTHv7U38+dOC8NzCzDgzKkkKGZt6AyiKQq3DyxurD1BU52x3vPIGNxa9htl5iRHrBq0Ks05DvdNHnEVPvEXfKaEFUN3iDQstCAm3x77cjb2NV9TJis2kY8SAaO6amc34jNjj5tDe4gnwt893hV/LQYUHP9xKvct3XK5HIBAIBKcOPRJbkiRdKUnSDkmSgpIktbOnb7PdeZIk7ZYkaZ8kSQ/25Jy9TbPHzzPLi3jt+wO8sfoAN0/JCNcMmXRq/nHlaABeWlnEj97axFtrS3B4AuRnxnL5uMgaLpUE549MxmbS8dMfDOa8EcmoVRJZ8Wb+c+04nl9RRFMHg6aPRUBuPwDZFwginKF6D58cxHfYfa5t8SLstwQCgUDQU3qaRtwOXAY8d6QNJElSA08DZwNlwDpJkj5RFGVnD8/daxz0uHx+RRH3zcrhw3unopJCHWsalcRP393Mt3vqAFiyq4ar8wcyemA0WrWKB8/P4911pZj1Gn4zJy+cbow167gmfyA3TcmgtsXLs8sL2V/nJOnirntIpUQbyYwzsd9+yCH+vtnZxIk5fb2GSasmN9HC3hpHeO0HQ5MwCu8tgUAgEPSQHoktRVEKgGOlwyYC+xRFKWrd9m3gYuCEEFtRBm24IH5oipUlu6opa3Dx8EUjiDZpqWh0h4XWQT7YWMZl4wZwzQurOXtoEvfOyiYzzkx+Zkz4Xug0KkYNtDF/zQE+3lxBZryJx6+cSry562Irwarn3bun8O76UvZUO7h+Ujp5KVGdTkMKjk28Vc+rt03k0S92saW0kVmDE7j/zNx+dd8XCAQCwalJfxTIDwBK27wuAyYdaWNJku4C7gJIT0/v2ysDjDo1N0/NZPKgOJburuHCUamMy4gh2hR6yKqkULF023EuBq0av6ygKLB4ZzWLd1Zz0ehUxqTbIhzgY8067jkjmxsmZyAHFawGbajmq8WLAsSadGg6WXydGGXgvlk5yIqCVhRs9wmpNiN/vXQkLl8Aq0Hb+47y7kbwOSAog84C5v519xcIBALB8eGYYkuSpK+B5A5+9JCiKB934hwdhV+OWAmjKMrzwPMA+fn5fV4x4/bLvLW2hCdaTThfXrWfK8an8fvW8TIWvYZbp2by4sri8D4/PiuHhVsrIo5zxfi0DkVQizfAij21vLehjOwECzdNyeAPn+xgd1UL987K5pKxA4jppAmpSiWh6vB2Hh2PP0CTO0BQUTBq1diOo+npiY5Zr8HcF3YPTjt8/QfY9Hro9cDJcPXrYEk8+n4CgUAgOOk55lNFUZQf9PAcZcDANq/TgIojbNvvNLv9PLe8KGLtg41l/PzswSGxZdBy/+wc5oxMYWNJA1Oy40i06lm/v4F1xfX45CD3zBzEqLTodscOyEE+2lTOnxaGMqYr9tbx1c5q/nb5SG58aS1/WriTnEQLM3L7zsKhye1nwcYyHvtyNy6fzOwhCTx2xeguu9KfyDS5fLj8MhISFoPmuPl0HZXaXYeEFkDpatj8JkyZB2pRFyYQCASnMv3xVFoH5EqSlAWUA9cA1/XDeTtNUIkMoClKZOgtxqwjxqxjXMahITLnDk9mQmYsChBj0naYDmxw+Xnlu/0Ra+WNbgKyglWvocUb4IMN5UzJjkOj6pvUYJ3Dyx8XHiqPW7q7lle/38+8M3PRaU7+dKTd4eV3H2/n8+1VaFQSt0/P4u6Z2X06W7FbVGxqv1ayGibeBWpz/1+PQCAQCPqNnlo/XCpJUhkwBfhMkqQvW9dTJUlaBKAoSgCYC3wJFADvKoqyo2eX3XtY9RpunpoZsTZnZDJm3dGjDSqVRLxVT4JVf8S6K5UE1g5c3o06ddhmYPTA6D4TWgDby5rara3aW4fT2zULCrvDy57qFgoqm6nrI38vr1/G6fUfe8NWFEVh0bZKFm2rQlHALys8u7yIwjrHsXfub7Jnt18bdgnohNASCASCU52ediMuABZ0sF4BzGnzehGwqCfn6itMeg33nJHNhMwYPt9exfSceM4YnNArw5zjLHp+98NhXPfimnCB/Rm58ZQ3uvEGgoxKi+aCUak9Ps/RGDGgfXpzcnYcOk3na7/qHF7ueHUdm1uNVXMTLcy/cxIJbVz1e4IsB6lu8bKmyI4cVJiQFUusSYvVePT/A48/yIq9de3W1xbVk58R2yvX1mtEDYALn4Rv/gg+F0y4A3LPOd5XJRAIBIJ+4AQsbul/Ys06zh6WzFl5SahUvWunMHJANMt+MYuV++oYFG8mM96MLyCz7BezsBo0xFn6tnYq3qLnN3OG8q+v9uD2y8zIjeesvEQanH7M+s7ZGuypbiHWrMegVeHxB9lb4+DjzRXcMWNQr1xjjcPL5c98R2WTB4BEq5737plyTLFl0KqYnZfI4p3VEetTs0/ALj+jDcZcB0POC+Wp9VGgMx3vqxIIBAJBP3DyF+30Ir0ttCAUORsYa+LaielMGhRHUpSBgbEh0dXXQgtAo5bQqiRevnUC790zhTPzErnr9Q0s21N7zH3loEJVk5sNBxrIS7by9p2TmdU6j7Ggshk52N7Zvjt8srkiLLQAalq8vL+hDMcxUoqSJHHu8CQuGzsAlQR6jYqfnZ1LRvwJmppTa8GSBNZkIbQEAoHgNEJEtk4yfAGZBpcfj1/GqFUTaz66V5dOraKkwcWfPo30kE2PPfbDvrbFy7lPrKDJHRI9r3y3nzfvmMSGAw1cPSEddS/Vmtmd7ecPNrh8naplizXr+dPFw3ngvDwkKWRSazxGvZ1AIBAIBP2JiGx1gKIo2B1emt2dL9buD/xykE0ljZz9r+Wc8fdlnPfvFeysbCZ4lAF+Wo2Ku2YOIinqUBTiYw1cAAAgAElEQVRtQmYMw1Kjjnm+T7aUh4UWgMsn88nmCl66JZ8hydaevZk2XJWfhrpNVFElwfWTMjptKmo1aEmONpAUZRBCSyAQCAQnHCKy1UqTy4dfDhIIwtpiO698tx+zXsMvzx3C4CRr77uJHwGnN4AvEMRm0rYbx9Pg9HHvmxtpbh1mXe/0cd+bG1lw39SjFqunRBv59EczOGB3YtKpSYoydCqFGZDbi7igAuPTY1D3oot9lEHLB/dM4eml+wgCc2fnMMDWO8X3AoFAIBAcb4TYAioa3Tz44VbunJ5Fs0dm3tubwz9bXWRnyc9nMbA17RYIBpFlBb1WTYvHT1mDm/c3lJGdYObsYUnd7tCT5SClDW7+vng3VU0erp+Uzuy8xAh3eW8gSP1hKbeyBneHouhwElptKrrCxWMH8NTSfbh8MhBKSd46LbNXhVZ1s4fLn/kOjUpizsgUUqINZMaZiTpGcfyR8MtBgsHQ/49AIBAIBCcCp73Yqnf6mPfWJjaUNPD7C4bx2he7I37ulxWW7KrhpikZVDV7eGXVfsob3dw/O4fqZg+3vLwuvO3/Vu3n7bsmE9+Nwne708dFT62k2ROKWm040MCjl4/iyvFp4cJ9g1ZNWoyRsgZ3eL+hKdY+MydNtOpZ/JOZvPb9AfxykJunZpIS3XsRp0AwyKvf7Q+/n/8uKwQgxWbkB0OTunSsUDG/hxdXFFHn9HLH9EFkJ5ixGMQgaYFAIBAcX057seULBFl/oIGDGbvEDqI/qTYDtS1eLvrPKmpbDT3HZ8Tw0abyiO321Tgob3B3S2ztrm4JC62DvL56PzNz40mxGQGIt+h45dYJzJ2/iV1VLYwcEM1T143ts65GrVpFWqyJX8/JQ1F6v1vTH1AorHW2Wy+udcLQzh+n2e2n2eOnssmDRq1i0bYqFm6p5P17ppCfeYL5bQkEAoHgtOO0L5BXqyAtxoiiwLbyJq6blE685VAKa3hqFOPTYyiobAkLrYN0lLw7fPRPZ+loGHW8Rc/yvbXYnaHzSpJETqKVN+6YxJrfnMUrt04gI67vbA7qnT6+L7Tz1JJ9bC1rpNHVvmuwJxh1aq6blB6xppLgB8M6H9WyO7w89NE2Zjy2lOtfWENQUXjk0hEAPLO8sMtO+QKBQCAQ9DanvdiKM+v59zVjseg1/OGTHXh8Ad6/ZyrP3TCOd++ezP9umUCsJWTo2ZZF2yq5fXpWxFpWvJmBMd3zT0q1GZmeHR9+bdSquXtmNv9dWkiLO1IwxFv0nS5y7wwtHj+FNQ5e/W4/a4vtoU5Mj59/frWba19YzeNf7eGS/37H22tL8fjlXjnnQUanRfP4laMZnGRhdFo0b94xqcPoYkcoisLn20NRLEUBnxzkpZXFxJp0pMUYMes0qKTe904TCAQCgaArnPZpRJVKYuSAKL75+Rk4vQHMOg3RJg2Z8SkR22UnWMhNtLC3JjR3b1NJI49ePoqFc6fx1tpSchItXDg6hfguFqEfJNas4x9XjWJHRTPVzR6GpkTx1NJ9lNS7Ooyg9RZyUGHlvjrufWNjeO2i0an8+vw85q8pidj2ySV7uWzcgF7tzLSZdFw6dgBnDElAJUnEdmGAtMcfZHkH5qybSxsZkmRl3lk5wgpCIBAIBMed015sAeg0apKijv5QjrfqmX/nZFYX2alscnPu8GQSrXqMOg0j02y9ch3xFj3N7gAvr9pPUZ0TOagwZmA0UR0Ms+4t6p0+HvmsIGLtky0V/OKcwRxu3xWQlT4RfiqV1K06N4NWxewhCXx12LieaTnx3Dglg9hemG8pEAgEAkFPEWKrCyRY9cwZkUyLN4AcVDDqevf2adQqZuclkGoz8MHGMkYPtHHusOQ+HeujoNDiaV/XJAcVzspL5JtdNeG1ayYMxKI/cX5lQuN6kllbXM8nWyrQqkMGrsNSoog5RoSszuGlrMGNyxcgN9FCvEXfztdMIBAIBILeQFK6WdDdH+Tn5yvr168/3pcRpqbZw+Kd1by4ogijTs2vzssjPyMWSx9EnhRF6ZeHv9cv8/SyQp78Zm94LS85VIQvEapNW1Vo59zhSZwxOLFLab7+otntx+WT0aol/LKCSgVW/ZHH9tQ5vNz2yjq2ljUBkGDR8/HcaaS2dn0KBAKBQNAdJEnaoChKfrt1IbY6R6Pbx8o9dcx9a1N4TZLg65+eQXai5TheWc9pcPpYsruGhZsrGJEWzU2TM0iMCvlpKYqCTw4iIdHo8qEQKt6PMp5Y/lUtHj/f7qnlz58W0OT2c/2kdO6bnUOsWYfD68fhCeCXFUw6Nbuqmrn+xbUR+98+LZMHzx+Kto88ywQCgUBw6nMksXXi5IROcJpcfj7dVhmxpiiweGc1957kYivGrOPcYUlMyorF7vDil5VQs4BegyRJ+ANBvi6o4Y8Ld9Dk9nPusGT+csmIbjcD9AV1LV7un39ICL+4spjMeDMXj0nlpZXFPLVkH4GgwvDUKP5z7Viseg0tbWwhShrcBIJBtKJBVyAQCAS9jHiyHIYvEKSm2UN1sweH59AQ5nqnj/TY9rYOOSe50AJwePy8tGo/0x9dysVPf8eMx5awusiO3FohX+/y85N3NtPo8qMo8MWOKv63qhh/IHicr/wQq4vr260t2lZJg9PHE1/vJdD6XnZUNPPyqv1cMjY1YtsbJ2f0eg2eQCAQCAQgxFYEzW4/CzaV8YN/LWfq35bwh092Ym81Mk2OMjBnZApZ8YdMRCdlxTJ2YO90Ih4PgkEFu8NLkzsQUbMVVOChBdvDcxh3VjS323f5nlqa24jRtrR4/JTUu1i6q4aSehctR9iuNxmaYm23NjotGruzvRHr5tJGbp6ayZTsOEanhVz4R6dF9/k1CgQCgeD0RHyVJxTNanL5aHD7+dUH28LrH2wsIy/Zym3TMok162jxBnj08lH45SBWg4akKEOPU2luvxwWI9EGbb8NUG50+Vi6u5bnvy3k/y4dGY5iHaTO4eVgPd/gpPbRuwkZMZg76Ez0+mW+2F7FL9/fGl579PKRXDJmQJ++t/RYM9dNTGf+2pA32LCUKG6dloUvEESSQilfAKtew+3Ts8iINfPsDeOQgwqx5kP/h3aHF18giFolEWfW9erQbYFAIBCcnpz2YqvB5eOdtaWsLKxjZk58u59/s6uaqyYMJNqoZXCSlQaXD1lWsJm1aFQ9exDXO328vKqYF1cUo1ZJ3D87m2smpnc4uqe32VzayE/f2QxAeaMnwrAV4MLRKZhau/niLHoePD+Pfy7eg08OMnagjftm53Robtro9vOnhTsj1v78aQGzhiSS1IdiK9as41fnD2HumTkE5CAmvYZ4ix6HJ8DT143j9x9v59wh0fxqmg3LvrdQbUsmOvdssBwaDVTe4ObeNzewtayJRKuef18zhnHpMf0mgAUCgUBwanLai63NJY387YtdxFt03HHY+B2A/MzYsOiAjmcYdv/cDfxnyb7w60e/2M34jFgmZvXt8GS3L8Cbbdzh//7lLp64egxvrClhR0UTZ+Ylcuu0LCyGUMdhtFHLTZMzuGTMAALBIEadmjhzxxE9OajgOGweoaPVl6yviTbqiD7MvcFi0HBOa/F/TMtuVC9MgWDr9cVkwe2LwZJIk8vPrz7YEraDqGnxcvur61n6i1l9KhIFAoFAcOpzWoutgBzko83lANQ5fJTWu7ltWiavfX+AQFBhQmYMN0/JQKtWIQcVXL4AJq26V1JLwaDCZ4d1NwIs3lHV52JLo1aR2WaA9X67i5tfXscbt08k1WYkyqBtZ4Fg0mswdcLQ1KhVM3lQLGuK6zljcAITM2PRaSRMx1GwaNQq4rQ+WPZ/h4QWQEMxVG6B3LPxyjLr9jdE7OfyyTg8AZKi+vmCBYKTkGZPyGKlye0nzqwTaXiBoA2ntdjSqFWMT4/h480VAPxx4Q7unjmIr342E51ahVGnIdasw+7wsmBTOcv31DI9J57Lx6d1a7xMW1QqiRsmZ5Aea+KjzRUU1zmBUNF9X6NVq7h9ehYLt1RQ1ewBYFC8GZ8cij71xGsqxqzjyWvGUt7oZt3+ehbvqCYn0YLLL3NcWwkUBQLe9uutazq1ijEDbaxp09Wo16j6xLBWIKhzeNlc2kiJ3cVZQxNJsOg79WXmRKXZ7eflVcU88c1eFAVsJi3v3T2F3KT2jSsCwenIaW9qWufwcs8bG1jfGtU4Ky+Rx64YFR6R0+z28+CHW1m0rSq8z9nDkvj7FaOwdTOl2OTysbqonue+LcJq0HDHjCzeXVcKSPzxomF9Op7nIAE5yL4aB/vtLgxaFd5AkIcWbONfV49hRm5Ch/t4/HLY1PRo+ANBnlleyD+/2hNeG2Az8tH900g4nt5cB76Dl88/9NocD/esAmsyACV2F7e+so7CWgfRRi1PXD2GKdlxvTp4WyCwO7zc8dp6NpU0AqBWSbxz92TyM/r+i1ZfUdbgYvqjSyPWJmbF8vyN47v9OSkQnIwIU9MjEG/R8/yN43F6ZSQJzDpNxFw9l0/m8+1VEft8tbMadw8iNZtKG7n7jQ3h198X2vn65zOJMmj77YPJJwf5++LdbC1rCnVjukMdkXurHe3ElscvU9rg4ukl+/DLQe6fnUtmnOmI38Qb3D7eXHMgYq280Y3d6T2+Yit5JNy1HNY8C9YUmHBHRIF8epyJd+6ejMcvo1OrsJm06DRCaAl6l6pmT1hoQajO8W+LdvHCzfn90hzTFzS42tu7FNc58Z1AXnwCwfHktBdbALFmPbHmjn8mSaF0ksd/6ENDr1Gh6ubcQrvDy+urI4WITw6ycq+d6yald+uY3cGk03DF+DS+KTg0aFqSYHZeYrtta5q9/PDfK/HJoXvw+fYqvvzJzCOmCNSSRKxZR3VzZNruWBGxPkdvhdQxcNF/QFJDB92kPU0PCwTHwuOX2625fDLBfmgi6SuSrPp2UxnOH558wo31EgiOF6J68RhEGbT8+KzciLX7Z2dj7WZ9hdsvd/hAT47q/4f85EFx/OHCYaTFGBmSZOWVWyd2GHlasKksLLQgZHr6ynf7j/hwiLPo+eOFw9GoDgnSC0en9skHb5PbR0WjmxK7kzpHBzVZHaHWdii0BIL+ID3WRHLr7NGD3DVz0Ak55L2zxJh1vHfPFMal24g167h+UjrzfpDboxS8xy8jB0VkTHBqICJbh2F3eCmpd+HyyeQmWUiw6Ll2YjpnDE5k/YF6xqfHMCDG2O1i1nqHj3vOyOarndVhh/YRA6IYltr/DuYxJh03TsngglEpSJJ0xKhOtLH9Q8Bm0nK04F5WvImP75/G2v31ZMWbyYgzdaojscnlo6jOyYJN5YwYEM2ZeYlHvK56p4/HF+8O21gMS4ni9dsmEncCzWwUCA4nwWrgo/un8vKq/ey3O7l+Ugaj0qKR2vxBNbh8+OUgerWK6H5MLTa5fDi8Mr5W4+bORnq1ahV5KVG8dPOEVtNnLUZd94RWo8vHlrJG3lpbyuAkC9dPyiDpMHEqEJxsnPYF8m2pa/Fy88traXT50WlUODwBPpk7jRSb8dg7d5KqJjf/WLybayakc8DuwqzXMCTZwsBYU9gkVZaDNHsCGLTqbn9g9SbVzR4uemplOC1oM2n5fN6MI94XpzfAbz/azqJtleQkWqhp8dLi8fPtL2eT2OZDU1EU6hxenF4Zg1ZFlEHLFzuq+Nm7W8LbjE238eJN+R02DWwpbeTip1cBEGXQ8I8rR6OSJCqbPMwYHE+CRd+hy71AcCIQkIP4ZaXd33iJ3ckv3t/KltJGJmbF8ujlo0jtxc+gI2F3ePn7l7t5e10pAEOSrLx62wSSDzev60PkoML7G0ojJnlkxJl4/56px7feUyDoJKJAvhMUVDbzq/PyaPb48fhlMuPMfLa1gpunZaHtJb8Yu8PH+xvKeX9DORlxJjx+mdRoI/+7ZQIxZh31Ti8LNlWwcEsFuUkWfvqDwf3yQXs0kqIMLJw7ne9bh1NPywkJmSPh9AVYvqcWbyDIjjZzFWtavBFiq6TexfUvrqGswY1OreKD+6bwxNd7I461qaQx5NvTwfl2VR069h8uGs7rqw+wYm8dACoJXr99EtNy4ql3eqls8lDv9DE4yUp8f/n/uOrB5wh5e+mtYO64y1NwcmN3eNlX42B3VQszBieQYNF3yjJEo1ZxeP9FXYuXW15eR1GrFcyKvXXc9+ZG/nfzBGItfRvhKq13hYUWwO7qFl5YUcyvzstD1wM7mK7Q4PTx/LdFEWsH7C6qmz1CbAlOaoTYakOKzcj9b25kd3ULAHFmHW/cMYmArNBbtd1ta58O2F1AaNRMUFHw+mVeXFHMf5cVAqGROt8X2llw31QSrMc3jJ4YZeDiMQM6ta1erWJYipWV++zhNZUEcW0eFk0uHw8t2EZZgxsI3ZfCGicK7SOtR4q9TswMtcrrNSrSbMaw0IJQXdlfFxXw4k35PPjhNpbvqQVCEbCP506PGCjeJzjr4LOfwc6PQ6+TR8INH0R0PwpOfhqcPn770fZwx7IkwYs35XNmXmJEWrCzeAJyWGgdZHNpI165fVF9b7Ojg4HzOyqaaHL7+u3zR5LosM6rv8SeQNBXiN/gNhRUNrO7uoWMOBOzhiSg16h4f0MpWnX3Og87Ii3GRFpMZKTq3jOyiTXraPL4eWddKRqVRGaciSiDhrIGN00dtFWfyESbdDxy6cjw+9RrVDxy6Uisei0BOUhtiwenN4BZF6n1P9tWydzZORFrYwZGYztCYX2CVc/T141lgM2It4MW82aPH7dfDgut0FqAx77c1W6kUK9TveOQ0AKo2gbrX4Fg3z80BZ2n3umloLKZFXtrqW72EJC7VpDd4g1EWMMoCjzyWQF2h69b16NVq4gyRv5dJEcZUKt67zPoSEzIjG1Xh3lmXhIWXd9+J2/x+Cmpd/F1QTUOb4B/XDk64jomZsYQdxI3DwgEICJbEdQ5PDxx9Rg0aokd5c3cMDkDRVEIBJV24f62OLwBHJ4AQUXBqFVH+HQdToJVzwf3TmX+mhIKax1cPymdYSlRSJKESvZz+bgBnD8yhT3VDgbYjOy3OzGcAHVbXSU91sSC+6bh8gXQa9REGTV4/UE+3FjG8yuKMGjV/PisHDLjzTzXmjZYsbeWP188gg/uncqHG8sYOSCaHwxLOqLJq8Wg5bzhyUzMiiMQDDIw1khpvTv881unZYX9w9pS1ejBHwhCX2Ylqra2X6vcFHKs15n68MSCzlLv9PLgB9tYvLMaAItew0f3TyUnsfOu5x35SLV4AgSPGI89OjEmLf+6agwvryrm6gnpxJl1xFt0R5xF2pvYTFr+ccVo/vnVHprcfi4fn8YFo1Iw9mHdozcg88X2Kn75/qG/l79cMoIVD8zm062V5CRYGJNu6xejZ4GgLxFiqw3nDE/hP9/sPVS3sBweOHcI07LjqWn24PLJmHRqYsxatOqQAGpw+XhpRTHPLi8kEFSYlhPHE1ePDdcXBOQg9U4flU0eYsw6ogwakqIM/PisXALB4CHTzJZq4jc8z+wh93DVc9/jbx2dc+2EgZwz7ORLPUmS1HoPDn1Iri6q5vef7Ai//tFbm/ng3qm8t6EUq0HL41eOJsakJTnawPiMmE6dR61Whe/1e3dP5X8ri9lT3cJl49MYnxGDRMjfy93G2+jaSenYTH3s/5NzNiz+beTayKuE0DqBqG72hoUWhL40PbKogCevGYvV0LnfD5tRS3aCmcLaQ6m/W6ZlEtNBB29n0GnUTMiMQa9R85sF26hq8nDRmBQePH9on3vAJUYZmJ2XyIgBoc7oGJO2z/9OGl1+Hl64M2Ltr4sKOHtYEveckd2n5xYI+hMhttogAe+uL41YW1NsZ0JWLHe8up4mt58oo4YXb8pnXHoMGrWKigY3Ty3dF95+1T47b68t4d5Z2WjUKorqnFzxzHc0e0JpqztmZDF3dg42kw6dqk3EqnAJdttI/vRpQVhoAby1rpS5Z0b6fJ2MePwy764va7e+psjOkp/PIiArxFl03apzOUhytIH7z8xmdZGdFXvr+HRLBcnRej68byqPfrGL2hYvN0zO4OyhST06T6eISoUrXoav/xAqkp90Lwya1bfnFHSJjnzZqpu8XXI9j7fqmX/nZF79bj87K5q5ZOwAzhic0KP5ok6fzC0vryXQ6mP3/oZy4i16fnb2kD6vXYo16/rV7yuoKBFGqBAyeJVPYoNXgaAjhNg6jMP/xm+aksnc+RvD6ahmd4D739zEZ/OmkxhlYEtZY7tjfF9k5+apmQSVAL//eHtYaAG8uKKYmyZntB/L01KJHD+RmpZQGmx6Tjxn5iXi9AXw90NxbF+jVUsMTYnii8NGHw1JtvbqiKIGp58Yk57MODNGrYazhiayt7qFx68cDYS8xVT9UP+CIQqGXQyZ00IV/kYbaEQq5ERicJIVi14TUb939YSBXf59TIoy8NOzB+MNyFj0PY8E7atxhIXWQb7aWcPt0wedch15Rq2aGbnxEc0tk7JixTxSwSmHEFttMOnUnJWXyDe7Do2wSY4ytBs7U+vwhrsKO0p3zc5LxKzXUO/0UtLacdiWepePBKs+/I0uxqRDO/xSor5/gStGX0lmUix+WeGDjWVEG7XMHpKI1y+jP4k/gNQqFddOGMgnmysorHUAIUE5emB3J0x2jAI8tGAbe2tC53hxZREv3JiPSiX1/9w5lVp0H57AxJl1fHT/VP66aBdVTR6umTCQC0endqsYXatW9Zo9zMCY9qnmYanWE8Jz72gcLJmQFQWD5ui1qwexmXT886oxPLNsH98V2pmYFcvc2TlHjK65fTJN7pA1j0mvJsGi7/sotUDQCwhT08OwO7x8trWSVYV2zhmWxJh0G/e8viH88AYYFG/mv9ePI8aswy8HWbilgqeXFuL2y8wZkcyv5wwl1WbE65f551d7wgXgAFlxJt65ewrPLCtk/toSzHoND56Xx5lDYolzFtGiimJphZofv3PI2FOvUbH0F7OOu99Wb1Dn8FLv9KFRSdhMWmJ7ufB33f56rnz2+4i1CZkxPHP9eHxykG/31pJo1TMqzXZ85yDK/pAPF4A5PiTMBMeFFo8fXyCIzaTrl66/Y9Hk9vHyqv08+c1egkqo2eStOycxoAMRdqLg9gVYW1zPL97bSq3Dy6SsWP59zViSoztnGeHxy6EOZb3miFEtpzfAZ9sq+d1H2/EGgqRGG3jzzsl9b+MiEHSBI5maCrHVAYqi4A0EkYAnvtnDWXlJPPzpTraWNTFiQBSPXzmGdcV23lxbwpPXjOWFFUVcODoVnUbF6kI7Lp/Mr+cMBULi7flvi/hkSwXXTBjIZeMG8HVBDX86rCj0nbsm45eDDE8y8qN3d7ByX13Ezx+/cjSXj0/rr1tw0rKmyM7Vz6+OWBs70Ma/rh7NuU+sCFtEDE+N4tXbJh4fweWqh63vwKp/h+Y0nvk7yD0nlGoUCACHx0+LN4A3EMSs05zw6cOqZg8zH10a4SN44agU/u+ykVg62WxwLCqb3Ex/dGlEPdfkQbE8e8P4Xi1FEAh6gnCQ7wKSJIW/XV07MYMfv7WRayak89AcM81uP25fgDXF9fzxouEcsDsprnNy40trw/v//oJh4X/HWfT87OzB3DkziwZnyEdrW3l788A1xfWs3FfH3y8fRaqt/bfBlE5+Q+xrmtz+cEozug8GS/eUQQlm0mKMYbNUgLln5vD22tIIL64dFc0U1TqOj9iq2AhfPHjo9Yd3wt0rhNgShLEYtL0mUvqDmmZPhNCCUO2qyyf32vtocvnbFc7vrGzu0GNPIDjREKamxyDNZuS5m/IZFG/GqAtZCNz0v7Us3FrJTS+tJSPOzMDYQ+m9gbFGLhiVEnGMkDDR8eKKYvbbXeQlt/fxGZJspazexYcby5l3Zi4xbVqu8zNjGNzBPr1JMKhQ0+LhgN1JdbMHj799UX55o5t5b23kzMeXM++tjZS3ETQnCglWAx/cO5VfnDOYy8cPYMF9UxmVFs3G0vaNDG0bF/oN2Q9b3mq/XvBJ/1+LQNBLJPw/e+cZGFWdvu3rTO+T3gskISGU0ALSm2BBUVTECioi9lXRVVe3/G3r6ru6uyquCnYsqIgNCwpI770EQgnpvU6v5/0wYZIhCYQquOf6AjlzZs7Uc+7fU+7HqG6Tgu2bHHbSHoFWl4cqizOkYzRcr0J31OON6BaN/hyvZZOQACmydVxkMgGVXEZqpI5//7Kf+a2sIVxePyv21/B/E3tybf9kRKBbrKHd0RYCoFQILN5aySczB7PxcB1bihoQBJgyIAmry0tZo5MuUToSwrT89OBI8istGDVKksK1Z9zU71CNjalvr6e80YlOJeelKX0YnRmNttk9utbqYuYHm4IjPZbn1zDzw018MH3QCT83q8uDw+3HpFWgPpZb7EkSa9Jw75gM/KKIXCbD5fUyfVhXNhTUBfcxa5XkNPsJnVVkCkjoDzu/CN0e3+fsPxcJidOEWRMwY/3TlzuwuX1kxRp56oqemE4iqlVjdfHcoj18v7OCpHAdL07uTa8EMzJg9o39eerb3RTW2RmVGc0DF3ZDLpNiBhLnPpLYOg6OZn+o/ZWWdj1uIrQKTDU7GBIdB9pwULWf7lPIZdwxIo0vNpdw97zNPHZpd/58WQ+iDCq+21HOnxbspF9KGCMyo2l0eGiwe1DJZcSbNRg7MdT2VKizuZj12TbKG51AwOfmwU+3sfyPY4Ji6+ih0hBIxTk9nQ/h291eqiwuXvxhL/sqLYzLjuWOkWlnJJUnCALy5i6laoubkjo7r1zfl6+2lRFpUHHnyLSz5yfkcYCzCQQ5GKKg97Ww4zMo3xa4PW0MpAw+O89FQuI4+P0ifkQUJyBidGoFF/WM5YK00Xh8fjRK+Un9rh0eH6/8sp+FW8sAOFht5cY561nx6Bga7B5eXXqAWeMziTVp2FrUwD3zNvPxHYPP+TVDE7wAACAASURBVE5NCQlJbB2HJoeHl3/eh0ou44Ppg/h2RxlNjkD6KSVCx/AoK7wzDhDghvmQfiHI2//hx5s1/DJrFF9tLaXB7iYxPQqNUsblfRK4vE88RrUCBIFnvtvDl1tKAdAoZXx591B6JJy5KIzPL7LnKCHl8vqxu1vSbAqZQIReRZ2tZeZbuE6J4gTmRlY1uZj6zvrgSB2Ls5QeCUYGp0URZWibhgjs48HrF4O2DU6Pj8omJ582d3JOHpBEjFFzTO+sjYfrePb7PHommBiVGU2Tw8Pz3+/l5Sl9MJ/pwlp7HWz+gJrYIVTJYkANcWFGIm7+olmAyUBtAn3kmX0eEhLHwe8XqbQ4mbeukGqLm1uHdSElQoehk+N6NEr5KftjWZ2eEOsdCJyLiuvsJIZr2VJUz5ai+uBtvRPNJ3QOkpD4rZDE1nEQxcCP3enx8/wPe/ngtkEcrrUToVeSra4h+pubQRSxDbyXClUmXy3ZT3KEnjFZ0W3SiSqFnKRwHTNHptPgcOPzi2wurOfRBTuQywQeGZ9F/9TwoNACcHr8/O2b3cyZlnvGOm5UchlDMyJZkd/SAWnWKkNOsuF6FS9P6cOdH27G5fWjVsh4eUpfIvSdSxM02N3U291BodU/JZwnL8tmzspDzFlZwNX9AnPYYkyB98zt9XG4xs4/ftxLg93NbcO6MrJbFLU2N5f8e2WwGPftVQX8+OBIYk3tRxTtbi85iWH0TjSzs7QxGJ27cVDyGfUtc3l81NvdHCyzktF7BtPe3cK+ykAHavc4Ix/efgHRkdFn7PgSEidKjdXF5a+sorZ5QfX55mK+vHso/VI6NzrrdKBWyMmKM1DaEFoPGmfSoFMpuHdMOrOXHQQChqjPXdXrtNvHSEicCSSxdRx0KjkX94jjx90VeHwifsDr9+P1ieDzguiHuN7kdb2VKW/uDjrQp0cbmD9zMFFHtWzX29z8sKucd1Ydps7u5o4RXbl3TAZPfbuH537IY87UNh2jVDQ5Q0b4nG7MOhUvXJPDQ/O3se5QHV2j9Pzn+r5BU8Jaq4v8SiuIIksfGU2j3UOEXkWYrmVG5PEQCRg/yoSAS/9jl2RxxwebgpGyXaV7aHR4uH5QMnEmDbU2NxNfWxXsNNpStJVv7hvGvHWFIV1P9XYPy/ZWcf2glJDjub0+iuscvPxLPg12N3eNSqeozsYLP+4j3qzhvrHd2qzCG+xuDlbbWoZgZ8e2+fw6y8FqKxWNTmQyDbvKbTw9qSdPf7uH3WVN7K2w8POeCm68IPWkHlvi7OLy+pALAorTZFp6rrKpsD4otCCw0Hx16QFeuaHvaXHG7wwmrZK/TexJXvk6yhudgUXoRZmYdEpMGiUzR6ZxXW4yVRYXyRG6kEYiCYlzGUlsHQeTVslzV/ViYNdwBqdFctPc9TTYA6N7ukTq+HzKR6iKVvHPVTUho34OVlspqLGFXKz9fhGL04NaKefRS7KQywQe/3Inf7+qV9CuwKRVEK5TUt98DIApA5JP2WbB6vRS2mDnkw3FJEfomNgqigQQb9byxs0DcHn9yIJDpAMC5NlFeewqbeTFyTk89c1u9lVaGJERxQPjMjudNgjXqShvcDBjRBqfbyqm0eEJSUkCfLWtlG4xBoZlRLH+UF2blu4NBXW0Zwvnb2djjdXNZa+uDNaUrT5Qy/vTB7Fk1khMWlUb3yKfz8/Peyr54xc7gtv6pRQzd1ruCTcA1FhcqJVyXv4ln13NNh/RRjVzpg7gprnrsbl97KuwHudRJH5rmpwe9ldaeHf1YeJNGm4b3pV4s+Z361jengO+Ui4gcHZfb0qEjm/uG4bV6UWjkmNUK4L2EWatCrNWRUqkZGQqcX4hia1OEGlQM/WCVF74cV9QaAEcrrWzukLO2KiMQKTrKI6eb1bW6GDS62uCIiMnycxL1/Zhyd4qcpLMDE6LRK2Q8/Edg/nXz/kU1dm5qn8i1w5IPuUBtHvKm7jurbVBsfLemgK+vHtoSKrz6DRlrdWFy+une5yRiX3imfXZdgpqbAAU1hZRa3PzwjU5mDopBJMjdNwwKJkr+sS3W3wbbVBTbXXh8PiINbUVOCX1Du4clcZX20qDkb4wnZILs9uOxFlzoKZN8f67qwt47cZ+7a7S6+xu/rNkf8i2rUUNNDo8nRZbXp+fojo7H68vonu8MSi0AKotLr7cWsolveJYsKWUyQMSO/WYEr8d24sbQvzzvtxayg8PjAhZpPye6JtsDvGoU8oFHhqXib6TNVunC0EQiDZqiD6zbjcSEmcVSWx1FgGqbQHPF0GAcdmxjMmKIT5ajykxkftldm55d2Nw98QwLRkxhuDfbq+P//56MCSas6OkkWqri9yUMPIrLVzSK55Js1ejVcmZPCBQwzSiW1SnZowdi0a7m3/9nB8SFSquc7C/0tquTYXX5+dAtZWH5m9jX4WFYRlRXJgdGxRaR/hpd0WgvbuTYsuoUWLUKBFFkX0VFi7pFRccTK1WyHj0kiyiDWqUchmZsUb6p4axpTDgj2XSKpg+rAsxJg0/PzSKjzcUYVQrmJyb1G7XU3sCKdqgRnmSbeI+n59am5vyRidhOiVmrbKtOLW5ueK11eQkmTG2855UNrnonxLGGzf3J1VamZ/TNNo9vN5cG3SEWpubnaWNXPg7FVvRRg1f3j2UX/IqqbG6ubJvAjHnuHO9hMT5giS2OolKIWf6sK58s62Mf17bh2qLi3dXF2DWKvnL5T3okxzGN/cN48O1haRG6rg2NzkkVeXxiZQ1ONs8rsfrZ1hWDB6/yE97KphzSy5fbC7h1aUHAPjmvmGEn+UC0Dq7m5vnrqfGGhCGK/fX4PT4UMqFkNqxeLOWk8moCILAivxqxmfHcuOgFMobnWTGGthcWI/N5eWGQSlEGjXMmZpLUZ2dBruHHgmmYMdilyg9TzSPQ+qI3olmuscZ2VthAcCoVnDf2IwOi+Ij9GoeHJfJI5+3zKTslxIWTN8errXzl693cdeodJweHy6vH6/PT1Qrsbq7tBGry8u24gYeviiLV5fsD4lu3nxBCr2TzJi1yt9tKur3gkxGu3YC2vN4GHxniDFpzolaQovTg8PjQ4ZApEEl/V4kznsksXUcaqwu/M1T7NOj9fzwwAi2FTfwjx/2BveZ/MYafn1kNDlJYfzjGhMyQWhzctCrFUwbmsqyfS1tzSq5jJGZ0Ux7Z32gAB2Yvewgc6flsrWonvxKK3Z3Wyf3E8WsU/HQ+EzWtUojJoVr6Rbbfpze7vIFhdYRFmwp4bFLuvPsojwgkGJ44ZreRJ6kELyoVxzjXlqOQaMgXKeiqM7Om1MH8Mx3e8iIMXJZTjyRBvVJm7lGGdXMu/0C9lY00eTw0r9LONHHiBDKZQLje8Sy8J6hLNxaSq9EM2O7xxBpUNPk8DB72X5mjc/kno+2UGdzMy47lhsvSKGvQoZJG3jciObnanf7+GRDEXOm5fLWykPYXV7uGpVOTnLYOTniSKItRo2SRy7KYuX+6uACIyPGQGYHvxmJ00e1xcVT3+7mh10VJIVrefGaHPokh52yrYSExG+JJLY6wOPzs6/CwkPzt3Gw2srIzGheuCaHxDAtT3+356h9RdYX1HF1uO6YbsY5iWZeu6Ef76wuwKhR8qdLu1NSbw8KLQh4Xs1ddYgHx2Xy9+/zSIs+PemmHgkmfnxgBJ9uLCY5XMflOfEdDrfVquSoFbKQAvW1B2t5/7aBXNwzjvJGBykROsxa5TH9rY5FjFHNgruH8tLifbh9fmaNz2RnSSOFtXYqm9pGAFtjc3mxOL3Y3V4MagWRehXydop7o4xqhhs7b69g1irplxLeptXd5fWTkxTGq0sPYHN5+eD2Qaw7VMtryw6QmxrObcO6Em1UkxyuZXBaBOsO1bGzpJHpw7rw4uQcEEV0KgUn+VZJ/EakRetZ+vBoftxdQZxJw+C0yJPuTpXoHA63j3//ks93O8oBKKy1M+2dDSx/dAxxktiSOI+RxFYH1Nvc3Dh3XdDA9Nd91fzlq128ODmH1Agdaw/WhuyfZBQCBpa6iA4fs6LJyUfrC7m0dzx2t49//ZLPTe2E7F0eP3qVnC/uGkL0aXJXN6gVZMWZ+NvEniHbrU4PaoUcZasCfJNWwUtT+vDwZ9txef1E6lX867q+xJq1NNjdWF1Klu2tYkCXCGJNGsxaJW6vn0aHBwgYkB6vTV6nUtAnOYy/Xt6DxXsqmbPyEDtKGlHKAxGmjrC7vSzaWc6TC3fi8YmE65R8csdgusebTun9ORZhWiU9E83MXVXA7SO6Mn9jMV9vCzhcbyioY0NBHW9NG0CkQc3sG/tT3uhAp1Iw/b2NHK61o1bIeOTiLHolmOibHC65XZ8naJRykiN03DEi7Zj71VhdbCgICOzLcuJJidB1uo5RIhSrK2Dl0hqX109JnZ2432mtnMT/BpLY6gCLyxsUWkdYnl+Nx+fn/rEZLMmrorp5SOqI9HDSPQdgyVdw0TOgNoTcr8biwuv3M3vpAdYeqmPtoZYZfY9fmk2MUU2VpWXg6k2DU5m97AA5SWb+cGHmGTlx19vcrDlYwxebShjdPYYr+iQEC/G1SgUXZsew/I9jcHi86NUKInUqrC4Pc1cW8NqyA8HHefqKnlyWE89X20qZvewgMgEeHJfJ5TnxnTJhjTFr6JVoZuWBGi7sHsOsizI7jLgBNDm8QaEFAZ+thz/fflIzGjuLUiEjLUrP2O4xDEuPYvay9SG3byqsx+72EaEPFOYr5TIenL+Vw7V2IHCxeP77PBbcPZQmh0cSW+cYfr9IU/Oi40Q/mzqbiz98spU1zYuv/y4/yL+v68vEPgntTkSQODZqpZweCSbKGlui24IAcWZJaEmc30hiqwP0KgVKuYBfBJ1SjsXlJTvehFwmkBCmZdH9gykuKcGgkhPtOETENzPBY4PRjwbFlsPtpcbqZvp7GxmZGd1ukWdxrY1v7hvOh2sPU1zvYGKfeKwuL09MyGZTYT0bCurokxx2TAFyonh9fhZuK+Xd1QW8PKUv24sbeGvFQSYPSCberEGnVqBRyNGaQ78eVqubN5aHdmh9uaWELlF6nvkuL7jtz1/tIjvexIDU44stk0ZJVqyR6wcGjAqX5lURa9R0WJ9hd3vbGLzur7Tia8+A6zQSaVBz/9gMyhqcGNSK5iheAIVMQNHqwur0+EJsHyBg5FpjdZ3Wz1Hi1Km3uflxdwVfbC6ha6SeB8d3IzFM2+mC7CaHNyi0jvDPxfsYlhF1Xn7WHp+fersbxECd6dm2fTBpAqameysslNQ7UMgEHr+0u1TrKHHeI4mtDjBpFXw6czAyQaDG6iYhTEOkXhUcDREjNBHzwxXgsYMr0PGG2gjNBoBHUgsLt5ayv8qKzeXlpSl9WbynIigWYoxqUiL16NVybh/RlVeXHuCNXw/ypwnZ3Dh3fbA4PjPWwEczBp+2k3e93c27qwt4/qocHl+wg4PVAUuHt1YW8MVdQ3B7/fywq4JLesWRHW/ErFVhdXnx+Pxcm5vEwq2lQQ+rrDgj324va3OMRTvKGJDa8ZgPr89Pvd2D1+/nTwt28mt+dfC2QzVWnrmyV9DIsDUGdVvT1zHdo89K8Wy0UYNWKeeJCd15bMHO4PY7R6WFjDZSymUMy4hi4dZSIvWB9w4IjhTaVlxPgllLZAfzICXODl6fn882FbN4TyXjsmNweHz84ZOtvDF1ADFGDR5foFFk0+F6oo1qMmIMbWxG2jPU9fpERM6s+D8TNDk8/LynkmcX7cHq8nJ1/yQevTjrjEWMOyI5QsfCe4Zhc3nRKOUYNWdf9ElInG6kb3AH+PwiGwrqePGnfYhiYGzP27fkklfeRE5SGJEqA/S8Cta/EbyPf/QT+NVheJsn1w/oEs7OkkYAyhqdzN9YzCd3DGbp3io0Sjkju0XxwKdbeHNqLmatiuRwHXJB4MO1hSFdiPmVVnaVNjKme8wpvy6vz49KISMjyoDb5wsKrSOv+aXF+dw6rAsX94xj8e4Kyurt5HaN5IUf9pJX3sTIzGjenz6IGe9twuLykhqpI1yv5vPNJSHHOdY8tXqbmy+3ljBvXRERehX3jcnAqFHwbXNR7KIdFTwxIbtdsRWpV/HJzME88vl29ldaGZ0VzdNX9sLUzr6dpc7mZk9ZE6sOVDMqM4buccYOvc0MGiWX9oont0sEWwrr6ZlgIt6sDXmuoihy39h0ZozoSlGdndhmkWbQKMgrs6BRybBpvSzeUIlKIWNUZjQxRrXU3n6Wqbd7MGoU3DAomc82lWBQK3j4oiya7B5ijBoKa+1MfHU1Dk/gt9g32czcWwaGCC69WhGcu3mEu0enE3GmB5yfAWqsLh5uZX0yf2Mx3WIM3Da0S7sNKO3hcPtwen2YNSffPAOBiQvnY2RQQqIjJLHVAVaXl//XLLQg0M7/9Hd7uHVoV579Po+nJvbENOpR/D2uwle8AUv8UNbU6ChdW8qkvon8tKcCrUrOoK4RfNMc+flqWykr9lfxxV1Deerb3WwtrOepK3oxf1MxGoWcK/omgAiPf7mzzfOpt7vbbDsR6mxuNh6uY9GOcoakR/LitTlsKWpos5/H5yfWpOaK11YjijBnWi5T315PYXP90aEaG40OD3+a0B2Hx8ekvomIwFdbS1lfEKhFG5kZzZD0yHafhyiK/JxXGUw7FtTYuPPDzcy/c3Bw/mRiuLbDESFyuYzucSbev20QPr+IRiU/JaFldXr4zy/5vL+2EIA3lh/i7tHp3D8mA107q+lqiwu724teJeey3vHt7mPSKSmqt3PTnMBoHoBbhqQyc2Qas3/dT0m9gwm94xnfI5YZ72/CpFXy3f3DOxymLXFmUCtkhOlU3PPRluC21Qdq+Pmhkdiaf/9HhBbAtuJGDlXbQsSWxenhrxN7sO5QLYeqbYzJiiY+THtWX8fpYlNhfZttP++p5NrcZMza44ut0noH/16Sz8EqG1f1S+SynHgiTtGQWULi94IktjrA7vZx1LQdCmvtxJrUfL21lEcvzkJvCKfE0Jsn98K+5Q1UWyqBwKrs8pwEPt1YzHu3DaTe7mbl/hpijGqemdSL2csOsLmwgQ9vHxSSLpz96wGWzBrFDYOSWd4qrWZQK+ibHHbSr8Xh9jF35SFe/zVQb/XN9jKy7hlKpF5FrElNZVNLcf49Y9L5aF1RUGSatcqg0DrCdzvKeOyS7kQbW9Jgr9/UH5vbh0Bgtd/RSbbR4eGzjcWo5DI8fj+iCG6fnx0ljWTEGDhYZQv4dxmOfZI+kdSG3y9SY3VR1ujErFUQplUFI1dWl5d564tC9n9nVQG3Du3SRkiV1NuZ+vYGCmpsqOQynpiQzTUDEjEeJfYsDi/PfpcXFFoA768t5NrcZHaXNeHxiXywthC1Qs7EPgl8sbmExbsrmDqkS6dfk8SpI5cJLNgSGpF1ef2sOlDDhN7xIanqIzQctejZUtTAn77cyYiMKOLDNLy27ADhOhVvTcvtlEA5l+iZ0Lajd0BqeKeMXKstTq757xoqmm1bthTV02B3c+eo9E6PGvP7RXyi2O6MRgmJ8x1JbHWAUaMg2qimulWX4PgesWwoqAuYlgKNTg8/7qpg1YHQAtkvt5Ty/NW9+XpbKTM/3Mxdo9J4ckI2Xr+ISiFjb4WFMVnRfLO9LCRd2OTwsrWoHq1Szms39mPB5lLMWiVTh6QinkIBuMXp4Z3VBSHbPD4/T3+7hzen5vL9znJqrC4uz0kgPdoQ4vulkAnIZQI+f6hz/JHtR4g0qGk/lhWKSi7j/67oSYPdg0EtZ9m+al5dup9eiSb+ntSLeLOOMN3pdVgvrrdzVauZlJP6JvDXiT2J0KsQaVt34/OLbQZeW5wenv52T3Bkkdvn56nvdjMuOyb4GRrVCnRqBR6/PzhfrjUOtw+NQo7HF6jhWpJXycxRaXyxuQSr69TNayVODKVcaNdOIM6kIUyn4rahXdhQ0NI5bFQH7Epa0zc5DJ9fDKk5/OPFWejV51/HaYJZy8yRacxdeQi/CP2Sw7htWJdOiaVqiysotI7w8YYirh+U3O5IsKOpbHIyb10hhbV2bh6cSlacUSqKl/hdcUpLCEEQrhUEYbcgCH5BEHKPsd9hQRB2CoKwTRCETadyzLNFlF7N/JmDGZYRSYxRzbW5Sdw8OJV56wqZOjgVg1qB0+MnOUKHTIBwnTJoWpkZayDGqOab+4bz6g39GJASzqKd5Vzx2ipue3cjb9zcn79c3qPdRNmeMgvxZi1L91aRHW8kTKdk1YHqYGH+yXL04Oc1B2rJijVy3ZtrKakPeEF9ta0UlVzGfWPTg/v9klfJnSNbfIaUcoHnrz5+5KkjShocTH17PTe/vZ6r/rsGl9fHS9f2oWuUnn4pEcSZO+5EPBlsLi//+HFvyEzKr7aVUdV8YdCrFEzqEzoUesrAZAxHXSwdHh+7y0I7DEURDlZbmTR7NSNfXMa/l+ynzubCrFEGUsKtMGuVhOuV9Eo0B7d1idJT2ehEo5RxWU7caXm9Ep1HpZBz9+h0wnQtF/WeCSZymgXVkPRI3po2gCHpkVzZN4Fv7x9O1FER21iTmr9N7IFOJUcQ4NJecVw3MLndQevnOuF6FfePzWD142NZ9egY5t6S2ymhBLT7m400qDrVJlBlcXLV7NW8uvQA32wv484PN1FcZ6eqyUm1xYX/6BSDhMR5yKlGtnYBVwNvdmLfMaIo1pzi8c4aMplAWrSB128MpMcsTi/f7yzn9ZsG0CPBhEGjxO72kWDW8t39IyissxFv0rB4TyU3D05F3VwQ/c6qQyze02LSNyozmj3lFj7fWMSfJvRAKQ+InMomFzqVnNFZ0cz4YBP3j82gf0o4OrUco1rRbrF4ZzHrlPzhwgz+/n3LiKGSejt3j04nNUrPhoJasuJM3DQohSijmoEqOd/eN4yPNxQRpg0Ihym5yRTX28mIMRB2krP9qpqc/PXrXcH0jCgGaqRWPDrmhMRkjdXF1qIGSurtXJgdS7RRhVbZ/lfZ6fFRdFQaFKCs0UH3eBMmrZI/X57NyKwoft1XzbjsWIZlRLV5v41qJaMyo/h4Q3Fwm0ouw6RVUtnkxC/CWysOMahLBON6xDJtSCoyYNGuclIidDx+aTY1VjcjukWx9lAtUQYVD47rxrfby5h3+wUU1thJiZCGU59tBODdWweyv8qKQa0IzK1slghhOhUX9Yjjgq6RqOQCWlXb75hZq+KGQSlc2TcBn19Eq1Rg0Jy/CYMjw+JPFLVCxoTecXy/MzBYXiET+NOl2Wg6iIrVWl24vH5UcoHDNbagr5ZRrWDuLQP5z5L9LMmrJCEsMK6nf2q4NK5H4rzmlM4KoijmAb/rLiqzToVZF/h/VlzoXDSTVsmGgjoemL8Nn19ELhP4z/V9iWqO+pg0Sv56eU/2VVoprLWjV8mZPqwL3+0s5+oByTyzaA9mrZI503LZWdpIj3gTP+2poF9KGP/+ZT/dYgy8dmO/UxJaAGqFnCm5yQxIDWfx7koyY40YNAquen0Ng9MiGJcdy1X9EoMmpEaNkt5JYfw90YxfhPJGBx+sLcDh8TN5QFKIzcGJ4PL6OdSq+/EIdVYXKRG6Tj1GjdXFre9uCPpYPbcojwX3DKVPUvs1bWFaJbPGd0OlkKNWyNlR0sDclQX0aOU4H2lQc1W/JCb2SegwIqFVyXlofCY1Vje/5FUSb9by1BU9eX9NYUht3w+7yhnbPQaH20ed3cODF2ZSZXFy38dbeHh8JlMGJpHbJTBlYO3BWqwuLzM/3MwtQ7swIrPzo4UkTh2nx8fLP+ezYEsp6dF6HG4fZY1O/ntTfy7tHR/c73jpLIvTw/yNxewsbWLygERyu0QQfh52I54KdrePcdmxTB6QTEm9nV4JZn7aXUFatB7TUf0CpQ0O7vpwMztLG8mKNfLspF7B26YMTOaTDUX8vCdQ/1pS7+DWdzey4tExxJklsSVx/nK2lmAisFgQBBF4UxTFtzraURCEmcBMgJSUlLP09I6BKIKtGrwuUKhAFwWywI/e4fKSX1bDoK4RrD1Yi88v8uTCXQzsEkGsKbBPUoSO+TMHU9HkAkQqLS66x5m4a97m4CEW767k54dGUtnkxKxR0aT28sykXvh8flSKUzvBVFucNNo9aFUKMqKNpIzQM/Xt9eytCHiD7a2wcGF2bLtFsIIgUGNxcvv7GwnTqthXaeGTDcV8esdgBnfQbXgslHKBsd1j+HRjS3TIoFYQcwJdeMV19hDDUK9f5IUf9vLfmwe0e1G0e3zU2Tw8/e12LC4vozKjWXD30HYL+I+X+ok2avjnVVk4r+iOIEBhvYuvtpWG7DOiWzQymcCv+dV8tqmYzza1vNbvdpQzOC2SCL2Kg9VWPt9cwoEqKzIBrugTf/ThJM4wflEMeqC1tkA5sq0z1FhdTH17Q/D39NPuCp68LJtbh3Y5ZqG3w+2jyenB4/OjVcrPupdVR9hdXpqcXvyiiFYp79AC5Wh8osisz7YTZVARZVBzqNpGnFnDjKNGHTXa3Ty+YEfQKmNfpQWb20t2vJGKRieD0yL529e7Qu7j9vkpqbdLLvIS5zXHFVuCIPwCtFdQ8qQoil938jjDRFEsEwQhBvhZEIS9oiiuaG/HZiH2FkBubu5vm6wXRajKg0+uh4ZCMCXAdR9BXB9w1mPeu4hZliU09BxL8agRTPlwP40OT0gxOQTcwyfNXo1KLuOHB0fw3pq9Ibc7PD5W7q9hc2E9XzR3R320vojXbuiHUn7yUcPSegdT3lxLaUOgWPvmC1L4w7huzBjRlecW5fHYpd2JNWnYWdLAztJG0qMNbU6uDXY3s8ZnkV9p4YFx3Vh/qI7/Lj9Iz0TTCacbVAo5N16QgiiK/LSnktQIHc9O6oWxuT4qMHfRi8PtI0ynatdnp3Ur/hHsbl+b9/wIdTY3f/xiR/Dv5fnVvL/mMA9fnHlCO499WgAAIABJREFUzx2ApjJM82/GVLoZ1CZkt69n8oAkFmwpQRTh8px4RnSLAiAjxtDm7l2i9Dz/Qx4Lt5YxsEsEH9zSl+X5NfRKjpRsH34DdCoFd41K56fdlcFtRrWCEd06H2FscniCQusIc1YcYlLfhA7rnSxOD19vLeWZRXm4vH56JZqYOy2XOPNvaxnRYHfz4bpCXl1yALfPz/CMSP59fb82Rq7tYdYqyYwNNNfUWAP1kdOHdUGnChWcLm+g8/j24V0DEWCPj8W7Knj7loFUW1y4vD5pXI/E75Ljii1RFMed6kFEUSxr/rdKEISFwCCgXbF1TmGrhs9uDggtgKaygPCauRx+ehLZ7gUAhO35Gn3vG3l41F0s2mdtU1sgEwJt5m6fn/0VFsLbicCE6ZTsLm8M2fafJfsZ3DWMKFPnUmytsbu8/HPxvqDQApi3voipQ7pwRZ9ERnaL5oO1h3m82Qn95Z/3c8/odO4dkxF0a250uHln9WHmt4pEPXVFT4alR5yU83kgmiQybUgXxvWIpaLRxZMLd/GHC7vRLyWMfy7exyfNNVGJYVo+u2sIiUd5FmXEGNp0id45Mq1Dq4mjL4QAqw/WcJu1y4n5IbmssPgvUNockXQ1ETknl7/et5uHL8oMGt8eScX2TjQzOC2Cdc1zMFMidEzoFcd9n2zh0XFdmJLuJWLFY1yv0CBk/QFkJ/4ZS5w6GTEGvr53GHNWHMKsU3LXqPRgGUBnaO93EJiv2PHvo8Hu4c9f7w7+vau0iRd/2sezV/YK2o3U2dxUWZzUWFx0izUSoVedcUuE8kYnLy3OD/696kAt89YVcu+YjOMeu8Hu4R9X5/BrfhWHa+xc1CMWm9uLzeVDr24536kUMubeksvXW0uZ/t5GDGoF/7m+Lws2l/DSz/nEmtT896YBHKiycrjWHrRYORK1rre5KWt0UFhrp0+SmQhDx/WaEhLnEmf8WyoIgh6QiaJoaf7/RcDTZ/q4p4TLCm4L+HyQOgzqDhH0ArBWgs8Ne74MuYty93wmzXiMywdmtrnw69UKpg1J5d3Vh3niq13Mu30QP+yqwNKcrkiPNpCTFEZeeVthQE0+yBNBf2L1PA6Pj/zKto9XVGcjK86ICMxZGWoHMXdlAbcM6RIUWzaXL0RoAbyyZD9f3TsMXTvFwp3B6xO59b2NIWLpqe928+bNA4JCCwJ1HS//nM+zV/YMKUyO0qtYeM9Q5q4soLzRwfUDU+iVGKi/8vtFam1uRFFErZRj1gbmLh5Nn6Qwlu6tYkLv+DaRvCaHB4fHh0wQiNCrWi6mbhsUrwt9II8NU8NeTKlD2hwjyqDm9Zv6U2t14/b5MajklFeU8fVVBsJtO5Ap0kChhs3vwo5P4d4NEHYOpM3/x/D4RDYU1JIUrkVEJK+8kTCdEmMnhY1Ro2RsVjRL97VYPzx+aXcij5F+K6xrW7e4tagBm9uLTq2gzubmzwt38v2uQLG5Qa1g4T1D6dbOd/l00toF/whrD9Zy27Cux/UMC9MpmTR7NSO6RRFr0vCfJftJjtByaa/Q9LhJo2RfhSXobefyulEqZLy6NDDcvrLJxZ++3MmfL+tBWrQeXbNpsU6toMHu5vkf8vhsUyD6r5AJzJtxAYPTTrykQULibHNKYksQhKuAV4FoYJEgCNtEUbxYEIQEYK4oihOAWGBhcxG9AvhYFMUfT/F5nzlsNbDkKdj2MSg0MPwhuOhZ+OnJwO3GeJDJQJCD2Kq2QxYw8pS1kwowapTcP7Ybl/WOZ3NhPSq5jMUPjWRDQR0mbcAOQC6DHvEm9pS31CM9ODyGyFVPQGxPGPtnUHY+lG7WKbk8JyHErkAhE+iZELAeEMWA11ZrPH5/yEw3bzupOZvbi7qTJoXt4fOLIUILQCWXc7idjsH9lRYcHj/aVtetWpuHqW+vZ0BqBMkROl74cS/Th3dlYk4820saeeTz7ZQ2OLiwewx/v6o3EXoVf5vYgxd+3IvT42dgl3AmD0hi6tvrGZkZHSK2qi1Onli4k1/yqogzaXhxcg65qeEBsafSQ+pQ2PFZy5ORyY8pkCL06mCXpb2+gvi9L6Ha9WnLfa95JyCmC9fArgWB75rEWUMURZbmVfLc963T+gUsmTWq0ynyCL2KF6/tw46SRvaWNzG2ewyJ4dpjjqpJizIgl0G/5HAiDSo2Hq5nRLeWDthqiysotCBQQ/bs93m8en0/TGfQe6pfO8bJo7Ni0KuOXzdq0ij5+1W9+PNXu3F4fKRH6wNjtI56vna3l592V4RskwmBqP8R9lVamPnhJtY8fmFI+tDi9AaFFgTOT3/7ejcf3XFBp1KdEhK/JafajbgQWNjO9jJgQvP/DwF9TuU4Zw1RhLxvYcsHgb/dVlj6DEz9CgyxgUjElHmgNsPge2DNKy33HfoAMq25/cclcFKO0EcEO9EAruwX6u/0we0DabB5sHt8hGlkmEtWIBxaCnUHYNj9JyS2FDIZ1w1Mot7u5vNNxUQb1TxzZS/Cmz2F9Go5V/ZNZOHWlgLvy3PiQyJWepWcPklmtpe0rHhvviD1pFrDfX4x6HV19GNGG1T0TjSjkAkhAm9inwTMR7XRF9XZKKixU1DTIs7eWVnA8IwobnlnAy5v4KT9S14VYbp9PHVFTy7PiQ/6W+2vtHD3R5uxuX0hJ3iH28e/ftnPz802HeWNTqa/t5GVj44JiC21AcY9haiNolGfitpZizalL2g6/sxbo/VZEY4ILQC/D379Owx7ICC2VGc2aiHRFpvLG5zH2ZrVB2pIb6fmrj2cHh+7yxp549cDaFUK1hys4cXJfY75GwnTKlkyazTL9lVR2uDgjhFpJIdrg00qRy9GAMobHCHf1zNBrEnDU1f05MUf9+Lw+Li0VzzX5iah6ESUTyRgdvz+9IGIgNXpbTfFqlHK6ZcSxsr9LS5A+yosDEuPZPXBFnPoS3rFoTtK5DnbqdessUo+XBLnB1KyuzUeOxSuxjnoPryaCAz7v4HybVC1B+udG7H65AiCAr0gxzD8Qci6FApWQtpoiOoWiH50gMvjQyGXdVjr5PUFbBFmfLCJJocXs1bJO1Oy6dtlFHKZDOQnvnKL0KuZNT6TGcO7IpMJIas/o0bJXy7P5oKuESzbV83orGgu6hEbshKNNKiZe0suH68vYktRAxN6xzG+R1xzTUooR8SUIECEThWysre7vaw7WMsTC3ehVcp4/eYBvPjjXjYU1NE3JYwXr8nhux1lzL6pPy8vzqfG6mJSv0Su7JvQZgBue15HgZFDzqDQOsLy/Goqmpwo5QJrD9by8s8t9SgZMQZM2MAlgtqI1eVlRbMLuEYp44o+iWTHG2lyeoKFy/XyKH6OupvPN5fQJVLHA7GZJKq0CATSj06PL5i+PBrB306Hm702INYMMZB9WdvbJc4oGqWcnCRzyGgsgOx2xtZ0RKPDw8wPNod89/781U7+fV3HUSiL08td8zYH6wnfXlXA+7cNIrb5e5YWrceoVgTLDAAmD0hCewoR5c5g0iq5fmAyl/SKC9YgdjaSZnF6uPnt9SE2KGOyovnPUdE4hVzG1MFdWL6vmu0ljQhCoMP45ev68tG6QtYV1DEqM5rrBia3OXaYTklSuDZkOsN1A5Mx6ySneYlzH0lstcInU1My7Hle+bWImgof0y+4jL7WVfgyJ/HaryV8uC5QKH/TBan84cJuRKQODaSWWtHk8KBSyIJF8g12NztLG/l0QzGZcUZuGJjcrtVBnc3NvR9tpckROME2Ojzcs7CAbyf/mZiIcNCe3GxEjVLeoRlghF7NdQOTmdQvEbVCFvRLq7W6sLsDdUtapYx7x2Tg9PjQqxXteqo1Ojwsyavk1aUHkAnw0PhMRnaLDp4s6+0eZnywKXgivu3djbwwuTf/uCYHjUKO3ePl+R/20T8lnOnDu2LWKlmRX91uh2GsUc0FXcNZXxAYmquQCTwwPpNYkwaZQMjJvleCieX7qnju+728f9tA/jUlh6+3ldMjTs+03Ciiv70FrpwNaiNKuUDPBBMquYw3pg7gl7xKPt9UQkG1jfvGZhBhULFgSwnPLgoM0N54uJ5f82tY9IfheHwiTy7cyebD9fRPDeO5q3qTFH5UwbsuAsK7Qn2rOrm+UwNR0jtXBiKnEmcVhVzGtCGpLMmrCqbvr+6fSHp06KLJ4/MjF4R2U4N1Nncbkb/pcD1Oj69DoVLW6Ahp3BBF+NfP+WTFGYk1aRAQefvWXF5fdpCKJicTesczPCMKz1mI4KiVcmJPwjy02uJqM0t2Z2lju+9DtFHNnGm52N0+FHIBnUpOhF7N/Rd2Y7rLi0GjoNHuobTejkIuI0ynRK2Qo1creH/6IGYvO8ChahvjsmO4ZkAS6lO0x5GQOBtIYqsV1XYvl/93S3BFuTy/ms9uvxRbtY93Vh8O7vfemsMM7xbFuOyWC2SD3c36gjo+XFtIQpiG+8d2I96k4cfdFcGOv0U7y/lqaymf3zmEqKNsDdw+P9XW0PRBZZMLT1QPOJGuuRNEEIQQMVZtcTLj/U3BVeeNA1O4Z0w6cWZth+a1+ystzPpse/Dv+z7eyrf3D6d3c+puX3lTyIm4osnJ89/v5cPbB6FRybC5Ye4tuSzcUspjCwI2DVqlnIfGd6OyyUmTw4NRo8CoURJpUPP6TQPIK2+iqM7BiG5RRBlVNDm8/G1iT/7+faCdPjVSx98m9gREEsICNTRhOjUT+8QTrlNR7VHjGPsGiTX7UUWm4/X7+ePFWdjcPr7dVkZypI4/XpzFA/O3squsidk39WNes9huea9clNQ5+H+L97L2YKDrcHl+DTM/2MyHtw8K9U4yxMCti2DlP6FqD/SaDD2vBr1U3PtbEm3U8MHtg7A6vShkAgaNIthRanF6OFht4/01h4k3a5g2JDUghlr9DiL0KlRyWUiKr19KGOpjCBa3t2060OP3BxcXh2rsPLZgB9cOSCJCr2bVgRp+2l3Oe7ddcLpe9mkn1qRBrZCFCM/hGVFthrlDYDH3zHd7WLSzHLUiYBY8JTeJMJ2KMJ2K8kYHd3ywiV2lTRjUCp6d1IvxPWKxOD1c98Za7hiZxtisGJbnV/Ho59t59cb+wc9MQuJcRRJbrdhSWB8SugfYWGwP8Xw5wpK8yqDYEsXAINoHP90WvH3xnkp+fGAEby0/FHK/0noHNpcXPyICLR1vMkEgPdpApEGFQiawubCelAgdaqUyaKJ6pvH4/Ly/pjBYTyWK8NGGIi7MjkGtkBHVjm+QKIohxp1H+GpraVBspUS2tTXIjjcFR9zMWXkIlVzGXaPSyUky8/wPe3lxcg6lDU6mzl2PxRW4EP7j6t5M6B1PpEHN8FZeSH6/iNXp5FC1lXkzLkAUA+J37qpDDEwN55vt5dw3NoM5KwpYti9Qk/V/E3swLCOKMkMUBqsLlVzGzpJGHmolGodlRPK3y3vy8Ofb8ftFIvSqNoX8OpWcGoubKIMq6C+0p7wJp6flouP1+amyuPhuh5Ps9Fn0H65BY4xALpdW5L81jQ43O0oaeGvFIYwaBY9clIVWKUetlLOzpJEb564P7vv5phIWPTCcmFa/A5NGwes39efhz7fT6PDQPc7Ic1f1PqbrfEqkjpQIHUV1Ld+lmSPTiG1egIXrlJTUO/jXL/uDtw9Nj0SlOHcndZi1St69dSCPfL6dskYnozKjeGJCdptpEz6/yMKtpcFaOYfHx9+/z2NEtyjCdCqsLg/PLcoLGhdbXV5mfbaNVY+Npcnp4eXr+lJUZ2drcQOX5ySwt8LSJrIoIXEuIomtVoS1c4K0OD0M6hrBR82tykcY1Wq0So3VzburQm0UGuwe9lVaSY3Ucagm0OotCDD7pv58srGIj9YVYdQo+MvEHozIiMLr9fL+9IH8uKsCu9vHExOy0ShlnM15tg63jy1F9W2276u0EGlQtyu2BOFIh2NJyPYerepe9CoFd49OY0+ZBZNGQWWTkztHpbGtqD7E1+fZRXl8cdcQfv3jaDQKGTfN3RAUv16/yJNf7WJEt+g2q2Wn10e1xcX7awt5f20hcpnArUO7cEWfBGJNGvKrbNz67kbeu20gy/OruH14Gl6/yMTXVuH0+MmMNfDOLQP5cF3oZ7z6QC0PjstEr5KjlAs8MK4bM97fhMcXiECMyYpBq5Lz5tT++PyBz/ePn2/ncK0dRSsz2somFxf/e0Ww+1PZ3I2acAYjlhKdY1dpE9Pf2xT8e0V+DcseGY1ereDVZQdC9q22uthV2sTY7i2/A61KwcjMKBY/NBKvT0SjlB3XDT7KoOKTOwYzf1MRpfUOru6fRGasIVifGGfWMKJbVLCIXK2Q8efLemDWnrvRG41SzgVpkXx933D8oohaIWs32mR3e9vUyAFsOlxHdrwJu9vHlsLQc5BfhLIGBwlhWv7vm91B77q3VxXw/NW9UZyE55+ExNlGElutyIwz0jPBREGNjQi9ika7h0n9kvD6RabkJjc7hYtcm5vMoK6BrsJqi5MGu6fdlWyYVsmMEV35Nb8aUYRh6VEU19l5oznaZXF5uXveFpY+PAqNUsGVs1cHO5HeXH6QT2YOxqA+e6s2g1rBxT3jWNOqKwigX0r4MZ3sJ/SOZ/7G4mDdS99kc4gYVSvlTB6QzHJjNSV1du4YmUZVk5Pv2ukEW7G/mlnjs6iyODlUYw25zeX1t+sgr1HIiTapg2mMF67pTV65halvb8DnF7lmQBL/vLYPB6utZMYamdA7jqv/uyZonZZfaeW5RXlc1DO2jdj0+UUeuTgTk0aFTiXnszuHsL2kkcQwDXKZQHWTi8lvrgVgQGo4r97Yn/2VViL0Ld+H77aX8uLknKD/Wp3NzXfbS5kxIv2YFgESZxaby8s7q0MXSS6vn+X51VyeE9+uxUl721QKeXA8V2dQyuUkhmu5c2QaHp8fnUqJqtXjRujV/Pu6vhTW2ilrdNA/JfyYvl3nCnKZ0O7Uh9bolHIGp0VQb3dzYfdYHB4f32wrY0haJJVNTmwuL29Ny+WlxfnBKLRcJpAYpsXh8bHuUB0JZg1xZg17Kyy8/usBRmVGnY2XJyFxSkhiqxUqucCcablYXV6K6ux0jzPS5PDw6tL9XNornnvHpGN1eYnQqYjQq2mwu3F7RVYdqObesRmsL6gLhrQHpIaTFK5FpdDz80Oj+HFXBaMyo3jhx31tjnuoxkpFoyuk5dvm9vHZxmJmXXQSY2VOEplMYGKfeA5UWflsUzEGtYIHxnXjcI2V8T3am9gUINqo5oPbBwW6EQnUsbRe3fv8ItPf20hhcwru3TWH+e6+4fRPDW/Tet+32etHo5AzOiuaZXtbVsGxJjV6dduLmkwmYNYoeXlKH+asLECjlPN2q0jj/I3F9E40k5NkRkSkoskZFFpH2F7SwJ2j00O2ZcUaSQ7Xkh1vQqOSkxlroqjWhs3locmhoH9qODfNaTE63VxYzy95ldw4KAVlqxThmO6xPPLFdnY0p2f7JJl5YXIO1VaXNKbnN0QpF4hr5/2PNaoxapQ8clEWq/bXBO1I0qL0ZJ5GY9HWzupHE2lQE2lQ05/w03a8cwG3z89lveNJizbw8fpAdH/ejEGU1ju4Z/ZqbG4fJo2CV27oh8PjZV+FhX9cnYNZq8Tu8fLqDf1QymUcrrHxxIRslu2rCnRrS0ic40hiqxVWl5ePNxTzWrObsUIm8MoN/Wiwe3hw/jZUchkL7hkaLH61u3384dOtbC6sZ0LvOD6dOZhdpY10jdKTHW8KCg6jRsl9YzPw+PzkJJlZdaAm5LjJ4XoOVLV1lXZ6/ajP8IiOo4nQq3n0kizuHp2O3R0YSBupV3ciNaLu0FiwoMYaFFoQqAV7ZtEeXrm+H4t2lrPpcCCadHHPWPokBcSWSavkH1fn8H/f7GZFfjXd4028eE0Okfr2jxFlVDOiWzSD0yPb1MkBbDxcx6U9Y7m0Zzw94k0o5UIwHQgwrFsUyRFa3rl1IF9sLqZngokpuckh8+3MWiW9k8Lo3fwcn/5md5t6vl2lTW3SGhsP1wWFFsD2kka2FNZT1eTk9hFpJ+VbJnHqqBRy7h6Vznc7yml0eICAsXBO8+ebHqNn1WNjqGxyIZNBUpiW8Ha+fzVWF7/uq2JHSSOT+iaSHmM4Zs3W/zKCIHCgysaDn26jf0o4pfUOKhqdPDB/GzZ3IGrd5PTyxJc7+fyuISjlMsL1SpRyOVqlnEU7yvmx2RRVJsAbNw9Aq5TElsS5jyS2WuH3w+ut6jS8fpEXftzLrPGZrC+ow+3zs3p/NXeNzgACq7TNzfUF3++s4Jc9VeQkmXn1xn7tihOlXMatQ7uwdG9VsPV78oAkKpscDO4agVYpD6bJ5DKBGSO6ov8NLsRGjfK0CoD2Otb9YiAl8+bUAdhdPgQhMNYovFWdR2yzi7vD7Ws+6R47lXKkxXxoRhRvrggVXMMzoog0anhwfCZ2t5c503J59IsdVFlcjMqM4o8XZRGpVzO2ewzDMiJRymTHTfFNyInnnTWHQ7Zd0ScB2VEr7dZTAY6wu6wJnUqOy+OTxNZvSHyYlsUPjWRHSSMmjYL0aEOwU9jh9vPxhmI+2VBEpF7FU1f0JCdZHjKLr9bq4q55m4MLhg/WFvLi5Byu6ZfYxiNOIhDl3lXWyPyZg1l5oAajRkm8WUuD3ROyX1mjE5kghNjkuL1iUGhB4Bzywo/7+PD2QZik8keJcxxJbLXC4fG1EQYVjc6QWYdRupb0kEImIAgtYxPdPj8Hq634j85RtSLGpGHejAuwubwoZDJcXh+X/mclQ9OjmDfjAj7fVIzH52fmyDSSj/ZqOk9JjzaQHKGluK7FjPDBC7thbhZWkR17wZ6U8OudaGLq4FQ+3lCEXxSZmBPPmO4xwdt1KgUjMqJY9Ifh+P2gVoYW83bWt6dLpI5nJ/Xi1aX78fth5qg0suPbppmu6Z/UpsFiTPcYCmtsmM7houf/BeQygViThvE9QtOJPr/It9tKeWVJoCOw2uLiprnrWf7oGBLDWk6bFqc3KLSO8J9f9jMmK+a49Uv/iyhkAmO7xzDlzbXBjt13bhlIl0hdSKdvr0RTSB0b0K6DfpPDIxXIS5wXSGKrFRqlvE1L9uU58axuTvslR2gZ2aVlCWXUKJiSmxwyrHnW+EzCj3MBbZ1y+3VfFS6vn2X7qthaXM9FPeJIjzYQY9K061FzPhJtVLPgrqF8s72Mojo7NwxKITn8zC1Fj6RC7x2TjkigG/JoY0W5XBaSIjwZoowarh+YzIXdYxAJvE5lO9GM9Gg9L13bh1eW7kcApg/vilIuMKlfYpsLisS5QZPDw9fby0K2ef0i24rqSWzVRdreskoUxQ5ukRCBd1cfDrFG+efifbwxdQCPL9jJ9pIGclPDeXlK3zbZgXCdiq5RegpqWkoupg5JDYmGS0icq/w+ruanCa1Sxus39ef1Xw+QX2llVGY0M0Z0Zdv+IuZck0rfaIFosQYIFIubtSr+eHEWV/dPZEdxI8O7RRFjVJ+QSMqONwVHczTYPXy2qZh/XpvTrg3F+UyMScOMEWln7XinOxXaEQq5jPjjWDiYdSom9UtkZGY0Xp8ftVKGXqU4pvGlxG+LRiknI8bAlqKGkO2pR4VhTVoF/VPD2FLYst/9F3YjQhIA7eIXRWxHeRnuKW+isMbOO7fm4vODQi60K6CijWo+nTmYt1YcYm9FE5P6JjIuOxaltGCROA8QxGOkvH5rcnNzxU2bNh1/x9OEzy9S2eSgyuLC7fGTGK7BXPIrhvUvB5ZkPSdB35tBd/o6hLw+P0V1dv65OJ+KRidTB6cwunuMtFqTkPiNKWtwcO0bayltCKS/r+mfyJOX9QgpK4BAgfySvEq2Fzdydf9EMmIMkqP5MdhSVM/Vr68J/m1UK/h51ijizJ2LNLu9fpweH0ZN++PDJCR+SwRB2CyKYm6b7ZLYakuD3Y0oBlrDDTIPuJoLnLXhoDgzdRg2lxe310+YTimdQCQkzhGqLE7qbR50KjnGVqN8JE4eqyswBmnOikOE65TMHJlOglkjNRRI/C6QxJaEhISExDmD0+NDLghSGlDid0VHYkuq2ZKQkJCQOOtopJpFif8hpCWFhISEhMT/b+/+QqQq4zCOPw9qGJZ4kUS4kgVhSeAqIYogZBL2h6IgKKiroBsTgyDqspsuoy4iCPtzkRRhBZGgGRkSRKalpa2CROFisUZIfy4S8+liJhBx1vXQ6zvv9v3AsHNmz8XDj5mzz5x5zyyAgihbAAAABVG2AAAACqJsAQAAFETZAgAAKIiyBQAAUBBlCwAAoCDKFgAAQEGULQAAgIIoWwAAAAVRtgAAAAqibAEAABRE2QIAACiIsgUAAFAQZQsAAKAgyhYAAEBBlC0AAICCKFsAAAAFUbYAAAAKomwBAAAU5CS1Mwxk+4SkH8/zq6sk/XKJ40wHzK07ZtcNc+uGuXXH7Lphbt2cO7drk8w/d6ehLluD2N6b5JbaOVrD3Lpjdt0wt26YW3fMrhvm1s1U58bHiAAAAAVRtgAAAApqtWy9UjtAo5hbd8yuG+bWDXPrjtl1w9y6mdLcmlyzBQAA0IpWz2wBAAA0gbIFAABQULNly/YDtg/ZPmOby1UvwPZ620dsH7X9dO08LbD9mu0J2wdrZ2mJ7YW2d9ke679GN9XO1Arbs23vsX2gP7tna2dqie0Ztr+2/WHtLC2x/YPtb23vt723dp5W2J5ne6vtw/3j3apB+zZbtiQdlHS/pN21gww72zMkvSTpDklLJD1ke0ndVE14Q9L62iEadFrSk0lukrRS0gaeb1P2l6S1SZZKGpW03vbKyplasknSWO0Qjbo1ySjftXVRXpS0PcmNkpZqkudes2UryViSI7VzNGKFpKNJvk9yStLbku6tnGnoJdkt6dfaOVqT5KckX/Xv/67eAWhB3VRtSM8f/c1Z/RtXMU2B7RFJd0naXDsLpj/bcyU5+hCoAAACEUlEQVStkfSqJCU5leTkoP2bLVu4KAskHTtre1z88cMlYHuRpGWSvqibpB39j8L2S5qQtDMJs5uaFyQ9JelM7SANiqSPbO+z/VjtMI24XtIJSa/3P7rebHvOoJ2HumzZ/tj2wfPcOCtzcXyex3i3jKJsXyHpXUlPJPmtdp5WJPk7yaikEUkrbN9cO9Ows323pIkk+2pnadTqJMvVW2qywfaa2oEaMFPSckkvJ1km6U9JA9dDz7xUqbpIsq52hmliXNLCs7ZHJB2vlAX/A7ZnqVe0tiR5r3aeFiU5aftT9dYNcpHG5FZLusf2nZJmS5pr+80kD1fO1YQkx/s/J2y/r97SE9ZDT25c0vhZZ563apKyNdRntvCf+VLSDbavs32ZpAclfVA5E6Yp21ZvHcNYkudr52mJ7fm25/XvXy5pnaTDdVMNvyTPJBlJski949snFK2psT3H9pX/3pd0uyj3F5TkZ0nHbC/uP3SbpO8G7d9s2bJ9n+1xSaskbbO9o3amYZXktKTHJe1Qb7HyO0kO1U01/Gy/JelzSYttj9t+tHamRqyW9Iiktf1Lyff3zzjgwq6RtMv2N+q9SdqZhK8xQElXS/rM9gFJeyRtS7K9cqZWbJS0pf96HZX03KAd+Xc9AAAABTV7ZgsAAKAFlC0AAICCKFsAAAAFUbYAAAAKomwBAAAURNkCAAAoiLIFAABQ0D879LluAFH7NwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJcCAYAAABwj4S5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hUVfrA8e+Znt4TCAFC70W6oGAv2DuWFdZe17blp+666u666rquuq51XRuoWLFS7CgC0qsU6QkkIT2ZTJ/z++PeDDOkkEBo8n6eJw/kzp17z9y59+ae95zzHqW1RgghhBBCCCGEEEKIxlgOdgGEEEIIIYQQQgghxKFLgkdCCCGEEEIIIYQQokkSPBJCCCGEEEIIIYQQTZLgkRBCCCGEEEIIIYRokgSPhBBCCCGEEEIIIUSTJHgkhBBCCCGEEEIIIZokwSMhhBAtppR6Tin1p7Zed18ppSYppb4/EPvaH5RSWinV/UC/N2obq5RSxzXz+jdKqWv2ZR8Hk1LqcqXUrKjf9/mYHShKqfOUUtuUUrVKqaMOdnkOJ+Yx63qwyyGEEEL8EkjwSAghjhBKqc1KqZP2ZRta6xu01n9p63UPJKXU/UqpyQe7HIcSrXU/rfU30DbHRymVqpR6VilVpJSqU0qtUEpNbJPC7nnf+WZwyFa/TGs9RWt9Siu3c7kZfKhVSnmUUuGo32vbvuRNegy4RWudqLVecgD3e9AopY5TShXs63bMY7axLcpUz7yPeqLOheigZH+l1EylVKlSSjfy3nyl1GdKqQrz2ng6+jyNWm+ieQ7v14BtY9dKW66/23uP2/0air4n7La8VikVUkr9O+r1eKXUM+axrVJKzY56TSmlHlFKlZk/jyqlVGvLKIQQonmtvvkLIYT4ZVJK2bTWwYNdDnF4U0o5gC+AEuBooAA4EXhVKZWitX7qYJavpbTWU4ApYFR8gcla67zG1lVKWbXWof1UlM7Aqr154/4sl1k5V1rr8P7Yfgv2fzDvV2dprb9oZHkAeBt4BpjWyOvPYFwX7YFU4HPgJiByTSil0oC72cvv/BC3valrSGudWP9/pVQCUAy8E7XKCxj1lj5AOTA46rXrgHOBQYDGOK4bgefasvBCCHGkk55HQghxBFBKvQ50Aj42W3V/H9WKfLVSaivwlbnuO2areJVSarZSql/Udl5RSv3V/P9xSqkCpdRdSqkSpdQOpdSv93LdDKXUx0qpaqXUAqXUX1Uzw9DM9T8y1/8R6Lbb608qY6hPtVJqkVLqWHP5acA9wCXmcVhmLv+1UuonpVSNUmqjUur6ZvbdXSn1rXl8SpVSU6Ne66eU+lwpVa6UKlZK3WMuH6GUmquUqjQ/+9NmkKWx7TuVUo8ppbaa23hOKRUX9frvzG1sV0pd1Uw5j1dKrYj6/QvzWNX//r1S6lzz/5uVUic1dXxMnZVSc8xjNEspldnErn+Fca5dpLXepLUOaK1nAL8B/qqUSjL3GTN0bLfzJU0p9YlSaqcyeml8opTKi1r3G6XUX5ooT32PhErzMxytmhnWuKfj3cR7XlFGz6rPlFJu4Hil1BlKqSXmObdNKXV/1Pr119pEcz+lSql7o14foZRaaL63WCn1uFmuWsAKLFNKbTDX7WN+/kplDDc8ew/l2myeM8uVUm6l1EtKqRyl1HTz2H2hjIBF/TZGKaV+MLe/TEUNZzT3+zel1BygDuiqlPo/pdQnzRyrzUqp35r7r1JKTVVKuZpZPwGYDuSqXb1QcpXRI+5dpdRkpVQ1MGlP11X0OWYem/8opT41P/d8pVS3JoqxV7TWa7XWL9F04KcL8LbW2qu1LgJmAP12W+fvGMGk0uiFSqnLlFLLm9r3Hq6JpjR2rViUUn9USm1Rxr36NaVUSlPr72H7e+tCjCDbdwBKqV7A2cB1WuudWuuQ1npR1PoTgX9qrQu01oXAP4FJ+6lsQghxxJLgkRBCHAG01r8CtmK0mCdqrR+NenkcRmvuqebv04EeQDawGLP3RRPaASlAB+Bq4D/RFdFWrPsfwG2uM9H8ac5/AC9GC/5V5k+0BRgt0+nAG8A7SimXGcR4CJhqHodB5volwJlAMvBr4F9KqSFN7PsvwCwgDcgD/g2gjKDIFxgVwlygO/Cl+Z4QcAeQidEb50SMHgeNeQToaZa/O8bxus/cx2nAb4GTMb6j5oYhzgW6K6UylTHMpD+Qp5RKMoMjQzErZ/WaOT4Al5nHJhtwmOVozMnAdK21e7fl7wHxwKhmylzPAryM0eumE+ABnt5tnabKM9b8N9X8DHP3sK8mj/ceXAb8DUgCvsc4f6/E6FFyBnCjMoNzUY4BemF8//cppfqYy58EntRaJ2MEQt/WWvuiemMM0lp3U0rZgY8xzr9s4FZgilm5bqpcABdgfC89gbMwrvF7MM5HC0ZgD6VUB+BT4K8Y185vgfeUUllR2/8VRk+PJGCL1vphrfWZezhWFwOnYQRPBtJMxd48b07H6KWSaP5sN18+B3gX4xhPoXXXFcClwAMY1+7PGMcJ87MvN4NQjf08s9t2pigjsDlLKTWIlnsSmKCMIVgdzM85I6oMI4BhNNJjRmv9htZ64B6239JrtF5j18ok8+d4oCuQyK5rr8H6SqljmjlulUqpY6L2l20GRzcppf5lBgobMxF4TWtdP/RvJLAFeEAZgdcVSqkLotbvB0QHupfRMCgnhBBiH0nwSAghxP1aa7fW2gOgtf6f1rpGa+0D7gcGRbU87y4APGj2LvkMqMWoHLd4XaWUFaNy+2etdZ3WejXwalOFjVr/PrPcK3dfX2s9WWtdprUOaq3/CTibKRda60+11hu04VuMyvmxzXyOzkCu2YOgvoJ+JlCktf6nubxGaz3f3P4irfU8szybgecxgna7fzYFXAvcobUu11rXYARzJpirXAy8rLVeaVay72/mM3mBhRgVvmHAcoxgwhiMAM56rXVZU+9vxMta63XmefI2scNGomUCOxopTxCjN0VWg3c0XLdMa/2eeT7UYFTydz9eLS1Pk1pwvJvzodZ6jtY6bH7f32itV5i/LwfebKTMD2itPVrrZRgV3PrAQwAz0Ke1rtVaz2tin6MwKvMPa639WuuvgE8wgiKNlstc9m+tdbHZK+M7YL7Weol5jX8A1CfivgL4TGv9mfn+zzHOofFR239Fa73KPJcDLThOAE9prbdrrcsxgl+t/q5Mc7XW08yyeVp6XUV5X2v9o3kuTokuh9Z6oNY6tYmf6IDU5UA+xj3ga2CmUiq1heX/FiOoUY0xnHMh5vA28772DHCr3vuhgPt8TWB8vse11hu11rUYQ+gmqCbyHGmtv2/muKVG3R/XmOVpD5yAEbx+fPftKaU6YXyH0ff0PIzgdxVGYP4WjGGw9cHXRPO1elVAonl9CyGEaCMSPBJCCLGt/j9KKatS6mGl1AZzaMhm86Wmhj+U6di8I3UYD/KtWTcLI5fFtqjXost0T9TwleeaWH9L9I6UMTzuJ3OYTCVGj6cmh3AopU5XSs1TxnCzSozKclPr/x5QwI/KGDZU3+upI7Chie33VMbQqyLzuD7UxPazMHrnLKpvucfomVAfcMlt7nM34lvgOIwA0rfANxgVs3Hm761RFPX/5r7nUowKYgyz8pkJ7NzTjsyeGc+bQ2eqMYbLpJoV7NaWpzl7Ot7Nif4eUEqNVEp9bfZIqQJuoOF33FSZr8boFbRGGcM2m+rJkwts2y24sAWjt1Sj5TIVR/3f08jv9eXoDFwU3XMEo7dU9PfZ2Pb3pC2+qwb7bsV11WblMANzHjOw+XegkqYDzdFltQAzgfeBBLOcaRg938DoMbVc77mnXHPa4jjnEntf2YJxv83Zh3KhtS7SWq82A3+bMO6jFzay6pXA9+Y69TwYAda/mkHTbzECd/VJ8Gsxeo3WSwZqtdYNkpYLIYTYexI8EkKII0dTD9LRyy/DGBpyEkbAJd9cvj9bcHcCQYzW5XodI4XT+iG9a/jKDVHrd4xav1P9f5SR3+gPGL100rTWqRgt0fWfIeY4KKWcGEOqHgNyzPU/o4nPbFaCrtVa5wLXA88oI6/KNnbLvRTlWYyW9x7aGJp0TxPbL8WoKPWLarlP0buGL+1o6nM3Yffg0bfsOXi0rxWuL4DTGxmScgFGBbA+71IdRuCmXruo/9+F0VNspHm86ofLtOQ8bE3593S8W7OfN4CPgI5a6xSMoUctum601uu11pdiDDd6BHi3iSE924GOZiCiXiegsJlytcY24PXdeo4kaK0fbqPtt1RL7lXQ8utqj8xA8O4zfkUHrZsra0v2mY5x7T6tjSGJZRhDM+t7dZ0InGcGwoqA0cA/lVK7D9dsS40d5+0YQcR6nTDut8WNra+UOraZ41Zr3o+b2ndjx+1KGvY8bTLXk2kVu3rxYf7/l5hwXAghDioJHgkhxJGjGCOHRXOSAB9QhlGxf2h/F0obs0G9D9xv9jjpjVGBaOn6fYnNkZSEUdnZCdiUUvcR2ypdDORHVcAdGMPadgJBpdTp7GrRbkApdZHalby5AqMSFMIYPtROKXW7MpIdJymlRkaVqRqoNT/fjU18tjDwIkbOpWxzfx2UUvX5qN7GSBTcVykVD/y5qXKafsAIwowAftRar8KoGI5kV/Lb3e1+fFrrdYwhOe8oI1G03Sz/U8CjWuv64SVLgcvM3m6nETvcKAkjqFOplEpnz58z2k4gzJ7P9ZYc79ZIAsq11l5l5K65rKVvVEpdoZTKMstTaS5ubJa0+Ri5lX5vHtfjMHIYvbUX5W3MZOAspdSp5vfiUkay+0ZnyDLLfr9S6ps22n+9YiBDNT1ctl6LrquW0Fr3iwpS7/5zAxhDqpRSY5RSDvPY/A6jB9Ec83WljGTgDvN3lxmcRmtdCmzCyIVlU8ZQt4nsytUzCSP33GDzZyFGfqZ7zW1NUkpt3tvP14TGrpU3gTuUUl2UUonsyoEWbGx9rfV3zRy3RK11fdLr48zjp5RSHYGHgQ+jC6OUGo3Riy56ljUw7lVbgbvNYzcGIyg+03z9NeBO89rNxQg+v7KvB0cIIUQsCR4JIcSR4+/AH83hKE0lUn0NY5hCIbAaaCr3Slu7BaOnUxFG8OFNjCBWc+snmuu/gtGCX28mRkLgdRifxUvscJf6ikmZUmqxNvLc/AYjMFOBUen/qJl9DwfmK2MmrI+A27Qxq1gNRlLis8xyrcdIOgtG4trLgBqMYMXUBlvd5Q8YyXznmUNxvsDM16S1ng48gTEz3s/mv03SRl6kxcAqrbXfXDwXI9FxSRNvizk+zW2/iX36MHqubcMIdngwhoI9gVEZrncbxrGqxMizEj21+RNAHEbPoHlEJRVuwf7rMHIkzTHP9T0l6G7yeLfSTcCDSqkajITbb7fivacBq8xz6klggt6VryjC/A7Pxki0XIqRI+dKrfWavShvA1rrbRg9D+/BCBRsA35H88+LHTGDJ23F/DxvAhvN7zC3iVVbc121hSSM3k4VGPfI04DT9a7cYZ0xzvf6Xi8eYG3U+88337MT45wLYiT8RmtdafZqLNLGTGx+oDoq2Lo/jnNj18r/MO7BszGCXV6MxOx7c21FG4Jx73FjBLVXYiZqjzIRIy9VzW7lDGCcl+MxepG+SOx5/zxGLq0V5nY/NZcJIYRoQ0qGAwshhDjUKKUeAdpprfc065o4xCljhrDpGJXtSZKH5JdFKbUUOFG3Lvm6aCWl1CyMQPVPB7ssQgghjkwSPBJCCHHQmUNOHBgtx8Mxcg5do7We1uwbxWHBHH50G8YU9G3SS0YIIYQQQhw4MmxNCCHEoSAJI4+RG2O4zz/ZLR+GOHxprau01g9K4EjUU7GzKEb/TD/YZfslUUpd3sRxloTSQgghWkV6HgkhhBBCCCGEEEKIJknPIyGEEEIIIYQQQgjRJNvBLkBrZWZm6vz8/INdDCGEEEIIIYQQQohfjEWLFpVqrbMae+2wCx7l5+ezcOHCg10MIYQQQgghhBBCiF8MpdSWpl6TYWtCCCGEEEIIIYQQokkSPBJCCCGEEEIIIYQQTZLgkRBCCCGEEEIIIYRo0mGX80gIIYQQQgghhBDiUBQIBCgoKMDr9R7sojTJ5XKRl5eH3W5v8XskeCSEEEIIIYQQQgjRBgoKCkhKSiI/Px+l1MEuTgNaa8rKyigoKKBLly4tfp8MWxNCCCGEEEIIIYRoA16vl4yMjEMycASglCIjI6PVPaMkeCSEEEIIIYQQQgjRRg7VwFG9vSmfBI+EEEIIIYQQQgghRJMkeCSEEEIIIYQQQgjxCzFjxgx69epF9+7defjhh9tkmxI8EkIIIYQQQgghhPgFCIVC3HzzzUyfPp3Vq1fz5ptvsnr16n3ersy2JoQQQgghhBBCCHEQTFtSyD9mrmV7pYfc1Dh+d2ovzj2qw15v78cff6R79+507doVgAkTJvDhhx/St2/ffSqn9DwSQgghhBBCCCGEOMCmLSnk7vdXUFjpQQOFlR7ufn8F05YU7vU2CwsL6dixY+T3vLw8Cgv3fnv1JHgkhBBCCCGEEEIIcYD9Y+ZaPIFQzDJPIMQ/Zq7d621qrRssa4vZ3yR4JIQQQgghhBBCCHGAba/0tGp5S+Tl5bFt27bI7wUFBeTm5u719upJ8EgIIYQQQgghhBDiAMtNjWvV8pYYPnw469evZ9OmTfj9ft566y3OPvvsvd5ePQkeCSGEEEIIIYQQQhxgvzu1F3F2a8yyOLuV353aa6+3abPZePrppzn11FPp06cPF198Mf369dvXospsa0IIIYQQQgghhBAHWv2sam052xrA+PHjGT9+fFsUMUKCR0IIIYQQQgghhBAHwblHddjnYNGBIMPWhBBCCCGEEEIIIUSTJHgkjggef4hgOHywiyGEEEIIIYQQQhx29tuwNaXU/4AzgRKtdf9GXlfAk8B4oA6YpLVevL/KIw5fwVCYcrcfbzCMy24hPd6BzdqyuGdlnZ9FWyqYumAbPXOSuGJUJ0JhzbYKD/kZCaQl2HHarARDYSrqAmwrd+OyWclJdpGR5NzPn0wIcSipqPNTVOXFoiAt3kFagh271brnNwrRAv5giLJaP0XVXjITnaTG2UmKsx/sYglxSAsEQ1R6AiQ6bATDGn8oTJ0/hFIQ77CRnuA42EUUQogjxv7MefQK8DTwWhOvnw70MH9GAs+a/4pDVCAYxu0PkuCwYbcdmE5roVCYZQWVXPfaIsrcfrKSnLw8aTj9cpOp8gTYXFbHt2tLGNo5nb65SSQ4bIS0Jt5hIxQK8+nyHdw7bSUAs1YX8/Hy7Tx4dj8mvrwAp83ClGtGMiw/naJqLz+X1PL+4kLSExxMGp1PSGtS4+04bFJ5FOJACIc1ABaL2m/7qPIEcPuCBEJhEpw2MhONIHFJjZdl2yp5ZMZaiqu83HJiN84a2IElWytIjrPTp10ymRJQFvtgRWE1V/x3Pp6AUfG9+/TeXDK8Iylx+7fyW+H2Ue0NojUkuqxkJrr2y36CZqU+wWnDuh+vYXHkKKn28vbCbXy7bieDO6Zy1TFduP+jVcxcVQzACb2y+MdFg8hI3HVv1lpTWuvD7QsRZ7eSFGcj3iEpXoUQoi3st7up1nq2Uiq/mVXOAV7TWmtgnlIqVSnVXmu9Y3+VSbSc1ppgKIzdDJyUVHkpdftYtb2afrnJZCQ4yUnZPw+g0crcfm54fTFlbj8AO2t83DB5Ea/8ejhLt1aSluBgVNcMAiHNB4sLyUuL473FhVw7tit5aXG8+N1GOqTGMbRzGjtrfMzbVEacw0ai00atL8jd76/gneuPZuNON5NeXhDZ7/tLCnj9qpFsKatjaOe0/VqZFeJIFwiFKKry8fKcTQRCmqvGdKF9qguXvfnAbXmtH40mPcGB0Zm1eRVuP099tZ5XftiM1tArJ4nXrh5BTrILty/ITVMWEwhp0uLtDO+cwWlPzKbaGwSMdadcM1ICSKJRVZ4AVZ4AFW4/7VNcZCQ4sEb1kC2q8vKH95bjCYQA0BoenbGWMwa0bzZ4VOcLsr3Kw9sLCshKdnL2oFxyklv+t7ek2svnq4t58sv1ePwhJozoyNXHdKVdG//9Lq3xMWX+FuZvKufEPtmcO7hDTIVeiNYqd/v4+/Sf+GDJdgAWbK5g0ZZKJozoGAkefbV2Jws2l3Na//aR920pr+OyF+axvcqLw2rh/rP7cfagXBJdEkASQoh9dTDvpB2AbVG/F5jLGgSPlFLXAdcBdOrU6YAU7khWXO2lqMrLT0XVDO2URkqcjc9WFnH/x6sj69x3Zl/OG5JLWvz+fTj0h8LsrPXFLCuo8GCzWMhLj+f2t5ZSVO0lJc7OQ+cNID8jgVmri5m1upjP7xjLtcd2pX1qHF/+VEy/3GTuOLknafF2NEYPh8JKD/5QmFfnbo7ZR7UnyOKtFXy3biePXDiIrMO4wujxhwiEjHxPbr9REU5w2EiW4RLiEFFS4+fUJ2ZT5zcq1m8t2MqsO8bRJTOh0fVrvQEWb63kHzPXEgprbjmhO2O6Z5Kyh3N6e5WHl+dsjvy+triG577ZwN3je7O2qJZAyLgvnDEwlzd+3BoJHNWvu6ygkhP75Ozjp92zQDBMRZ0fpRQZCQ4JXh/iKuv8PPXlev5nnlvJcTbeu3E0PbKTIutordlaVhfzvmBYR4JJTfl5Zy3nPfMDIbNX3v++38S0m8a0uPGmuMYX6X0L8OJ3m+iWlciFQ/NaPPy7tNbH/I3lrCisZPyA9nTOiI8JeJW7fdzy5mLmbSwH4IcNZazeXsMDZ/cl0dX8NVnlCbC1zM27iwvp3S6Jk/vkSIBWAOAJhPloWWyVYPHWCh65YABdMhPYVOoGYMnWykjwqKouwN3vr2B7lRcwniH/9OFKju+dJcEjIcQR56qrruKTTz4hOzublStX7vkNLXAwE2Y39jSsG1tRa/2C1nqY1npYVlbWfi7Wka20xmj9P+c/c/i/91ZwyhOz8QU1/5i5Nma9f85aS52v+Yfe1qrzBSmr9UUCHQB2q4W8tLiY9bpnJ2K1KP40bSW5qS5+NaozA/NSuOeD5bgcu3oqLN5SToLTxlWvLGDK/K38ffoaHvh4FS67FZvFOPXPGpSLy2ElvpEeDnEOK4WV3sM20XYoFGZLmZs/TlvBmqJq/vzRKkY//BVjHv6Kv3yymvLdgnJC7A23L0hJtZeKOn/M8mAoTGGFh0dmrOEvn6xiS5kbXxMV5Q+XFEYCRwCBkOblOZsiw9h2t73Ky5X/+5EVhVWs3lHNTVMW83NJ7R7Luq64psGy5YVV1PlDdM3aFahKctoafB4wKtH7W4Xbz3OzNzD+qe+46Lkf+GpNCTXewH7fr9h7VZ5AJHAERuPDnz9cRVXUOWS3Kk7tHxt4bJfsIqGZ4TQ13gBPfbk+EjgC2FHlZcm2ihaX7bt1Oxss+/ynYtw+IzBaVuvjvUUF/O7dZXy7bicV7tjzvtzt5/a3lnLzG4t57tuNnP30HD5fXUwo6u+0xx+OBI7qTVtaiNvf/DOC1po5P5dy1tNzePWHzdz9/gomvvzjAbnOGlNS7eW/323k3g9WsKKg6rC57nyBEB5/cM8rmvzBEMXVXjaV1lJS7SUQattnubaigERn7PVhtSjq/CEev3gQ7c0A6gm9syOv+4Ih1uyojnlPKKwpr214Pz/UhMOakhovm3bWUlTlodbb8u9UCCEaM2nSJGbMmNGm2zyYYfgCoGPU73nA9oNUFmHyBUMs3lLBc1cMJS3eTmGlh1BYN3gIdPtDNFGva1I4bIxDr+8plBJnJzXeaL3cXunhsZlrWVNUw6n923HFyE5kJDqxWuCxiwZx7wcr2bCzll45SfztvP7YrYq7TulFaa2PeRvLGN0tg5uO6443qnLaIS0+prcUwKrt1dR4A+SmuLhkWEeuG9eVZJed35zYg1mri/EFjQfiTunxDOucxtsLCnAepjmPSt1+zvr393TJTGB9cS0fLCkEjAjtO4sKOLlvDqf0a3dwCykOaztrfDw6cw1frC6mW1YiD18wgC6ZRnC3pMbHqU/MptaspE6et5WZt48lv5HeRE57w3YMZzN51T5cWthg2Rs/bmFwxxSslqbfN6RTGkoZQ4bqnd6/HUkuO2GtuebYLrz0/Sa+XlvCbSf14MufSiLruewWju2x/xsvvl23k3/OWgdAaa2fa19fyFd3jiNptx4cvmCIOl+IJJetxT1IxP5R2kjFdGt5Hb6oAIvDbuXGcd1w2qzMXreTnjlJ3HFyD+y2pnuV+YPhRv/OBs0eclWeAKFwmGpPkDp/iKwkZ4NesoM6pjZ4/8AOKSSaAdLfv7ucL9cY5/k7Cwu46+SeXDu2a2TIaK03yPc/l8a8//FZ6xjXM4usJKPybrWAzaIIRhU2M8HRaAthtDK3n399vi5m2art1ZTW+iK5yA6UnTU+Ln5+LpvN3mFT5m/l1V8PZ1yv7D28s/VqvQFqzca3RKd1j72zmhIIhdle6eGZrzdQ6fFz/dhu9MhJbHCv2P09i7ZUcO1ri6j1BUl22fjfpOEc1SntkMtTlRZv5w+n9eKeD3a1lk8anc/MVUWsLKziurFd8QfD+INRDY42C8f2yIzpsRTvsB4WSbW3V3ooqvZS5w+R7LJRF3AzoENKs9+nEIejWm+AukAIl80qoyCiLX8bvnwQqgogJQ9OvA8GXrxPmxw7diybN29um/KZDmbw6CPgFqXUWxiJsqsk39Gh4abju/PHaSspqPDQu10SL/xqKKO7ZfDDhrLIOkd3zSCukQpfc7aW13H+sz9QbrZsXjK8I/93Wm+CYc2lL85ji/nQtnpHNTtrvNw7vg/eQJi/fLKa35zYnXbJLgoqPdz7wUpemjiM+ZtK2V7ppV9uCutLalm0pYLfn9YbMB4W8jMaH/ICiteuHkmyy4bTbsUXCPHTjmreum4Us9ftJDnOzoAOKbh9QZ65/KjD4qGjMcsLKqn2BumWnciygqoGr3+3vlSCR2KvuX1BHvpsdSQfxcItFVzy/Dym334s2UkuPl62PRI4AvAFw/xvzibuP6tfg2FYZwzI5d9f/UxlndHSH++wMvHo/CaHa3XLSmywrHtWUrOBI4CMBCfPXT6U+z9eRbnbzyXDO3L+kI6+m7YAACAASURBVA5YLYr0BCe/OaEHV43pgscfItFl5fWrR/DC7I0kx9m586SeZCbu33tBrS/AtCWxgTGtjWu1S9RnLqn28vzsjSzeUsHxvbO53Ay2i4MjLy0ukkev3lmDckmNGtrlDYS4/L/zOX9IHn86sy8FFXXc9tZSXr9qBJkNT2cAklx2rj22C9+sLYkEkbKTnAzpnMZHSwt5c8E2cpKdXDkqn4c++4miai/v3jA6Jp9Rj+xE/nhGbworvSzcXIFSMGFEJ6xWC3W+UCRwVO+5bzdwyfCOkeBRWDeMXgXDOqabeJLLxh0n9+AfM9fRLzeZu0/vQ7zTiicQorLOH2kkaqlGdrnfbS13RwJH9Z74Yj0D81JJa8NngHK3n8dnreXNBdtQwOUjO3HbST336jmjtNbH6U9+F+m1OXNVMe/fOJohndOafE+F288tbyyJnKvV3iC3vLGEj24ZQ3YzubSqPH7cZsArwWElpRXfaWmtD18wjN2iGuQC01rj9gVx2q3YdwuCxzlsnNK3HcM6p/Pt+p30zE5kS3kdD3y8mni7lb+e25+SGh/xUT3Og6EwVx3TFbc/xNdrSuickcC9Z/ShLnBo9eLxh0JUugNUegIku+w4bYqiai/XvLaQyroASsENY7vRJSNBgkfiF6WoysuDn6xi3sZyBndM4aHzBmC1KPwhjdNqOXKHLS9/Gz7+DQQ8xu9V24zfYZ8DSG1tvwWPlFJvAscBmUqpAuDPgB1Aa/0c8BkwHvgZqAN+vb/KIlpOKcWdby+LBHjWFNXwx2kr+ceFA3lh9kbmbypnRJd0rhrTpcEf+ubUeAP87bPVlLv9pMbbOWdwB7KTnLh9AYKaSOCo3vuLC/nNiT1wWC2Ewprb3loaeW1Ip1SUgpP7tmP+xnLm/FxKv9xkrhjZGZfdyiMXDGBszyycNgtXH9OFu99fEXlvv9xkEpzWmNbZGm+AtxZsY/HWCoZ2TqPOF+LBT1bzwFn9uHJ00w9hh7qUOAd2qyLZZef0/u34em0JO2t2DQc4qU/bt6iKI4fbH2SWmbS0XpnbT7UnSHYSjbZi25oIBmUlOZlx21g+W7EDfyjM2YNym80zNrZHFv1yk1m13RiekJ8RzwVDOuyxzIkuGyf1zWFIZ6M3RqLTRlzUsKHkOHtMK1hOchyDO6ZitagDMluP02alb24y3+w21KhXu125c8pqfVz72sJIQHjJtko2ldby4Dn9pZJxkKQnOHjvxqP504er2FZex9mDcrnmmC44onrPWZUiJ9nFS99viiyzW1XM+bc7h81C9+xEPr71GKaagaKT+uSwYHN5zN/Eb9bu5L9XDuPC5+by4uwN3HBcN9z+ECkuY2rzGm+IHVVebjreqIxuKKk1km43cjkqpWKWJ7lsHNUplSVbKyPLbjquG+lm8KCkxsvGnW5Gdc1gzh+OxxsIc/l/51NUbeScuWBIB+49o2+jwZH0eAe3ndSDW95YElnWp33SQckxqBo5GC3Iwd9qCzeXM3n+1sjvr87dwtieWXuVS232up0xw30Bnp+9gX9dMrjJ+5U/FI5MQFKvqNob02tsd+W1Pv7y2U9MW1KI1kZvzQfP6RfpedacrWV1XPvaQtYW15Cd5OTpy45icMdUHDYr5W4/n68u4tPlOxjYMZWJR3eO2WZ5rQ9f0OiFM2PFDp4tq4s8mw7pnMYny3cwdeE2plyza6Jmu9XCf75az5BOaVx7bFdKqr08980Gnrr0qD2WdX8pc/uoMWc7THbZyEh0snZHLZf/dx7V3iA2i+KLO8fyyIw1kQYUreG52RuYMKLjHrYuxOGjwu3nN28t4cdNxjBnTyDM+pJafv/ucnZUeemamcCLE4c12kD4i/flg7sCR/UCHmP5kRI80lpfuofXNXDz/tr/kaqs1sfygipWba/m5L455Ka6WlShqKzzY7MqwlpH/jjXm72+lO2VHixKcd2xXVm5vYoznvqOL+4aR0oLy+ULhtlSVke/3GT+em5/Js/bwurtVaTG2Tmpbw42qyIY0iQ5bQzLTyfeYcGCAgs8dP4AnvpiPUsLKhnWOY1bju+O1aJ4Z2FBZCjW/E3lLN1WydOXDeGS4UZS9ao6Py67lZcmDuPLn0rolB7P0Pw07Lv1TkiJtzOqq9Gzas7Pu3pXNdd6dzjomZPItJvHMGtVMZ+u2MHzVwzlsxU7eH3eFiaNzmdAXsPhDEK0lFUp8jMTIgEcAIuCBKfRCnzmwFye+mo91R6jxddltzBpTJdGexNZLYp2KS6uOqZLi/admeTk1atGUFTlJRTW5KbGtbjCabWoFlV66h3IgIzdamHi6HxmrS6O5HAa378d3bN3PUh5AqEGPQk/WraD/zu9jwSPDhK71UKvdsm88Kuh+ENhUlx2nLvl0ctIdPLPiwdx6YvzqPYYFcYHz+lP8h6T+Cr+OWsdJ/bOBgXzNpbx7qLY3mmVdQG2VXjIS4tjfUktr87dwtNf/cy7NxzNvR+sZK2Z62vGyiLuPLknLruFozqlkuCwclr/HGas3BUEvuX47jGJ5zMSnbzwq6F8tqKIZQWVnDu4AwPzUrBZLRRVeTnvmTlYLYqbjutOapyd/3y9IRI4AnhvcSFXH9Ol0eCRxaIY2yOLaTeP4Z2F2+jTPplT+7U74EPWwBiq3i0rgQ073ZFld57cq017HQF8tVtPLzCCf3sTPEpu5HpPcdmxNhP1ctqsdM1MYGPprs/Zp31Ss8OEF22t4IPFu8656SuLGNM9k2O6Z1JYWUfHtHjSE50N8hNVuP3cPnVp5PwrqfFx9SsLjWfHOHhh9gae+3YjYDxnfr2mhFevGkFmopPiai/Xv76IpdsquXBoHteP68b/mQ2B/Tskc/tJPbhx8mKKqr08Pmsdfz23P/FOG6nxDv7v9D5c8sJc/jFzLVaL4t7xvUk6SMmyS2t93PrGYuaaOcGO6pTKc5cP5bfvLI1MyBAMa8rcATaXxjaiam0MTRXil8IXDEcCRwA3jO3KHVOXRoZ+byx1c+PkRbxx7aiD8nfgoKoqaN3yg0imHvgFqXD7+e07y/h6rdFq/distTxz+RBO69euyeEflXV+5m8s57/fbyQt3sFdp/Tk7EHtY8aL92mfxLYKDy//sDmyzGW3oHTLE0mnxtk5d3AHBnVMjfzBB2Pq1RpfkEcvGMjcjWVcMqwjX60pIT8jAY0mHIabpyzmilGdmTCiE2uLa7j29UV8ePMYPl4WmyJr8dbKmOTWIa3Jz4jnr5+splNGAnM2lOILhjj3qNgeCnarlQnDO7J0WyVfrSnBabNw8/HGMLnDWSAU5tpXF0ZmHXl93hamXjeKG4/rRpzdSrxTLn+x9zISnTx64UAmPD+PGl8Qi4J7xveJPKRnJTmZeftYpi3Zji8Y4sKheWTvQ4+CYChMudvP9iovGQkOkl02+ndoafj6wHL7gtR4g3gCIRKdVjISnDH34HK3n2A4TJLTTpwjNsiQk+zirWtHUeUN4LBaSHTZSIsaImKzWBrkl0mJs+8xv4zY/xobnqW1xh8K47RZ6ZmTxBd3jKPaEyDRZSfJZWv2PuwPhnl5zia+WlNCl8wECio89MtNJi2+kaBBnB2PP8TJfdvx8fLt2K3GGbF2tyTxb8zfyjOXD8FutRDnsPG3cwdwzqAO/LipnNP6t6Nnu6SYPH8ef5DlBVXM21hGcpyd1+du5r6z+pHksjF53mZCYc0zlw/hwY9X4/YH2bCzYeL6reUe+uY2fq0mx9kZ3DGVwY3kZjqQMpOcvHXdKGatKmZTqZsLh+Y1mKyjLZzQO5u3FmyLWXZcr73LpTYsP438jPjIcLt4h5WbT+jeIHAZLTPRwUuThnP7W0tYVlDFkE5pPHHJ4GaHvc7bUN5g2ZKtFazeXsXVx3bl8v/O576z+nFC7+yYHqeBcLhBcvcaXzCSEH3akthnuFXbq3H7gsTbrTw2ay1Ltxm93d5dVEBFnZ+PbxmDN2Bs8/apSyPPkWuKavAEQpFrKT8zgc9uO5Zab5B4h5VEp32/zrRW5vaxens1i7ZUcELvbDqlx0fuBXM3lEUCR2DMDDdzVRHtUuJYW7zrWvlidRGn9MthSlSvtGSXjZxWNHQIcaizKOPZsH4UhMtubZAzcF1xbczESUeMlDxjqFpjyw8xUnv8BanxBiKBo3oPT1/D8Py0Bi3t1Z4AwbCROPH6yYsiy2ev38mM28Yyb2M5JTU+8tLiePKSwazcEjs85c5xHUix+oCm8grFslktXDqiI+uKa2NaJQGmzN/Cm9eOoldOEmf/Z05kZpluWYlMuWYkeWlxMbO9HdfTeNBKdNkiXXzB6FFgiWpxC4XhuW9/5tYTexDnsGK3WJi+sqhBN2+A7GQXj104kLpACItSpMbZD/vgyk87aiKBIzBasZ768meeuXzIXn+2Wl+QKk+AbeV1dEqPJyXORoLzyOrt4PYFKajw8Mb8rbRLcXL+kDxjCMgRqGdOEl/cNY5yt5+UOKMynGieD1aLon1KHDce161N9rVhZy0XPjuXGjNXx/Vju3LT8d1ipgw/FNR6A3ywpJAHP1lNIKRpl+zizetG0SUzgUAoxPpiN/d+sIJtFXWMH9Ce35zYo0ELW2aSs8lx/4kuKzcf350nv1wfWfbns/q2eQ8Jse/Kan1MX1nE9z+XcnKfHI7vnUV2sqvZ3DLRPP4QC7cYle85P5dy8/Hdefxzo5fF/E3lkQkehuenodBcP64ryXE2ftxUTrzDGtODqJ7LbiEn2RVJsp6R6OT0Ae05fUD7RstQ7Qly05TFkX0B1AVCPHP5ELaWe7jy6Hye+vJnlmyrJCvJyYl9cmJ6xtmtioF5h2aQd3dZSS4uH9V5v+5jWOd0Lh/ZibfMnEeXjujEUZ32rpdzVpKLd244moWbK6jyBhjXM4vMRCehcLjJ/G9KKbpkJvDyr4cTDGtsFsse8y2d1DeHl+Zsilk2qmsGr/ywmTnrS/nvxGHc/tZS+uUms664howEB7mpcdgsFo7qmMriqCGPiU4bwZBmbVENL145lJe+38xHywojOb3sVgtuf5BFm43zPt5h5YpRnTm2RyaeQAiX3cof3lsRMwPhqf3bxQw3tloU2UkusneN9t1vquoC/O3Tn3jf7Jn1xBfruf+svlw2sjMOm4XlBZUN3rO8sIrjemXybdTw5Okri5h63dFoDdNX7iA/I4GHzh9Axn7OsyfEgZSR4ODxiwdxzasL8QXDhLUmI8ERM5S2R3Ziq9Ki/GKceF9sziMAe5yxfB9ceumlfPPNN5SWlpKXl8cDDzzA1VdfvU/bPLxrxwKtNWVuPwpjdqIbx3Xj67XFlNT4KXf78QZC7D6SfXulh3K3H6WMbuwJDmtkNjVvIMx363fy3BVDCIS0kcwvXMWJwdnMunYcywprGdQhkZyib4nTma0qa1qCk8ykhl1w0+Id/LipnC6ZCTEPBBt21rLRzOXx2tzNLN1WybDO6Vw0LA+7RXHbiT14IGo2tV+N6hzT+p6R4ODUfu2Z9PKCyLIe2YlcP65ro+VLjrMT0hqLUod94KgpStFonouW8AVDfLG6mDvfXkpYGy0IT044ilP7tYvJ7fFLt664hvOf/SGS1PWVHzbz8a3HkH0EthDarUZFdH8Hzyrr/Pxx2spI4Ajg+dkbuWJU5zYPHlV5AviCIZJcduKaacFvSo03yJ8/WhWpDBVVe7nngxU8e/kQ/MEwFz8/N5Ks9rW5W7BbFL87rXckQfGeJDrt/HpMPmcMaM/a4hoG5qWQnuA4Mh+2DpDKOj8lNb7I0OvUePsec2BV1vm55/0VzFxtNLzMWFnEZSM6cs/4Pi2eXSvRaeXE3tn8uKmcNUU1FFd7ufbYrnyzroT3bxzNmqIa8tLi6JyRgM0K/XJTGP3wlwBcODSP0lofx/bI5Lv1u2ZL+/1pvSNTnO9Oa2NG1C1ldcQ7beQkOanxBWMCRwBLt1YSDGl+dXRnqjwBnv92AwBfrinh4uEduX5sVz5cup3MJAf3n9XvsJ10ojEefyhy/abH22OSP7dEeqKD/zu9N7ee0B1Q+zTbGhgBpPrAX1mtj0+Wb2f2ulJO7pvDqK4ZTR779ISW9wLt3S6J20/qwfPfbiSsNZeN7ESc3cqq7dUkx9mZumAbJ/bJZlOpO/K8dWyPTJ6acBSPXzKYq19ZyIadtWQmOnj0wkHUeIM88PFq3L4glwzvyL8uGcxtby3lwqF5xDusOG1Wju6WQUGFhxevHMa0JYVc8+pCspKcPH7xIJ6/Yih//XQ1xdU+zh/SgStGdmpw/6vzBSPfU3KcvcX319Zy+4ORwFG9x79Yx/iB7clOcnHWwFxe/C428Hb+kA70zEli4eZKvjVnXnz0wgFkJTn505l9uP2kHtisew7qCXG4sVotDM9PZ/bvj8ftCxIMhXnq0qO48+2lFFf76JwRzzNXDDnyhqzBrrxGbTzb2ptvvtkGhYv1y6whHyFqvAF+3FTOoi0VjO6eydQft3L+kDzOHpxLSY0Xl93KjkpPzJCH4moPL32/kYq6ADeM7ca4nllcNKwjq7dX89BnPxEMa5Lj7Nzx9jK6ZCZwWv92bHE6GZzVlRQHDO6URrI1gDM+GZzJrS5zeryDU/vlMNNMtGuzKG49oQdPfbmeG4/rRqf0eLaW7xr37QuEWVFQycSj8zl/SIDkODufryrmvKM6UOcPMfW6USwrqKJXTiIFFR4j2afJYlGc2DubqdeNYurCbfRpl8w5R+U2elOqqPMzbUkhr/ywmWSXnT+d2Yf+uSmHdRCpT/tk8tLiKKgwotgWBXec3LPRPAktUVkX4E/TVkYqxWEN905bwYgu6eQkuwiYw4q2lteRmegkLd7e6ll2DnW13gBPfrk+Zjag4mojz9hJfY684NGB4g+GY+4L9Srq/HRMj2+TfWit2Vpex30frWJ9UQ0n9c3hNyf0aPXMH+V1/gbTq68tqsEfDLO9yhMzIxcYLc7Xj+vWqspNaryD1HgHPdsdgKb1I1yVJ8DTX/3M1AXbyExysqPKw3+vHMaY7pmRvzeBUJiKOj8ef4g4h5X0eAd1/lAkcFRv3sZyqr1BanxGzqPdhzPuzmq1cOHQPNYX1zJtaSFPf/0zT1wymBP7ZOOyWei327DNOl+QF68czp8+XMlxvbL47TvLePCc/pwzOJdNO90c0yOTvLR4LBbFzhovczeWU1Lt5dR+7chKclLu9nPuf+ZQYg4pGNklnScmDMZlt+AN7AogDeuSjs1qoVdOEgUVdQzsmMKcn8sIhTU3Tl7EBUfl8d6NR+OyWw+7WQDdviD+YJjUeHvM8wRAudvHM19vYMr8rSS5bNx3Vl/G9cxqda6xJJe9zfOTVXkCvPT9JrplJzJheEc2l9Uxed5mrjqma4NcRK2VluDg+nHduGhoRwoq6pi1upg73l7KgA4ppMXbmb6yiMcvHsQXP+3K5/Td+lK2lNcxuGMqr189gm3ldfiCYTISHZz57+8jf0Of/HI9j188iBm3H0tWkjPyzHDbST3ITXHx/fpS3llk5PwoqPAw4YV5TL/tWO46pRf9cpNpl+xq8JxW7vbzzNc/8/q8LVgtiluO786lIzvFPAu3lcZmI/RHBVs7Z8bz2EWD+Nfn6wiFNTcf342+7ZNJjXfwyAUDqPOHsFstkZ6jcQ5bs0n0hTjcuexWXHYri7aUc8Gzczm6awZ/O28AyS47eWlxTTZuHBEGXnzIJcdujNyhDmMlNT5+9+4ynr1iKJe9OJ/HLhrEmz9uZZb5wJqe4OD9m0bHtMh4A2FWFFbz6zH5jH/qu0jejImj87n1xB589VMx7VPimHh0PlaL4qXvNuGwWbjjpL4sXlXOM9+sxWmz8Ozlx9LXayXdGsJha3mlJy3BwV/O6c9lIzqxsdTNoLxUJs/fwopCo5t7dNLGrCQnvdsnsaygkt+/911k+R/H9yHeYaVTejzXvraQ/MwEnq/w8KujO5O020NESryDkV0zGJqfhq2Zaby/W7czphfTpS/O55vfHnfAgkchM1dTU13Ny2p9uH0hlIIEp430BAelNT42ltYSCGl65iQ2GJqYleTk/RtH8+mKHRRWeLhkeEdyU/c+h0MorGN6foAxpCFsnkMbSmq54NkfIr3YJo7O546TejQbQAqEwnvsMVFW6yOkNQkOGwmHQDCv0Vl5DkI59pXWukHlaF8EQmEq3H5qfUESnDZSWtDaGwiFKHcHKKrykpHoINkVO9tZveQ4O2cOaM9LczZHLbO1aV6y0lo/lzw/LzKs9rW5W3D7Qjx4Tr9WnXeZiU7iHdaY4bHH98omwWkjo5HW/vzMhCOq597hxu0L0iEtjuevHMrW8jp65STx+epi+rZPJj3RSSgUZnlBJde8upCKugDpCQ7eum4kCQ47VouK9KbtkBrH4xcP4qYpi1m6rZIOqXE8delgBnRIafZvaEaik/vP7svvTuuFwggcNnW+xDttjOuZxQc3jSYQ0rjsVq5+dSE9cxJpnxLHmwu28cmtx7CzxseEF+ZH8hM9MmMNH958DDNXFUUCR2BMRPFzSS2Trx7JjZMXs7PWx8C8FP5+3oDIkLi+cSn8/byBXP3qAtaX1BJnt3JCn2zSEx3E2Q/+/bqlQmHNtoo6/jlzLYWVXi4d0ZGT+uZEAg7hsOazFUX815wtzxMIccsbS/j6rnGHRKJ6fzDEuJ5Z3PfhKtYW19C/QzL3n9UPbyC0z8EjgDi7lXbJTpSC7tmJPDnhKFx2K799dznDOqeRmehkyvwtMe8pNc+l1Dg7b28sY/7GckZ1y2D3eMsny3dwar92MffZ7CQXFwzN4+pXF8asG9awaEslL32/kQEdUnns4oENyjp3Y1nkewJ4dOZaRnRNZ1jn9H09DA3EO2yM6ZbBnA27Jlv59egukXMiJc7BeYNzGWemW0hLsEeeRRNd9kZ7nbl9QZw2S2RoqRC/NG5fkGe+MXqszt1YxtyNxvXz1KVHcfag3INZNNECh89fdtHAN2t3cnTXTGasLCI1zk5qnD0SOAKj9eXxWWt56LwBkT9QFXUBLh3RiX/MWBuTcPW1uZv55rfHccXITlgsRg+L6ycvont2Iuce1YGSGi9nDuzA1AUFlLn9/PbdFTxxyWDyMxPo1MqW/+xkF5tL63h3UQEPT1+DLxgmLd5ImvnkhKN48buNdEh1ccWofKwWeNa8wdR74sv1nDU4l+N7ZfPxrcewsrCaHjmJZCc5SWqk4gk0Gziq8QYiLVv1QmHNnA2lTEjv1KrP1lr+oDGF8kvfb0JruOqYLuSmuGISXpbW+rhh8iIWmjkATuiVxUPnD+Ty/86LzAzTPsXFtJvHRIYP1XgD1HqDBMOaC4Z2IMlpp7TWxzdrS1BKMaxzGllJzlYFD1w2K0M6xeYvGJ6fhtNupbLOz58+XBkJHAG8+sNmrh6T32jwqLTWx4yVRczfWMYZA9szsktGg5wtgVCYtUU1/OG95WwudXNKv3bcM77PQZnGuV6iy84dJ/fg23Ulkd4luSkuBhwmOT0CoTDF1V5en7uFQCjMxNH5tEt2NZtgtSW01qzaXsWV//uRak8Ql93C05cOYWzPrGYDI2uLarnk+bmR8+bOk3syaXR+gwCSy27lpuO7Y7FY+GT5djpnxPOXc/qT0Ybd+mu8gQb52D5dsZ0/nN6rVcGjtHg7b1w7krveXs7mMjen9M2JbCMY1txyfDee/npDZN0Hz+n/i+uh90sSDms27nTzwMerUQpuP7EH5w3pwOodNXTLCmOzKG6cvJgKM/9e73ZJbC6rY82OGi4Z1pE3fjQS4P56TD6PzNyVBLiw0sOk/y3gy7vGkZ3c/PXXVCWzMRZzNkGtNQ+e058r//cj64prWVdcy69GdSLJaWV5YXVMYutASPP452s5pW/DGb8Kyj1cNCyPT39zDMGwxmWzkL5bb6JOGfG8ee0ovEGzF0W8vVWNSoeCslof5zw9JzK71eKtFfzt3P5MGNEJq0VR6wvy2YodDd43b1M5XQ6BaaUDoTB3vbMs0tN4ZWE1f5y2kv9NGh5Zp6zWR0mND38w3KoZKutZrRZS4uxkJzn5+/Q1/FxSS7/cZP50Zl8WbymP6Z0W77BGJjSId9qYNDqf0/q3o7DC02C7Tc32Fuew0i83OWZGT4D8zHh21vgY3qVho2AgFGbmyqIG2/rqp5L9EjxKT3Dw5KVH8enyHfy4qZzxA9pxdLfMmCHPVqulRce6wu1n7sYy3l1UQO92SUwcnX/E5lMUv2wWBS7zmrdaFGcMaM+4Xll0z2pZHt3DSVs31LY13UjvyT2R4NFhrGdOIt+t30lKXCJpCQ52VHkbrLOlrI7iah/bqzy0Sza6A1Z7GlaStDZadDISndR4A+SmxvH+jaPxBsM8OmMN1Z4ggZGaxy4ayK9fWUi524/TbuH1uVu4Z3zvVl8YnTPjuePknry/uID0BCcXDunAvz5fx93j+/DohQOxKoXFothe6WmQb8HtD6K1JtFlI9Flo3PGvt1sHDYL3bISY/JCAHTZx+22REm1j1P+NTvyGacu2Mbnd46N+UzTV+yIBI4Aav0hvlxTHDOl8I4qL1MXbGXS6Hwq6gK8+eNWXvxuE6GwZkS+MfTgnKfnsNOc5SQ7ycnHtx7TqgeT9EQHz1wxlEdnrGHB5nJGdMng96f2Ij3BQUm1t9GHwoq6AJ0yYpeVu/3cOXUps83j/fHyHdx0XDduPaFHzMxT5W4/E16YFxnm88GSQmxWxQNn99tjvpE9cfuCVHoCbNxZS35GAqnxLR9G0D0rkc/vGMfUhdtol+ziTDO3weFgZ42PU/81OxKsmTJ/KzNvH0t+5r6d66W1fm59cwnVHuO78gbC3DF1KV/cNa7Jc6zc7ePu91fEBBz/9cU6Lhya12jvo4xEJ3ed0pNrx3bBYbW0ecAl3mHFoogZctYxLT4mCX9LOGxWBndMY+r1owhrTZzdGtUKbefaDMzc2AAAIABJREFUsd24dEQnqrxBMhMch92wnl+aslofW8vrKK72MqhjKhkJjtjAh4LJZo+Kq8Z0QQMnPz4bMIZdvzhxGJOvHsGz327kgyWFTBydz58/XEVprY9HLhjImO6ZrCis5JS+OTw8fU3MvmvMvCzZ++FzKaU4qmMqs393PCsKq8jPiCcn2UVSnKPRSSPq/CH65MYORbdZFMf0yMRmtewxyXdrh3fWz55YFpVs/2D24Pm5pLbBtOiT52/htP7tyEh04rJbGZSXwg9RPUzACHwcCoIhHQkc1VtTVBOpGJTW+rj+9UUsMhOw56XF8d6No1sdnEhw2hjTPZMp14wkEAoTZw5NjHNk8eiFA5k8bwvZSU7+cFrvSLJnrTU2q6J7diJZiU5O6pMdGeLWLSuBiUfnN+hlU1rr48kv1nPpiE4s3FzBxlI3FgW/OjqftUU19M1N5tR+7RqUz261MLpbBh/tNhvvqK4ZDdZtK5mJTs4f0oGzBrbHabc2aGwoq/VR5QmgNaTE2xtNnRAMhXl/SQF/+eQnAL5aU8L0lUW8ff3RB7XBTIj9Ic5h4/aTevLlmhL+edFg1hXX8OQX68lIcHDfWX3p0z55v+UpO5BcLhdlZWVkZGQckgEkrTVlZWW4XK37OyDBo8NY3/bJ2C2K43pm8faCbfQ1W2+igy1nDGzPv79azyXDO7G90sv/s3fegVGUCRv/be/JpveekFBCqKF3laYoCAgqHqLY63n2u/v09Dw9PT07coq9iwWwgKJIC7130kkgvW2v8/2xyZAlIYUioHn+Y5idnezOzrzv8z5leGooiSFapmRF+9XFxgZp0Ktk2FxuVu6v4NGvdvP+DYOYvXCDqFD6vyV7+feVmfSLD8Lu8qBRyMiM6XzuEYDd5eFf3+1nVLcwGuxurn1rE2aHmzvHpeL2eAnSKZAiQ6PwBSfmNBuwXdQ9okW99elAJZdx86hkVuwtE9vJxqSHkRp+5lcTmwbM+VUW4oO1fLbliN/35fR4eT+niDvHprL9SB2hehXdIgwYVHLRMmbUKFolaoprrCzZUUpcsI4Fv+aL2wM0cj7bckQkjsBnefxmRyk3jexcE1ZkgJonr+iFxeFGpzxeMx2oVXBF3xhRhgq+iXJr3mWr0y0SR01YtK6AucMS/b7XarOjRT7Myv0V3H9J+mmRR063h1UHK7jj4+2ifP6pqZlM7RfdIZuFViUnJVzPI5O6n/I5nCt8vb3Uj6xxuL28u76Qv13ao83slfbg9QocqfG/JlsL2m0Ot0dokWMkCLT4zpujySt/uqi3uWiwuShvsBMXrMWoUaBXyfnLJen8u7HZUa2Q8syVvU85uPFkrwvUKAjUKIg55bPvQhOqzQ52HKnjQJmJi3tEEBWo7hQBUW12cM+nO8SFA7VCyje3DyM98vhzzeURxPvEpMwoZi3MEf/P7RV49Mvd/N8UX015tdmBUasQF3L+/NlOEkK0JIXqkEolZMYEsv3IceWmWiE9q1Zcrcp3j445oXI+qzFkvaZZw83tY1JJDNbx7+m9WbS2AL1KzqOTuxNqODuquNxKMzPfyKHB5kYigQfGZ3Dt4PhzRiAZtS3fN1SvEm3VSrmU64clsfpwlaiEuTo7nvjgc7NSXmf1laIUNVoplXJpi9ai2CCNqPzcUVwnEkfgyw96d30hf76kW5vK7NbQ2n04SKtker9YLuoejkImFb/HGouTH/eV8d3uMvrFG7lmUALPTs+i3u7C5fYSpFO2uFc63B7+tzqf9zcUsT6vigcnZhCiUxIZqEYq8VlBL+8TfdLQ74t7RLByfwU/7i9HIoEZ/WPpFX1qY9X2IAgCBVUWHvpyN/uONjAiLZTHpvQUSbkTleO9YgJ4e242oXolVWYHNpdXVF0tWlvod+yCKgs1FmcXedSF3yXig7WsfmAM3+8pE9tji2uszHwjh1/vH3NaMRvnC2JjYykpKaGysrL9nc8R1Go1sbGxnXpNF3l0ASNEr+KZ6VnYXB4+v2UoxTVWPrxxEM/8cMCX3zEgjvhgHU9/f4Bp/WJZ8Gse3SIN6NUK/nxxN8ID1CzfU0ZGlIEHxqcTZlBT3mDnoS930T0ygM2FNX7WNvCpRGYOiCErLoj/rDhIbJCWwSkhnVJeVDTYsTo9VJocLGqWYZIQomXXkXoe+nI3H88fTGZsIEE6JS/N6sNbawvYmF/D8LRQ/jQ08Yw3LEUFavjmjuGUN9jRKGQE6ZRnpemiqNrK1NfW0WB3M657OD2jW9qdVAopO47UoVXKqbU62VNaz1PTMrnz4+0AbCqs4b5L0lnwa56fSuK6IYl8trkYq8v/O9Mq5X6ThCZUmVtu6wi0SnkL8kYll3HD8CRkUglLdvpsRX+/tGertqLWlByKVgavRq0SiQS/fITUcP1p58PUWV08+vUev+M+sWwf47qHX1AZHacCuazlZy87DdKoCQq5lP4JQX6Tk9ggTZttZXqVnEmZkXy86TiJHaJTYjyJ9fRMwWR38X5OIc+tOAT4JvAfzx9M3/ggrh2SwGVZ0VSYHMQGac76uXTh1FFjcXLPJztYk+sjfp5dfpCFc/pzcY8Iqi1OCqosuDxe0sJb5sE14Vi93U9xand5eeq7/bw8u5+oftOr5GKRg8cr4PL431/LGuwE65TsLqnjb5f2wOLw+JVCFFVbkUok5Fea+efUXtzywTaKa6wEqOX8d1ZfMTvot0SoXsWyO4fz9toCjjXYmTcsidRwPQaNgun9YhmbEY5MKjkrAcPg++4eXrxbVCoKAvx7+QEu7xN9zsijiAA1o7qFifXpaoWURyd191NBhgeoeXdeNlaHG7lMik4lO+NjkY7AbHfx9rpCccIlk0pYfMsQXr+2H/Pf20q9zUWITslr1/QTc9YKqi3EBmmYkhWNUi7lx30+9bLLLSA/xT/BbHdhc3kxqOWoFTKkUokfoWNzenh9VR7/W+NbzPr1UCU/H6hg0dyBJLah7G6wuflpv+/3k1dp4eb3twLwwQ3ZDE8La/ec1AoZz87ojdXpQYJPLdWamvVMoNLs4No3N4oLj9/vKcPq8vDSrD4EapSsO1zlpxzfU9rAd7uPcUmPCGa8kUNJrY0AtZzPbxmKtpVF0a48vC78XqFSyFC6PCzd4a8SdHkEthbV/i7II4VCQVJS0rk+jTOO3/dM6Q+A5gSHVimj2uzgsSk9UcikfLq5mGdXHMQrgEEt9wU+7jzGOzmFPHNlJjePTOK6IQlomsls7S4PdpeXaouTaKOG2CAN917cjbggLQICpbU24oK13PjuFkrrfEqDwxUmXpndr0VmTWuoMTvYWlyLFAlPTcvkocW7MTvcBDcGab/w4yHMDjf3f7GTD24cRKheRZhBzX0Xp4tBvGfrYRpmUJ3VFZ4Gu4snvt1Hg903YF57uIo7x6bx7vpCUS5vUMm5akAc/1i2j5/2V2BQyfnzJd1IjzCQHKrD7HDz54u7YdQoeHvuQBaszidMr+Qvl6RTUG1leFoYvWIC+Wp7CfuPmXzvk1vFu9cP5MONxWJ4q0wqYdbAuDP694XoVdw1No3rhiSglMtOOinSKeVc0Sear5s9MO65OA3jCYNwg1rOI5O68/T3B/B4BUJ0Sp6aevr5MF5BoM7qb0+wuTy4PCdXyfxeMCUrmld+yRUnbVqljHnDksirNLOrpJ7esYGEB6g6PSEK1il5eXZf7v9iJzl51WTGBPL8zD6E6k9+HK1Kzn2XpKOUSflhbxnJYXqevLzXSW1cbo+XKrOTNYcr0SplDEwK7hBpXWlyUG1xoFHICFArsLs9PP/jIfH/7S4vDy3ezYfzffebALXijDW4deHsodbqFImjJjzzwwF6xQTyp0WbOFzhy/SJDFDzzR3DWrXn1FlbJ9Wb3wvCDCo+uWkwzy0/iN3lITlUR37VccvwJT0jCdYqWX24ihdX5jIgMYjHL+tJiE7F0p1H6RUbyH0Xd+OvX+9Bo5DxyU2D8XgFlPK2s4HMdhcKmfS088hag1QqIdqo4cGJGXgEAVWzc5BKJWe9Jtnt8VJQbfHbJgi+Z2Q052bCEKL31cAfqbVR1mAnKzaw1cWPUL0KzrHV1Oxw8/LPPuJoRFooV/aLpdbqok9sID/eOxJbozI8WKcUFaUTe0bSKzqQd9YXYHV6uG10Komh2g6ruEXrFT6S32x38+S3+9lf1sC4jHBuG5Pa4roxOVy8v6HQb9vOknosTg9tmcg0SindowL8rPkAsUEnvy+b7W4Oljfwys95qBVS7r4ojcQQ3Vm3vticHpE4asLqQ5U4XF7Q0CKvCWB3aT31NqdoM2ywu/nnt/t4ZFJ35r27WVzYGpMedk7I5S504beCSi4jKUzHlmYLj0DXGOw8Rxd59DtCkE5JkE7J/mMNXP7KOmwunz3l2sEJbMiv5vrhSbz2Sx4ltTb+tGgzax4cQ7hBTZXZwf5jDWLFcGyQhuIaKwa1nDfm9OehxbvZXVqPSi7lwQnplNXbReIIYF1uNTaXh6B2zq/G4uDt9YV8ua2UyEA1f7+0Ox/NH9RYi6vk79/sESX9BVUWvwpUhVxK0Kkuj50iaiwOjtbZqTQ56B4dQIhO2W4zWFtwur0cbfa5Odxenly2j6V3DOPnAxV4BIEJPSNZsbdczAMwOdw8vnQfP947krfnDkCrUhCkVbB8bzkv/3yYKVnRXJoVzbVvbhQtQBEBKr68bRhfbS9h4a/5jOoWRqhBxZI7hvHSysNIJBLuGptG5Fmow1TIpSdd5W9CoFbB3y7twdS+MWwurGVc93CSWmmcMqgVzM6O49LeUVgcHgLU8jOSD6NWyBiRFuqnOOgTZzyjVsiOosbipNrsoNriJDlUR7BO2WrDStNk9nSuP/BNfJbfM5JvdhzF6fYyc0Asy3Yd48lv94v7/P3SHlw9KL7Tg+5oo4ZXr+6H0+MLET6ZpeDE83loUnduH5OKUt52jtGxejuTXlwj2jdjgzR8ddvQNq+3ygY7V7y2XrxfXdY7irsvSuMEQSVHaq1ia2AXzn8IgoDZ3tLeaHd5qbM6ReIIfMqgDzcWc8+4tBbWzG4RBgI0cpFMBZgzJKGF4ibaqOHJK3rhdHt5/4ZBPPX9fvaW1jM0JZT5I5N58ItdbCqsAXzW2iqTgwXX9mdKn2gOlpm459MdlNTakEslyBqJm5OhzupkS1Et7+cUEW1Uc8eYNKIC1eK5uz1eaq0upBJO+34ol0nPyCCwxuJg/zETmwtrGN0tjMRQXZu/Zb1azviekXzazDofqFEQfI6D40P0qgsig8zh9uIVYP6IZDIiDfz3J9+i23VDEpkzOKHVfCov8KdFm3A2PkvWHK7ii1uGdOj9TrRefTR/EA8u3iValRetK6TO6uIfV/RErzpOdkiQYFApsLscpEcYuGlkMrFBGloRwPpBr1Lw8MQMdpfWU1RtRSaVcNe4tDYXKAurLUxfkCMSLz/tL2flfaM7XejSWajkshZxEQnBx7PyLusTzcI1+X6vmdYvhr9/s8dv2+rDVfxzai9+vm80qw5WkBZuoHuU4awo4LvQhfMFGqWMu8el8evBSrHpc0LPSOKDL3zV0e8ZXeTR7xApYTpW3T+agkoLRq2vZUsll/L9njJ2l9YDvqyGomoLguBbmd9aVItRq6RndAAfzx/EXz7fxY7iOkrrbOJrHG4v/1i2ny9uGYJaIRWbNfQqebvWF7fHy6ebj/DF1hKGpIRQY3Zy9Zsb+eCGQTy2ZC83DE+isMqCQibB5REY1z0c6TksQK+xOLn/i12sbCRxtEoZ39w+jLSIUw/HNGoVTO8fx1PfHZ+o7z/WgEohY+6wJOosTn49VMGnW460eG1epVlsygPYd6yeA2UmEkLq0Kvlftkx5Q0OPtxQRIxRw4p7R+LyCFgdHoK1Su4am4rDLRBuULVpKTrbCNGrGJUezqj0tqNi9SqF32D0TMCoVfL8zCxeWpnLutwqBiQG8edL0lutUT+bqLU4+cfSvaICS6+S89VtQ/2uMYfL18b3vzX5eAWB+SOSiTZqTnk1VS6TEhWo4ZZRvqyr8gY7z6046LfPs8sPMrl31Cm9x6mowjQKWbvXosvj5c01+SJxBL7MjrW5VUzt6+/V9ngFqswONuRXIwDPz8zyNfZVW1m66xj3T0gnIkBFecPxDLDJmVFnNXvmjwyLw029zUV+lZmE4M6F058MXkHA7fVZ0poTRdcPS6SgytJi/yPVVjyC0OKZEqJXseSO4Ty/wlfPfs2geMZmhLea/+XLDwKjDp65MpN6q5uNBVXUWhwicTQ4OZhbRqUQplfhEQQabC5SwvRcPyyRf367nxkDYtG1QVILgsDqQ5Xc9ckOcdvyveX8cM8Iwg1qai1Olu48ypuNmUSPTO5O3zjjOb12G2wunl1+iI8bW+X++9NhHp6YwdyhiSdVTWmVvnwxCbB8bxlJoXqenpZ5RtsTzyZcHi9SCcg6mRV0pqBVysmMCeSiHuHMWrhBJEye//EQ8SFarujTMlFt5f5ykThqwqJ1BfSKCWz3Xr/2cKWf9SpAreDWUamEGVRsLKjm443FLNt1jIcnZfg9r4O0Ch6ZnMGbawr4+2U9+L9v9nKgzESPqABeubovyW201MUEafnilqFYnL7aer3q5IHqLo+Xt9cV+FnRXR6BZTuPctuY1Db/ttNFgEbOv6Zl8sAXu3B7BXRKGS9c1UcMC08I1vLirD48/+MhPF6BO8akkhauJ1SvIrfC4ncclVxGXICapNDfn82lC104GWKMGpbdNZyyejt6lZwgrbJDTpYunDt0jZZ/h1DKZUQEyESZvt3l4R9L9/LRJn9SIilER3mDg1kLN4gqpbRwPYvmDuSNOf2xONzMfXtzi+NXmZ2E6lWi5Pavk7u3mw1SZ3OhlEt5elomP+wto29CEHeNS6PC5ODZGVmoFVIentSd2CANh8pNpIUbEDh3SoCyBrtIHIGvieaf3+3npdl9CTjFiY9cKmV6/1gEQeCr7aWEB6j46+QeBOuUON1eFq7Jp8Hupk+ckQNlJr/XRgVqSG020JrUK4pXf8mjT1yQn5qpCVVmJyO6hfLiysNipkxiiJYXrurD3Hc2oZRJWXbniLOiProQEGZQ88ik7j4rpFImBn//lqgyO/yse2aHmye+3ccrzfJWyk0Oxv/3eBvf4q2lLdr4TgdeQfCrVwafha+56s/p9lJvcyIIPnLoXGQweL0CtSc0IQHUW1tuK6u3M/Gl1aKaJDFEy7+nZzHzDV/QcV6Fmc9uHsJjS/ZyqNzMJT0iuH1sahd5dBbg8nhZl1vFLR9sFdVeT1zek+n945BIfNfWqWSRyKRSNHI5/57emx/3lVNYbWFcRgSDk4NxNk7smwvJpvWPwWx3EXQCQSyTSkgM0fGvab1xerwYNYp2G1GqzQ62H6ljc0ENF/WIIDLQl42VEq7nttGpPLv8oBhcfM9Fabz+ay59Yo18etNgUsL16Nt4ftRanby1tsBvW43FyaEyE+EGNZsKavj7kr3i/1331kZ+vm90u9eu0+1TZAn47MCn21bZHBanm082F/tte2nlYab2iyG8DVIizKDi75f24N6L0vAIvjw2L3C+9et4vQIeQUAhk2K2uymstrBoXQEhOiXXD0siIkB9RnLjOoMwg4q35w5k8bYSP8IE4OttpVzUPbzFoktYK4qqCIMal9vbLnnU3Ho1rns4Lo+XDzcWcaTWyvgekSyaO5D/W7IHTiBn5TIp4zIiGJAQxLVvbaKo2rfIte9YA/Pf28qnNw1us6UvzKAijPYXdWQSSasW5s42AJ4KtEo5E3pGMjQllAa7C6NGgVF7/D4SoFFwae9ohqaEAgLBWiUymZT/zMjijo+2s/1IHbFBGl6Z3Rejrsui1oU/HuptLuosLkpqrPSIDmw1m7ML5xe6Rst/AKgVMm4fk0ZOfg0FVRZkUgl3j0tDJpWycE2+SBwBHK4ws/9YA5f0jEStkDE2PZySWpu4j0QCPaMD+OjGQRwsN5MeoSdIp2w3l0GrkBEZoOZPjWSURALf7jzKO/Oy+fVQJQ9/uVvc/uz03mwuqiE1PP4sfSLto6ZZM1kTKhocuNpoj+oIgrQKpvaNYWS3MPQqOQFqOQqZFJPdxa6SenYcqeO9ednkV1nYVFCDRiHjxVl9iApUU1BlwVRcS1yQlrgQLS/N6su63EquG5rIwtX5fpOlKVlRSJH4hREXVlv5aGMxV/SJ4b2cIr7eUSoqUP6I0Chl58Sq1oTqVkLMS2vtfvL3TzcXt2jj+2BDMY9OPvWmN7PdhdnhxuXx5a6MSQ/jl4PHmyDGZoSJSqA6q5Mvt5Xyyi+5ANw1NpUr+sa0qjDyeAVqLA5fHbFGcUazWlQKGfNHJLN051FxsqRWSLn4hKpml8fLwtV5fjakwmor+481kBUbyJ6jDaRFGIgN0vLfWX1xuDwEaBS/i0rY8xG1FicPf7nb79705bYSRqeH89qqXAqrrcwaGMeobmGdVq3FhmjYWliDIAj0iw+iW4QelVyGVCLhk5sG88JPh3G6vcwZnMC2olqO1tmYOSCuVXJIp5LTETq2zurksSX7WLrLR/q+sTqfRyZl8M68gZQ3OKgyO3xNmcV19I4LxOJwM394MvPf38KcIYntWjllUmmr6gq9WoHF4W6hSvUKsOpQBXPbUCrUW50s2XmUZ5cfxO7yMjs7nrsvSjtlO0zT79ztFVDKpEglkhYEhtsrtNjWGqxOD48t3cfyvWUEaZU8eUUvRnYLO2+I3AqTncVbS9l/rIG5QxMRgOkL1ot/2+dbS1h+z8hO192fCYQaVGTFGlts7xEd4Jdh1YRBycGkhOnEHCFjY0PqQ1/u4tHJPdq0Ul6WFc3/1vhIzdtGp3LNmxuxNrZ2fr61BKVcyouz+raacRegUWCyu0TiqAl5lWYcZyhnUCqVMGdIAp9uOSKWg8QFaxid3na49plCU6vhyRbjZFJJizzNmCAtb80diNPtQSaVEqpXnpdV3l3owtmExeHmvZwivxzK52b0ZkpWTFdY/HmM8+MJ3YWzjpggDZ/dPARrMwkwgKmV3IimQYHZ7mZK32gu6hlBRYODF346xL0X+XznepWc+E6oH+xuL2+uKUAqgbvHpTGqWxgmhxu3V2DtoeMTV0GAJ5bt57u7Rpy1doyOoFuEAYNK7meTuXpQ/GmHNR+psTJ9QY7o7Z03LJG7xqURqFFwaVYUa3OruPXDrdw1No1HJ3Un3KBid2k9y3Ydo1+8kf/+dJjSOhsfzR/M5N5RDEkJxuMVeHdeNm+uKcDl8XLdkET2HW1A3QoxcrjCzMRevgl3a2GxZwO+oGMHG/JrCNAoyIwJ7KqeBZJCdS2usRkDYglqVhmta0UhoFX6HqgNdhduj5cgbccHnXWNyobXVuXh8QoMTQnm+Zl9+WhTEetyqxmeGsqcIQnidX6gzMQ/lu0TX//Y0n30iA4kOynY77hmu4s1uVX889v9mOxu5gyOZ97w5DOW11BvcxFuUPH1bcNY8GseOpWPEA87YbLiFYRWSbkGu4se0QE8PKm7eE6BGgVoFFSZfHXvDTYXWXFGQvUqUUlQaXKw92g9DreXPnFGwg2qrgF+JyAIUHPCfebBid2Z9vp6KhvvgTl51Tx5eU9mD0rolIIjQK1gTEYEWXFBSCUgAHd8uI1QvYoBiUGMSA1FLpPyXk4h24rrmNArkiv6xrQ6se4orE6PSBw14eWVufx030giDGrezSlkwa/H803+NDSRa7LjcHkEsaygLQRqFDw8KYOpr64XLUZ9443ENVaud4vQ8/OBCr/XpLRh/QEorbPzt2+Oq5XezSmkV0wA0/vHdvpadnk8FFdb+cvnu9h+pI6e0QG8fk0/rhoY55dfdPWgeAztEEAOt4f/rcnn+z1lgI9Mv+2jbax5YMx5QR5VmR1c/b+NVJsdRASo+WlfOYcqTH6kWJ3VxcaCGqZkRf/m5+dweUgI1TKxV6T4GaaG65k7NLHVbLwwg5pPbhrC3qP1lDfY6RZh4B/L9rG1qJaSWhtvXz/wpORmQoiOF2f14c01+dRYHOIYsQm/HKjgzrGpJ72eFDIpYQaV+JsHiApUozyDCoPIADU/3D2CLUW1qORSescGtpu/eK7RlWfUhT86TPbj4f9NeGLZfkamhbWa3daF8wPn/gndhTOOeptP/rds1zF6RAcwJCWksbVMBSdIgOePSBKracHX9jU4OZhKk51ZCzeSV+nLk+gXb+SDG7IJ0atOKbRXAvzt0h4Y1HK+2VHK1Nd9q3fBOiVvzOnPnmMN4spUvc3FaeYCnzZCdEq+uWMYT39/gGP1dmZnxzGxV9RpydPNdhdPfXdAJI7AFzR57WDfZP2SHpEcqbGyo7iOH/aWMTg5hOuatQZplTLenZfNbR9u49eDFUwfEEeYQU2txUGcUcs/Lu9JXoWZ5388xOEKM5/fMqSFfWN0ehjbiuuQSyVcNfC3UXaV1tmY/NJazI0kSWq4no/nD26XQDLb3dhcbiRIfhP5+W+NEJ2SL28fypPL9lFaZ2d6/1hmDoj1C8ye1i+GhWvyxXa4AI2cK/rGsO9oPU9/f4B6m4vrhycxuoPKjYoGBy//nCv+e31eDW+uyee+S7oxb1gSOpXc7/e95IQKVYClO0tbkEcVJge3frBN/Pcrv+SRFKpnWr+Y0yJbBEGgqMbK37/Zw8EyEzP7x/LE5T0xqFtXNqnkMm4ckcyyXceabZNyeZ8YtEpZizagKrOD6xZtYt8xny0jQCPn2ztHEBespdJkZ/qCHPG+FKJTsuyu4UQFdgU5dhRqhYzR6WH8csD3jAnRKbE43H6TSIB3coqY0CvqlH7nTROwpTuPsi6vmhn9Y4kL1rawXGcnBp92ip63FTmN2yvg8ghIJRLeXlfo938fbSxi7tBE+icEdVjlmBqu55e/jGZtbiUxRg0ZkQFiiPP1w5L4bneZmHE3Ii2UHlEBbR6V3UWGAAAgAElEQVRv3QmNdAA/7C1jcmZUp+y61WYHW4pq2VRQw+1jUymqtvDEsv3c9/lOXp7dl17RAeTkVzOhZyTD08LaPbbZ7mZVM8Uj+MjGQ2WmNlu1fitUmRw8My0To9ZnQYwxqtlcWCOWWTRBfYqr47ZGAuZU1K92l4f1edU8tHgXd41L4+ZRKeiUMoJ0yjab8sIMKjIiDfzruwN+RNjOkno/+3KD3YXT7SVIo0Amk/oWtxqtV1ZnywXHlHA9mjaskCE6JQuu7ceN726h1uoiWKfk9Wv7dahUoaOQSiWEB6iZlBl1xo55LiAIAia7G5VCelpEdxe6cCHA7fXi8vg/V0121zkMLelCR9BFHv3O4PX6Ajfv/Hi7uC07MYgFc/q3+qDuHWfkk/mDeXNtPsE6JXeMTSNEr+TNNYUicQSwrbiOrUV1TO7d+Qez2eFm1aEKHl+yj7fmDuSVX/LE/6uxOHnhx0PMzo7n6e8PADA8NeSc20hkMinJYXqen5nVmIWhbDVEtTOwubzkNvtMm3C0zkZymB6DWs41gxJICNYSZdSQV2n2C4O1Oj28n1PEZb2j/KqiLU4PmwqrGZwcQnqkgQVz+lNpcmBzenh5dl+eW3GIarODGQNiGZ0eRnG1he/uGkFkwNknZBwuD6/+nCsSRwC5FWZ2Hqnjoh4RJ31dpcnB40v3snxvGVN6R3PH2FRigjQnrbW+ECGXSUkLN/DybF9DmVGrQH5CAGuYQc3yu0fyw94yTHYXI9LCcLi8TH1tvWhne/aHg0QFqBmU3Fb5sQ+HKkwttm0pqsXm8ra6Cto/IYiPNhWfsC24xX6tTVC/2VHK+J4RbWa8tIcqs4NZb2ygrMFXhfzyL3kU19r45xW9TmqLSwnT8fktQ3h9lU+hdPe4NCIMqlb3311SLxJHAA02N6+uyuXxy3qy6mCln9Wi2uLkvfVF3D8+/bTvBX8UBGoV/PvK3ry0Mpe1uVUMTg5u1R4TqFGcEjFfbXZgsruRSiDcoCIhWEOUUU1EgJrrhyXywYYiPF6BSZlRDEsNbTXg2OxwYbZ7cLo9aFXyNiffOqWc0elhfqTHtYMTWPBrPjcMS8R9grrI7RVwe7wsuLZfh1UGKrmMmCBNq+R+RICaxbcOodLkRCWXEqRTtDsB7xPX0to0MDG4U7bSWquTR77azfK95QC8tbaAhyZmMCUrmqW7jiKTSrl2cAJXDYzr8D1aq5TTL8HIwXL/e1JKmB6b04PJ7kIqlbT5fZxNBKjlfLblCIsaCcEAtZxPbhrMxJ6RfL/Xp/SJDdLQN77l59sWrE43RdVWXmlcbb9zbBoJoVo0io4Px+ttLm7/cBs2l4e/fr0HiQQyYwJ4e252u6+VSCSUNdj9FFSheiVyqQSXx0thlYUnv9tPZYOdGQPiuKJPDEE6JTKpBIVMQp3VyS2jknljdT6C4Hvto5O7szG/2qf20auQNS5AON1eLE43OqWc3rFGlt8zEpvLg0YhI7jxmKcKs92FRCI5L1Rq7cHh8lBvc4HEp5hsGt9Wmx04PV5kUgkhOhUNNhe/HKxge3EdRq2CqwfFdy1WdOF3Da1SRr/4ILYVHw/kv7R31DmNlOhC+zj/77pdOCk8XgGLw41GKRPVAtUWJ/85oT1pU2EtdVZXq4PMALWCwSkhZMYGIpdKUClkuDxeDpQ1tNj3ULmJEdZQDpab8AgCKWG6DsmC620u/vzZTgxqOTWWlllCBVUW7hybSnKojiEpIdw9Lu207WFnCqcz8T0RvtW7KP7703GJpkouJTXcZzsorbXx/oZCRqaFIZNK/BRKTWiwu4gP0XJJM+JFioTSOjuTXlqLxyswZ0gC1w6K59dDVSjlEt6dNxCZRIJWKUOjlPPUtN6/GTnn9goMTgnhyv6x2F0eFm8rZcnOoy2sLM1hc7p5bsVBVh+u5J3rs9l7tIH/rjzMhF6RDEoKPqOrlecD2rJnyqQSAjQKRqSFUmt18sOeY4QaVDjcXlRyKU9f2RutUsa24lqCtEoijeo2A90zYwJbbBuXEU6AuvVHwaj0MIalhLAurxrwKR2Gp4W22C+jFfVDZmzgaecemR0ekThqwg97yvjr5O4n/W0a1AoGJgbTfbYBmUTityLePDhYp5S1ej8qr/fluZyojgEoN9lbbe3qwskRZlDzyOTumO0udCo5dpeXUd3CRMWrQibhb5O7d7pdpcrk4IZ3N7OzxNcGOiI1hPdvHMxrv+TidHtJDtXxwY2DkEokHCozEaxrSVDV25y8n1PECz8dxuMVSA3X8/68bKJOkv8SpFPynxlZLN9bxqaCWoamhqCWS/nzZzuJNaqZ2ieGL7aViPtP7BVJqF51RptjwgzqTtlxUsJ1XDs4ng83FiMIvka46f1jOzVxtzjcInHUhIWr83nmyt4U11iRSX2kRGfIfV9Fczd2ldSz92gDSpmUBydkoFHKeOq7fXy9/SiRgWqemppJZmz7jWBnGk6PIBJHAA12N48t3cd/Z/YhK95IiE7JqPSwTlujjtXZufTltaKNcfneclbcO7LN5rETYXW68XgFJmdGER+sZWdJHTn51Xg6EDQVpFXw3Iwsbv9wG06P7zny/Mw+BDeGvP98oIJ7x6Vhd3txuDysOVzJ5MwoZDIpmwpquOWDrdw5No2vbh2K1eUhLkjLfZ/tYFNhLQaVnG/vHkF8sJYqs4Ple8qotbow6hRM6BF5RmwoZoebw+UmXlx5GIVMwj0XdSM5TNcp8u23RK3Vyaebj/DKz7l4vALzRyYzd2giFoebWz7Yyt6jDUQGqHn/hmwKqyzEB2upMDlICNGyt7QBhVRC6Hluv+tCF04VwToVb8zpx5trCthcWMOYjHCuzo4/5WKiLvw2OD/vtl1oF1VmB0t2lGJxeBiTEU6wTtmYlSK0WP0Ef+tSa2i+eqOQSblqYBzfnGBZmZgZyfXvbGJrcR3gW3X78tah7Q4IjtRYEQTfqn6wToVOKcPSzDM/oWckvaID+fTmwehVit8t46yUS5kzOAGL3c2X20uJDFTz5BW9CNIqsbs81FiceAW4/aPtGLUK3puX3eKzmp0dj04lo6LZhLqkzsqLK48TUgtX55MVG8is7Dg/C1KtxUmV2YEE36rvb1GFaXd5WHWwkm93H0OvknPPRWkkh+kY0QoB0QST3c0vByr4yyXp/G9NvrjK/82Oo9w6OoW7xqb9bq+RE1FjcbJobT7vrC9Co5Bx+9gU+sYFAXDvRd1Ye7iSxdtKAXjmh4M8PzOLy7KiT2otDdYpeXl2Xx5bspd6m4spWdFcPSjezyrXHKF6FS9f3Q+Lw41E4lNetHbdpITpuKJPtNgelxFp4E9DWs/e6Aw0CikyqcQvLyYuWNshK9yJbUMNdhc/7Cnjn9/ux+Jwc3mfGO4fn97iNzZveCI6lZxLe0fxwk+H/CTV1w9LOu2/6Y8IjUImhrBrlfD8zCzyKi0cqbEyODlErLXuDJbtOioSRwBrcqtZe7iSvUcbuG7RJh67rAchOhUgML6RxDkR1WYnz604HtSZW2Fm8bYSZvSPo7DGQpDWZwNqrhoK0au4uEcEu0rqeXd9odhE9coveay8bxTZycGs3F/BiLRQJvaKPOeVw8E6FQ+Mz+D2Mal4vQIapbxNFVSDzYXJ4cZsdxOkUxCqU7Uafu32eNE21pKfKqEfGajmvXnZWJ0eFDIJepWcN1bn8/4Gn9rRVGHmmjc3svqBMUQG/rb3/OpWiOXiaisCwmkVTXy4scjvfub2Cny6+QgPT2q/BKHW4sTl8aJXyvn05sEs31vG/rIGxmaEc9e4NJQduDcp5TKGp4Ww+sEx1FmdBGmVBGoUyGVS6m0ujtTa+Nf36wGIDlSzYE5/6u0uFDIp7+UU4RXgxZWHeXHlYeRSCQ9PysDeqII1Ody8viqP+8enk1thRiKRUFRtIVhnJK/KjFwmERcGfeMdgSBt5xRIR2qsTHv9eGj5Lwcq+fHPo0gKlePxeKmxOpEgIeQsB1Cb7C7sLg+BGiVmh5uyBhvl9T7SJ0Sv8mXqAbnlZlFVD74mwqzYQJbvLRPvHWUNdqrMvkWLmW/kiOP1i7qH0y2yx1n7G7rQhfMBYQY1912SjsXpxqCSn3Q82oXzB13k0QUIk93Fc8sPEh+sRaWQcc2bG7G7PFwzyNeictvoVB75are4f8/oAL8Q3o6gR1QAz03vzWur8lDKpdw/Pp06q1MkjgBKam0s3lbCraNT2zxWfLBWzN55+efDvH5tf/6z4iDFNVYmZUZx+9hUDBoFBn7/THOQVsnNo5K5ZrAvHNao9WW3WJ1uth+pEzMzEkO1bMiv5sd7R/LqqjyO1tm5bkgCaoWU55Yf4oWrssRj/rSvosX7/LS/gom9jlsMq8wO/vzZTlY3rvaPSQ/j2RlZZ9US4PZ4+WRzMUt2+giFepuLx5fu46c/j2y1laUJaoWMjCgDPaMD+XuzoFeAt9cVcP3QxD8MebQut0q0eZodbh5bso8ldwxjTHo4g5KDeWb5Ab/9//ntfkakhZ50NdygVogKLvBJhttT1wXrlO1aboJ1Kh6b0pP7x2f4Jjfqtu0/HYVepeDBCRn86/v9CIKvYe3fV/Y+pWNXNjh44Itd4r8XbyshPVLP8ntG8o9l+2iwu5g/IpnesT51VniAmiV3DOeFHw/hcHu5fUwqSSHnPovl94AQvYoQvapFdlZH4fZ62XGkvsX2vEoL0UYNu0vrufezndwwPJG/Tu5x0klkUY1/A1RkgJphqaFc8t/VPpsJML5nJP+a1suPIJFJJRwqN7WoMNcqZczoH8uUrGhUcul5E64eoFF0qICi3uri9V9zxdDvUL2SL24ZSoBGwaCkYDYW1Ij73jQyme6RhtMmx0L0KpoMt1Umhxj+3ASnx8uhctNJm6zOFqIDNQSo5TQ0KxWZ0CvytFXRrd1L27u/ejxe8qssPPzlbgqqLCyaO4DHl+5jxxHfeGzVwUrmj0hqtX2tNWgUcjQKOZEnLPwJgsAHG4rEfx+tt7NgVR5PTu2FQiYl2ui/v9srEKZXiZl8GoWMMIMKh9vDl9tK+ayxHfDzrSVc2c9H1ludbnaX1PPUd/sxOzzcOCKJiR38XL1egfdyCv3ITLdX4Kvtpcwblsh3u8tY8GseCpmUByekkxUbiEIuPaNqZUEQOFJr48ll+zhcYeay3lHMHBjHziP17DvawJCUEOKC3GREBaCQSVm+t6zFMb7dfQy51Fdckxqup7TOhk4p5/Gl+/wWen/aX9EhUrELXbjQoZRLUcrPD8dJF9pHF3l0AcIXNFnBszOymPPWJnH7onWF9IgKYFJmJEmhWj7fWkJmTCCX9o4WAzc7CqNWydR+sYxKD0ci8SkQnvn+QIv9iqqteL1CmxkggRo5L87qy6Nf72bVwUrC9CoWXNsfmVSCQf37VRq1huIaK1e+vl5shLo6O577J6Qjl0r4pbFF5/8u64FRq2TpzqPsO9rAraNTkADvrC+kwuTg6Ssz/dReA5OCWLjG/32GpIT4fSe/HqoUiSOAXw5Wsj63iil9Yjp87kJjk5XQuFrY3uqA2eHm5wOVLbbvLq0nNdxw0tcFaBQ8cXkvaltpzZJLpfxRHEM2p4elO1sGVq86WMlzM3pTb3O1UARYnO52gwYVMulZabEwapUYzzC3olfLmZ0dx+TMSCrNDqICNZ0mwpuwtZmnvgkr91dw1cB4XriqD26PQGCzY6sVMrpHBfDCVX3wCkKrFepdOLOwuzxUmR38erCSKKOa3rHGVolCuVTKtH4xfL2j1G/7iLRQHlp8fOFELZe1SeCkRxj8lG3T+sWw4Nc8kTgCWL63jLvGpfpNQIN1KhbM6c+bawrYUljL2IwwZmfHi9dIexYri8ONxeFGKZeeFhlRaXJQYbIjb6z6Ptlzvt7mxOulXaKn1ur0a4urMjt5fOleXprVl1ev6cf3u4+xpaiWy/vE0DfOeMZVVWqlr1Eut8I/GzA26LfPfQnRK/n05iH835K9FFdbmdgrkltHp5x2xs70/nG8s76QKrPv+RZmUHF5O8/hKouTGW/kiCSN24tIHDXhgw3FzB+ZfFrjqaP19hbbcivNeAXfNX3X2DRW7CsXz6NfvJEAjYLiGiuX94nmT0MS2VZci8crsLiZfRPg6x1Hue/idCpNDmb/b4NIkjz85W7C9Ko2MxCbIJVKCG9lYaRbuJ5dJfV+i6Y3vb+Vj+YP4rVf8nhkUgZpEYYzohqtNDuYuSBHtFMH6ZQ8uWwfPzTaOt/fUMTd49KINmoI0asYmBTMm2sL/I4xOCkEvVrG9P6xbC+uJSVcj1opo6HZfacJTdmGXehCF7pwvqCLPLoAIQBZcUY2F9a0+L/v95YxqXcUQ1JCyU4KbjUgtKOQSSV+jVjT+sWwYHWe34T12sEJ7YbH6lQKxveMJDspGK9XQNUYlvhHg8nu4slv9/lViX+0qZh5wxJJCNWRGRuIxyugksu499Md4j7f7yljyR3DGtuwZARofJ9dtdlBjcVJj6gALusdxdLGhqmxGeGMywj3e+8tBS2vlc2FNR0mj8x2Fzn5NTz9/X5sTg83jkhmar8YgtqY+OiUcgYkBLG1yH/S3l47EPjUamq51M8KBXDHmFQC/yCTeKVcSt/4IFbs888a6Z8QRIjeV3ucFRvoZ925OjseCT6VV2AHlAa/NWwujzhA1nVA9QS+lWWzw01lg4NQvQqXR6CNYp+Told0y+tuYFIwGoUMZRuNSRdCIOv5jnqrC4fHg0IqbZNwyK0wM/W1daJVsHdsIIvmDmyVQMqMDeT/LuvB66t8SoN7L04jt8IsTuoMKjlXD0po87yMGgVvXjeAR77a7fs9xRlZc7hl+HtZvZ2e0f55YeEGNX85Bal9pcnBM98f4KcD5aSF6/nXtEySQvWdDg+uaLAza+EGsTyhX4KRhXMG+H1WVqebg2Um/v3DQWwuD7eOTmFwcjCBmta/gwpTS/Igr9KC3e0lzKBizpBEZmef3OZ6utCrFDw8sTs7ius4Wm9HIoGbRiSfk/GCUu4jj1+9ui9Oj5cgrRJt043H64VTHFtFBKj47q4RbMivQSKBQUnB7TaP1licImED0NqlolPJkJzmykq3cD0KmcTPqju+Z6T4LIk2alhxz0gOlJkI0CiIMaqxODzMH5HEuIwIrlqYg8sjcEmPCKQS8DQ7tgRQKqSs2FXWIkbh483FDE0NOf75toHZ2fF8tLGYSrPPVhgbpGF4Wgh//2Zfi31/PViJSiHlqjc2sPK+UWdk0aTB5vbL4cuKNfL4Uv/3XrS2gNnZcYBP+T+hVyQ/NCrqRqeHMTwthG1Fdcx8I0d8zdPTMpkzJIFnfjieWRoXrCHsFCy9XejC+Yh6m4tKk4NtxbVkxgQSFag+b/JtTxcOtwe7y0uAWn7eKI7PJrpGxRcgdEoZ43tEolG1XGHqE2dE1TiwOx3iCHyrkFaHu7HRQka0UcOnNw3hPysO4vEK3DUujYQO2jiUcikRZ0HtcCHB4fL6tTc1IbfSTIBGwfVDE/k1tJIPN/q3W1VbnGwrriM+WIvEDL1jlVSZHNz0wRa2FdWhVcp4fEpPHpiQgVTqC8Y+kdQZ3yuSjzcf8dt2Sc/IDp97WYOd+e9tEf/9j2X7iA3SiMdoCiIG0KvkaFVyFHIpN45IYnNhLduKa1HIJNw2OrVD14FEIiEiUMPfLu3B5X1i2FhQzUU9IkgJ03c6hFkQBCrNDnYeqUcmlZAZE9DpkNNzAZlUwoz+sazYW8b2xlXmKVnRZEQasLs8vL2+gL9f1pMVe8s4UGZiWGooQ1NCePir3WgUMh67rGenFYdnE3VWJx9uLOblnw/j8ghc2S+GhyZmtGkpqLe5eOXnXN5qXLmVSmDR3IGMTAvrdONZtFHDbaNTWLg6H7dXYGBiEH8aktAmcdSF08fROhsPfLGTTQW19IoJ5D8zs0gMaZlbVW9z8fT3B/wmrrtK6jlSYyVUr8Jkd9Fgd1NpshMVqMGoUXDt4AQm945Cgo8Iqra4UMqleLwCE3pFEtbK9e90e2mwu1ArZOhVckZ2C2PJHcMRENApZVQ0ONhdepyQVSuk9GyFeITOS+3NjQsITXmCmwtrmbVwA9/dPaJVRcXJ4PUKfLbliF/r5raiOjYV1PhVlVeaHExfkCMqq25+fyuf3DSYwSdpZkwI0aFWSP1q2ydl+sgDt9eL0+VF2wqZWmd14nR7UStlpx10Ghuk4es7hmGyu9EoZOhU8nNKhPs9K5wWqCuGTf8DXSj0nwuGKOjEZEEi8VXKT+kT3eHX6FRyJBLEhbtNBTVM7RvDV9uPK+8entgd4wmqzDqrE4vDg4CAtp2sK/CFgr96dT+eW3GQsgY7l2ZGMzo9vDH/ytc4Gx6g9iNhwgxw2+hU7vl0h/jbtbs8XJ0dz7s5xy1wVw2MQ/AKJIfqWrxvapi+w6qgiAAV3949nO3FdcilEnrHBqJXyUkJb3nchBAt6/KqMDncVJkdZ4Q8Uiukft9Fa/AIAjVWF19sLWF8r0gm9oxk/ohkAPYdbaC8wcET3/oTTn/9Zg9rHxhDuEHNl9tL6BZu4OZRyRfEWKULXWgPDrdPSf/Xr/eI2+69KI0bRyRf8At0ZfU2Xl+Vx6FyM5f3jeaSHpG/e4HEhf2N/UERqFUyPC0Um8vDVQNi+WxrCYIAAxODGJsRjsPjRduBB7HF4cbqdLcaLlhtdnDf5ztZdbASiQSm9Y3hkcndyU4K5o05/RGgTdVJF1oiUKvg8j7RfgGtaoWPVJv5Rg6Lbx3KyG5hLYLKffvJOFBmIq/CTFq4npz8arYV+QgFq9PD/V/s4pFJGcwfkdwq6y2XSrjnojQWrStAgoR5w5PaXKM0291Umh2sOVRJdlIwqw61tJ8t3lbCiG5hOFwevtpeyvMrDuH0eLl2UDy3j00jWKckzKDmzev6Y3V5kEsl6NUK9J14UIToVYzJCGfMCUqqzqC8wcGUV9aKDSYvzerL0p1HKay2ctXAOOKDteetJSnUoOLNPw3A6vQgayQGjVolXq9Aj6hArn97E/+Z2YcZA2LxegVcXoGjtXb2HWtgeGooMwfE/aarICa7C4vDDUjQq2V+odVF1VaeXX58VfWzLSX0Twhm5oDYk56j1eFm0brjkn+vAH/7Zg9f3jqs3dX6E2HUKrltdApzhiTg8QpolTKCdSqqzQ7yKi2UN9gZkBBEiF7ZqdaoLpwcNRYHd3y0Xazh3VZcy58WbWLxrUNbfH/exvbQE2FutHgt3lrC48v2idlXH9wwiP4JQX6kS2SgjOuGJJ70fKrNDt7LKeL7PcfoFmHgoQkZxAZr/c5lcu8onG4PH28+QrhBxV8ndz9jA0Gry8OKE1rLqsxOTHY3bTh5W8AjCBwq91m7xveMZFq/GJQyKU6Pv8Vl+d5yv3BmgPdyCukTZ2zVWhekVfDZzUN49Ks9lNRamZIVw/wRydTbnHy0sZjdpfVc0TeGYSmhooKsuMbKw1/uYteRegYlB/PEFb1Oq15cIvFZkzrzefxmqDoE/xsLQuPnvGUR3LIWDB1fiOkoXG4vdTYncqkUrULKbaNTeW1VLoIAb67J57NbhjA7O449R333+sgAtR8BU2128MhXu8WWvJHdwnhhZlabCwo2p4cFv+Yxf0QyQTolaw9X8dyKg7x2Tb82z1Ui8ancmnC40syItDD6xBvZWlhLv4QgHwEogZ7RgQxODmZDvk8NHWPUdKqIoOn6GN9s8cvj9TKxVxTLdh7jcKPlcWBiEHHBWvaUNiCRcMYUDoJX4PqhiWIT34GyBsakh/HLweNjpOuGJPDRhiI+2FjMwtX5vHfDIK56I0e0oK24Z6SfNRbA7RFwur1c2T+Wi3tEoG5HEduFLlxIqLO6/ILjFTIJ7+cUcdXA+AuaPKo0OZj5xgaKG/MTc/KrqWiwc+uoVBS/49/vhfuN/cERHqBma1EN/RODmJUdj8crkF9lYXNhLRkRLUddLo+HarOLQ+UNJIf5MgX2Hq1nQGIwOXnVjEwLo1dMgDhpWr63TGy5EgRYvK2UKVnRjEoP/93IDH9rKGRSrh4Uj83lC5OMClRzz0XdeH1VHoXVVmosTtIiDDw0McPPupEVG4hE4mO39WoZUomEA2UNLY6/76gJj1dALms5Ebe5PJTU2njxqr4IwLe7jpIZ0/pquiAIbCyo5sb3tiAIkBau5+5xaS326xEVgFImIbfc5ifbfmtdIZmxRq7o67PEBetVnBiLa7a7qTDZWXWwkrQIPT2iAs6aSuazLcVUNNauP3lFL+7+ZDuFjQqw93KKeG9eNiO7hZ2V9z4TaB4o2wSpVMKkzCi6Rxl4d30R3+5usiyG8cac/ny8qZh1uVVc0Sem00qtU0W1xcF/lh/k0y0lSPBZWptnxazLbWkHWrm/nClZ0SfN6XB4vC1WeKtMToR2k51ah16t8LPKVZsd3PbhNjEIWCWX8s3tw8jogLWyC+3D6RZE4qgJxTVWbC5Pi32DdErmj0zmtg+3idtCdErSIwyY7G6e/Ha/eC3YXV7u/2IXn988hNAOkog2p4eXVubybk4hAIfKzWwrquWbO4b5re5bHG4OlpuYNyyJepuTZbuOMX9Esh+hKAgCVWYnHq8XhUza4XuXTCIhKVTHvmPH798yqQRdJ32YCpmUecMSmd4/FoVMwr9/OEhepZm5QxPJTgwWiZ24VrKC4oO1rT4jwGfV6h1r5N15A3F7BAwaBRaHmzlvbeJAmQnwhfjePz6dm0YkU29zMXfRJlEB9dP+Cupt21l43YDf3+KS0wKrnztOHAFYKqE4B3pOPaNvVWNx8s76Qr7cVkJkgJrHp/RkSlYUF3cPp67RkqySS8lOCiE7qXUV2ZaiGjJjjNw00tcMt6Wwhl8PVTKtX+xJ3zc+WEuD3c39jcUCEgl8PH9wu9+lUavk1tEpbH7Hp05+7Zc8HrusJ59uOWyBavsAACAASURBVIJaLuX73WXcPyGdUL0KiUTCq9f0o8rkxOH2EBWo6fRCwImQSaXoVHIempiBTiXHqFGQX2Xhro+3I5XAAxMyMKjPzHRHLpcSFajhs5uHcKzeRlKIjr7xQUzoFcnmwlrGpIfj9Hj5y+c7AZ+aa9XBCoakhPjGO+F6gnUKZg+M5+31heJxe0QFiKq+joTbd6ELFxQEH8Esl0q4f3w6AxKDqbX6Ghc9Hi+yC7Rhrc7qFImjJry/oZhZ2fGdUhNfaOgijy5gJIXq+XxLCQ8u3i0qj16/pn+rP8L8SgtXvLqef07txcLVu1ibWw34BgcvzerLCz8d4rkZWUQEyHB5vOTkVbc4RkmtlbJ6Oyv2lfnZAs73WsUGmwuby+ML/tapOm13OZMI1qm4YXgSfeKMlNTaeOq7/eKgvGmSnxquZ8W9o/hhzzHCDWrCDCoe/nIXr1zdD61Shkoh49Le0bza2MLVhFnZcSf9LvonBLHmcBXz39uCRALXDkqgT2Pl+4moNjv5Z7OJ2uEKMxqljMt6R2HUKlHKpRyuMDE7Ox6ZVMqqQy3b3r7fU8aEXpGtrm4LgsCmwhpueHez+B5j08N4bmafMy719HoFyut9xFGYQYXF4RGJoyb896dDZMYEnvNK7c7C5fFSaXKIxBHAzwcqGZJShlGrYGrftA4RR5UmBwfLGrC7vfSOCSTMoDoltdLmgho+2nTcGvnO+kJGp4cxOt2nGmutWWt4aiiqtvKGlHKSQ3V+9pwZA2IxdGClyuxwYbZ78AqCqNg6EUfrbH4NUg63l3/9cICXZ/XtGsCfAcikPmVBaZ1N3GZQyU/6nQ9LCeHdedm8l1NIjFHDLaNSCDOoKKq24j5BQVNcY8XbCRLRZHfx1Q7/EN+j9XYabG7CGtdbLA43zy4/wJKdx/hsy/F9p2RFi/cHj8fL/jITt3+0jaJqK71iAnjtmv7EB7du4a42O/B4BZFk+vf03sxeuAGTw41UAo9OyuiUGrPpb7E6PSxcnY9aIeUv49P5dPMRXvo5l26RBi7t7bNEDUwKpmd0gNgKFxGgYu7QJF/xQBtobiUtq7eLz6gmLFpbwIwBsThcXr/fJviseA7X7zHkVwLSVu6nrW07Dbg8Xn7Yc4zesYEMTw1FKZPw4/5yZg2Mw6j1haKrG1vN2kKEQc0Pe8r5z48+teeEnpHcMiqlzYKTUIOKj+cP5peDFRRWWZjaN4YoY8dUZAMSgvnkpsG8s76QmEA1CaFa/jU1E1cjwdo8iytEpyLkDDagAYQblEgI4Lvdx4gJ1NAn3shnNw9Br5ajV8nPmLrYoJIjk8LctzcSoFZid7tZOGcAWwpr6R9vpKDawnPNFLbgs7c+cUUvTDYX4QY1oQYVd45LIylUx3d7jpEVa+SG4Ulntf22C104l9AoZUzOjOL/2Tvv+KjK/Pu/p9zpmclk0jshpNISepciCBZsWLCL2BUFdVdX3XXd9bdFV9e++lURCyhYsSJgo/feQwpJSG/T+++PSW4ymQQSioLmvF6+XnKTuZmZe+/zfJ7znM85/RLDOVJn4/99vQYAvVrOotkj+GJHGamROiZkRZ9Vz0FHNXa4WkD6G/c96iGPzmJEaBU8PC2beyf2wevzo1V23NPeZHfzty/34vP7SQhXi8QRBFRFL31/iBtGplJtdhLTLH2e2q/VgBlAIZMyNiOaqf/9ifpm48b/LDvAN/eNJeFXSELpKqqaHDz88U5W7q8i3qDm35f3Jz/FeNw0nNOJCK0SjULOk1+0xrJOHxAvLohVgoxInYJxGdG8u66Iepubl68ZhEmnwNR8fRONal67bhD//nY/Hp+fO8/pTVZs5zr/CK2Sh87L5M5z0pFIAuaabVuK2sKHH3O79pGPt5Qyd3Imr/xQQK3FydxzM8VdskEpoSTU8LQIFJ0QWbVWF099tTdIUbJyfzVNdrd4/9ZbXdjdXqSS0Pan7kAqlXDdiBTe3xjwkep4PD/7Bnm3x8f3+6pEiX5b7C5rQiVIidI10qcDFWJbVJsdXPm/VtPdSJ2CpfeM7nbbid/vZ/neUBLxh/3VInmUFqVj9phevLW6CI/Pz5ScGM7vH3dMMjcqTMl7s4fx/IqD7C5v4rzcWK4ckoT6OEqNequL134q4PWfC/H4/IzPjOLfMwaEFCUNHaTb1FlcuL3HX/y6PF6qmpy8t6EEqQRmDk0hWq88JYk+vxWYtEqev3ogN7y5EYvTg0qQ8p8rBxLejphze3y4vD4MGgXjMqIYnGJEkEnFtg2tUk68QRWUBjUlNxZ1N8ZxqVRCTJiKJnvwM9NW9eZweymotpIVG8aYPlE02F18vbOC0ga7qEartbm48a0NYlrWrrIm7nl/C2/dNDRo/vX7/RTWWLl30VZ2lTUxKMXIc1cOJCNWx/J546izujCoBfQqObpuqiIOVVmY+X/rxX//eKCaD24dwfK9lXy+rZyJWTGoFTIidUrevnkoR+psONw+0qO13fZQkXfwfGqazZkV8kDcuKXNfBGrV3GqHwG310e91YXH50cpSE858dAlKDQw7iHY9yX4mj+vPgESh53SP9Nkd5ObYODu97dwpM6OVAK3jEmj0e4h8xhzfHtUNjmDPJG+3lXBhKxoBiSFH/N1UWFKrhic1O33rVcLDE8zMSApHLlU8ouPg4Is4Mt5S7O30KmEy+Ol1upi/eE6Yg0qLugfz9R+cTTa3ehVAg8t2cGqQzUs21PJmzcOQSmXii1qOqWciwcmEB+uhjalUoRWwbXDU5iel4BGkP2mW1x60AOzw83sMWnIZVKmPd8aD91k9/DkF3s4JzOKh5bsYFRvEy/MzD9rPIP0KjkXDogXk5GlkkBi9tlEgJ0IesijsxwGtXBcM0mX10dVkxOZVNJh7KfVFTCmbLvTPjzNxG1j05i/pgiFTMq/Lu/PVzuPisQRgNnp4b31xTx0Xla33nOj3Y3F4abR7iZSpyRCe/zY9xOBzeXhX9/uZ8W+wKK2rMHOTfM38uND44n9FckjgLzkcH58cDwbi+pIi9KSHKEJUr6EqQRy4gUenpbd7HUT/KiGqQTOzYkhP8WI3+8nQqtEJpVQa3FS0eSg0eYmPVpHpK5VaaVTCl0iYYxqBTeOTBX9aZRyKbePS+eC51eJ7SZf767g87tH0y/BQFZsGFcNSeKDTUfw+2FMuokLB8R3Sgr4/B17m7Qs2GssTuZ+uI2fDtQgl0q4dWya6MFwIkiM0PDRHSN5fvlBosKUIUqWuedmnLGqI6/PT63FyYFKCwa1QHy4KtAiIwkoL4alRTC/jfQdYGS6iQVri2i0u5nWL+6Y6qOfD9YEfRc1FhdvrynmwSkZ3TLcl0gkTMyKZsnmYGVH23bACK2CORP7MGt02jHVQBC4FxpsLiQSCbF6FY9fkIvd7UWvlh9XNQGB7+aVNpHj3++v5uMtpcwanRaUapUZE4ZBLQT5T9w4MrVLhUtlk5Nzn/1RNBd+a3UR390/7owm038xuOyAH6lCQ78EAyvnjcPi9Ijmxy33pN/v52ijg9d/OkxxnY3rhqeQnxyOod19EalTsPDW4Tz+2S72HjUzPiuaB6dk4PT4+HbzEXaXNXFxXgKpkZpOk8QiNAqeuCiXG97aILYE3zAiBaFNC1e4WuDPF+RQZXaydEc5UTol794ylIQ2ZKrd5RWJoxZsL20MIRxrLC5ueGsDR+oCqqvNxfXc8d5m3r55KDF61QkHSLg83iAfMAC318+PB6oZlGIkL9kY5JUSqVOeVCGrU8qZkhsjeucAPDItG5NWgdvn41+X92fOoq24vX5UgpRnrxxwTBP89nC4vQgyaadpcw63l/WFtcz9YDu1Vhf9Egz877pBgcX4Lw1jb7h7I2x7H7TRkHMRhB0/Yr47kEjgfz8UiPeNzw+v/XS424TOhsJQ9fi6w7Vclp94WtXX3SF0uwu7y4vd7cWgkv+ibS6Ha6xMf3G1WD8PSjHy2nWDyIrVU1ZvY1VzS3aj3c1rPx1m4ezhfL3rKAqZlJnDUojuRCUmlUqC6ner00Otxcnqglp6R+noHaU9o0IvetCDE0GtxcnN8zdRa3HyzBUDQn5eUmcT58PVBbWYHe6zhjwK1yh44qIcbh6VSkG1hWG9TGfNez8Z9JBHvwMY1QJXD03iL0v34PP7STVpglp3rhqSjEYhw9um+I3QKrhvUgazRvcKnEMr8HK7NikImDX7/f4ut7k02t28/lMBLzafK1wjsOT2EaSfBndMi9PDzweDjZ6dHh/lDXZiTyJ1oyVucnd5I/0SDETqlN1ucdEo5Ggi5CR10urQgmNJrSUSSdCioNbi5N5FW1ndrCwL1wgsvXv0cf9GewhyKVcPTSbBqObTLWWc1zeWTcV1QT4lfj+89lMBT88ILBQemZbNnIl9mkkB+THJGKNGwazRvfjbl3vFY2mRWowaBV6vj8WbSvnpQKAY8/j8vPxDAef1jT1hgkenlJOfbOSFmXlIJbDotuF8s6uCwhorlw9KJEKroLLJQXibRe2ZgrIGOxe9uEqMaR7WK4KXr8nHpFNy+eBENhXWMWdiOm+sKsLj83HNsBQ0goxdZU1cNST5uIabVU3OkGNHG+0UVFnRq+VYXV4UMik6lRyDSqDO5kImkXR4LYalRXDVkCQWbw54Hl0xOCngDWN2ir407T2HOkK91cVHW0p5Y1UhWqWcR6ZlMzQ1olsT8uZ2PjsAaw7VMnNYSlCLkEmnZOndo3hu+UHKG+1cOyyF0X0iuzSevb+hJCiVyubysnjzEe6blNHl9/mbg9tBrcVOg9mGz+/HGOYgUqsiWq+hI8v7GouT6S+tprrZk2zlviqeu2og0wfEB10DiURCiknLC1fn43B7CVPJsbm83LJgE1tLAsEBb60p4tkrB3DRgIQOiYhaq4tleyr48LYRHK62kmBUs/doU9A1lMmk1Nvc3L1wq3jsm90VfHnvGPHfKkGGXiWnydFKgGfE6EL+psPtFQmAFuwqa8LVwQZOdyCVSojtQD1k1CqI0Su5fFBi0HupszrxeANeeN0hddqe96lL+nH9iFT2HG1ifEYUMQYVUqkEpVTGOZlR/PyHCTTaXIRrFISrhU6JoLaot7nYVFTHks1l9EvQc8WQpA49Ihrtbm5dsFlcuO8sa+TRT3fy3JW/QmupQg0RaTDh0ZM6Tb3VFdhAkQRac9uOpz4/7K8MVZSWN9hIj9YFHasxO/H5/Sjk0hAifkTvSN5oNnVuwZg+ATK/0eaiyuxkV3kj/RPDidQpf9VEu66gvMHOs8sPcKDCzAUD4rksP+GE7ufuwuwIGP223XjVqwQsTg8Ojw+ZVMJVQ5JY1Jxm++3uCvonGnhwSla3Da+3Hmng+jfWi4r0Kbkx/L9L+/8uFqM9+O3C4faxvzLQ+hytVxGmlAd1N5zXNzaoK6DB5kajcJw1SYMRWiURWiV5yR1bgfwW0UMe/Q4gk0m5aGACcpmURRuO8Mq1g/hsWzkHq8xcmpdAbryBL3aWk9+u/UitkAVJ+i/LT+TlHwrESVSQSbhhZGq3/FGa7G6ROILAIPHYZ7v575UDKa6zsbe8iVHpkUTrlSfdo64SZPSNN1DZ1NpOI5VwUsSR3eVl8aYjQcTHk9NzmTE4qUutcGaHm+JaG4s2ltA7SscF/eNO2QB5uMYqEkcQ+G6fW36Qv13ct1ND4s4QoVVw8cAEJmVHo5LLWLojNAHOoBaQNrd86dVClwt5QSblsvxEEsLVLNlSSnasnutHpBAZpsTicLO2INRYeWtJA/0Tjy23Px5a7ietUuD6Eak02d088skOvthRgVYh47ELcji/f9wZk7xmd3n57/IDInEEsL6wjoJqKyadksRwNbI0E9uONPDlvaMxOzws2VzKfR9sY3JODFP7xh732ZzWL5anl+0P8pO5eGBCgIj6v/UUVAdUSW/cMJgGm4vXfy5Eo5Dx8NRschP0QYo4CRLO6xvD9SNSsLu9rNxXzR3vbuGD24Z32dQYArvjbZ+vWW9vZMXccehUwQunWoszJIWuBcM78FeakB2Npt0zKpNKSDZp+fslfXF5/Bg0Xb/2p7PZsdHuprTOxrI9lfRPNDAwKfys2IGusbm5c9EeNjQnQWbGhPHuTXlEdfLWD1dbReKoBa//dJgx6ZEdft6240x5o0Mkjlrw3PKDjE6P6tAPxu/3s3T7Ud5ZV0KcQRVYwLu8nJPZqo6rt7n430+Hg15XY3FxoNIs7owaNQKvXDuIO9/bQqPdTZxBxYtX54eoewILeiHo+U00qjtsA+sO5FIpN43uxUdby6izutAoZPxpWjbjMqM4NzsGldC6YC2ssXLfoq1sL20kLymc564aSIopNNL8eDDplIxKVzIqPTLkZxqFHI1C3q151e318fGWUp78IvCcf7u7gqXbj/Le7GEh32O9zRWimN5YWI/D7T3t5FGd1cWROhsldTbyU4xEaITjtsy6m5XeC5tbpa8akkSMXokgC4w9tRYn9y3ays/Nc/W4jCj+0yYFLUwlZ1JONAU/thJIgkwS1ILs8QYWY/cu3EZBtYXhaRH854qBQWqsnHg9s8eksWBtERAg84ekGnF6fHywqZSnvgquYa4YnHTGbZ60oNrs4Ir/raW0PkDGbi9tpNbi5P5JGaf9Pbu9/qBn+ML+cUzOjeXSl9dQa3WRG6/n1WsHMbpPJCv3VXF+v7gQ9V9XUGNx8p9l+5k1Oo0hqUYqm5y8t76YprNIhdGDHnQEQSbBqBGot7lxery8dv0gnlt+kJI6G5NzY5mYHS22uY7LiKSswUat1cWErLODPPo9ooc8OgPQHeXOiSJCq+DqoclM6xuLQi7lnvHp1NtdrDlUy86yRq4akhxStDk9Xpqa2zmMGgXReiXf3jeWN1YV4vH5uGV0GnGG7j3ctdZQpUNRjTXEw+GlmXmc1zeuSzuYnUGvEnjiolwKqi0U1dpQyqX8+cIc9CeRutHkcPP0smAzxH98vY/JuR2bQ7fH5uJ6bnxro/jvBWuL+fC2ESedNgJwtMERcqy03obL4+s2edSClja3UemRJBrVYvGmU8qZPSYNj9+HQPfl40atgqn94hiXGYVCJhXbFjUKOROyYvjpYDCB1JHZ8snA6fby3xUH+WJHBQBWl5c/fryTEb1NZwx55PL4KO/gmpY32Kk2O1DIZaRF6Ug1aZFIAkq728elcevYtGO2hLVFVJiSz+8exTPLDuDweJk5NAWLw8P3+6tE4ig3Xk+j3c28xTvE1131+jpWzBtHqinwLHl9fmwuD6sO1tLk8DB9YDyNdjcurw9f+7i0Y8Dm8rBkS3Drm98f8E5Ki2olj6rNTmYv2MS2IwHy4OKB8Tx2QY64AIsPV/On87N59rsDOD0+pg+I5/x+nfsrqRVyOul26hQzhyYzf00RNldAkadTypmUHcOKPZUM6RVxwgtbj9fHst0VYuIRwLk50fzrsgFnbHtlC9YXVIvEEcD+SjOfbDnC7HEZSGSh4277dlwILJ67NO53cFsF7rWO77dwTaAd95nvDojjWEaMLuh5l0kkaJWhY6WmzfipkMsY2svId/ePxeHxoW724HF5fEELxgitwItX53H7u1uwOD0Y1AIvXJ13Svx6YvUqvpkzhm1HGsiMDeOZZft59LNdSAgoiR+YkonP52fW/I1iW+rWIw3MXrCJ92cPJ1wtUGd1Udvsu6RTyn9RFU+Dzc3rPwW33u2vNIut7G1h1CiCPGQA8lPCTztpUG918egnO/lqV2COkEslLLp1OINTjz0XVTW3s7aMC2+uKmTZ/WNJNAYUwD/srxaJIwj4Va0+VMNFAwPppEq5jNlj0qizuPh8ezlxBhVPXdIvyCeszubiujc2UGcNtE+uO1zHg0u289LMfHHcj9AquH5EMhcOiEOCBL1ajlGjoMnh5plOapiYM5Q8arS5xWe2BR9uKuXmUb2IPs3v2agRuGlUKnMWbQPgxlG9uOb/1omKxd3lTTzyyU5enJnHtL5x+AkQQUs2lyJIJYzobepaCIXfz6Pn5/D+hhIeXLKDVJOGR8/Pwd+N+bMHPTgTYdQKPHvlQG5/N6Agffyz3Vw5JInoMCXrC+u4ef5GPr5jJH+dnsuYPpHc+e4W/ji1e3YoPfhl0UMe/YposLnYe7SJj7eWkZcUzuSc2G7t0HcHLd4pZQ12UVqeaNRwxRANVqcHq9NDVZMDo1aBIJNSb3Xx3vpiXvv5MAqZlHmTM5nWN5bUSC1/vjAHP5yQIWKcQR1isDm1b6xYoLXg71/uZWgv00mTKokRGhbfPhK7y4tCLsWgFo5JpNhdHpocHuwuLxqlDFOzl1ALvD5/UJsDgM3t7dICuc7q5LnlB4OOFdZYKa23dfo5K5scLN1ejkmrZFCqEaVcSqRW0WG//5BexpAie+aw5G6pKTpDdJiKT+4cydqCWqrMTganGPnL57uZlB3DRQPjT5hwab94lEolXDggjh2lDXy2vRyVPHDvxXfTwPl4sDg9HSYK7q8wn9DO/OmAQSMwc1gyaw+3vk+lXEpecjgzXl3L6PRI5k3OFAmFMJXQ7eugVsjJiTfwt4v7snhzKS//cIgJWdEcrm71QRrR28Q37Z5Pr8/Pyr1V3Nzc1lpjcXL+C63tdUs2H2H+TUMpqDaTHNH171Mhl5Idq2dFO/PtjJhW4sjr8/PhpiMicQTw6bZyrhySzIjmhWe4RsF1w1O4aEA8+AOGyzqVnEa7G6/Ph1GjOGnCPsag5Lv7x7FoYwlur4/zcmP5x9f7WHWohk/vGsXA4xjTdoZ6myuEoP5uTxXWCz1nPHm0r9Iecmx3lROvX9JhsREfriI/JZwtzYSTXCrh4anZXSI+wzUC/RIM7CxrFI/dO6FPp60sCrmUa4enkGzS8OnWcvom6LlueEoQWaFXC/zhvCzWHV4t+iINSDSQGB5ocTtcbaF/YjgmnYLoZqVNrcXJ4s1H+OlADZNyohmXEUWENqA0GdorghXzxgXmE4UMo1YhEpjVZgc/7K+mtN7O9IHxxOhVaLuYuiaVSojWq5icG8unW8v4fHsg3MJPoJ1ycm4MWbFhIUloByotOD0+CqotzPjfWprsHiQSmHduBtePSP1FCaS2CqkWdKTK0qvkvHxNPvMWb6fB5iY7Loy/X9LvtLdZNdhdQXWJx+fniaV7ePvmIcdsl/pgY4lIHEGgnXXhhhIenBJYDG0sqgt5zcaiepE8goBP1aPnZ3P/pAyQQJxBFTReWZ1ekThqwZqC2qCWSJUgIylCS1SYV/w3BFSN7ZVcNrf3jCYpOlJ7mdo8S6cTEomEcRlRvHptPu+uK0YCITXg5uJAwqBBLaG8wc60538W58LoMCVL7xndocdZjdmJwxNoDVcrZHy46YjoG7i9tJE73t3MsrljT/tn7EEPTicEmYxUk4Z3Zw1DrxLIiA0LUpePSDNR0eigqMZKVJgSs9NDTrz+V3zHPTgeesijXwker4/Pt5fz+Ge7AVi8qZSPtpTx2nWDTkt7QnGtlUtfWSNOaDMGJfLItGx8fj9PL9vPks2lhKkEHjs/m8m5MWwuqefpZQfE1z/88U76xhvopzk5c2uZRMLSe0bTaHfz1c5ynG4/s8emMeHpH4N+z+L04O9GDPOx0FUCyu72sHJfFfMWb8fh9hGlU/LOLUPJim0dxDQKGaPTTUGJdRMyo7toEikhstk/ok+Mrlm6X9bpb1c1ObjoxVXMmdiHo412Zry6F7lUyrzJGUzMjgkpniM0Cj65axRPfbmXepuLG0amBhkWdwXVZgfrD9fR5PAwPjOKyDCFKLfXKQVK6mz8sL+af3y9D4/Pz/f7qxmTEXVK1TomnZK/Tu/LH6ZmIYEgg91TBa1SzrBeEew52hR0vDtpNr8E8pLD+fOFOXy0pRSjRsFtY3vz2bZyLslL4NnlB7lqaPIpIRRUChm7yxvZXd6EQS0wMTtaNAGts7o6jGtONbV6aa05VBMk7ff5A4vY56/K6xYBLJdKuX5ECl/vOioqn8ZnRpEd1/oMujxetnbgabSzrIERvU2tn0mQiQsmp9vLnvImnvpqL412NzeP7sX4zKgukRSdQZDJSDCqSTVpWbangqtfXy/6gi3aUMKARMMJEVR+6NAXx3cWpJ9PG5DACz8WBR27YlACcnnHz69Jp+S16wazu6yRI/V2xmVEEanr2jUx6ZS8deMQlu2pYEdpI5cNSiQjOtR7KAgSSI7QcGH/OMI1QoeLz95RWlbOO4cV+ypJCNfQP0HPyz8e5u1mY3qpBN66aQhj+0TRZHfz589380VzMumXO48yc2gSj0zLRqcSUMhlxOhDP3uN2clVr62noDrQmvTCyoMsvn0Eg1K6p7D0+fz81M7XD2DVwRryksKJ1CmCzL1j9EqkwMMf76LJHtjA8fvhme8OcGl+4mklj2otTqotThxuH/HhKv52cV+ufWOD+PNzOplH1Ao5Y/pE8u19Y/E0m3L/Ei2cNqc35Fi9zYXXd/y6ZHJODBf0j0MikYj3RgsuGhgv+uO04MIBcUH/rrU4eWHlIT7ZWkacQcXfL+lL3wQDSrkMvB70KjkqQRpEYuTE6Tu899srolVCaA0zMSsatRBYDlSZHXy54yiFNVauHJJEcoTmhOd3i8ONzeVFrZB1eA6XJ0CC7T1qJtYQMJHvqEVLq5Rx9dAkFm4IfG9yqYS/Ts/9xRKNwjUKzusbx8jekdhcnlAlXHI4Pn/AL7C0zoZRoxDnwyqzk693VnDjqNSgcxbVWpk1fxMF1RZMWgXPX52Hp53pvtnpodbi6nb6aQ96cCbB5/Pz+k+FvLehBL1azmvXDSYlQsPGojqG9opg5tBkXF4fYSqBg1VmPr5j5Fnjd/R7RQ959Cuhzubipe8PBR3bXFyP2eE55YWR2eHm71/uDVrcLd5cypyJfVi2p1KckOusLu7/cDvrHp7A59tCPW6W7amgX6LhhN9HRaOD2Qs2QLtMswAAIABJREFUsbOsEaVcysNTs5g+MB6vH3pFatlb0YRKLsPu9nLdiBT0v3D7UKPNw9wPt4tFQbXFydwPtvPOrKHiNQnXKHjuyjzeXF3I2oJaRveJ5IaRqV1ahEZoFTx+UQ5zP9jOpuJ6tAoZD0zJJKGT1JjNxfXom9Ukj3yySzw+98PtLL17dNC1qDI72HC4DpUg4+kZ/RFkUoya4J25BpuLg1UWPtpcSv9EA5NzY4OKr2qzg8teWUtJXcBMXaOQ8fWcMaISx+r08Om2cg61i4c/XG0huZum3MeD7gTiq7sDlSDjzvG92VdpZm1BLVqFjD+dn4PxJMiE04GiGivf76visvxEzA4Pj322C0Em4foRqUBAKdU34cSfyRYYNQFSc8bgJLaW1DM5JxaLw8M764rZe9TMq9fms2x3BUebo9LzU8Lp30ZZ01HMsFIu7VK6X3tE61V8cNsI6q0uBJkUvVoIWlCoFXIu6B/P8nbqpHEZHVkyB1BrdXHJy61pOfd/sI1Xr83nvL5xnb6mq/D4/EFJVADp0boTVjYZ1QrmTc5AKpHSO1qLxeFh9aGaDtupzjQkGLW8ck0eTy87iNvr445xace9PyN1SsZldn7tjvnaMCUzh6Uwswtp6e19dgD6Jxp468YhQXOuWiEnKULOjSMDqrryBrtIHEGAGH38s90suX0kHp+PL3cGkwMfbiplzqQMBLkUi8ODRiEPUbserrGIxFHLOZ9edoBXrxnULaWoVCphck5MyCbEhOxotEo5L87MZ/bbmzA7A4TDSzPzEeQSimqDFUl+f0CRcroSzGosTu56bzPrCwOkb0K4msW3j+C7+8eyfG8lWXF6+icYOvV26YyEO52I1iuJ0SupbBMqcM2w5OPO9VcNTeb7/VX8qzmt9LZxaUzMak1ky47T86fzs3np+0NIgHsm9CGjjZ+Ry+Nj/poiMUWz0e5m5uvr+fGBscTuXQDlm4kYMJMf7hrIxFe2Y3V6iQ5T8uwVA7tUOxq1Cp67Ko+3VheytqCOsRmRXDs8BYNGoNrs5IpX14qBKgvWFvPOzUMZ02YTyuPzdSnx8mijnSe/2MPGwnoGpRj584U5IZsQByotXPbKGnFcnj4gnr9clBuyIRKuUfDglCyuH5FKUY2V/onhGLW/fHu5Xi2gkEv533WDuP+DbdTb3GTFhvHkxf24Z+EWNhbV0z/RwDMzBnDfB9vEWqrRHqwSq7e6mPvBdnEMqLW6uLW5pXRJm2dZIuGMq0l60IPuQiIBU/OmUJPdw3VvrGdyTiwPTMmkb5wes9NLo8VJUoSG3Hg9mi4qcHvw66HnCv1KkCBB2sHi4nRYHzndPnESk0rgrvHpTMyKpsnhIS85nMEpRjYVt+7k768wk59s5PPtwQTSibZhQKAd7Jnv9ostBk6Pj78s3cOErGiSTVreumkwTXYPNRYnMXoV4RpFlzyETiXsbk+InHtfRROudrtBkWFK7puUwewxgejprhoj2l1eXvm+QPyurS4vTyzdw6Ts0Khfl8fX3CKYy0ftPGAgsMOdHRdGvc2Fx+fn4pdWi0WuUSPw1ZwxQcSR1+vj290V/OGjnQAs2niEDzYd4c0bWhdOGwrrxfsEAnL7l78v4K/Tc1EKMnQqOaN6m4LII4mEkASYswVRYSpenpmP3R0wXTaohV/8njse+sSEsam4PsgDas7EPqwpqEEigeG9I6hscrBibyUer59zc2NQyqV4fX6M3VQJmnRKJmXHiPfjHeekc/WwZKRIMOkUfH73aErrbSgFGTFhyqCFytBeEcQZVCK5pJBJuXtC+gl7bR0vXnxcRhR3je/N/NVFaBRy/jg1i9hj+K+tO1wb8my/u66EUemRJ62am5AVTWZMmJgmkhapZfrA+BM+nyCXMj4zhnsWbmFLSQNRYUqemTGgyy1Nvyb0aoHz+sYxONUE+InQdNxi+2ugwebi1R+DzbB3lDYed8Om/X0DAeWQHz8SQCqR4G3T8mPSKgJqnm8P8NPBavKTw5kzKSOobcXjDVWveLw+fCegth3ay8SNI1N5b30xUomEWaN7kR2rRy6Tkp8czop547CJbXMCHq+fKbkx4qYRBNSdptPYErmrrFEkjiCQIvn2miIemJLJHeekn7a/ezKI1Cn5+I5R/HfFAQ5XW7lsUALn5cYdt12/vMHOn9ps9jz26W4yb9OLxJxRo+CGEaniGBGuVgTVEAFVdnCbsNPj41BJGbHrXoLGI0h2LiZm2r9Z/eC1NDj8Yos9BGoHq9ODTiXv9L1G6pTMmZjBLWM86JStv1dSZw1K4gV4dvkB+iYY8Pr8LN1Rzo7SRi4flEhuvL5TIq3O6uLOd7ewtbm1+JvdFZQ12Jl/U2u90WBz8ZfPdwc9X59tL+e+SX06VNNGaBVEaBVBKtT2qDY7OFhpQZBL6WXSnhYbCJUgY1S6iW+alXASCdz53ma2HQnUtjtKG/nbl3uZPSaNxz7bhUIm5ZK8xKBzuH0+th4JVs9aW57RZmPhlnbSsNO4idaDHvwSkEgkzByWzHvrS6i1unB7/WwtqeeJi3JYdaiWu97fgsfnRy6V8NI1+YzPjELRiVq5B2cGekalXwlGjcB9k/qIi3mAEWkRp8WsN1wjcEleAv/6dj9zJvbB6fFxyStr8PsDhe7L1+bzhyU7xKLBpFOSFadn6Y5yNjcTHVNyYk6KPLI6vSHJOACFtVYitEq+2lnBk1/swecPGM8unD3sF0+Y0CrkRGgVQV4Co9IjOVBpIVytCFoIK+RSFPLuvT+L08OGDvwOCmusJLVR7tRZXcxfXcjizaVMyY2hb4KeT7YG7yz3TdDz3Z5KPt9eTm68Pmh3tN7m5r31JTwwObP1nDYXL6wMVrptP9JIg90tFnNmh5v2aHK4xdhYlSDjrgnpFNZa+elADQa1wJPT+xLeXafhMwhGrYIzOVwzQivwyZ0jeWLpHioaHUzPiyc33sDHm0t57bpBSCUSpv33Z2qb79l/f7uf928dzrzF27h+WAoXDIg/4dYshVwaFJ0dFabstAUtOkzFZ3eN4rs9ldTbXEwfmEC0/vS1FBi1Cu6Z0CeQ9gjHJco6MvZPMKpPyLetPaLClLw3exgVjQ58fj/xBvVJLVoCrVC72NI8XraYg//00PhOyU2724vVESCzT5SwO1WQSCSnJADgdEDooK2no02cttAp5fSK1FLYxj/oisFJhCkFvD4fD0zO4IWVh0Sfm2evHMhjn+3kuz0BZdy+CjO7ypt466Yh4gK/T4wuiGyFgAKlRWXQkiQoyCSEqYRjEocRWgUPTsnkjnN6AwGPoBaPGIVcRnQ7xY4gg3nNc8O3uytJNWn5f5f2Pa3zbWE77yWAgmoLbq/vlDyDpwpmhxurM7CJpFHISTCqeeKivjg9XvSqjtsc2+PTDlTbn24tDQp9aD+2toVakNInWhekTAOID5OBvbV+kKx6jvDs6YRHtm4+VZsd/N+qQjYcruP8/rFc0D+eo40OvD4/KSZt0HPZ9RpGgtPjZdbbm9hdHmjz/mRrGX+7uC8zBiXS6HAjAUxapfj9ONxekThqwc6yxiCiyO31U2UODVBpsIfWIV3B0UY7l768RnymMmJ0vDtrmOhNdiohyFqVcEU1VpE4asGWknr+Oj2Xi/MSuHt875C5UJBKyU82ivU1QFizaf2394+l3uomTCVv/u/MCPDoQQ9OBtFhgZAHi8uL3eUlXCPg88NDH+0Q0349Pj8PLdnBd/ePDZm3enBmoYc8+pUgl0k5r28cmTFhLN1RzoDEcEamR56WAk4uk3LV0CTcPh/nZEYz/cXV4s9qrS6e++4gM4el8I+v9zJrdC+iwpT8+fPdzByWzCPTspE2JzmdzKJEp5IzOj0yVLUSpaPJ4eZvX+4VSQqL08ODS3bw7i2hsb0dwe7yopRLT9o80aRVsODmocz9cBsHqyyM6h3J3HMzuHfhVj66Y+RJL8p0SjnD00yilwsEvoO0qFZDYY/Xx+JNR3i+mehpSWPrn2hgR2mgQBnZ20RekpFR/1zJuTkxmB0e2qPB5qKxOeK4ZeHRodKtzf+Py4xCq5BhbWP2eevYtKDPHR2m4vmr8nC4vUglEsI1obumLQbsBo1AlK4LKSM96BSCTEZmrJ5Xrs3H5fGjVciwuDx8fNcoIrQK5q8pFIkjCHgkfLKllKwYPY9+tpsEo4bxWSfWEtRdROtVXDM85Rf5WxDsaXQ89IkJY0iqkY1FgWLdqBG4e3z6KVOaHU8p1R043F42FAaTzE6Pj3qrq0PT1aomB8+vOMjaw3UMT4tgzsQ+p2XBdLYjQqPggSmZzP1wu3hsbEbUcdtjo8KUvH/LMF5YeZA9R81M7RvLjMGJOD1eqs1OEoxqvp4zBr8/oOyVSCUhLZU7Shuxu7ygbTmnik/vGsUHG0soqbNx/YhUekUGfljZ5GDW2xvZVdaEQiblgSmZzBiciMvjo8HmxqAW0KvkQdJ+rVLeLWVapE7J4xfkcP+kjECL8ymoO5rsbpzuQNCEtl276oSsaHFzqAVXD03uMG3v10KjzcVba4p4YeUhvD4/qSYN788eTny4ultzf1tz/9ZjXffS06kEHjk/m21HGqhoChAhs8ekElG9EfvAm3Hoe6EvWYGsZm/QBF5ndXHPwq2sO1yHRAKPnJ/NtW9sEGuu5AgNS24fccyxITlCG0KUzj03A4/PLxJHLXjlhwIGJBq47Z3NyGVSHpySybiMKPRqAblUQrhGoMHmJkqnZO7kDDJidPj9YHG60SkFwjUCVwxODPLWjNAqOm3jPxZ8Pj/vry8JImMPVFpYdaiGS/MTj/HKk4daIQsJgcmJ0xMdpuQfl/brcI4xahU8PaM/d7y7hX0VZqLClDx35UDClDI0SqFTYrEHPThb4fP7OVBl4Za3N2F3e1ELMl65Np9BKUZW7mudLxvtbpFM6sGZizNn5v4dwqAWGJhsZGDyiWkfXB4fZoe7Q08Fh9tLk8ONQiYlXKMgQqvkjnHp7ClvDDlPQbWFf13enwv7x6FVyjE73HyzqyIoYUkhk7LqD+NPuNhTyqXcNCqV4lobPxyowqhR8MfzshBkEpocnhATysIaK27vsR1i66wuVu6t5Ns9lQzrFcHFeQldWsDVWpwUVFspqrUyIs2ESatAo5Qjk0mJ0Su5bWxvEoxqdpY1cse7W7C5PcEsywlCrZAxZ2IfDldbWXu4Fr1KzhPTc4OMrxvsbj5rs3Pp88Od723hnVlDsbm8eH1+SupsWF0eNAoZ6wpquX1cb95cXYjbG5B9jko3ceuY3tw8fyM7yhq5ND+Rh6dmcf+kPtzfZuGUnxIe5K8RqVPy1ZwxvPJjAU12N7PHpNGng0K4MyVLo83NKz8eEltDosKULLl9xBmTXnY2w9BG3dV20Wh3hZq6OtytkeGLNh5hRG9Tl0gSh9uL2eERi+HfEiJ1Sl69dhBlDXaa7B4yYnS/mNlqd6EUpAxMDuenA62tiopOFvj1Nhf3LgosGCEwlh+qsvDKtYN+ceXmCcNaDfUlYC6DhMGgMYH81F8bmUzKpOwYvrxnNF/vOkq/xEDLdle+p7hwNY9dmIvD5UWvkuPw+HhzdSHPLDvAORlRCDIpaw7WkBChITMmDKMmWMGqlEtDfGJi9CrumdAHr98v/szu8vLc8gPsKgss1F1eH9/vq6Jfop6b3woU3YJMwrNXDmRSdkyXyc9Gmwuv3x+UEqZWyDtMsToRHG208+GmI+wobWRMeiRT+8YRYwhWLS6cPZz/9/U+rE4Ps8f2YlCKEbPDTUmdjffXl5Bi0nDxwIRfjfiss7mD0lCLam3885t9PHVJv24Rc+MyoshPDheVg3lJ4d0m8JOMaj6/ZxSNNneAGJR5sZrDeaoonYOFTi7KGsL0c6OI0ESKr3G4veI4MKxXBFuK64M260rqbHy8tYzbxwUUam6PD4vTjVYpiPNFVJiSD24bzjc7KyistXLl4CQSjWqqLcGePQAyqYSCaivlzYTNPQu38vWcMejVAkatwL8v78+cRdt49bpB/PObfWworEMulXDbuDRuGZOGUaNg5rAU1AoZH28pI9mk4Y/nZZ3QuOzy+jhSF5r02N7b63TAqBF4+Zp87lm4lUa7m4RwNc9dNfCY93Gd1cnT3+7n1rFpJISrMTs9vLnqME9d2h/NCfgE9qAHZzrqrC7mLNoqhorY3V7mfridV67JDyKPBiQaUHXRCuRMQZ3VydaSBn48UM2ErGj6JxqOmcj5W8Bva4XwO0KNxcnrPx/mx/3V9E80MPfcDGKbExlqLE5e+f4QX+2qIDVSy5PTc+kVqUMhlxIXrg5Rl0xpNk5uIaCsLg9SCUG7hCpBelIESp3VxSMf72RMRhS3n5OGx+tnTUENJXVa4gwqosKUVLeRME/MjkbWRrHi9vqwOb1oVTLkUik2l4f/Lj/I22uLAPhuTyU/7K/ihavzj7mLWmd18YePdog7wzKphPdvGcawNBN+vx+fz09xrY1XfiwQC6+/XJhzylqzovUqXr4mP6DckUowtlPu+P1+UkyaoBSwKrOTKrOTexZuocnuweeH+yb1YWRvE8v3VvH2miLemTWMlXsruSQ/kdWHanh7bREPnZfFp9vKWLjhCH2idVyen8hnd43i061l9E0wMC4zSmyjABBkUlJMWv56US5eH91WWtW38xSpNjt58os9PHvlwBOWXnt9fhpsLhRyaY98uwNcnJfACysPie0AcqmEi/MSuOPdzQBkx4UhyI7/4NaYnbyw8iA/HqimX4KBh6dlnzbz3F8LJp3yF0lpOlkY1AqeurgfN83fyMEqC3qVnH/PGNCh94Xd1bpgbMH6wjoc7lBS8YyEtQY+uR0OLQ/8W1DDLcshpu9p+XN6tUBugoHcEzCZVwsyMVXTbHHy/IoA0XDjqFTmfbid56/O49YFmxiTEcWDUzJ55JOdtFghPTglE7069PpJJBLkbeY5m8sT0t59w8hU5n2wXSy63d6AtP/7B845Lnlkc3rYX2nmn9/sw+7ycuc56QzvHRFERh8LNRYn9ub2OZ1Sjq6DMbii0c4Di7ezujm9a8XeKvZVmHlwSqb4vGkUcoalmXjzxsH4/AEVmFQqYdXBGq59Y71Yb7y7roSP7hhxWpJ2/H4/NRYXzuZodKNWEJNEAUo6IBp2lzdhd3u7RR7pVQKPTMsWr71EQrdT7MwOD+X1dhZuLCHVpOPivHiueGc/pfUBgmTrkQZq3ArunRSNsrl8kEkkYgqYUaOgsskRct6iGis+n59aq4s3Vx1m3eG6QOjHiFSx1TY6TMX1I1ODXuf0+hieFhE01tw5vneIL+bXu46SHadHkMkY1TuSnx48h/lri0Ulpcfn56XvCzi/XxxGTcDD6MYRqVw8MAGl0HHAgsPtpdHuprLJQZROiV4d2sapkEm5bFACn25rbe+XSmDqKQhE6Ag2p4cmhwe724NKkLH+cG3AjL55M3TNoWqSjJpOayiPz89Xuyr4sp23lc0VqiLvQQ9+C/D4/EHJnxBYj8UaVHx572jeX1dCnc3F4xfkEHEW1GktMDvcPP3tft5v9hBcsLaYWaN7MffcjLPCp/JE8dv9ZL9hmB1unvh8N0ubI2D3VZjZWdbIO7OGoVXIeX7FQRasLQbgaKODy19dy7L7xmLQCMgksOi2ETzy8U6K66xM7RvHnIl9UMql+P1+JBIJWoWca4al8M66YsI1AjeMSOX8/ic3CUulElxeHy//cIhnZgzE6gxMuuEaAZUg5eVr8nn62/0cqDQzNiOK28f1RtM88Vabnby3vpg1BbWM7RPJVUOT8fv8LNxQEvQ3Vh2qxebyHJM8arC5gloKvD4/T365h7dvGorX56fS7KRXpIZ5kzNIi9TiA+L0qi6bYncFx3p/akHGneeks6monmpLgEy7NC+BsgY7DbbWwkKvktMvwcDyvVV8vr0cj9fH4xfmcNkraylrCBSYb60u5M0bh7ChsI5leyqZMSiJAUnhDDiOd9WJGtVVdFCsHqqy4HD7OJG1QL3VxRc7ylm44QgxBiV/mpZNqknbLRPosx1ur5daq5uDlWZiwlREhimDlBLRYUq+uW8Mr/98GLfHz1VDk3lvfTG1VhdpkVpmDk1GdpxknCaHm8c+24VeLfD0jAF4fX6O1NlQyn+ZSOwehCIxQsPC2cNxeLxicmJHY5BMKglpmdAp5ceOqz+TYK5oJY4A3Hb49lGYMR/UJ+6xd7rh8flxN5teqwUZtc3JgDa3l292VRBvUPHR7SM5WGVhSKoRk07ZJdWuTiVnXEYU+yrM4jGjVhDVHS2wubwdGnm3R7XFyeWvrhWVvbe9u5lFtw5neJrpuK+tbHJw8/yN7C5vQi6VcNf4dG4alYqnWf26u6yREb0jUcgkInHUgo+3lHHvxD4h52y7G1tvc/Hx1lLm3zQEtSBDKZeypqCWohrbaSGPCmus3DR/I8W1NowagRdn5jMk1SjOd31iwpBLJUEtE+dmR3c79dWoVZAl12N1esAPWpWs26mTGwrruGXBJgAEmYT8lHCROGrBoo1HuGFkqugNEqaSc/+5Gfzj631sLKrj+avzeGtNEW283Jk5LBmzw819H2wVr9nWIw3sPdrEMzMGdpr0Z9IqeXFmPusO17K7vIkL+sXR5HAHKQYAcuJaSVmNUo7b52dzUX3707GzrImc+MDvymSdzzNen58txfXcNH8jTo8PmVTCPy/rz/n9Y1ELrc+TVCohPVrHc1cOZMHaYpRyKbPH9DotJvBWp4elO8p57NNduL1+PrlzJC/9UMBLPxSIv6MSpEzrH98peaSQSRmaGsH6Nu3JerUc7RnUxtmDHpxKKOVScuL0QRvjmTFhbC1p4OGPd/LSzDwGpRq7vLFxpsDq9LBo45GgYwvWFnHr2LQe8qgHZxbsLm9IPPDeo2bsLi8+v5+v2v2sweam2uLk/Q3FLNpQyojeJp6/Og+1QoZaLqGyycl/vttPZJiKmUOTidEruf/cDC7JT8CgEvjP8gNc8PwqUkwanp4xgOy4sG4TDEaNgofOy6Ks3s5bqwtZUxAoXJ797gDvzBpG7ygt1wwLeCDYXB6idEp0KoEGm4u5H27j5+a0qQ2Fdewub+IvF+ailEuDktCkEo7re2TvYEe+0e7G6/Njd3tZd7iWBpubz7eXI5NKWHDz0BM2HG6PGouTH/dXs+doExcPTCDFpAnZkdSpBAxqOS/MzAMCPkwahYzpL7X6VEXqFJzfPx6FXMplgxLx+wOF45aSBpE4gsBO7ttripnWLw6H2xtQj51GpEZqxZ3PFpzXNzaoLa8tLA4PFqcblzdgTtpWru71+Vm6vZzHP98NwJ6jsLGwnhXzxnXo+/JbxaEqK5e+vEa8by/LT+CxC3PQKwXsbg+rDtbw+Y5y5kzMYNGGEqqaHFw5OIlL8hJICFd3qQXE4fISrhbIiTdwzf+tx+nxEalT8M6sYb878qjB5qK80cHmojryU4wkhKtP2fPfXXTFdDtcI/CXi3J4YPEO8difL8whvJtKh18N9tAAAazV4Dsx09wTQZPdjdXlwekO+MN1xexbp5TzxEW5rNxXRbXZSe8oLVtL6pmQFc2KvVW8ubqI99aXcH7/WCbnxHQ6BraHUi7jljFpFNfaWLangnCNAp1CzrBewQvNFJNGVEEdC9/urgxpCV+wtoiBSeHHVC053F5eWHlQ9Lnx+Pz8d8VBpvaN5f0NxSxY27px8/ND40OUysoubLZIgZtH9eK2dzaL89a1w5JPS7tlncXFnEXbKG4OBam3ubntnc3N80ngewjXCLx10xAe/ngnlU0Opg9IYNaYNKwuDw12H2EqoUvfOQTujxNt/a2zOnl+ZWv7nNfnR9HBholJpwiqdzRKOVcPSWJSdjR7yptINWlZcPNQnlt+EJ/Pz10T0kkMV2N1eUPIvhX7qrC7PRjo/D6N1Cm5oH88F/QPpMRVm53kxuvFe2RUuonBqcEWDDqFjPFZUaw9XEt6tI4/nJeJQa0gzqDC7HAfV01cZ3Uyb/F2sabw+vw8+ulOxvSJDCKPAGL1KsZlRJIRo0MqlRAdpjot95LZ4ebRT3Yd05clzqBCkErweH3IZVLcHh+1VhcS/IRrFIRrFDxzxQDufG8LO0obSQhX88LVeRi1Z8m43YMedBMmnZLXrh/Eg0t2sKW4nrzkcB6aksWDS3Zgd3u574NtfDd3HIazTPD+e3Vn6iGPzlKYtEpRmQKB3SlBJkEulZJk1ITIAwWZlOdXHMLnDyRlfL3rKKv+MIHCWhuXvLxG3J16f30xX907hmi9CqVcyuOf7+bLZoXTwSoLM19fx2d3jeLLnUe5fFAS0XpFkPT7WMiN12NQCSJxBIGC86mv9rLg5qGMzYjC5fGhU8nFXVqbyysSRy34ZncFj12Qw9zJGTyxdI94fObQ5JCdG7PDTXmDgy93lpMRE8aQlAj6xuvZ1cb88YYRqcikEnaUNrJyXxV6VUCB8caqQtYW1J4Sz55ai5Nb3t4opnK8saqQF6/OY1q/uBDCKy5cjUKQsf9oE34/KAQpn989mpX7qhBkEs7JjCY6LGBEbWyzsPX5Q4cxv99PdJiS/GQjDrcP5WmMojeqBT64bQR/+mQnZQ12LhoQz+wxaR0qJprsbt5bX8wzyw7g8fnpHaXjnVlDxVapBpuLDzYFs/kWp4f9FebfDXnUEmXclvDUqQTK6u38c90+IrQKzs2JJSZMxcdbSnlzdRFvri4KmMdLJEzIiuY/Vww47jWXSCRcOTSJK15dJ5KxNRYXDyzezoKbh/5uCCS7y8vCDSX885v94rEHJmdw8+heZ5Sxb1so5TLOy41lWC8TBdUWekfpiNAIHV5zn89PvS2gkOluG81pQ2QGqI1gb6NOGDIL1BGdv+YUosHm4vWfD/PyDwX4/QFT4YW3Dj+maW+12cn764vZVFzP+MxoEo1qXrw6j6e+2sf0O8S9AAAgAElEQVQ9E/vQJ1rHhsI6hqeZuGlUr26bUUeFKfnX5f15wp0bSBLUKvjvVQN5/LPdrCmopV+CgX9c1q9LJFdSROjnSInQIj9OK6vV6WH7kY79Ede2a5Pce7SJmcOSeXddK6E0Z1Kf46o+5DIpr/10OGjD4931JVw3IhW/30+DzY1SkJ6SZ8/j87GzLPjzWJweMSEPAq11o3pH8smdo/DjRyXIqGiw8/AnuyiptXF+/zjumZB+2sdDCRLkbWoCnx+2HWlgxqBEFm8uBQKKwycuyg3xBzJoFBg0CtKjwyiutfLc8gNM7RuHVCLhtR8P89SlfTGohZBNHq1C3uVgiwabC6vTgx9444bBWF1eZBIJerU8xOdDJpNyWX4iR+psXJqfyNwPt1NYY0UqgTvHp3PL6F7HJOd9foJMsCHg6deR6k4ikWDUKjGeZq8Rs8MTRBxtLKrnogHxYgvfxQMTmD2mF//4ej+CXMKd56Tz5Y5yXvj+ED4f3DKmF9cMSyHRqGH+TUNwenzIpVJMWsVJh770oAdnMhKNGl65Jh+ry8s3u45y76KtoqKyyeHpkpr2TINWKefyQYl8uKlUPHbNsJTfnG9oe/y2P91vFBFaBX+/pC+3v7tZ3O2be26GGOn790v7ccWra8VWhrvG92bd4dqgnUGH29fsc3IoSNZcY3Gxqbieaf3isDo9fN9Olmx1eTlSb+fVHw/z6o+H+e7+sSS2iZk/FjQKOW5f6OBgcQZ8fEwdFBHSNn384nkEGSV1gR3ED24bzpbiBgalGEmP1gYtivx+P+sPt8q/IWAS/foNg3n1hwIOVVuYMSiJCVnRbCmp556FW8Xf++lgNYtmDw+KUj0Z1NtcIXGu//nuAMN7m0IKQEEmJVavwqgROFRp4b5F27A5vcybnMGApPBOd+ty4/T849J+fLK1jPWFgcSVu8an02B38f3+Km4b2/uUfJbOoBRkDEwKZ8HNgRbAMJXQqWy7zuoKWqQXVFv497f7+dvFfdEq5SjkUmL0qpCEl0jdqdlJtLs8CB2Y2J5JcHt9QYVzWqSWcRlRXPDCKvGZXbThCO/OGsauNkb4Lc9K/0RDl2KwI7QK6qzOIBUfwIFKM94OCMnfKhodwYa5AC+sPMTlg5POWPIIAoSiTiUQFaak3uZi65EGEowajBpBXJg12Fx8s7uCd9YWExmm5JGpWfSK1J5wi+opgzYKZq+EFU9CUynk3wiZU0Ea+r5qLU72V5rZWdrI2IwoEsLV6NUCLo8Ph8dLmLLrC2DxnFYXL33f2m5SUmfj6W/287dL+nYoOa+1OLntnU2iGfLPB2u4fkQKD07J5L9XD8Tj83P7uN7cNq43WoX8hNud9WohaC6LNah5+ooBOFxeFHJpl9Vwg1MigtQhMXolN4xMPe641xK80JZwkUggO07Pkea5twXzFm9n2X1juXBAPFuK6xmVHkmMXnlc0trh9nKg0hx0TCIBmRSWbC5l4YYjJISrmDclkySj5qRaMeWyQDT6lpLW+dygFtC2m5+kUolIylU1ObjslbWYm+uo+WuKkErgofOyTllKY0cwahXMm5zJtW+sF8f5jzaX8n83DObGUakU1VgZmBR+XFJyyeZSNhc3sLm41UPr7bXFPDo1mwemZPL3L/eKx/84NatLasVai5Mnlu4RiZLceD3vzBqK3w8er596qyvkfZl0Suaem8Ffv9gjprj5/PDiykNcmpdwzHtZKZcypk9k0AZir0htpwqwWqsTq8OLVBogxE5FimB7GNQCEVqBQSkRxBlUfLv7KA9OyWLG4ET2Hw3YLkx7/mc8Pj858WGU1Nr4+1f7xNc/t/wg/RIMTMyO6dBUtyWtViaV/G42bnrw+4FKkGF3e+kbb+D5q/J4b30xH20pI9GoRn2auyNOB/QqgT9OzWJ8ZjQ/HKhmUnY0g1IiftMta9BDHp2VkMukjEw38dND49lfYaZXpBaTTiHerH2idayYN46jjXZMWiVqQcYjn+wIOY9OKQ/a4WpBy4JTIZeSEaMLMkmUNkfLz79pCD/sr+a9DSU8NCWzy0V7dJiKRKM6qH9/1qheRHTSa69WSLnznN4822ZRd/+5GVQ1OXhi6R6iwpQ8M6M/Q1KNIe+h1uri39/uDzq2pbgBs8PDI+dn43T70KsFLA4381cXBf2ew+1jU3E9FzZLtE8WHa3BfX5/h8dbUGNxccnLa8RF/bVvbOC16wYxOTc26PfMDjc7Sht5+tv9eHx+bhubxs2je6FXCXyx8yibiup468YhCL9QgkFXCp7iDsxJd5YF4qy1SjlhKoFHpmWxobBOJEHPzYkm1nByqqN6m4sNhXV89P/ZO+/4qMr0i3+n90x67wkJIZSE0DsqoBQRRFGxo4ht7W1dd1fddVfddV17xV4RQUUEESu9QwKhh5Dek8n0+vvjJjcMM0BCE/aX8/nwBzczd2Zuee/7nuc852wqJycuhFmDk8/aWHOjRsllAxL5d1uU8YW9Y/l4XanfNdNgEcjezGg9o7Oi+GVPHSBM6qf3T+xUJVMmlWDUKAnTKmiydrQLjeoRhfoMkAv1ZgebSpvYW2NmQm4McUZ1UGPe0w2fzxdAoDk9XnxnkECzudyYbG6cbi8ahaxTrWsgfPft5c3Memud6MVzx3mZzBmZjkEtZ0VxLQ8vKBRfv+5AAz/fP5ZY44md33qzg1a7G5lEgl4tP/H2EKkMwtNh6kvgdggqpCDPkmark799W8zCLYIh7j++28VrV/enX1Iob/xygN01rUzPT+D8nJguLRgPHUGEAOyo6hiHjoTV6RGJo3Z8tqGMO8ZmntZxpMXmxGRz02hxEmdUi+0wx0OUQcX7Nw7iUKMVh9tLRpSuU35CcpmUyX3j21S7VYRrldw/IRuZREKPaIMfqTRzQBIVzTbu+3wbmVF65q06SI9oPS9dlX/MxJkQjYKJfeL8/J3G50SzZn8Dj30ltCtvPgS/7q1n+T2jAo5vuwG22+tFJZMe02Q1vE29NffDTeyoNBFvVPPSVf2P2SZU1WIXiaN2LCmsZu6YjNNKHgH0Swzl+7tHsWhLBamROsZkRxNlUBFr1JAb3zmz92DqwlCNApVSxuUDEhmbHcXOShO9E4xE6o9P9oHgYXi4SbZcKqG8ycYjXxayo9LEgJQwnr8ij8Qw/4Kixwc7K1uP3B2lDVbSowITXcXvq1Xyr8v68dSSYlbtq6d3gpEnp/YOqrqrNzuY88FGNreRZeN7xfCP6X1OOQETplPyzR0jmb+pjL01Zq4ZkkpGlA6vD5LCtbRYXfRLCmVTaROX5CWybGd1wD6WFFYxJisK2RH3cH2rg39+t4ulO6pJidDyzIy+ZMXoO63u70Y3zma4PV42lTYx+70NQieEXMpT0/sQqVcyc2DyWZuAezyE61Rc1CeOi/qcHoP+sxHd5NE5Cr1KgV6lCHhIg0D+xISo/dp7/jixF5tKm2loiw+eNTgZg0bO3RdksaK4VpThJoRqyEsSJiehWiVPTevDFW+spbbVgVwq4YEJ2Xy+oYw3fjvAZQVJXD4gsUvfW4hvH8Y7q0rYU2Pm8oGJDEmPwOnxoZb6Agggi8NDiEbBB7MHUVzVSu+EEIoqWsiJC2FcrxjmjErH5/NR3WLHqFUEKARcniDyZoSYWqfHK07Co4NMRtKjdKesBz1cp/SrAAPceV6PYy66Vu2rD1jMfri2lKEZEX7qo6oWu1+V8o5PtrDwtmEkhWpIGJHGnedlnnWDco8YAzKpxM+PY2x2NIbDEolSI3SsuG80e2paidCriA1RnVT8pcvjZcGmcv7WVnH9fmcN3xZW8emcIWfd8QGBvJ01OAWFTMrCzRUkh2vFyu3hkEkl/Ov7Xdw4Ip0/T+mFzyfEB3dl0hypV/LRTYO59/Ntomn936f1Oe3tTQ1mB7d9uIn1baaq/16+m7evHciIHhEnpIppX1D68KFVyLpEQmmVMib0imXpjo7J/ricGLSKM/OYtDhcLNtRw6MLi7C5PGRG63n3hoFBx/gj0WB28vCCQpE4Anjlp33MGpSMx+vjo3X+4QJ2l5et5c1caIw9clfHRV2rg+vfWS+OZWOyovj35f1ObpGm1An/jgKr0yMSR+3QqeTMfH2tSACt3t/AgxOyuWlkOjKphNpWO/M3lmF1erhyUDKxRjWqI66p7CAmyRNyY4963cukEiQS/2KAVik7ZhJpfasDt9eHQnZiSoIWq5NXft7P678KSZYhajnz5w4jO9bQqfefSMqgQODLyYrRc9XgwZgdbooqWthT28rjF+eypKiK3dWtXNg7lgtyYrjyjbWUN9nEolBdq0AuHmu8VsikzBqcTJPFyYIt5cQY1Nw/oSd/+HSL3+tabC7215n9yCO3x8vOKhO3f7yZskYbvRNCeHVWAUnHUEEnhWt5/8ZBONxe4VzoVMck14M9m1MjtUH9h0419Go5PdQGHriw5wnvY2x2NG/8ekBMsQ3TKpjSNx6v14dRo8SoEdrbuoIjlcB3nNeDuR9sEg3dN5Y2cftHm3nnhkF+x8+oVjCuVwy7D1OayaQSekTrsTrdx1R2xoSo+fu0PljbQlaC3Zs+n4+vt1aKxBEIz/eZA5M4PyemS7/xeGixubjlw40UVQjHQiIRFFIPfLEds8NNtEHF81fk8bfFxZQ3WemfHBawj35JoQHEkc3p5l/f7+aLzUL7y45KEzNfX8uP940WTdG70Y1zGY0WJ3d/uhW7S1jXONxeHv9mB0vvGvU/l+77v45u8ugcR63Jzs976mi1ubiwdxxRBmXQRVdyuJbv7hpJk9WJVinDoFZg1ChRyqT8cN9oFm6uIMqgZHyvWL/KZGqEjsV/GIHF4UEqEWII315ZAsDH6w8xokckecldk5PHGtXcPyEbp1sgb74trOKXPXWMyY5mQq6/lNfj9fH4NzsJ0ypICtfy8k/7MNldTOkbx8yBSVw3bz3Wtijhf1+Wx/jcGLEqGKpRcPPIdB5Z2FFxn9QnFrlMeNAfqLMwNS+emQOTuOP8HizdUY3JLlQac+NDyI4xsKu6lXijptMKgKMhQq/i3RsG8V1hFUWVLcwcmERmtOGYUvxgvhsJYZqAVqRFWyoCFEwfrz/E09P7EnmW9tCHahS8eW0Bf/yyiDqzgwtzY5nePwGrw4NKLqOu1UGjxYlSLiU33nhKjC+brE7x2m3HvlozzRbnKSWPGswO7G4vcqlEqPQeUdG1OYXebqNGcVzFXrhOyU0j05hRkIhaISUvKZTlO2vExW68Uc2wjAiiDCqkEpj15lrGZkfz92l9uvSd5TIpveKNfHjTYLw+H2p58En6qUajxSkSRyAsyp/9fhcpEf1Jj9KJx6fe7KC40kS1yc7wzEgidMqA42p3edhW1sxDC7ZT3mRjYp9Y/jwl0BfkaDBqhHbg/imh/LqnnhE9IplRkHjUBKJTDZPdzQNfbBcJ1X21Zv769Q6em5l33MQnL74AbxCvD+xuQV2ZEKpmsz9/RGxI1695r9fHl5vL/RaRP++pY0tZMxec4kXa4TjS9Lnd1+tI5dD7a0qZMSARrxcufP43WmyCkm7eyoMsu3sUaVH+BFWYTsF7Nw7ijwsFk+RL8hK4fljqUdvN9Co51wxO4f21peK2P07M8fOea4fX62NfrZnbPt7MvlozufEhvHxVf1Iju+ahZ7K7ReKo/f+PfVXEG9cUnFYz98QwLZcPSGJ/nYXEUA19E4xUNNv4aVctl/SLJ3qUmii94L14uHdQO47hJywiQq/iwQt7cuuYDKRSCUqZlAidCvBXqRz5OxutTq6bt15UShZVmLjr0628dd2AYz4rOkuieb0+jFoFt4/NENsajRoFT07tfUqOudPtpdkmFPJCNcGTFE8WOyqaef3qAraVN+P1+eifHMam0kayOkE61psdeIO0no/qEen3uhC1PCAJcFt5C063//WgkEu5YXgqdWYHi7ZUEB2i4o8X5fDWygNYnR4emNDzmB5exzMgd3t9bDkUaDGwvbzllJNHZrtbJI4ArhmSwo3vbsDSdg/Utjp4/OudzBmVzkMLtnPzyHTG9Yph+c4aAEZkRjK+VyBp32p380Nxjf9nOdzUtjrOWnV0N7rRFXi8Pj+vXgCTzR3Ur7UbZze6yaNzGLWtdqa+vAqfT4gGffb73Sy9axRhOgUldRYWba0kNz6EsT2jCdUo8CG0QkXqVbTzMxqlnNQIIeI1GNpTKzDAk9/s5O1V/ovvFcU1XJgb2yWjP7PdRavDjdvj4+mlu1jcZsi9bEcN60saeXxqrrhYksskDM2IYM3+BpqsglT+gpxonB4ff/16hzhpdXl8PLRgO4PSxiCTulDKpXg8QnXzpavyWb6zhuRwLZcVJHLpq2vEAeyZZbuxON3cOTaT5feOZmtZMwa1HKlEwvRXV1NjcpAeqeOzW4acdHxwlEHFtcMEM9DOtPllxxooSAkTfZfCdUpuH5sZIJkPthjJiNKf1eaLPqC40sTjU3MxahSs2d/AzDfW8MXcoTg9Xi5/fY2YjHNez2iendH3pOXnUiSCSuAIyE9w4u5tWx0dfpyrW+zM/XATW8ua0avkPDE1l/G9YtGr5Xi9PsqbbTz3/W7Km2xcOSiZ83Oij7sYkUulIgGSEiFhxX2jWbilgki9kuEZkTzyZSF7alpFVWF0iDpY50+ncKYUWB6Pl2abK0BZB4IqZle1CaNGQaRBRb3Zwez3NogGviq5lK/vGE52bIjf+5qtLq55e724z6+3VRGmVfLIxJxOt5lE6FXMHp7GlYOS0SpkAdXh04lakyOAJNlW1oLd6TkueaRXyZmaF+8XGZsYpkGnkqFTyblvQja/7K3DZBPI8ZE9IknqhKLpSLi9vgDjYYAdFS2nlTzSqmT0TwkVlQUer4+wNlIvQqfE02awbNQokEokLNtZJRJHILQfvvHbfp64uLdf+65GIWdYRgRfzB0GgE4lO6YKIkSj4O62JNKiihaGpEcQE6IO6i3WYHFy/TvrxcX1jkoTcz/cxIc3De7SfdZkdQZsO9RgxXmazUVlUgnRIWq/hatKISMhVINeJUfbtpgP1yq5dUwGf2lLxgTBby1EHXgcLQ5hoXC4clajlPkRFI9OymHaK6vE6vSYrCjCdUp2VZkobbTSJ8GIw+3xa7EF2HyoCXeQ8aQrqDXZWbC5gpJ6M1cNTuGGtrGgxeYiSq86JdHvTVYn8zeW8/JP+5BI4M7zMrm0f+IpJwKHZEQy9aWVxISokUokvPrzfr65c8Qx32N3eSipN1PX6kStkNJsdTEgJUxsCYwxqnnxynz+saQYs9ONXi0nRC0Xi24gFCplUgmtdhctNhcH6iykR+kI1Sj48+Re3H1+D7aVN/PemlLWtIWn+IDHL849YW85hUzKlLx4vtnunzR8fk70Ce3vWAhW8LMcQZ7urmmlb6KRv16ci04p48mpuTx8UU/wCWNMTBDiXimXkhGlp97cYRMhkXBafJu60Y3fAyqFjH6JRraVd8whsmL0p70NuBunHt3k0TmMzaVN/HN6HyxODzanh5QILdvKmvH4fNz7+TbxdRf1juXuC7K49NXVon/MpD5xPHlJ7y4pOob3iAggj0ZlRXWapKg3O3B5vJhsLpZsr2J0djTfFvo/7L/aWsFDF/YUF0sROiVPX9qXd1eVsLWshQGpYVwzJAVZW6/94bC5PDRYHNz20WYSwzT8eXIu60sa2FzWzOC0cErqLZTUW6i3OPxMuL/YVM51w1KJCVEzITeWJYWV3PZRh3T+QL2FhVsqmHOKDKc76w8VqVfxxjUFVDTbaLW76RGtD7roGJsdTXaMQZSEp0RomZ6fcEq+6+mC3eVhSVE1O9r8fDq2e1mwqUQkjgB+3FXL3lozEXqBSHC4hLaDMJ2iS14AEXolD1+Uw82HGaiPzY467sL8SLg8HqpbHLy7+iAuj5cbh6cRa1Tj8Qpk6NYyYYFrdri5b/42Vj4UgV4tp97sYOpLK8VFz8bSJv5+SW+uGJTcaTNYjVJOSoTQbgrCYqesySoSR1F6FVcOSj7qNebz+WgwO/H4fCjl0qCKidONRouThVvK+XJzBU9MzSU9UseBw9rxZg1OZtHWSgamColbB+stfslPDreXZ5bt5r8z8/za0soarQFk1Ipdtdw8Mh2DRtHpuHSZTIrhDJJG7YgxqlHKpH6/YWhG54wXtUo5D0zIJlynZNmOanrGhvDIxJ4C8Q8khmr44R6hBTRMpyQ2RH1CZKxSLmV6/wSR8G/HkT5spxoROhVvXD2A+ZvK2Xyoicl944gOUbPo9mHUtTqQtl3vBo3iGMRM8HtCIpF0KrmsHeE6JeE6JflB2lEOh93lCVBl7KpuDdpKfSzEhKgDFuhT+sWf0cQ8n8/HoUYrj31VRHFlK2N6RvHghGyiDGrkMilT8+LJjNazYHM5/RJDmdgnzu/6crg8VLbY2FzaBEjIjNaTFqULOvZmROn4+f6xbC1rItaoIc6o5rWf9/PO6oOA4LOz4r7RGFRyP0+iXnEhJ2WqXdfq4NLXVlPWKMwrPt9YzrzrBnBeTgyJxz7VXUJxlYmnlnSYVT+5uJg+CUYGpUWcug9BuG6+vnMEG0oa8XhhcHo4Uce555utTnZWtfL0d7uoNzuYkBtLWqQOvVqBUi7FoFYwNCOCRyf1QqOUsfFgI3+f1oeHF2zH4vQQplXwn5n92F1lorrVwQNfbBdV0c/M6MvUfvG0OtzM/XCz3+cu21HNA+OzT5g88np9ROtV3HFeJh+uLUUpkzJ39OkJCNGp5JzXM5of28JkHG4vkXqlX8LxwNQwIg0qrh6S0un9hmqV/H1aH2a+voYGixOpBB6Y0DMoCduNbpyLCNcpefXqAh5dWMiGg03kJRn5x/S+Z6VtRDeOje5R6RyF3eWmR7SBOz7ZTHGVQBpE6JQsuHUYt320ye+1veJDeGpJsUgcASzfWcM9FwieOy6Pl2arE6mkw5PB5vRgdboJUSvESm3veCNfzB3K2gMNfLC2lKHpEYzI9JcxB4PN6aawooU/LSqittXB1Lx4puUnEKZVIpdK/Hw6FDKpn2pCKZcRpVdy25hMLE63KF+2uTwMy4hgdVvlCoRKe2WzndIGK6UNVi57bTXf/mEkC7dUEKJRsHJvLYlhGhbeOoxWhxulTMp/ftiDzenxS58pLPfv6wfYU2PG6/WdcTVPZ/wqogwqPrp5MBVNNrw+H4lh2i4thn4PGDUKLs6L92t/UcqkxBhU7K4ONNbcW9NKRpRe9FoJ0yp47vI8hqSHo+nkhFMikTA0PZwV947mx121ZMcayI0P6XJLXK3JyYTnfxVVb5+uL2PZPaMwqGRsLPWPsfb5BFIjIVTDgXpLQLX8g7WlTOgde8IPz+gQNQtvG8728mbcXh/5SaFHPfcuj5fiKhN/+GQLBxusDEgJ44Ur889or7nT7eXjdaX8q400vPfzbXwwexCfri+jtMHKuF4xmB1ufD6fWI0y2VwB+2mxunAdodIJZqaeHWvgi83l7Koy8fdpp9489WhwuD1Ut9j5YE0pKoXgXRVjUB1TyWRUy3nrugHcP38bta0OhrUt0jqb2hGhV3H3BVncMDwNjVKKXtWxMJfLpAEqkhNFflIYf5qUw+u/HkAll/LghJ7HjLY/VYg0qJgzKl0wE1fKqDXZuevTrSLRnBNn4N0bBlHVYuP8nBj+9f0eUX2klEm5eWTaCYcGNFoc7K+1UFxlYnhmJNEhqqOmXrZDJZe2JRl2LCqTw7VdTniM0Cn54tZhPLaoiEONVib3jWfu6PQzWq2tNzu46s11VDQLxMr8jeWYHW6eubQvBrWQ6jc8M5Ih6eHIpFJsTjfVLXZqTHZiQlRIkFDVYmdJUTVWh4eZA5PQKmVBySOlXEasUcaFRsF8tKLJJhJHIKjf5q0q4ZWr+3PHx1tosblICNXw3yvzTur+Lm2wiMRRO174cR95yWGnpG26HV9vrQzY9s22qlNOHoEQUDKpC6EfVqeHB+ZvE1sOvyuqJjpExV3n9yBcLhxbhUzK9zuq+arNOPui3rHMnzsUtUJGq93NM8t28eCEntz60Ra/dvrHv97BqB5RGFRypBL/tsa0CB1y2YnPrTw+H++uPohCJuXfl/XD7fWxaEsFrQ43fRNDT3i/wRCuU/LsjL5sLWumqKKFpDAN7904iD98spX9deY20/D8EyrMpEXq+O6ukZhsLnRqYa57vHGmG904lxAfquG/V+Rjd3UtObQbZxe6yaNzEB6vjx0VJmpaHSJxBIJM/t3VBxnZI5Kdh20P1yqpahEmRe2m1wNSw2m0OKlusbHhYBP//G4XoVoFj03uRWqEjgWbyjivZzSlDVYMajl6tZwP15Ty4bpDDEwN44u5wwjVKjr1YGuyurjqzXWiT8t7q0vRqxT0iNYxe0Qar/3S4ecwd3RGQKVFo5SjUcqJRJi8uNuMrp+Z0ZcnvtnJ6v0N5MaH8NCFPXnsqyLxfYPTI2ixudh4sJEGi5O/TOnFksJqnvthDz4fhGoVvHZ1AaEahd/k8JL8eF79ZT/yNnNUl8fHVYOSzyhx1Gx1YnV6cHt96JSy406KI/Wqc4q9l8ukXFaQiNnuZv7GcqIMKp6YmkuYTsmlBYn83JYaBoJ0e3hmJH/6qlAkm5qsLuZ+uIlfHxx7VPLI7vJgdrjRqeRitG97rHlG9NETXo6Hr7ZW+Hl8OD1e3l19kEcuzGZwWgRljeXi36QSYcEIBFW+hOuUKE5i0gwCedgZX4cmi5Nr562n+TDl033zt/HqrP7HfIC7PV4aLU6cHi8quYxIvbLLkejtaLG5+GxjR2tVaYOVJYVVXDkwiR921fLJhkNE61X8ZUqu6HHRO8GIUaPwa0O6aWRawOTcqFXwyEU9ebYtdTAxTMNtYzK5/aPNVJvsDEwL5/phaSelTugsKpvsTHj+V1FF9P7qUr6/dxRxxqOTLBqlnOEZESy+c0HbPysAACAASURBVATetlbkrk6slHLpaSeOw3RKrhuWysV58UiQEK5TnpFjCkLLiEYpw+fzsWBzuZ9CsbiqleU7a/hqq+AB9/ktQ1i2owar0y0aZp8Imq1OnvhmJ4sOW/S/Mqs/E3Jjj/m7w3RKXru6P3M+2ESzVWh7emVWfyL1XTuncpmUrBgDr19TgNPjxagO9FE7FhrMDhosTlxuL9Eh6hO6PiwOj0gcteP7HTU8frHHbw4gk0pxe7ysK2nk5vc34vL40CplfH3HCK6ft0G8H9YcaOCtaweQFK49Lglmc7oDtn2zrYo7x/bg+3tG4XR7USvavZJOHMHOZbtBelfg8/moa3WwtqQRfILiJ9qgEsfMganhfu2lwrZTKG06CZTUWwK8qlbva+DW0Zni/40aBX+Z0ouRWZH8uqeeC3KiiTVqsLk8nPfvXwAIuUQekFRncXpwebyEahU8eGFPnl66C59P8E16+tK+JxWGoZBJuXJQMjPfWMv8TcLzVyKB+8Znn/A+j4UIvfDMPfy5+9mcIYKiVyY94VazYK2i3ejG/xpCNIozqpztxqlHN3l0DqLR4uDtVQfpHR8S8LeqFjs3j0zl9V872ssONVq5bEASf/+2mPvHZ1PRbOMfr64GBK+M168pQKOUsaPSxKy31rHotmGM7Sn4Cr3+637WlzTSLzGUv1ycy/c7a/ihuJZqk533bhjUqe+7s8rkl2YD8PPuWqIMiUzNi2dkjyi2HGpiQKogq7Y4PEclBDxeH0UVLcx+byNSiYSbRqbxx4k5aBQynlpSLJILcqmE28dkMOO11dhdXmRSCQqZVCSOQPBIeW75Hl6d1d/vMxJCNfxw7yhMdndbMomC2DPwMLe2VWtb7W7eWVUiLlbykkJ569oBJ23afbYhXKfizvN6iG2I7QTZiMxI/jgxh3dXlaBXy/nTpF7olDJW7W3we7/DLSjmYoKcm9pWOy//uI/V+xsYlBbOH87vEfR1J4JgFVKlTIpKIeOBCdmUNVpZV9KIUaPgqWm9RdIoJkTF6KwofmkjxlRyKX+alINRc2YqLxanWySO2rH2QENAq5fX68Pm8qBRyHB7vWw51MxtH22mweIkLVLHvOsHknaYz5bH66OhzTRXo5Bh0MiP2n4gb/NQO7zCPyAlnGvfWc/MgclcNzSVoooWbvlgI+/dOJgog6C8W3znCF76aR81LXauG5ZKfnJgNTlErWDW4BSm5iXQZHVS2WzjT4sKqTYJrUO/7aln5sDkYxqvngq4vV7eXnnA77i2Otx8V1jNjSPSjvleWZtC6GyHQiYVW+LOGNxOsDWC2wFyNXZXIKlwsMHS1rpXw8UvreLD2YMZmBZ+Uh9rcXj8iCOAvy3eycDU8GMSMS63l7RIHV/dPhyvz4dWISfiJIjX4xGJDRYHEvBbhNcfkWaYEqHl81uGdnksVCtkKGSCSjhcp2RGQSI9Yw3Ig/yWRouT++dvExXFfRONLCuqDhhn5m8qY2h6BBxnDWHUKkgI1fiRV5cPSETf5k1odboFNctJEphJYVp6ROvZW2sGBPLh/vHZXVaQ1LY6mPzCStFXMVKvZPGdI0Xyckx2FCN7RPLb3nrx/8OPouA+02rntCD+iX0TQwMKeuF6FTMKkpialyD6fZUdZl7v8foYmh7BmgMdz+yBqWHIpBIMagWzBidzcb94WmwuItraQE8WPeNCeOHKfF75aR/KNkXkqZq32V0e6s0OftldR5xRTd+k0IBi3f/a/Kwb3ehGN46GbvLoHITXJ5AvN41IEyd07bh+WCpZMSF8MXcoCzaX0yfByLheQoVUJhUWahe/tEp8vdnh5j/L93DVoGSeWLwTj9dHjcmBWinjvz/sYUPbpPPnPXVUvL+RRyflcP07GyiqMGHvpGFncpD43PRIHZXNdqxOD8nhWj5YU8on68uoaLaRGx/CezcOCqqkabA4uOXDTaLHyz++28U7qw7y7R9GcPvYTFbsqsXscJMZrWdPjVk03VTLBfPHI039S+oseI7YaHd7eXRhIetKhN/eOyGEd64fRNdCbbuOqhYbrTY3LXaX32Jla1kzn20sY+6o9KO2vVidblptbmwuD1qVjMjjxBCfLVDKAxfLYTolNw5PZVp+AhKJoKpqsbkoSA3jl90diiTVUSSvzVYn9362lZX7hInr3lozu6tbeePagpOqbrbj4n4JvPLzfpGI0SplXDs0BYlEQkyImteuKcDu8iCVSAjTKsT0w3Cdiucu70dpo5XKZhsFp7gd4njQKuSoFVLxngAhVVB22AKwwexg8fYqft5dx+isSMbnxnLz+xtFv5WDDRaeX76HxybnENlGHuyvNXPVW2upNztRyaU8O6MvF/SKCUoghemUPH5xLpe+ulr0HFPKpJTUW/nnd7vE10klQgUfhGpsUriWJy7OxeXx+vkcHQl9m0pSMNne6Pe3MdlRogLtdEMS5N6TnqiLeTfAbYeDK+GL2WBvRhKWyh1XzGfxdj376zoW++f3jOH2jwU/FYfby6cbDlGQEnZSY6HbG/icMzvc+Dh6QozL42Hlvnpu/WgzHq8PqQSen5nPhN4xJzXparQ4aLa6kEokgjJWKkEukbCtvJkXftyLTCLh/vHZ5CeHolcr2HKo2S/NsLTBykfrSrnr/B7IutA+Z1DLeWxSL95fW8q/ZvRlY2kTda0Olu2sYVyvGL9ntcfn8/N/MdncQZUYsSFqlHIpFoeLOrOTNfsayIjWkxGl81PaRhnUfD53KM8t38Oe6lam9IvjsoJETDYXb68sYfOhJsbnxjI9P+Gk2tYiDSo+vnkIP+2u5WC9hWn5CcdUCh4NCzaX+yUK1ZudLNhcxu1jewCCauW/V+RjbVNUaZXygOeAye6ipM7Cx+tKSY/SMy0/4YyQypF6FQ9emM1/lu/B5fGRFaPn/glZojn6kTjcKF6nkjEwNYwNB5vYXtbCo5NyeG/NQTaXNpGfHMYNw1JFY3SDWlCtn8qWaaNGwZS+cQzPiEAikZzSZ+v+WjPTXlktEqB9Eoy8c8PAc0rt3Y1udKMbpwrd5NE5CI1CxvDMCN5bc5C3rxvIvJUlWJxu5ozKIDc+hBCNggGp4QxI9a+4XjcklaLKQD+fsiYr0YdVTaINKmRSiUgctWNvrVmswoVqFcg7OSGPNqi4bmgK760R4o0TQjXcMDyN91aXkBKh4x9Lilm6o1p8/Y5KE8VVJkb2iArYl8vtpcbkH/VYbbJjd3tJj9Lx432jKW20EhOiptbUYVZqcXqCJoNMyI3BoPJfjK7Z3yASRyDEAC8prOK6Yamd+r0nAqvDjdPt483fSkiPCqz+bTnUhMPtRRuEPLI5PSzbUc3DCwpxuL1EG1R8fPNgMqNPN911+iCX+bffCCqePsx5fyM7Kk2E65Q8d3m/oK1gNpdHJI7asbG0yY80ORkoZRK+vmMESwqr8Hp9TMtP8Ks6HqtS3e5h1f84ZrunA0atghev7M89n23F7HATZ1Tz/MwOnxCTzcVfv94hJtb8tLuWvOQw8X7pm2jkr1Ny2VFpYu2BRvomGlEpZNzz+VZxsehwe3ngi+38+sDYo6qPsmL0/PLAGHZWmYg3ajBqFSSHa/1i18f1igloZ1EpZMds17E63JidbrRKGUlhGh6YkM2LP+7F6fYyqU8cU/rFn5H2KrlUyk0j0vh8Q5lIkBk1Ci7sfXpNpc9WmB1umixO9tWaSYvUEa5Tdl2ybmuGz68FZ5uxetNBFF/fwkdXfcDs+SUoZFLuHZdFUUWzn8fQ+C4kgfp8QoxwWaMVrVJOtEGFXiXH6/ORE2cQW8RD1HJeu7oAl9tLVYsNhUyKz+fDeFjkeqPFxYMLtovpeV4fPLqwkMHp4cSEBL+GnW4vTVYnXp8PtVwWQLg0mAUD4lvHZPDCir38treejCgdT0ztzZwPOnwOr5m3nmV3jyQ7VsGBNmLtcOypMePy+JBJhZZUj8+HSn5sUlWnkjO9fwLjc2OoNjlotDjZXdPKiMxIShusSHxQ1mxlW1kLY7OjGZQWzvoSwf9tZ5WJ7FiDX6hDmFbBnFEZyGUSVu1v4oZ3N4iFnYm9Y/n7tD5+vz8hVMPfpuZic3kwqhU0213Mfm+jmPy34WATB+rMgkr1JJSFUQYVlw9IOuH3AzSYA9Px6o/YFn4ctc2GkkY/8vvj9Yf4Yu6w096SGqJRcO3QVKbnJ+B0+4RCVCcJknCdildnFfD1tko2HWqkIC2MQanhDE2PwOP1EalXnfaABslhvp2nCiabi6eX7vJTzhVWtHCo0ep3bCwON1anhxCN/Lj3Uze60Y1unMvoJo/OQYRoFDw1rS8vrNjL67/uZ+aAJAakhh+3iiOTSYkzqgP8Qy7MjWVtm7x4fG4MCpkEpUJGlEFFXWsHUdNuVK2USfnXjH5iVPLxEKpVcu+4LOaMSsfi9CCXSvB4ffzl4lwUMqnfZ7SjPsg2EMw0UyO0HDzM6yItUodKJg0whdUpBZJtVRuR8NZvB/jk5iH8aVERJQ0WIYVuXJZfTDBAUZAo6u3lzadVQu7x+fhgTSlrDzRw5aBkXmSf398n940/avWvxebiwS+2iwq02lYH98/fzrzrB5wSpc3vBYvDTYvNRVWzjfgwDWEaBe/fOAiH24tcKiFMpwwakS2VSAJIQq1SdkqIg7pWB9e8vY4DdRbuHdeDsT2jqWi24UO4L093S9TJQK2QMSorkhX3jcbh8qBRyvx8QqxON4uPSD+0Ot2EaOQ4XF6emNqbm97bIC6E4oxqFtw6jN3VrUQbVEzNS8CglvPz7josQXxK2iEY4mqI1KvaPEUkfHTTYB7/Zgc7Kk2MyY7i3nFZfgSD2eHG7hIi65VBTI9rTHaeXbabNfsbyE8O5dGJOcwensaMgkR8PuH8n8ke+zijmhX3jubzTeVoFDKm5cef9Sb2pwMuj4dfdtdyxycd5rmPTc7hykHJXUtWcpo7iKN2VG7BoJRwxcAk3F4f760+yL3jssiM1lPaYGHW4JQueclUtdi55OVV1LY9e4akh/OfmXnMfncj/768H98WVrG/xsyjk3vx9NJdLN9Zg0QC0/MTmNQnjm3lLVw7NIUIvQqX28ujE3NYvrOG5cU1+HxC66LbE1ytZHa4WVFcw2OLijDZ3QxNj+C/V+T5qU1217SiUcj4ZXed2PLUPyWMRVsrAva3cEslD18UwgW9Yvhnm7dMO64clIRSJqWy2ca8lSVUm+zcODyNzGj9Me8RvVqYNzz+9Q62tCVKriiu5YbhqVw/NJVLXhZa4V8z7uejmwbz3PI9rDvQSF5yKImhGj66aTB7a1sxOzz0SzQSqVfRYHHy5OJiv++3pKiaRybmBJBn7d6HAFaHRySO2vHFpnLuuSDrpMijU4FL8hJ4b/VBsVVfJpUwrQvpp40WB/9dsddvW2mDlbJGq98Y4peceRI+O0fC6fZisrtpbGtT9ni8xzT6PxyRBhU3DE/F5fG2hZ2osDjcaJXy3/28nCg8Xp9f2Ew7zIfNLyqbbTy7dDfbK1o4v2c0c0alH7eNzeYS2sj31phJDtcSplOcsRb2bnSjG904GZybo3k3iDKo+OOkHMx2d0CyzrEgl0p489oB/OeHPZTWW5jQO5abR6bTYnMye2Q6oRoFUqmgZnnm0r7M/XCTuFj/x/Q+RBtU/PrQWIwaudiO0xkYtUqMR6k6zR6Zzq9tk2EQlFVDMoInj0Tqlbx13UBu+2gTe2rMZMcYeOXq/kQEMSGN0Kt44Yp8qlvsNFmdZMUYiNCrePv6gbg9XpRyKWa7m2U7qukRrSdCr8KoUTC5Xzyv/3rAb18zChJPaxuYBKhottFgcbL5UBN/mdKLl3/ah9Xp4bqhqYzKClRhtcPidPu1LoIQB3ykz9TpRm2rnZJ6CxqFjPhQzUlJuh0uD9/vrOa+z4XkF7lUwmtXFzA6OyooYXQ4wrRK/npxLvd+vk3cJngLnfxwt/lQE7uqWxmTHUV8qIaLX1qJyyO0pTwzox+T+8ad0RSkrkIllx1V+SCRSFDKpKJaBmDeyhLevm4gX24q57vCKr8KelWLnUONFuaMSmdsz2jeXXWQRquTKwcloVMe/Ri0WJ3sqm7lk/VlZMcamFGQQFK4ludm5mF3ejCo5X6eZ+VNQktbcVUr43tFM3tkut+11Wx1cs9nW8XkxYpmGyX1Ft6/cdAp87nqKpRyGYnhWu4dl3Xc1zZaHG1KEMn/XBtEk8XFY1/t8CMHnlm6m0l94rtGHin1oA4Fe3PHtuRhfL+7kce+PiRusjo9fDh7EBKJBL2q8wtWh9vDaz/vF4kjgLUHGtlbY8bj83HFG2uZkBvLhN6x/LqnjuU7awAhTXHFrlrG9ozm28IqsmP0GDQK/vndLmxOD1cMSmZsz2ge+bKQPglG1IrgY1eL1cndn20Vj9OaAw3854c9/HlyLhqlDKvTzb4aMxnROjaVdqhiGy1OescbA/bXrl4N0yh494aBPLN0N3aXhzmj0umXGEq92cHkF1eKKq3F26v46KbBft47Xq+PerOD8iYbIW2hEi6PTySO2vHZhjKuOSySvKrFzg3vrGf+3GEAaJQy0VRbIZfi8XrFoobX68NkD0xTdLg9AdsOh1wmCUjsClErhAfp7wyDWsZ7Nw7io3Wl+Hxw9ZCULhUVJEj8Wonbcfj8w+3xsvOw5MyCtuTM46YeejxgqwcfoAkFuf9402hx8tiiIr5tKyKEqOUsvH04GVGdD5iQSCTi3FCrPLr/3bmCMJ2Sm0emc+tHm8VtETolPeMEZXe92cG189azr80ra3+dmWqTjaem9UWvDv7bvV4fmw42cf07G8R52j3jsrhxeGp3ulo3utGNsx7n9qj+Pw6z3YXT4yVUowxKXGgUsi57eNSaHTy0YDszByYROyCJdSUNXDNvHZ/dPET0MAEwagTF0M8PjKHe7CRKL7QanI6JQF5iKPOuH8Cbv5UQplVy37isoybSSCQSMqP1fHLzELxekMo4ZspKsKh7YRLs4bvCGu76rKMi/shFPblmSAop4Vr+e0Uezy3fg9vj4/axmeTEBZqTn0ro1QquGJTEL3vqeG75Hi7qHcs/p/elV1wI4XrlUQkJr9eHXiUnRCPHZOuohI3sEXlGSYzqFhtTX15FjcmBRiHjoQuzmJArRC0LaX1dmxA121z8aWGRuDhwe308uGA7S+8aeVzvB6VcyvheMfz24Fj21ZrJiNYTplWgVpz8tVvdIrRCXj0khUe+LBRJO68PHltUdMaP+6mEQS3n9rEZPLe8o+qdG28kNy6ErIk9eWbp7oD3bClt5uohKYx77hcsbQl0a/Y38MY1BYwP4hfi9fr4cVct9xxG7H2xqYxP5wwhyqAOiO6ua3Vw5ZtrRYPtV38x02h18efJHe0pdpdXJI7asaPShM117AXo2YCyRit/+GQLW8qa6RGt58Wr8ukRbThj6WWnBZZ64Z/PQ6g6Ep1KRuNhoiGH2xvUR+iY0EbArC9gwY3QfAji++O6+BX+/ZY/yb+7phWpRNJlfxiX28vBBkvA9vImG5F6JaUNVr7eVkmIRkGLVSBcksI1/G1qb7QqOZF6JW9eWwBI+MMnW8TghqeWFPPc5f2YMyqda4cIqqQWq4vSRgs/FNeQlxRKv8RQDjVYA/z41h5oxOxwoVHKqGqx0Ss+hDd/O8CQ9A417S+767hjbCZfba0Q1bjZMQbGZkfjcHlYXlzD5xvLuXJQMkq5lMRQNVqlnA0H6/za+wBe/mmfmGzY/tsveWWV+LqLesfy6MScwFOjlPmRbgCVLXZ8IJK3NqebPTVm/rl0F1aHmzmj0hnRI4owrZLrhqbwr+/3iO9Ni9QdV4GhV8mZPSKNN3/rCAb585Rep70tqjOI1Kuoa3VSkBKGBAkKmaRLqsMwnZL7xmdzzbx14jWRFaMnMaxjPG08IjlzU2kT93++jeevyKO8ycr6kkaGZUSSEqHt8AW0t8DupbDir+C0wuBbYNAtoOso1NW22kXiCMBkd/PUt8U8f0Xe/2tSY1hmJO/dOJD315SSEKrhllEZRLXNK61Ot0gctePbwmr+NKnXUcmjBouTRxYW+hX4Xlixl5kDEv9fH+dudKMb5wa6yaPfEQ63B5PNhUYhQ69WUN/qoNpkR6eS4fb4eHrpLmpbHcwanML4XjGnRJaskEkpqbf4mdNmxxgIlkerVsiIM2pOyDSyKzBqFZzXM4aClHDkUslxq8U+nw+P18eemlZ0Kjk+H12u2DdZXPzl6yK/Cfu/v9/DJXkJxBjVTO4bz7CMCEBCuFbRadn2icLh9tAvMZQf7h3F9vIWlhRWEalXEqZTBCUjXB4vNS123l9TSnyohg9uHMx987exv87M6Kwo/jatT8BC/HTB5fHy9sqD1Jgc6FVyPrppECq5jEcXFbGtrJlB6eH8ZXIvYtuuo2arE5+PY17PLo9XJCPa0WgR/EA6A71agV6tICmIWXuT1YnZ7sbh9mLUKLo0sT+/ZzR//7YYg1oe0G5pc3lwdtJE/veEzemh1eFCJZf5eUZplXKuGZrKmOxo1pc0MjA1nOQIrdguefWQFD5Zf0gk9ORSCVP6xbOtvDngXM1bVcLgtPAAtWGj1clLP+3327a/zkJ5kw2tUobuCAWl2eH2S2YDWLSlgvvGd7SnSKVCJbjhsMWwVik7rkLt90aj2ckdH29mW7nQfrO31sx189az+M4RRJ3pJLNTBXMdfHoVlK8HQBmVzZfXfMHQF4vEhVLfRGPXjctlCkgogJt+AK8HZEpavAYaLbv8XjYmK6rL7TG1JjtrDjQwNS/BTwErl0oYkRmJVAKF5SacHi/1ZjuTesexpKia52fm8/7qg8wYkMg1b6+nvMlGaoSWf17alycX7xQJpKVF1Vw5KAmVQorL42Xx9koeXVQkfs6kPnE8OikHiQS/59HA1DBRsfLlpgqarC6m5ycSZVCxt5+ZxdsrUcmlFFWYePv6gbRYXchlElH1WWOy88Q3O7E4PaJaKUQt58f7xqANogzUKmW0B0laHG6eXbbLj2D6rqiahy7syaX9E1iwuaNV7qELe7J6f73fvi7tn+intqk3O7n01dXiNXD7x1v4YPYghmVEMqMgkcHpEbz9WwlJ4RpuGpl+3DHZoFZw29hMpuUnUFzVSv+UMCL1wduYzzT0agUD08LJjNHDcZ5zR0O/JCPf/WEki7ZWkBqh4/wcf1PyoMmZJQ00WZxc+uqati27eWBCNjeOSBPut+YyWDin4w2/PA2RWdBnhrgpmIVARbPtnHiunU64PV6KK1vJjQvB4/NR3mQlTCcUU5UyKXKpxI8IitKrcLi9lNRbCNHIgxQ4fdS0+B9rj9fnp/rtRje60Y2zFd3k0e+EBrODN387wLIdNWTHGHhkYk+e/GYHK3bX8eWtw7j6rXXigmx7+XYkkr7M6N/51imby4MEAoiHMK2CEZmRrNwnTPYkEnhkYs9Oky8ej5dGqxOQEKZTIO9CYsvxEMz8OBiqWuxMeXGluFjsm2hk3vVdS77wIahbDofT48XVVhGXSSVnbAHXanexpLCKJxcXY3a4GZEZwb8uyxOjfYOhrtXBhOd/Fa+RguQw3rl+ICqFFJVcekZ7590eH4fapAVXD0nG4vTw0IJCdlUL5qjfFVZTZ3Lw6tX9Odhg5dllu3G5vdw+NpOBaeFBz7tGISM3PkRcgIHgQXKyRpSNFgd//moHi9tModMjdXwyZ0in25siDSoW3TGcg/UWhmVE+ClesmL0pyzNq9HiFJLFjtJ6095SsrG0CaVcSr/E0E6RYPWtDv7zwx5+KK4hK8bAk1N7kxyuFceVMK2SMK2SvomhAe9NCdfy5W3DeeWnfcikEu48L5NIvZLwINX+CL0KeZCFnARQygPHMIvDQ4vVHUAeqRXSgPaU+FAN0sP6U8K0Sp6+tC+3fLgJj9eHRAKPX5xLyCloUzydcHq9InHUjhqTA5vz7FdMHRUHfxOJIwDqdhOxfyH/mDaNt1YepH9KKHdfkBWgBnV7vbg9vmOr9qRS0MeI/w1xe/jopsHcP387BxssjMuJ4ZGJPbtEHtW12pnx2hoONVp5dkZfHp2Uw/yNZYSoFTw6KYcog5KL+8UzJjsah9uDVinH7fXy58m9WL2/nil58TwwfzvVbeEMBxus/PHLQu4Zl8Wdn2wBIClcK5iEqxU0WZ38e/kev+/wbWEVj0zsyTOX9uXxb3ZidrgpSAnj7guysDjcKOUykiN0vPzzdoqrTMwcmMTNI9N4YEI2EolAcqnkMr/WIrPdhcvj5fycGL4rqhIVkia7G5fXS1aMgYyojqQ6hUzCfeOzRYWow+2lrMmftAXYV9vKo5NyuHxAEtvLWxiZFUmcUSN43MikrC9p5IJeMUzuG+d3Hn7cVRvQRv3BmlKkEgnPLttNjxg9f5qcQ4xBjSKIp1kwtI9VvYK07Z0N6KoKyu314vH4UClkuNxevt9ZTbPVxXZbM73iQ/ysArRKORqFzE9d2SsuhG3l/i2FL/64lxkFicJzac/SwA/d8SVkXQgq4drJijGgVcqwHjYGXT4gkdAz6Bd3tsHt8fLJ+kN+6rjXfznAqofPQ6uUo1cpuG98Fk+3KXNlUgl/mpzDowsL+XVvPYPTwnl5Vn+/+alWKWdKv3gWbC4Xt6VGaM/5Fr9udOP/I5qtTpHM17T5BZ8Ladcng+6R6neA1enm2WW7+XRDGQAl9Ra2lzfz1PQ+7K+3sq/WHFDJ/3BtKRfkRPsZIDdbnTjdXmTSjoQJq8NNaaOVl9sWeLePzSQ5XCtOysN1Kv57RR7bK1rYV2PmvJxoYjpJkrTYnCzfWct/lu/B4/Vx+9gMpvSLDxqXfrrgdHt57Zf9fiqD7eUtFJa3MLZndKf3o1HImNAr1i/lrd+JVMRPARotTh5aUCj+f+W+Bt74dT8PXdjzqOlSX2+r9LtGNh1q4o3fDvD4lNwzPmhplDJmc871pwAAIABJREFUDU5h2Y4ahqZHIJdKReKoHe1pZzNfXyMSATe9v5Evbx1G/5RAU9tQrYJ3rx/IX77ZwZZDzQxJj+Dhi3p2uorbYHbg9fkI0yn9CM4DdRaROAI4UG/h7d9KeGBCdqcWLWqFjF5xISSHaeifHMrTS3ezen89eUmh/GVK7nFNMo8Hj9fHgTozDy0oZF9tK+fnRPPHiTkBRGZNq51JL3R4liSGafjytmFEG9S0WJ14fASk+Vgcbp5aUsyXWwTVQI3Jwcw31vDNnSOI7sQYoFXJyUsK5T8z85BIECe6GdF68pKMbC0TiBCtUsZ944Ib10boVdw/PtsvSSgvKZRWh4s9ta3Eh/mrHPUqOXecl8kLKwQDeYVMwlPTevt5nClkUoZlRLDywbGUN9mID9Vg1CjQnII2xdMJuURCeqSOA/Ud7VIhGvkxE+XOetTuDNgkrS3ikim3cl5OjLDoPUL1Ut1i573VBznYYOHqISlkROnZV9tKuF5FTIjqqG3JSrmM/OQwPpszBC8C8dRVteXBeisKmYShGRE8uXgnA9PCufuCHhQkhxNzGHl/eFhBVbONMK2SXdUmBqWGi8RROw7UW8T00uRwLbNHpBGuUwrn1e4KruLwwcX94hmVFYXT7eVAnZkr3liDy+PjqWl9GJsdRUaUni1lzWwpaxbu91uHBbTneb0+yto8wg7UWRjfK4a3rh3AnA8E78KhGRFiktuncwaz9kAjNSY7E3Jj/cjnUI2CGQWJbD3M30gll5IbbyRcp2JwuorB6f6+hHNHZ3D9sFS0SnnAMyghLFC9HBeqZtGWCraWNbO1rJnV+xpYdPuws151Z7a7sDiF4lyoVhnUwL8r8Pl8VDbbeHd1KVUtNq4bmorN5fZrH16wuYJfHhhLrFG4d4waBS9dlc9dnwrJmfFGNc9dnsedn2z227fL4+tQs8XkBn54dK7Q+9+GcJ2SRbcN54nFO6k22Zk5MIlL8hNPu/L6bEaLzcV3RR3zRK1SxrMz+rGnppXviqoY2SOKywYkMrFPHKUNVhJCNbzx2wFRxbiupJG1BxqY3Dde3IdOJeeRiT2JMihZvrOW3HgDD12U8/8yVKEb3TiX0WRxcKDOwuu/7mdjaRMFKeE8fnHucQOsznWc3bPr/1GY7W6+2Vbpt62yxY5GKaPV7goa4RoTokJ52AO8otnGvZ9tZV1JIzlxBv47M5+MaD2VLTYmv7hSjAheUljFD/eOJiWiI/49Qq9ibHY0Y7M7T7aAMNG+f36HV8ljX+0gM1rP0IzIY7zr1MLl8VLRHFgRrQyy7VgI0Sj427TepEXp+HVPHQUpYdw+NvOUx7x2BntqAuOU1xxooLTBSnSIKig5p5AFEkSK00gaeb0+mqxO5FJJUOPzfolGXrwyH4fbi1YlLPoPTyiJ1Ctpsbk40sP7g7Wl9Ek0iu0G9WYH3xVWsflQM9PyE3ji4t54fT50nTS/tTrdbCtr5m/fFmOyu7hhWBrT+ieIVeC9QY71zirBH6ezFW/oaIv72yW9sTjdaBSyU+JV0GB2MPONtSIptHBLJR6vj6em9xFN8b1eIZnv8JaS8iYbe6pbqWiy8czS3dhcHm4dncGQjHBRhWZxullS5J+mVmNyYLa7iTZ0/jseeR4i9Sreum4g+2rN1JsdDEgJO+Z91D85lAW3DmVpUQ1J4Royo/Xc9clWFtw6NOC1BrWC2cPTmJafSHmTlcxoPaEaBZIj2my1KjlalZy4c+iBHWlQ8dJV+Vw3bwN1ZgchajkvX9W/0ymWZyVyp8Gvz/pvy78WhUJJRJCfVdfqYNorq6hq8xL7rqiaf0zvwzfbKlm9v4Hzc6J5dkbfY6ZGBiNs680OqlvsuL0+EkI1R12UJYVpeHRSLwrLm7nngiy+Laxi3sqDDL3u6M80g1pOlEHJ9P6JtNrdxISoqDF1tKCkRmiJNKj4+o7hxBn9P9uoVnDTyDSe/6GDGBiUFoZWJZCGYRIJL6zYy0s/daRtzn5vA789dB6fzRlCaaMFj9dHWqQ+6G+qNzuY8eoa6szC99ld08rNI9O4aWQ6da0O7jwvk5A2H5Yog5op/eID9gGCOfOkPnHYXB4+WXeISIOKP0/udcx4eblMiv4oJENeYih9EoxiQlqUXsX0/ERmvbVOfE1Fs41mq+usIo/qzQ62lTWzt9bMBTkxhKjlPLN0Nwu3VqBTynj4op5M6hvfadV0MNSY7Fzy8mrxnC3eXsWLV+aTlxQqkncOt5d9ta2iGlmtkDGyRxQr7huNvS05UyWXkhqhE+cTYVoFL8/qj83lEdqnYoYTkX8NbPlA+OD4fMi/GhQdY6ZCJiUr1sArs/q3+W0qgipI/z9B01YwyokLYVSPSJLCtbz+ywG/wuPr1xQwLieGxDAND39ZyPyN5X772FFh8iOPQHhu3jMui9kj0tEoZWd1Ums3utGN4LA6PchlUsb1imX2yHS2HGrmz18V8cxx5i3nOrpHq98BUqmEuFCNn8metK2SX292Ynd5/CLmdUoZD1+YI0rKGy1O7vpkCxvbfAyKq1q5Zt46lt8zivfXlIrEEQiVpy82lXPf+OyT/t6Lt1cGbFuwuYLBaRFnTO2iU8m5dmgqK4prxW0KmYThmZE0WZ1dkopH6lXcc0EWN41IQ6eS/25Gx1kxgUkmeUmhvLfmID1jDVw5KDlgAjepTzwv/rjPTyp5/fC003Iemq1Olu+s4Z1VBzFqFPxxYk96xBj8jpdRq2Ry3zhMNhdVLXYenZjDY18JPidKmZRnZ/Sj2eoM2HdKhFZMlmmwOLjlg02iP8fCLRU8OimH64amdrq6W292cvXb68V74InFO4kyKJnST4hKHpoZEeAtcklePIajGFseD8FILafbS4vNiVImPWrC4NHQHpF8OH4oruVPDk8HeeTzUdvqr3bQq+RE6FXc+/lWpBIJxVUmbvlwE5/OGcKQNoWAVCIhOVzrR1bKpJIAJciJIFKv6nTbaJhORZLHhw8fX26uoLjKJKjKjnKs2pMa0yJ1Qf9+VsBcB6ZK8HnBmAD6zhHzWTEGvv3DCGwuD2qFjDCtokspliC0YhaWt/DznjrGZEXRJ9EoTlpabILSRSrhzBDjxiS48lNY8Th4XDDiXojtc9SXl9RbROKoHR+vO8SlBYms3t/AiuJaqlrsXZqE1ZsdXP/OeooqhJbX5HAtX8wd6qfS8fl8VJvs/LS7Fo8XRvSI4rGvirhtdAaXFSQc9Vr0+XzUtjr4zw97GZMdRW5cCM9dnsf987dR1WInMUzDP6b35a9f7eD/2Dvv8CjKxI9/ZntP3fReqSH0XhXBjqCAYgEVbNjLee13553nqWf37J4edhQ9GwqChd57CS0BkpBeN9vr748JQ5YNkJAAsXyfR59nh93Z2c3szPt+3295emqfEIJHrZRzw9A0esSb+HJbGQNSI7ikT4JEyjQ5PXy/pzLoNf4A7Cm3iLk3RjVen596u4eaJhdKuRCkMqyxuSUS4ii+2FrGWzMH8smmUq57ax0fzxnapkDxCL2KWcPTmJSfiEIudCiMOtqo5u1ZAymtt2N3+8iI1vP3ZoteS3TGtaizUGt1MfeDzawtqgPgiUV7ePXa/hTX2/H5A1icXv7wv50MTGvdet1W7DxiCfmbvbf2MBN6xgYpv47PnlQpZCF2639O7s3w5liChyd244+f75COv29KOG/MeJzoQbPF3DCVTmwwbAWmX7FN7Xjo1AruvyCX/64+yD+/3cPr1/UPIo4A/rGwgH4pEZiNaq7omxhCHl2cF9/qvtUKOWZj1znnf8Nv+A1th98fYF+llZvf2SjNOW4dnUFurBG39+y2XZ9t/EYenQNEG9T884rezHhzHW6fKGGfPTIDjULgh/tH02D38K8r86huclNnc9MjwURUixU/j88vEUdHUWlxSQHAxyO8k1ayeyeGZgv0SQo76zap/KQwXp7RjzeWF6FXK5gzKoNnl+4jPkzD3LFZ7Wr2Uilk50Rt1BIROhX/mNSLf3xTgN3tY0hGJFf1T+a6/6xDr1YwoVdciK3IbFSz6O5RfLWtDLfPx6T8JGJMZ8Y+uKawlgcXbJceT35lNT89ODakFlgQRFWSRiUnXKfi+6zR1NvcxJo0hOuUWF0+cmON7K0ULW0JYRquHpQinT82pzeohhrg1Z8KmZSf0ObV6FX7a4LIU4BPNpYyJjcGo0aJ2aDmrRsG8ujC3VgcXq4dmsJ53WNDlCynizqbm3fWHOKzzUdIjNDyyGU9yYjWt3n11qBWIJcJQZ8hw6wPat9SyGXMGp7Op5uPSCTYpXnxKOUCM4el4/L66J0YxqMLC3hnzSHyk8PRKOVEG9Q8eWUeV7++TsxEE+CBC3IxnoMVzxiThttGZ2If6kOjlOH3w+4KCxE6FdEG9UkVDl0O1ip4dxJU7hIfR2fDzIVB+TwngkIuI8akodbqoqC8iUO1NkblmInWq4KsUid8a5eHF78/wNurDwHw9qpDzByWxoMX5GBxenlwwTZWFdbSPc7Es9P6kHWmm9w0JjFDJXEAEBBb0mQnnhy1Vl2vVcmDrF2thfieDKsP1EjEEUBxnZ35G0u4Y0yWdK2ptLi45IVjuXmxJjWvXdufP3+xizevH3DCfVdbXVz75jrKGp2sP1jH0Iwo/nxJdz6cPYR6u5uqJhePf1vA1YNSCDvBfTdCr2J8j1gGpUeilAnoNS1D6+X0TAijoDzY9pvWTJzW29x8tqWUt1YeQq+Wc/d52aRF6SlrcOAPBFq9/8eFadhS3MC85nPEc7z88yRQyGRtstLYXCLpveFQHZlmg5Tz1BLHE8zXDUtj8e5KKQtp6oCkLqW+qLd7JOIFxAWHZ5fs44Zhaaw/eGz7xsP1ZMe2Q7p5HFpbGNEo5cha3JPEpr5TXxOjDGquG5LK9IHJLN5VEXT8W4ob+HZ3Ddf1zwKvC3SRp33Mvyb4mkPuX11WhEwAhyfUdmp1eQkgnsc94k08OqkXr/xUiFwmcP8FOaS0UtzxG37DrxV2txeLQ8zfM6oVhOtU1DS58AUCKOXCz0axU2tz86fPdwaN199YcZDPbx+GohV3yC8JXedO/StD76QwfnpwDFuK6zEbNRystVHe6GLuh5uxOLwoZAJPXZXHBT3jQkL05IJApllPYfWxrAyDWoGAwFX9k3hv7WHqmxUpMUY153U79SSmLRiWFc2QjMiglawLe7W+onImEaZTMTQjihqri0aHh0e+2k1htRW5TOCGYWntroU/1zBplUzpn8ToXDNlDU72VjRx63ubsLl9GDQKWrsEyWUCcWEaZo/KOKPHZnF4eH9dcdA2jy/AmgM1XDkgudXXqBVyKZuhpV1Sq1Lw/uzBFNfZ8Xj9ZJgNGDUKqixOZILQKoHT3oluujlUnZIVY5CCtvVqBWNyzfROHIqfAOHajmdWHIXb6+fdNYckS0pxnZ0pL6/m+/tHt7k63KBW8OeLe/C3r3fhD4gZOE9O6RNCcKZG6vn0tmG8+P0BNAqBO8/LZvrraymuE+u6w3VK/jtrED8UVAbdxHrEm/jpwTGUNzqINqgxNdvvzgWiDGqiENUnl7+0EotDVCFc1DuORyf1/vkQSPsWHSOOAGr2w45PYejtbXp5nc3FXR9tkZSmcpnAR7OHMDD91JM7q9PHu2sPB217b+1hbhmdwf2fbJMC3XeXW7j2zfUsvLtt+VYdgiCAwdympyaGa+mVaJLIHrlMYPbIDJ5bKobT6lRyuseb2vX2B1tkSB3FgSorvkBAClqfv7E4KDev0uJi2f4ausUZT7oY4nD7KGuhlFpTVMvFL65k7cPngU5FpcXFC1f3FTOOTqAga7C7WbG/hjdXFGHQKHh44jElp1al4P7xOWwpbpDuaXeMzSS6eTC9pqiWv39dIO1r7odb+Oy2YVz/n/U0ubz8c3Jvrh6UwofrxWu2WiHj3vNzeOo7Mcy3e7wRTQevd9VNTpbtrRaLK/okEGtSs7m4nhveWi/Zkqf0S+TPl/Ro1XJtcXoob3DSaHfz3b2j2HGkkTiThuRI3VnNTzwVPL5QksDh8YXcL1pbVAPxdw2cciKUE2sgO8bA/mYlukImcO/52SRH6hiZHY1Ro8SoUbT5u5HJBNQyuWQRbIltpY3MGJyKTNWFVZwdhMvjQxCETruvNzg8LN9fzeNTepMRbSDaoOLe87N5toX19IZhqYQ328PDdSqmD0xmQk9x3B2pV59Rwt7i8GBzewkExOtlV/oNtYbqJhcHqprwB0Tl7W85T78uNDk9fL29nLJ6ByNyojlS7yA3zsjdH23lQJWVvKQw/n11X1Kiuv41KkCoC8DnD6BTKdrdAP5zw2/k0TmCRinH6fHx968LaHC4+fvlvfjHwgJpAuX1B3howQ6GZESHkEfRRjUvXN2X6/6znjqbG51KzvPT8wnTKVm8q5y3Zw5kc3EDMplAn6QwPlx/mAcmdOtwjW20Qc3LM/rR5PSKE1uN4pypdjw+P3/7andQg4vPHwhRnfxcoFHK0ankPLNkb9Bq4d3n5XTILtBRqBQykiNDc2SSTnMlreXqc63VxROL9vDpplLMRg2vX9efMblmftpbLT3/vvHt+/zZMQbG5Zr5oXkfSRFa5ozKCBpICoLQ4WDr1tDo8PC/LUeCtjW5vM3ZVeKEvcbqYndZIyV1DlFhYlChbfH7NmgUXNk/kQk9Y7E4vUTolK2GhBs0CvqlRPDi1fnIZQLf7KiQiCOABruHz7cc4a7zslDIZDg8PiwOD/5AAK1STn5yaEj5UTjcPqwuDwa1IujYzgSsTg+PfbNbuu4BfLOjgjvHZf98yKPq/a1sKxClCm1QtFU3uSXiCMTr2D++KeCtmQPb9B0cf8ULNP+vZRMgiKoZu8sHpy+S6HREGdT8d+YgNhXXc7jWzvgeMZTUOggEYEyumT9e1L3d58HFeQk89/3+IGvqNYNTpPtfIBCg1hpqobU4PFycF0/kSZS6aoWYLdOyUjs1UodcJpAWrZcUQsfD6vJid3nRqRRsLm6QmthAVHL++MAYkiLEa2p8uJb5twzB7vKiVMgwqBUYNUpsLi8LNgXbYQIBWFtUS6/EMNYU1fKXL3bxzk2DuHF4GmUNDjJjDHywrpi9FU0MSo/k6atCieiQY3V6sbq8Urtcy8ldjdXF7e9vYcMh8R713Pf7WXrfaP765a6gPLtPNx/h3vE5IRNZn8/Pj3uquPujrQCo5DKuHpxMr4Qw7vt4W5cKzI42qEmP1geRkbNHZnCwuaFOLhOYMzI9JAy8yelh8+F6nl26n0AgwL3jc+ifGnHCTDyVXMbTU/uwtaSBGquLMTkxROpVIrnegfHVJXkJvLHiYNC2Kf0Sz6pS3OfzY3P70KvkyOUyaqwuvL4ACrnQ6ZMru1u81766rBCNQs6tYzJJDNe02wZ8PDRKOb+/sDt/+nwnmw7Xo1bIeGhiLm/PHMC81YeZ1DeR0TnmoDGGQi47K+dxndXF44v28MmmUgIBmNAjlscm9z7navoToarJyZWvrJHGKicK/v8Nv1w0Ob18X1DJed1iufbNdXx790iufXO9VDyxvbSR2z/YzLxZg7rseXwUOpWcy/okBrUmZpr1Xb7ptzPwy/+EXQxen59am5s95RYSI7TSDyYhXCvV5h6F2+fH5vJS0ehAq5QH5afkxhpZdPdI7G4xLDFcp0Qpl5FuNjD5ldX0SQrHHwjwyFe7eHxyXoeJo6OI1Ks7XVJod3tRymXtOkadWs7kfol83MJb3i8l4mdddRqpV/Pva/qxcn81W0oauaxPApnmtlueTgeBQAC3z3/CVXKNUs4dY7NYsruSmuYJ1+D0SLJjQnOarC4v9TY320sbyIoxNNvVWp/4Ha2/fXvVIQAsTitXvbqab+4eyZaSBraVNHBR73hSI1v//A12NyV1dtYdrGNgWiQpkToimgfcT03Np8EuZoeZjZqztrKlUshIjNByqNYetD262W5Qa3Vx63ub2HhItOYpZAILbh1KfkowkXM0jPtkmr5aqyjx1SlFgqfWFmrtaXR4MGqUWBweFmwq5V+LxSDtUTnRPHNVfqsEWpXFybNL97G2qI6BaRHcf0FuSK5GZ8Ll9XOk3hmyvcribLfi5JyhzzRY80LQJn/fG/D7A22SLjs9vpBtIkF/aiJcr5YzbUASH6wvkbZNHZCETCYqGlrmW2mV8nPSJnkqRBvVTOgZJz0O1yp59dp+KOUyDBpFu+9dRo2cl67px2vLCnH7/Fw3JDXINiIIAtcPTeW9tYclwkMhE5g6IJlYk/qkzVImrYJ/Tu7NQwu24/UH0KvkPDst/6SWokqLk8e+KWDl/hoenJDD4l1VQf/u8QVYvq+GawanHPtODGo4buCsVsjIjjXww57g13ePN0kNkm6fn7dXHeK5afmSlWr2qAxmDk9DKZedkoi3ODx8sL6YpxbvxesPkBKp44PZg0Viy1qNqe4wL49wYJnQjTu/LGN3uYWKRoeUvdcSzlbsPXV2D49/u0d67Pb5mbf6MF/cMQyLw9OlArPNRjUfzRkikm+VTUwbkEzfRB3+qr1c3a0bclkAAw4MMgdw7HstqXNww9sbpMcz397A13eOIDvGgB9CfoOH6+xc8fJq+iSFEaZV8p8VBxmVY+apq/q0qSTiREiL1vHUVX14bqnYjnv7mMyzek2ttbr4ZFMpK/ZXMyLLzKS+Cdz5/hY2FtfTPd7IS9f0I8McOo44XZTUObj4hRXSb/rzrUf4/v7REil7upDLBD5cXyxZ6l1eP3//uoAf7h/Nv2f0lbIIzwV2HGkMGgMv3l3JeT1imXoCVfi5xrfNi1yJ4VoEQSz6+HzrEeaMyjzXh/YbzhIqGsUWxz99vpPpA1NwevwhjaU7j1haVX52NRjUSn5/UTdiTWqWFlTSMyGMByfkdpl72JnEz3em/TNFcZ2dy/69CqvLyzNT+0g2sC3FDYzJNbO0RRC02aCmwuJkxpvrGJ1r5qkr86ST8mhWxvHoFmfi+iGpvLuuGH8gwEW94ji/e/ta1c4WGuxuNh6q56MNxWSaDdw4PD2oHvlkMKiV/G5iN3JijSzZXcmAtAhmDkv/+agVToBog5pJfZOY1DfpjL9XjdXFwu3lrC2qZULPOEblRLdKDCaGa/nm7pEUVdswahTEmTQhKwI+n5/VB2q45b1N0or/LaMyuGNsVqvhm40OD9/trmRKv0SGZkZR3eRi/oYSdpZZuLBX/EntkA63j/fWHuap7/ZJ2+4cl8WtozPRqxVE6lVn9TwIBAJi3pNWyV8v7cmUV1ZjcYpKmqsHJUvKoQqLUyKOQFQXPtYcwNlWqbnH56O80cXhWhsquaiA6BFv5MJe8Ty1eJ+UoQZw44h0lHIZxU12/vb1sQr15ftqeGvVQe45PydotbTe5ubOD7ewrjnP42CNjaJqG69f3/+MedDDtUqmDkjir18dOz6tUk63nwtxBBCeAtd8Aj/+AwI+XMMf5KcqI3v2HmDG4NRTqtwSwjUkhGmC7FA3jUhrk+LOqFHywIRcRmSbxdW87rEMyYgkUq/muWl9ufY/66izudEoRXXDiXJ4ugqONDiY/voaSuocCALcODydO8dltcuK8ePeauavL2FS30SUchkLd5RTXGfnoQndJNVFQpiWr+4cwYs/HEAuwJ3jskmJ1J5SaadTKZjYM45hmdFYnB7CtUrCdaHtf0fRaPfw0IJtLNsn1nZvK20kziSeD2qFjAyznuomF4nhp77vubx+JuUn8t2uSkkNMyo7WrKfHsX0gclBwdMROhUNdjc2t48mhw29+sSK4UZHMLlTXGfn0a8LeGlSMvIPp6Iq24IZMBvjeWvaN4x73cb20kamD0rmpR8LpdelRunQq+WUN7egxpg0yGUCAQI4WpClYVolL01Kobuygu9nRBCusdKVpHGxJg13nZeFxxdAIxdg41vwzf3BT5q7ETTHrGsfbyzheMzfUEK3OCOrCmu4bUwWGdF6iRiqaQ7L3lZ6zGZWaXHh9vrpyGU3TKviivwERueIFtIIvRKF7Ow0pzU6xCyQoxX3qw7UsuFQHRN7x7GxuJ6C8iZmv7OJ+XOGdIoK2Ovz89bKg0HqN5fXz9fby7l1dMeICavLG3TfPooDVdZOJb/aC7fXjyCIpPdX28qk39XK/TVM7pvYJVvyrE4PH8weTJ3VjS8QIM6kYf3B2lO/8Df8YpAQrkWnktPk9DK+RywWh4cwrZJGx7EFiPRoPfKzdK3qKKINau45P4cbR6SjU8rblFX5S8Cv41N2EVidHp5YtEdqGPnb17t5YXpfrhnkoaTexl8v64lSLmPZvmpyY4387sJu/GuxmFWwbG81L/1YyMMXdjtpK1ikXsX9E3K5dUwmAUB3nGKpq8Dm8vDNjnL+8L+dgNgotXBHOf+7ve2y9SiDmlnD0rhqQDJapbzTPO6/BtTb3dz/8TaW7RPtXd/urODG4Wk8cEFuyMVPEARijJqTZqXU2T38+YudQVaRN1YUMXNYWqvkkVYp5++X9+KbHeW8+MMBkiK0PD4lj3jTqQeSFqeHF384ELTttWVFzBic2qGV2vYgEAhQZXExf2MxlY0urhuaSlKkjvRoPUvvG01xnZ0og5oInVKa+Lo9fi7oEUudzc2m4noCAdEi0h6rZZXFxfTX1khEw5gcM7ePzaJbnIFFd4/k6SV7cXj83DE2k7QoccV1Z1lo9sWawlpmj/SiUhy7Njg9Pok4OoqNh+tbVRB0FuRyGZfnJ+LxB5i/oYRY09FK8K5NcgRBY4KcC/DE5VNQbuGfy6tZUyien2uKanl5Rv+Tkplmo4ZPbx/Gm8uLKKyxcfXAFAZlRLY5JyNSr2ZoRhQD0iJQymQSWZkba2DRPSOxNdulTJpz1yjZFthdXp5avJeSOpFwCATgPysPMn1gcrvIozqrmy0lDWxp0VSVEKYNyjzSqRX0TAjjmal9EKBd9kydWoFOrZCvZ2RKAAAgAElEQVRq01uixurCHwigU8kxqJU4vT6W76+R/n3h9nLeuXEQGqWMS/sksuNII+nR+lYbN4+HSiFj+b5qHp3UC5NGgVopRymX4fX5iDWpyYoxcPWgZOpsbqosTmlxqdbq4u9f7+bzrWJbal5SGP+5YUCr99myZrKnJVw+H0Lpeig7ZrWjqZzw7f/hop6T6Z0YRkqkjii9mkW7KugWa+SW0Zl8sK6Y15cXEaFT8dfLejAiK5pwrYqbRqTzdDPx/860DHqtvRf5oeXEAESkwaxFYDr7WYonglwmQy4DHI1Q8GXoEw6vFkPym5HRinUx1qRh8a4Klu+v4dudFSy8cyQ9EkSCvHdSOHqVHJv7GKl2/dDUTik6kcvbFnje2XC4fSzaVUH3eCM5sUYOVFn5YU8Vt405RuQUVltxdZK6QBBotTHVdJotqi1h1CgYkRXN7nJL0PZzucBR3eTi7VUHWXmghvzkcN67eTC3vruJaquLib3iuiRxBHBFvySueWOtpM5OCNPwya1Dz/FR/YaziTCtAn8gwFUDknF6fHy7o5zHp/Tm4U930OjwYDaqeWF6vqTY/zlApZD94jOOjsdv5NFZhNsXoNJyzF4SoVOxtaSBib1iubRPPIIg8K8r+2B3e6mzu5n7wRYOVB2zHaw6UIPV5T3lBEAMWOy6k686m5vdZY38Z6Xox+8Rb2Lm8DSSIrRYnT7M7Vh4lMtlhGm75o2yK8Pu8knE0VG8v66YW0dnnhZzHiBAvS3YuuAPtB46CqCUy/i+oJLXlhcBcLjWzo7SRhbfO+rU7xUIhOzX4/dLbSdnA9VWF5f+eyV1NjfDs6J5ZVkhN41IJy8pnBiTJkQVaHV50akVpEbpGJwRyYMTc7n3o63cPDK9zZlObq+PV5YVBilUCmusRBtUFJSLAZT/d2lPjBo5OtWx339rga7Ds6NDiDa5TMCoVtDUoj7boFYQCASwODxnrL45Qq9i1rA0ruibiFIuEKbt2oOGepubgzU2NhfXMzQzisRwLeE6FXWYmDxvY1AO29qiOhxuH7QShWN3ebE029O0SjkPX9gdl8/f7sap4lob98zfxpaSevomh/PstHxSo/TI5TKR8O06Qo6TwuHxsbeiCbVCRq/EMBrsbgqrbRyus7erzeqSPgk8t3S/pMITBJg1PL1V+1tn2ZzdXh+7yiw8tGA7xXV2Luodxx8u6oFcEImrI82kjMXp5ZNNJVycl8BVr62RiOOTBUwfhVIuY1J+IlVNTu7/ZBsHa2x4fAEm9orlrnHZ7Dhi4bvdFXxfUMXfLu/J9UPTANhfZZWIIxAzJT7eWMKtozJDLHqpUTpUclmQgnFsTgxCwwaOh6apmPvPS2dLuZMZ/1rH6BwzI7Ojmdw3kS+2HpEI/gqLk9ve38yP948hLVrPtYNTyTQbWFdUS7a/CPmh5cd2Wn8I1r0G4/4E8i42PFVqIWkAHFwWvD2uV9DDC3vHMW/NYSmGINOsZ2hmFM82h8AHAvDmyiKemCLGCUTpVXw5dwRPLt5DdZOL64akMibX3GkNoOcCgiDw8jX9sLm9bD7cIC4iaZQoWhDi8WEaVJ3USCSXyZg5PI35G0qk+1esSc153TteFqNWyJkzKoPCais/7K3CqFHw10t7njQbrSOos7mwuXwo5QIRrQTvNzo8PPzpdr5vtq9uL21kf6WVe8ZnU1RlZUhG1Bk5rs7Aj3urgmz9ZY1OPt9yhDvGZZ/kVb/hlwStSoHF6WVcNzM2l49BGVEs2FTKyzP6oZCJQfdlDQ7iwjQ/K/tXjdXF9tIGdpVZOL97LInh2jM2Zu4K6GJ35182wrVKZgxOYWtJAxN6xnH90FReW1bI0oJKZg5LY1y3GMJ1KgwaBU6PD7VCxoDUCBocbtKjDXSPM6JXKfD7A7h8/nOSX+HzB8Ra6YomwrVKkiK07Qo18/sDLNxeJqqiVAqGZERy57hs/rGwgL2VTYzOieaxyXnE/Ragd0Yhk4mTqpZKIaVcRqvVbm2AXqXgin6JzN9wTLKfG2s84eSs3u4OmtCAOLEqrXcQHxYa0N0SOpWCS/Li+XJbubRtQo9YdMqzdznbVtKIUaPgtev6s3x/DdVNLlweP7VWV6u/h51HGrn6jbXS950ba+S9mwcTqVe1OcDU6fVT1KJhURDg2an5zH5no9S8mBiu5bPbhwWRR1EGNY9c1pMnFu3B7vYxNtfMDUPTQpR64ToVf5/Ui3s/3iplPT8wIZenvtuHXi3nvvG5Z8wOqJD/PFZumpweXvrxAG+uPBZE+3+X9GDG4BQExADFo5ZFEAm51hREDXY3768r5oXv9+Py+hmZHc2zU1vPoToZaqwubpq3UWpq2lzcwM3zNvLh7LbbQSwOD2ql7IS5Z2cLJq2S28dkkhCuZf2hOmKMYrh+W1Q5LRFjVPP1XSN4fuk+XF4/c8dlkdKswsPVBE0VUPgDxPYEczfQR3f42OvtHq55Y51kHfnfljJ0KgUPTcjl6al9uOGt9bi8fuQygWkDU3jwk+1BisNPNx/hnvNDA6aPR6RexRsrioKyrBbtrOTy/ERe/GE/pfUiSVXVIkNiZyutW5uLG3B5/ejkodeAeTcO5Hef7qCswcFFveO4uHc8guciWPJn8B9TxwQG3oxKo+fuj9YyvnssGWY9Gw/VM6FnHEsLKoP2GwjA1pJ60qL1ROhVXNQ7nvO6xaDaug7bsIewxQ9BU7cX0+aXoGYP+FxdjzxSqGDwLeK5U7ZFvEAOuFlUS7WA2ajhozlDONLgIBAIYFAruGnexqC/d7hWKWXpK+UyMmMMPD21Dx5vINQG6bSCu0l8P10UyLv+hEQmwOrCGt5dK7b+fbC+mKsHJjOnuR02Sq/ilWs71w4db9Kw5L5R/LCnCrVCzsjs6E5TXUUb1TwztQ8Ojx+ZIP5OzoTSvaLRybzVh/hudyVp0Tp+N7EbieHaoIUeh9srEUdHsaaolievzOOK/MQubZs5Uh+qbCxtcOD3B85qkPtvOLeI1Ctpcnj5eGMJs4ancceYLNYfrCU3zkRVk4sHF2zj1Wv7Myb35zEPrLO5eWjBdimP8Onv9vH89HwuyUs4o02L5xJd9yrzC4RMJnB+91ieuiqPbnEmpryyWmptue/jbbw8ox8X9Rbl2mqlnJtHpGNxehiVE8OawlpSIrVYHB4W7Spn1QExp2Zst5gOT+hcHh8IBE0eqptclNbbUSlkQRk3RxocXPriSsmfOjAtgleu7d/miZ/d7WXJ7kqaXF5+NzEXQRC488Mt1DXXJv+wp5o/fLad56b1/UWztucaepWCaQOS+agF2XPP+dmEneZ3rleLE6XUSB3f7a4kLymM28dmnXgCK4hER8uGMKBN72/SKvnLpT0ZkBrJj3urGZkdzeX5CWc1z0UuE3h0Um/u+miLZLN5f91hPpw9JIQ8qre5eXLR3iCibm9lExant12ZCSaNkiv7J0ktWoPSItlc3CARRyD+PhdsKuWOsVnStjCtkmkDk5jYK05SuRw/SXV7/TQ43AzNjGLFQ2PZecSC2ahm0c4KqUHuyv7JP/tMsY7C6vLy9upDQdueWbKPi/PiidCpePjCbpIVF+DmkekY1KGkTKXFJVmSAVbsr+GdtYe4c1x2uwKi3V6/RBwdxf4qKy5vaAj38ai3uVmxv5qPN5aSYdZz2+hM4sNPTtyeSSjlMlKj9Ux5ebWkfMlPCuONGwa0az8apZycWCNPXdUHf4BjEy+/H4qWw/xrjj255xVw8TOgi+zQsZc1OIKyfAC+L6hi2sBkeiUYWf7QWKosTqKNagSQ7nctcfzrW4PT62NvZVPI9kM1NmJNGkrrHShkAlP6HwvMHZltBgqCnn9Bj1h8rQSya5RyhmRE8dltw/ATQKeUY9AowR0LsxbD0r+Axw7D70GI74PH7ee9mwez6kANO0otDMmIRK+S0yvBxObihqB9H68eUyvlVGVP44lFBSzf0EjP+H78ffJXJPuPwHFV8nU2N0fq7RRW2+ifGiEGlAdEC3Ojw9tsD1Z2uFnrlDDEwowF4LaCTAkqA2hDlZ1mo1oiLqosTrwtlFwmjYKbRmSE5A8Z1EpovnXYXF6qmlx8u6OMVGOAQZF2zItuhVEPQfZ4UBtpdHhotLspbXCQHq0nXKs84+2YbYXL6+fD9cHZTx9vKuWOcVksf3AMGqWcSL2qUydWcrmMuDAtVzWHRXdWScxRhOlUhP6lOw+NDjevLy/kreYSkcJqK9tKGvhy7ogg8kgmCBjUCin+AkCjlKFSyLo0cQQwuV8Sry4rDMqmunZI6q+WOLK5vLi8fsK0yl8sydAalHI5Y3JjyEsKY2tpI1EGgdgwLX/5cifFzePpzizOPppLeqZgc3lDiiz+tXgvwzI7j8DuaujaV5pfICL0Kib3TeLLbUeC6n4B3l17mOFZ0bi9fqa/vlYKxdQq9/LuTYO47b3NTOgZR7heyXe7K/ludyXXD03ldxO7nVbWi8vro7TOwSs/HcDjD3Db6ExSonQ0Ob1MeWW1tIqZlxTGWzMHolcpeH7p/qBgsw2H6imssraZPNKo5AxKj+SHPVV4/X4SwnUhA+nl+2pwen2YOLNkgNXlxeLwUFpvJylCR5hWedYyc841TFolD03M5bL8BDYdqmdUjpnUKF2H1AdRBjVzRmdw9aAUtCr5Se2VarmM+y7IYdbbG6RB0JX9k9osfIoyqLl2SCpT+iehVcrP+uCjT5JYjX2UOAJxdf35pfvpfp0xyHoVIIDPH2rf87ay7VQYmxvDny7uzjtrDtMnOZwGe+gk9HCtLWQlT6NUoDmBMqve5uadtYeYt/owerWcl6/px8IdZSzeWRlkX9lV1kh+cni7j/lEaHR48Pr8ROpV2Fw+7G4vggCROtVJG6/aihqri9J6B3a3lyyzAbNR3eEBhD9ASEbV0bY0lULGxXkJDEiLZOOhOnonhpEUqRMn38dhe2lDyLa1RXXcNNxHmK7tn10hEzAb1VQ3HbNDmw3qU06cvD4/X2wt469f7QJg5YEaluyu5Mu5wzssFT9KRIJIeLY1Z8ni8PDkoj1B59zW0kZK6x2ndUwhE2l7NXz3h+Btu/4H4//WYfKotQFit3gjawpriTVppP9AvO9ePTiFF77fLz03KUJLuFZJlcWJLxBAo5BL2VUtYVArmNQ3kRUtcpRkAozvEcv2kkbG94jhnvNziG2RHRcXpuHJKXk89d1e7G4f0wYmE6ZVUVRto08rv2dBEEJJf5UOkgfCtPch4BMVMIKAzOPkpR8OSLlOP+6torDaxn3jc1h3sJ69lU0IAswcmkb8cRlRFoeHP3xRIJWE/NTkYkaNg09vGYS5xfMa7G4e+2Y3CzaJJLZcJjBv1kB8gQA3/Xej1Hr33s2DyU8OP/N2L330KdVqDrdXUiCaNAo+nzucdUV1YttlthnzKfI8dpdZmPb6GmkC1TPBxLwLniZ6/sVw1zasaPhg3WGeWCQS0Eq5wLxZgxiaGdXhz1/T5GJrSQMl9XbO6xaD2aRG205V74mOQABSolrx8HYC7G5RufzG8iLUShmzR2aQEK5BKe+6OW8tYXV6pdbEo6ixuqlucpHQgtQP0yn548Xd+f1nO6RtD07IDQrN76qIb844euq7ffj9Ae4+L5vUyI614f0c4fcHKKm38+SivZTU27mqfxKX5CW0es3/pcKgUWDQKDBplRRWWbmvWfEO4nnSK7HjmWKNDg9F1VbmbyghN87IJXnxZ8QK11puqTguPHtRGmcbv46ZcheDTCa0as1JCNOiVshYV1QrEUcgrki+t7aYi/LieX/tYT6cM4R/N+cJfLS+hDvGZp0W6VFpcXHh8yukwfrX28tZfM8ovi+olIgjED3V64rqGJ1jpqwxVHZa0RhatX0iKGQypg9Koc7mZldZEyaNCrVCFkSk5cYZkZ/hAaDT42PJ7gru/3gb/oA4IP33NX1FKf05tm84Pb7m0NUz+/OM1KsZlqlmWGbbbRuVFiff7Cin0uLkqgHJxJs0QatdihaBvSdDmE5FIBBg3o2DqLQ4iTKoOFhta5d6SCYTzhnZF2VQE9HGbJ5IvZo7x2Vz8zsbpW1JEVpSI9s/iI7Qq5g5LI3L8xORC2JQeUdX8pbtq+bZJeJEts4GTy/Zx7jcGL7aFjyQHZLeOVkKLo+Pwmobj31TQKPDw8xhaUQbVNw4byPRBhX/mNSboZlRHfrbinauDWwrES07ZoOaL+YODxqEnw50SjmjcqJZvu/Y5H1K/yT0zeqiMK2SMK2SnFNk9LRGwo3Kjpb201ZE6VX8++q+3DxvI00uL0a1ghev6RuiEPP6/NTZ3RAQLReNDg//XX0w6DnljU7KG50dGlw12N18sfUIzyzZj9fn5+aRGcwcltama4LPH6CpheXvKFqusJ8KNVYX5Q0O/AFR2RhEggQQbWshbxxKwLYXJo2Sh5sLLqYPTGbqgGTkMkHMZjtO4aNWyMVzXq/i861l5MQauHNcNrvKLNw9fwsWh5ehmVE8Py0/JDtNEATG5cbwwIQc3ll9GJNWyR8u6o4APHJ5T3RqRUhmllImUNXk5NFJvVArZCzZXcmdH27mgQtyWyWPTgpdRNBDjz8QFAgO8PmWIzxwQS7/nTUQp9eHUi7DoFaEqB2dHl+I/aa4zo79uD+31eWViCMQz5O/frWb28dkSvliNrePe+dvZcGtwzqlvas98Pj8ONw+9GoFcplAnc3NmyuKpEzHWcPTmDMqk0v7JLRpfw12N48v2hN0Td9VZqGcbKK1EVC5E2t8bFDbqMcX4Hefbeez24Z3aKW7xupi1n83sKPZ6viPhQUsuHUo+SkRp3hlMFQKGdMHJfNes20N4Kr+SajOYJDzkXoHFz6/QprIfbrpCEvvH03iOVRTtgdKuYz4MA1VLRYCAMJ1SuzNmYkgXj8u7h3PkIwodpc10i3ehNmgDmpY7KrQqxX0T43ktWv7EwgEumSZz9lAjc3FpJdWUW8XF+K3lzbi9PqZNTztrDUingsczfMSBPFciNCpCNep6JFg4rt7RrGmsBaNUs7oXPNJC3ragkAgwIr91cz94FjRw4fri/lg9pBOj0gwahT0TDCxq+xYqP7skRldPr+zI/iNPDpHyIwxMDg9gnUHxQrQcJ2Su8/PRqMMzsw4CqvLQ1yYGl8gELSqo1LITjemhs82lwat8vr8AeatPkhOTKiV5mCNjYvz4rl+SCprCo9Va6oVMgamt2/VNtqgZu64bOxuL68vK+RPF/fg0YW7cXn9ROlVPD21T7tylE4HjQ4Pf/58lzRA8/kD/P6zHSy+ZxSxpnNzE/b4fBypd/LiD/uxOL3cMiqD3Dhjp4WfNzk9lDc6+WLrETLNBkZmm9s10KxucnLFS6ukwOY3VhzkizuG06uVQOa2IDfWxK6yRn7YU0mUXsUNw9JRCOLg++dgj8qM0ZMcqZXUR4IAc8dltXrDGJgeyWe3D+P9dYdJj9IzdUDyaQ/yFS0adNRKOfPnDOXpJXvx+gLcdV426a20/ZwIVpeXz7ceCdq2fF81f7iwO7OGpfHB+mKMGgV/urgHMW1owmsLam1urnh5lUQY3//JNv45uTf5yeFsOlzPnHc3suJ34zpEHm0vaZCIIxADzt9YXsQfLuqOsgNZFRF6Fc9MzeezzaWsKaxjfI8YJvaKEy0n7UCsScMjl/XkyUV7sHt8TOwZx/RBKe1uyZHLZfRNCef7+0djc4utahE6ZdB+Gu1uvt5eznNL9+MLBLh1dCaT8hNatQV3lLA+VGvnL1/ulh4///1++qdGkJ8SjtPtQ6WQnTDXJ0Kv4uaR6UGDvUi9itxTEHFevx8BqLd5uPY/69hTIRJEGdF6PrplyLFBqDYcBt0CPz127MUx3UHd8RVOk1a0lE7oEcuWkgaufHU1Hp/YuvbOjYOIMWmCFCGRehUzhqRyaX4CGqWcepuLG+dtkHimNYW1PLd0H3++pGfIpNDl9WOxe/jrZT2xu71sPFSLwx3OM0v28tGcoSHkkUYpx6RRMufdTUHbB7Xlvm2vA49DDMnTRIAyeEAvF8SFl5Yrr2qFDJkAMafIrhMEgcRwbdBClVohQ3Pc4k1rbY/1NnfI9eFwnR1/K1a8M4nqJif/XX2IzYcbGN8jlkl9E9hdZuHlnwql57y6rIghGVGMyY1p0z59gUCrtlOX1y9a5cy5uLy+kNXu8gYngeM+f3WTi4JyC/5AgB4JplNOyI7UOyTiCMDrD/D4oj28dm3/E070G+xubG4fPp8fvVpBlEGNQa3k+qFpDMuMZvk+0VqeE2s8Y4s9Xp+f/6w8GPSdODw+Fm4vY86ozJO8susgxqThkct7Mf31NdI5P31gMj/urWJPeRMPTMiVJr0mrRKTVtmue31Xwq89kqK41i4RR0fx0fpiJuUn/mJtTjVWF3d9uEWKXRjfPZY/XtydV5cVcmX/JCL0KlxeP/Hh2k6x8NXa3EHqXoB9lVaqmlydTh5FGdT8d9YgPt1cyvbSBib3TaJ/asQvugH8N/LoHCHaoOblGf050uCg0eEhN9YoESYjsqJDPM3TBibzxKK9XNQrjo2H6qXt944//Zya1mSuJq2SQce1NQiC2CACMDQziuem5/P2yoNE6FU8PLHbaVUqRupVGDUKZo/KZMPBOj6/YzgKmYBRo+y0ikaPz0edzYPb60ejFAN5jw7gvb5A0PerV8mZNSwNrz9AlcVJmE551gNka5rcXPj8Cin7YsnuSj67bRj9Utu36ncibCtp4Lq31ksTlB7xJt65aVCbL6TbShuDmr58/gDPLd3Hc9Pz2z15BlF+PSwrmr4pEbi9fj7bUsrbqw4RqVfx50t60CPe2KEMh5omF7vLLdTZ3AzJiCLKoOrUHIRKi5MXpveVArMv7BXHgaomeiWGhfwmw7RK+qVEkJcUhlwQ2mQtqGpysvOIBZ8/QJ/kMMyGUNuVXq1gYHrzSh60q9IcQNPcbPXT3mPNe/4ANDjcPDQxl9vHZgJCCCFxuvD6fKwurAmx7H69vYxR2dGU1tu5akAyFoeHGOOp7VcnQmkrleMl9XY8fj9KOvY5og1qbhqRwYzBqehU8rb9LS1Ovt1ZQXWTkyn9k4kLUzN9YDITe8URCIhB26c7oFYp5MSchPAuqrHxx8+P5TA99k0B3eONPDapN5e/vEqacI3JMROp79igfsnuiqDHCWEazEY1983fyrqiOvKSw/jn5DxSTmBVGJkdzdszBzJvzSESw7XcPibrhNcnp8dHWYODN1cWoZLLuWZwCvFhWok8Kqqx8eXWMm4eKYb0olDDoNkQmQ47Poa4PuJjQ9sm9adCtEGN2+vnD//bgccnfqd2t497P97aqiJELhOkpsVN1bbjBUqsKaqjoMJCcoRWUoN5vH7eXFnEmysOAseUYy/P6IfL62fl/mqu6JcUtB+ZTODivHjWHqzl250VKGUy5ozKIO1U9iFrFXw2B4p+FDOIxj8KvaYEZfwY1ApuHJ7GGyuOHct9F+S0aUwSpVfx1FXHwsRlAvzl0h4YtcHX/DCtkpRIXVA+3vRByWw+XBf0vFFZ0Z2ec3My1NpczHlnE1tKRAvqmqJaDlRZGZ4VqtBcvKuizeRRpE7FbaMzuaMFiZoYriXd6IcrXgOFlgiFQKZZH5R3d0lePLoWRGOVxcnU19cQH6ZFJogT1gW3DZPsk62htdwtm8vXaj4WiEqCRxcW8NlmcQGid6IYcWA2qonQKclLCiO++RqgPoOZPIJA0Gc/ijOp3ra5vDg8PsK0yk4773rEG/nh/jEUVllRKWTsqWji0YW78fgCqBQy/nBR9xPagL1+Pw02j9hY+itV9Pxc0Nr1MdqgRtlJ7YNdEd/tqpSII4AlBZWM6x6D2+en2upi6mvHbLr9UsN547oBHRYRyFoZm52pb9hsVDNnZAYenx/1OSizOtv4jTw6h4gyqFv9cUQbVCy8awQv/1RIg93DzGGplDc6uWVUBqNzzBTX2XhoQi4js6NJjtSd9ol6cV48r/xUSLVVlMmGaZXMGJyKXq3ghen5vLqsCJVCxu8m5krtZ+E6FZf3SWBUthmlXOiQKkYpl5EcqSM+TIM/IGY3OD2+TmGd3V4fGw7Vc8cHm2mwe0iK0DJv1iAym1VVGpWMvKQwtpc2IpcJvHHDAD5aX8KoJ39Ep5SLeUB9ElHIBSotTr7YWkZihJaxueYzVh/5077qkMHba8uLeG5anw4HYdbZXDy5ODi0eXe5RVz1DQSI1KtPaXXyt+Lr9fnpsK1Xo5Tx1fYyHvlKVCwU19mZ/voafnpwLImn+blrmlxc99Y6CsrFiaReJefru0Z26kpdk9PLzLc3MCIrGpNWyT3zt5IWpePy/MQTvqatkuQqi5MrXl4tVXzHGNV8OXcEcWGtn3unO1hUyGVcPySVJbsqpSDeS3rHk2k2oFUpOj2A9VCtvdXBb6xJg1oh5+UZ/Xl9eSF376rgkrwErh2SclqNPGNzY1DIdku2FoDrhqZ12mRC3g7LZFWTk0ktFHuvLiviy7kj6JFgIvYk1+6aJhfFdXY8Pj8ZZv1pX3e+3VERsu1/W47w2BW9+OmBMawurCE9Wk+m2dDh9qN+x9lbbh2TyV++3MX6g+JEf9WBWma+tZ75twxtdYU1TKtibLcYBqZHoJLLTmohLmtwMOG55RJRM39DCR/OHsyaohpp5f5AlTU4LFMXCXlTIfdCUGhBriAQCOD0iAsMHc2L8fj8IUqZkjrHKRUxadH6kPbL/ORwFm4v5/uCSj65dRhmo1oMzK4Itd4drrURY9QEkfstEWVQ88/JvfnzJT0QEDBqFCc/f70uWP2CSBwBuG2w8F7IGB1MHmmU3D4mi4t6x7O5uIGhGZEkhGvbNCaRyQTyk8NZ/tBYyhsdxBg1GDWKkN+o2ahm/i2iVX9vRROX5ydwQc84imvtbClppKDMwrCsKG4fk9VqttyZgt3lk2f+s18AACAASURBVIijo/hkUwmzR6aHPFcMLW8bBEFgRJaZ7+4Zic3tw+8PkBmtJdxdAUvnQc0eTD0n8+3smTz4TSnbSho5r3sst43ODMpX23iojuem9WXVgRq8/gAPTujGyv3VQWHqxyPTrCfGqA6yTt0yOkMiOY/HgSqbRBwB7DjSyIfri5kzKp2f9lbz4ILtgHiPf2ZqPuO6xbQ5A609kMtkzBqezvwNJdjc4hjKbFAzvkdsp78XQGm9nSe+3cO+SisX9o7juiGpnaKWVynkJIRrabC7ufLVNdjdx8aDi3dVMHdsVqvfX53NzYJNpczfUEKMSc1fLulBZoy+y+Y91dvdeH0BIvTKX7RN60SIMqi5sFcc3+4U781qhYz/u7RHuxf/fi7w+wNsPI7sB9hb0cSEnrG88lNRkE138+EGqppaby5uK6L0Ku6/IIfZ7xxT3PZMMBFzBpRdtVYXGw/Xs62kgYm94kiN1P3iCdzfyKMuCIVcRmqUnr9f3hOfP4BWpcDj80urGzEmDQPSOp4/EmNUs/CuEazYX4MvEGB0jplogxq5TODSPgkMz4oWA2yPm1AIgtCptiKFXEZVk5N31hxmR2kjl+bFM657bIfeo97u4ZZ3N0nqotJ6B3d9tIV3bhwkknZ6Na9f15/HvilAp5Kz+XA9X24Tq+ObXF7+78tdDM6Iwu72MfnlVdKFLdNsYP6cttdgtwfhraxGhOs6p4Uh0ErQL4iy9j9+toOnpvahW5zxpJOn/JTwoIGlTIC7z89qNRC4PWh0eFiwqTRom88fYOOhOhJPQsScDAUVFok4AjET4/ml+/jn5LxOywbIiTMSZVDx075jqp2nr+rTKQOAb3dWSMQRQFWTi082lXDnuOwTvqbO6iZAgEi9CkEQqLe5sTa3eYTrlCdUcMSYNLw/ezBNTi9KuSB50TsbDXY3v/9sB7eMzmRAagQbD4sKygidkpnD0nC4fdz63iYp/PmZJfuwurzcNz6n3ROOaIOKz24fxuPf7sHm8jJ7VAZ9ks5kV86JsbW4IWhS7/UHeP77fTwzNf+EE/jqJhfXvLFWalJLDNfy2e0nVw2cCPkpobk2/VMj0CgVJEcqmBaZ0u59nvC9ksO5pHc8X+8Q87L6JIXzf1/sCnpOUY1NChk/EQxqpVjoUG9n6e5Koo1qBqdHSYST3x/g7VWHJOIIRNXEkoIqhmVGS80n0weltH5NU4tWuFqri8W7KvhxbzVjcsxM7BXX6oDV4vDg9PowqBRolHIaHR40SlkIuapTKUiKCLZijciKQnMK+Xq4VskTU/J45Mtd2Nw++qWEc/3QVGa+vYFGh4eDNTbMRjVGjZIrWgnMHpgWyas/FfLMtD4nfI8wrYpTOMmOwdUEB1eEbq/cCVHBNqAIvYoIvYq+xxGHbq+PeruHkjo7sSYNJo1SyrTz+HxUWlzM31CCTBCYNlC08YYoOPx+cNQRrxbVqA6PjzCNkiMNDh5csI3rh6YxZ1QGO480MufdjXw1d0QbP2DHoZAJyITgViBjc0D8Ff0S+by5pfLyPgkMbqe13+v389bqQ3yxpYz4MA1fz8qBeReBRRyjUPUPlM5G7hl9Lwcb/YRrFSHjhJw4I1e9ukayx7y5vIhPbht60lr06OZsuLdWHqK4zsZ1Q1LpnRh2wnHBzhYWt6PYUtyAxeGVFoNuGJbGZX0S2F3WyMEaG/FhmjMySY4L07D0/tEs3lmBRilnbLeYMzJRrG5y8tjCAi7NT+BavYqC8ib+u+oQd4zNQtNJYwuTVhlEHAFkmA2t2mB8Pj9fbD3CY9+IjYqF1VaueHk1Pz4whriw4OM52d/+bMDl8bG/ysrfvt5NTZOL6YNSuKrZsvRrQqRexT+u6MXccVmUNzjplWj6WUQ1nC5kMoFL8hKCiGaA4VlRNDm9ONwnsOl2AIIgMDg9ioV3jeB/m4+QG2dkbG5Mp0ei1NvcPLhguzTmePmnQp6Y0psp/ZI6Ra3fVfEbedSF0XLV9UzIsQVBIMakYUr/pFb/7UznDh1FjdXFzLc2sLtcDBtbtq+aO8Zmcue47NNepXK4fSFBq7vKLEEESlyYlscm52Fzebh3/jZATPl/4eq+hGtFm45S5sekVdLQPAArrLZSVGM7I+TRgLQI0qP1Uli6Qa3g9jGZnRLgHalXMXdsFre9v1nalhalQ62Qsavcwi3vbuLT24ad1G9tNojql083l1JpcTJjcCpJER0Po1Qr5aRH61l/sI4bh6dxaZ8EnB4/iRFavD7/aV2AW6vCrrO5mxvOTv/7bHJ6EARxchtj1PDl3BG8v66Y0no71w9JI8PcOcqmKkuogqCi0RlSOerzB6hucmFxeHhr1UG2lTZwx5gsBqVH8shXu1nYPInPiNbz4ZwhJyQfog3qTveBHw+Pz09Zg5MHP9nGPyfncftYGU1OD/1TI9Cp5JQ3OoNaw0DMZbt5ZHq7rwNalYK8pHBemdEfX8B/SkWNx+un3uFG2cbA9/bA26pi7+RKlGX7qiTiCOBIg4OPN5Ywd2xWu9Uxg9MjGZtr5sdma+Kg9Agm9Ixr1z7aiiiDmkev6MXvL+5OIBBALgjEh2kob0GeGdSKNmUBHKqxcemLq6RcvkyzgY/mDJGuURpl6D7CtAqSI7X0TDBx93nZZJxEaWhxeHjkq1182RwMv2R3JesO1vLopN6ShTAQCFBS7+AvX+xkd7mFMbkx3Doqg798uYu4MDX3np/LzrJGVuyv4bxuMfROCue9mwbz8Gfb2XnEwvCsKB65rBf+QIDyBgcKuUBUKypPg0bJZX0SGJEVTVWTiz0VFu54f7PUbNoyy2Zsbgy/m5jLvNWHMWkV3HN+DttLG3jv5sGdN1lWGyF9JJRvDd4e26vNu9hT0cS019ZKatq7zsvi5pEZmDRKKhtdjH92ufRvb64oYsl9o6VA+1qrC4fbg9Jrx1TwIdoja9CMfwRNZAbIBHQqOXq1gr99fSxfa9rA5LNaoGDQKLhxeDpvrjxm2fvTxd0xG9U8cmlPHpqQCwHQqeXtCk51e8X8no+aq+5L6x3YGqvRHSWOmiFs+5D6pOu48V0xX2nu2EzmthgzLS2oCspVaXJ5+XxrGQ9P7HbC9xYEsczloYm5eH3+UypPR2aHlm1ckhePXCZgdXkZk2MmLymMK19dLanqbhmVwdxxWZ2W5XgUYuC0lpnDQ5VfnQmH28cV/ZJ45KtdlNY7GJweyRNT8thS0sD6g7WMyY0hNUrXIYLMpFFy//gcnlm6j0BAHL89enmvVvfZ0Mrim8PjY0+FRVIq19lcrD9Yx+JdlYzKiWZUtvmsje9bot7uZsorqyVi4Oji7TWDUs4pqXUuEKlXE6lX0zPh3CxqnU3YXV7CdQrmjsvindWHkMsEbh+TRWm9g2X7qpk+KFkim0EslOmMoHuTVklPbdgZ/Y5tLq9EHB3F09/tY1y3mDPmUukK+I086qKwujxYnT5cXh86leIXG6IG4o/vKHF0FO+uOcwNw9JOmzzSqeSE646RPiBaKo4SER6vH7fPj0GtQKOQMTg9krVFtXw4ewj3zt8qydFHZkfz8S1DueDZ5dJ+vL4zI403GzV8fMtQthTX0+jwMDI7utMm9IIgMDwrmk9vG8YH6w4TH67lvG4x3PexSJodtcecah9xYRruGJvVKcd0FFqlnLvGZRNrVKNTK7jy1TX4/AHCtEo+mjOE7vHtD7QdnB6JXiWXJOwAs4ann7aKy+r0UFDexGvLC7luSCpalZw9FU0My4zipuFp6NSKTiV4p/RP4tXlRRLJIAhw/dDUIOKgwe5m0a4KXl9WhEYp59bRGejVCh5ftIcnr8yTiCMQ1R5vrTzIAxfkdigwuiMI06q4om8C//6xkFvf20SkXkWcSQwajNSrQ1ZaQVxNVnRgUNmW9r46m4v/rj7Mgo0lxIWJoaW5sYZOa10ckBqB2aCW7MEyAe4cl33SiW5xXWhm06FaG75AAEWLc8Dr81Nv9yCXnVgNGmVQ8/TUfGwuLwHAoJZ32J52MoTrVIQ3Rxr5/AGenZbPzLfX4/T4UcoFnpjS+5SZOFaXl2eW7AsqdCistrKnwoLZaEYmE7hhaBofrCuWfuMROiWX9UlEpZARCAROOTmyu718dVw19lfby/n9Rd0l8qjG6uaaN9ZKSqL5G0posLsZkCYqSf713V5pNfWdNYe5ZVQGd5+XzavX9sft9aNVyWm0e7jxv5vYXW4hKULLv6/pS6+EsBBSXKMULSsHa2w8/OmxGu6USB0Z5mMlFhF6FTeNyODK/kkIgoBGISMAnTsZV6hh2J1QsQOKfmrOPPrb/7N3noFRlXkX/83c6SWT3ntCQhoJHWkBFBCQYgfFrti7ruuu7u7ruuq6a8MuNqzYFRVFEKX33kkIIYRAep1e7vvhJkOGGUJCx+V8IncukzuTe5/n+Z/n/M85akR9G2pb7Dz69WafNuyXFxQzuW8iQRolH68q83nN7HDz5dp93HN+BgebbEz7YA2byhvRKOX89fzzmRTlwjhjBNy1BoJiCDOoee/6vry5qIT1ZZJZ9RV94jt8phqtDiwONzKk7+p4iSajRsmdw9OZ1DOOLfsb6ZcSSrhBjUKQE6SVd+hhZnW4abY5kctlfnN8k83J3K2V3p+dHg+iMgAJGhRLjfnQBtm7S0u5tt2aKZC6z+Zw+21ABIJSkHdqPosK0vDilQU8NWc7ZruL6wYmM7x7JDKZpCqY3C+R//t+q0875ozFJVw/MPmEk0enCgpBzn2z1nvHnZV76njih230TAzmhflFfL/pAK9f3YudB5tRCDKSQvWEG9U4XG5EkQ5bOt0ekdoWOw1WJ5f1jueSXvGYHS6CdUrCjjBmqxVyYoM1PklPgHejyGx38cqCYt5dWgpILcvje8Ty5MU5pzwNalN5o5+i5Is1+xibF/OHVt78r6PZ7uLqGSsZnx/H9Ck98YgierUCm8NNSbWZAalhzLyxL5+u2kdahJ5rz0s+a2reQPuAgTYM/2g4Rx6dYag3O7C73JTWWnj4y43sq7OSEq7no5v7nzWRo11FIGWJQa1AdhzWZiF6FTNv6Medn6yjvN5KTmwQL00uIFSvoqLByoxFJZTWWpg6IJHeSSFcPSCJYJ2S+dsrfXwMFhfVsONAE09MyGF5SS3bKproFuWfRneiEGFUM+okqQKCtEp6J4WQFqHnqTnbueLN5d62j5Rw/UmN0T0aYoM1XNk3kcL//OYlTBqtTh7+ciMf3NCf0C6aqIcZ1Hx/92BenF9Eo9XJpb3i2HmwGZNO6efL0hmU1lq4/M3lPHJhJt9vOuCz0/fClfmM79G5GObOIjpIw3d3DuL5ebvweETuvaAb8SG+JsMbyxt8isx7P9vArFsGUFzV4reQBMnjyuZyd0geWR1umqwOiqpaSA7XY9IqT9giX6WQc+PgFJSCnO82VJAYpuPxi7K9Rb5RreS6gcnMXFYKSIviJyfmnhCio9HqpMnqpKrZTnyIlhCdEpVCwOX28Nnqfd5UjopGG5e/sYzfHxruJ/k/VkQYpXvxszVlVDXZufa85KMq9ibmx/LKgiKfhcnU/kk+/hD1Zgdfry/nw+V7MWmVPH5RNjlxQWiV/tN6qF51WhbnglxGz4RgFj48nAaLA5NORZBacdRNAY8oYrYHMu89VCxHmTTMe6CQHzcdQKWQMzonmkijr6qn3uJA9BB4/JDJUMrlxIVouXFQCumRBooqm1G2+47NdpdPCxpICqU2IvrF+bt8Xnt/WSk3Dk7xFm51Zjt3fbreuzlSXm/lhvdWM/f+oUdMvsqPNzHnniHMWl1GYqiOCfmxfgtplUJ+8nc1DVFw2XtS2ppMDlr/tLUjwe0R2Vdv8TkmihxSAwfwgPKIYHW4eP6XnWwql9qhbE4Pj/+8l2G3X4xx+bNwcBMExQBSu+2fLszE4nBjVCs6VKjWtth5/LstXsPwGwencP2gZK+X47FCLpcRrFWSGW1EqxI6RXTXtth5aX4R36zfT5RJw1MX59IjPtj7TGiUcrpHG9ldLSkPRRF+LbFwZb9bka96U3oTQUXdsGd4df6htcrhz9RlveJ5/ffd3mJdKci4bmByp5SLdWY7Lre0gdMR2RGkVXJRjxgGpYchIilm2q7jhSsLqG62+6mAPSJH3ag6k9Fsc/lsSgGsKKll6oAkVIKc/17WgxveX+0dN24YlMxV/RJ5c+FuXCLcXphKYpgOm9PD1v2NzN5YQd/kUC7IiqLWbOeKN1dQZ3Ygk8HDozKZOiCpQyLSoFHyl7HZrNxTR5NVer7G5cV4x6AWu4uPVpT5/J8fNlfwl3HdO9/GeoIQG6CGSQyVFPDn8MeFRxSxOj18vmYfn6+RFJUyGaz6y/kUtgYJZMUE0T8lDIUgO6t8sPQagd5JIazdeyjI6tahqaecmD3VOEcenUEorTXz4Ocb2VTeQJ/kUKZP7sl9n21gT42ZZ37aztOX9PCL4T0cbreHOos0WQdpOp74zxToVQIX94zjm/WH+mH/Oi7ruIodpSAnL87E13cMxO0RUQlywgxqqlvNa9t8e37bWcVzl+dzcc84Lu0Vz2PfbvV7r837GzkvNYy0SAOPX5R91ksRgzSSx8zyklr21VlJDtPx5jW9CTtBKXfHAplMhs3l9mPsi6taWlvNpDaTsjoLczYfIC/ORL+U0COqC5SCnH31ViKMapLDdby1uIQt+5sYlhHBy1f17BIh4vJ4eH+Z1JrQPyWMZ+fu9Hn9Xz9uZ3B6xAndKdGpFeTGmZg+pQBE/HylbE63t62hDaIIi4tr0CgFBqWF+RnwXtwz7ojjR4PFwd5aC/O3V5IeaUAhlzPyhYU8OTGPi/JjTljyYKheze3D0rmqfxJqhe/uvEmn5P4LunHNgCQqGqxkRBkJ6YRy6GhotjmZuayU5+dJhb5GKeezaQPIiwvG7HCxqsTXyNHm9LCrsvmI5uRdRZti797zM7yeE26PB4fLc8T2rWiThlnTzuO/v+zE5fZw14h0r9k/SG1Mv+2s4p8/bPcem/zWCn5/eBjxIWfWtK5WCkQphS75NQVplNw+LI0lxYe8fYJ1Sh9fnSarE1GEy3rHY9D4Kv8sdhdbK5r49887sLs83D4sjUHpYT4LuiC1gsfGZZEVG8TTc7azYZ807w7vfigVS6MUUAoyH2+l+BAdNc12ok0av6yAwzkRl1tkw2GmyvUWJxa7G4yBP7tBoyQ7VskTEzvfInbSoAvs1ePyeLA6XFQ02Nh+oJmChGDCDCrvuGrUKLgoL5ZPVh0qWiMMaoJbn+er+yfx/rK9XvWRXiVwRZ8EzHY3a/c2+P2+kloLCYZI0PsmlqkVwlHHJo9H5IdNFcxpNY53uD28sXA3A1JD0Sjkx9xe1GJ3MWtVGU//tAOQiNIZ1/ahMCPiiApXh8vDzOWlfLBiLwDNVS1MfXsVi/40jOjWSt6gVvLo2O5sLG+gvN6KXAYHHGpcQ/6Equ/N0FiGJzyLOVta2Fhe7H3vh0Zl+njVRQap+eX+oby9eA8uj4dbhqQSc5Qxze50s/1AE499t4XKRjuX9Irj1sK0DtdiCiEwkRlp1KBRCFzSK45P281V43tEoxDkvPxrEQ1WJ1f3TyTGpDnh4QwnCyatEpUg91FF5saZKK0xMywzgnnbq7zEkVGtYHyPWMZNX+I9//uNFcy9bwhLimv5x2xpvfn5mnJeuaonHyzfiyCTMTI7ioONNv7zy04m9ozzzpNmuwu1Uu5XXCeG6ph/fyGltRZCWv0N27dfH84Xnq4GsdhgDdcMSCLapCFEp2LjvnruHJ5+SttNz+HUQ6dSMCo7il+2HVJUjs6Jpt7sIFh3KAX5ZJjpn2yE6dW8ObU3P24+wLqyei7uGUd+fHCnWvPPZpx7Ys8Q1DTbueG91V6/m+W7pYnl9mFp/PmrzWzd34TV4eqQPGqyOlmwo4qnf9qO1eHm+kEpXD8w+YyXgwbrVDx+URZX9U9ke0UTg7qFE2lUH7dRtFwu89vd3Vtr8UkSAXh7SQnDMqUe8HE9ovl2g6+p26icaKb/WsTiohq+WlvO7LsGndUEklwuIysmiK9vH4jTLaIU5IQbVMedNHS8MKoVhOpVPjuVF2RFoVMJuD0iC3ZUcd9nhzw4BqeHM31KzyPe326PyDvt/CgABKHrejY5Mm/h6xFFvwKx2ebiuCPnjgCDOjB5ohRkZEQZvWkdbUgI0bGtopEwvZp3r+vLkz9uo8nm4trzkhiRGcnBJhtb9jcSqleTFKbzxot/va6cJ9oRERMLYrn3/Az+Pnsrg7uFE9VBFHxXIakmAhNtUsuTivTIE6fua7G7fBQiiaE6BLmc6QuK2Fdn4YbBKRS0thy04UQRR4dDJoODjVZmLtvL/kYr152XTLdIg9/Osl6toF9KKG9d0xtRxM+Hqcnm4ovDfC5cHpGVJXXE9/ZVqB0Os92F2e5CkJ86X7tjQV6cia9uP4+3F+8hKkjDLUNSiWi93ooGK7d8sIatFU0Y1QqeuTSPYZmR3iKkwerk/WV7KK+3crDJxh0fr+OzaQPon3ooaEKnVjAqJ4opM1Z6591Ve+q47aO13mAFo0bBX8dm838/SK03aoWcx8Zl8faSPRRmRDAxP5ZvNxzyorlmQKLPHC3IZeTEBvkoAYM0ihNm2n+qYXO6qWiw8vbiEpSCnEk9JWPo+z7bwEuTCxibF4NSkIzEHxiVgVYlMHfrQdIi9PxjQg7hrSrCKJOaeQ8M5dNVZchkMqb0TSTCqMbtERmcHuZV3YD0zKSH6yAiC4KPnBTW0TUvamcw3oa1e+vJie16S3QbWmxO/vvLoY0Et0fk0a838cPdg4+4PmiyOf3SDx1uDzsPNnvJI5AIym/uGEiL3Y1GKUevUqDSKsEYDhEZyIExBXaSokLZUNbAiO6RxIdofQhUlUIgKUzP38dnI9I538x6i4Mr31rhVSu9uagEo0bBbYVpNFqdkpKv1YOnM2NHkFbJQ6MySQjRMXfrQfLjg7ltWBoXvbzEO8/PXFbKnHuGkBF9BDa1C3C6PdRbHMiQ2nhPRNjI4QjSKnjhynwe/nITFoebhFAtfx2bxT2z1jMgNczHr3Bgehhztx70IZrcHpEPlu8lPljDRzf1R6mQIchkIMLwzAjuHpHOol01DMuIIDEskyarE61SYGlxNd+sryAvzsTUAYk+95ggl/xLIwMQ9EEaJbcMSeGV33Z7j13R59T6g7XBqFEydUAS//pxGxWNNon4P0cc/eFh0ir556RcsmODWLe3nt5JIfRLCeOWD9fyxa3nBbxvzyaEG9VcNzCZq/sn/qFNstvj3FN7hsDqdHsXsG3YWN7IX8ZKve7nZ0USdBS1xMEmm09xPf3XItIj9EwIkFhldbioarbz/cYKIozq1mSK0/cAt5nH9U3uWipJV6ELsGg3qBXeVoce8cH8aXQm7y0tRSHIuGNYGjqV4E23OdBoo6iy5awmj0BSQ5yMz+B0e0DkmHx1QvUqZt0ygIe/3EhxVQsjukfy+PhsDBol1c12n4U6wJLiGpptziOSR3lxQSSGahmVE+01CI40qLucDieXy7h2QBKfrd5Heb2VHvEmb1sFwNT+iUckeU4WBLmcq/sn8t2G/ZTWSu0h/ZJDGJgW1mrUpyYySE1e3Hl4EAnRqthbZ2HSq0u9rSP9UkJ4ZUovXB6RF9sRJwCzN1Zw/cBknrG7jmrufKbD4nDjESE3LojLeycwKD2MD5fv5aOVZbg9Il+t28+LVxbQKzGEdWX1XNEn3ktSnGhUt9gZ/8pSrzH47A0VvH9DX4ZlRgY8/0iqCLVCTkq4nuW7a32OJ4VJxJEUGOBEqxJ87s3qZjtPzdnOvG2VpITr+felPegWZTgpgQzHC6nNNpScWBOCXOa9xmabkye+3+YlZJrtLu6ZtYEVj45AJgO7y82K3TVEBml45tI8Nu9v5LlfdvHhir30TAz28bJyeUS/eXdrRROO1uJZr1Zwae84RuZEUdVkI6a1wL9hYDIJoTou7x3PqJxoft9ZxajsaHolhfgUZWEGNS9N7skN769iX52VEJ2SV6/qdUIUdScCTVYne2stfLthP1kxRoZlRnbos1fRYGX0i4u8SqzP15Tz6S39WbGnlie+38Z5aWHedUS4Qc3DozO5dWgqGqXgQ5AqBYH4EB0Pj/Y1b1YKcNeIdPbWWfh9ZzUhOiVPTuhOsBaY9FqnPZfaQ6sSKOwWwa/bfU1N8xOCj8ubwuESfRRpIHlkBejI80KjFMiMNvqY4QMkhPoTvhFGDREd8CmiCOV1FtyiSFmdmZgj2Bp0pZjZebDZz5Pm+40HuLxPArd9tJb1ZZIqLCc2iJk39OtUcEiYQc20oalM7peIXi3ww8YDPhtELo/Ia78X88ylPY5LeVBvcfD1unLeXFiCSiHn4dGZDMuMPKq/WlehUyk4PyuK3x4aht3lQasUUMjhhoEp7K5uZkKveC+xb3N6Aq45gzRKCjMjuWrGSmrNDtQKOW9e05u4YC3XvLPKe17f5BBev7oXH60o5fl50hy9YEcVc7ce5KOb+3fKE1OrErhpcCqD0iNYsKOSgenh5MebjlpPnAzUmR1c8tpSb9vfMz/tQJDLuGFg8v9M0f2/CrdHZFtFE7lxJvbUmrG7PDwwMuOsX1+2x//SPXyOPDpDILVwKLw9yyD5njRanUwqiOXWwrSjtqAt3Fntd2z2xgpJvXEYu7+n1sKEl5d4F08JoVq+vn0QSkFKyXB7RAxqxRm7M13bYpfa0booO48K0tA3OYTVpVJ/qkIu4y9js7xy76ggDVf3T2RCgeRhU15v4bLXl/u8x9k0QNS0SN4FSuHkqgwcLjcVDTbeWlSCRxS5ZUgqcSHaLi0GFYKcjGgj793QF5dbRKcSvESPKIrcMiSFHzcfZNWeQ21GHc07bQbks1bv46oZK3C6RXolhjB9SgFqhdCpNrMWm4tmm5PqGMVK1AAAIABJREFUFjuz7xpMdZONV67qxRdr9rFxXwNj8mIYnRN9WpQEkUEavrxtIFXNNpSCnDCDyscfSCaTeRf3za275O0TCFftqaeszoJerfArGERR+m77JIUETLU6GurNDkQ4I1SPRo2CqQMSGZ4ZyfRfi5ixuIRLesXxylU9uePjdYiiZHb8n8t7oJDLMGmVJyVKGmDHgWa/RLnXft9NQUJwl36nRilw1/B0Fmyv4mDrTveIzAhSwvVUNdt4cd4uFhXVkB8fzF/HZREbrMVsd/Hvn3Z424M3729k8lvLmf9A4Rm983f4GGJ1uFlbVu9z7PGLstlU3sinq8qIDdZySa943llayntLS3lyUi7DMyNJCdf7KRFUgpwQndInlSo6SIMgHDrPqJF8v9p7Do7Ji/H+e2xeDGPb/Xw40iL0fH37IGxON2qFlOZ3JpB1Ho/Iwl3V3P3peu+xggQT71zXF4NGgdPl8SHa3R4P7y0t9SFMrE4383dUMSA1jCVFNX4CTI1S6DIhEGGUTJhtTg9yGYTolSiFYx9fZTIZY3vEsLq0jh83H0ApyLlhUDIypLCGY4VOLdAt0uBDBI3J7XguMKgV/HlMd9aXNbC/wYpMBtOGpHZ5nKw125n20RrWtWvxu60wlXsvyDiuzxTIk2ZUTiRLi2u8xBFIBOuczQe4dmDyEd/L6nDRaHNR22InTK8mSKtArRD8WqgAkMkCH+8CNpQ1+LTx3jtrAz/dO+SEk0cQ+L6+bmASTrcHm9PD+zf0ZfqvxTjcHi7pFc9HK8q8gQkmrZLJ/RK465N11LaSaHaXhzqzg1d/K/Z5z9Wl9Vid0nPXHjsONtNic3U6UCVEr+K8tDDOSws7+sknEcVVLX5+UV+s2cfFPeNOetrrOZxeqBVy9tZaCNUreXBkJtXNduRyGT9uOsDYHjEBx56O0GBxoBTk51oeTxPOfeunGU02J2a7C5db5KvbBnLzB2vYW2vBoFbw0uQC0iMNDEwL65RaIifOX4KdHx/M3jozaoVAqF5qCTHbXbw4b5fPrtu+OiubyhtYVlzLO0ulVp/cuCDevb7vaVUkHQ63R6Soqpl7Pl3PrsoW+qeE8sKVBZ0eeMIMal6f2pttFU2U1VkozIgg3Oi7cDPpVJhaC7mqJjt216HJLi3C0GH885kCURQprm7hzo/XsauyhZzYIF65qhcpXbh2s92FxeECZITpVR1GqVY22Rn94iIvCfHVunJ+ub+wS7+vDe0JELvTTWmtmX//vJNGq5PL+8QzJjea//t+G3lxJoI0rW0qFodkpiuToVcJ3kK82ebyUdWsK6vnzYUl6NQCNw5K6dCHxeJwMXtjBc/+vJ3IIA2VTTZmXNuHhBAt957fDZvTjV6t6HS7X1WzjeW7a2mwOLkgK4oIo+q4E73CjWovQeT2eHC5PQHJTYvd7UdatF1TU5WLKf0Seb/VqBqkpByz3cmrV/fqkmF1i83FpvIGPlyxlzG50eQnSEawXfG7OVFwuj1SS6Zeza1D0xjx3O/ewnf6r8X8eUx3CjMi+H1nNSqFdI+fLNKoDYGMQYM0imOKKY4N1vL93YM40GhDp5JaPhVyGX/6bAOLiqqJNGqYv72SXZXNfDptAB6PyPwdlT7v0WRzUWt2nNHk0eHQqQT6p4TyQ2tS2qD0MBRyGTfNXOM95+ctB3l5Sk+ufGsFMxaX8MiFmfRKDEU4zCskRK9k+pSe3PrhWq/x8stTeh4x2ehYIKk8z7zCqMnmZE1pnU8S4IZ9jdS0OHh1QTHF1S1M7pfIeWlhhOhUyJAF9HFQCnJcbpGLe8ahU58YEv14nkNpLnAjk7WlrqoIN6j52/hsHhotGWw73R7igrVH/T0NFgd1ZgdVzXZSwvWEtiOywg1qPrixH8/OlQy+h2dGcFthmp+fnsPlwe5ySyEgMhnxITq+vXMgzTYXGqWAXq3oMsFhsbt9iCOAmcv2cuPglOMij8KNaq4ZkMiHrQbLEUY11w1M4c2Fu/3O3VzReMTkNqfbzfKSOm77cC0Ot5Sy+NrVvSnMCGdQejjhBhU1LRJxohRk3Dksrcu+ek63B6tDmoM9osjX68r9zvl5y8FjSms9GurMDiqbbJTWmOkRbyJEp0KnVqBSCKgUAsMyI8mPDwYZBGuV/HDPYBYX1eD2eCjMiEQhyHzUywBymcynva0NYmsyVXuCG0AhnF6bgWNBIEVvbLD2D+8Pcw5S7TXzxr7sPNjMqBcWYW3dTHnm0h7MWLybu4Z369QGd4PFwbLdNby3tJRwo5qHR2WSEKo7IzZk/pdwjjw6jag3O3h5QRHvLyvFI0JBQjCfTRvgnRCDWxOBOovMKCPj82P5fqPkwZAXZ2JQejgTXlmK0y1y3cBk7r+gGwq5zCvLbw+Lw+1jULplfxOfr97H7YVpCGfIg1lrtnPNO6u8hfDKPXXc99kG3rymt49ZZEcIN6gZmhHRqXMzo43Mf6CQ2RsriA/WUpgZ0Smp9ulGTYuDG99fzb7WyO+tFU1M+2ANn04b0KkdntoWO//+aQffbpDaGp+6OJe+yaF+CrY2fLWu3Ee94nSLfLCslL+Nzz4uL6Vas4MJryz1vvfavfW8PKUnL08p4LzUcMIMampb7Pzlm83eeONR2VE8fUkeYQY1Ow42+73n5v2NXJgbzaxVZdw1otsRfRGarC6cbjevXt2bkmozWTFGlhTXkBKuJ8KowdD6TDRZnTjcHkJ0R/ZYqG62c9nryymrk1rMnv5pO3PuGeITwX2scLrdHGi08+6SPdhdbm4enEpssK8BaYhOyeV94n0SIXQqgfz4EGYu28OA1DDSIw0sLa6hIDGYCfmxBGuVXTYxrWi08th3W/jvZfk8/dN27pm1gbw4Ey9NLiAlXH/cvlpNVqc3cl7XjiRsj5oWOz9uOsDavfVMLIilb3IoG8sb/FpM5m2rZGRWFIt2VfPgqMyTThyBRD63qRW6Rxv567gsTFoltS0O3G7Rz9voaJBaWw4RP5VNNqJNkuJuT42ZxFAdS4prsDrcGDQK0iIM2JxueieFcLDRxu87qwg+CTvzJxMGjZLHxmVxoNHG2r31jMuL8TFmBqhqtlPdYic6SIPbI5KfEBzQx0opCPRLDuW3h4ZhtkuegsE65UnxSjmTUNNiZ+HOagRBxvNX5rN8dy2v/S4RBHVmO5+sLsPm9LCoqIanLs7lyr6JCHIZ1w9MZtaqMq96IFSvYmRWJBqFvNW/5PTeS7Utdh77dovXC25MbjRPTsolzKDucpt2g8XBc7/s9BIpWqXAV7cPJLudT1JMsJYnJ+VicbgJ0ij81OGVTTbeXbqHrfubmFgQy/lZUYTqVUdtSTsaAt2fOpVw3EbIIToVD47KZNrQNMwOl+RtpFcxoSCOGYt9/QOv6JNwxPG83uzkwc83eMkQp1vkoS82Mu/+oUQa1fxw9xC+3bCfBouDK/smHtXI+3BUN9uZubyUtaX1jMyO4rJeceTFm/i+lVBuQ3aMkapmGyrh2I3RD0ejxcHzv+zko5XSfSHIZXxwYz+6RxtpsbvQqgTC9OrWjSWJPDZplYzoLq05tUoFDrebIRkRPt0CS4qqub0wjb98s8V7LDPKiFGr5C9js7jj43Xe4+PyYs5KxUWEUc34HjHev5OxNbTgdLTQncOph1wm46EvN3mDEuwuD/+YvZVXrurpPXY0LNtdyx0fH1LLLtpZzYKHhp2WDcrDYXW6kcNZEVR1vDj7Rp8/AOwuN40WB+X1Nt5tJ0fdsE/asb/3/IxjYuLDDGr+OTGHP1/YHafHw55qM3d8vM5bNM1cVsrNg1NICNVx14h0FhZVe/vzw/QqsmOC2FXlW2xvLG/E4fagPUPIo0AKilV76nAGIMNOBPRqBakRBu67IOOkvP/Jgt3l9hJHbSiqaglIGh4Oh8vD+8tK+by1b39/g5UbZ65h8Z+GH5E8CrTbqVMLx00WLCuu8Wup+nKtlEzStsO7bHetlzgC+GVbJRf1iGFCQRx5cSa/9+yfEsq2iiY8oojb40GQBx7o3R4PZXVW/j57GyAZtz5zSQ/krZ/J4ZJ8yv75w3aqm+1c3T+R8fmxAQmAdWX1XuIIJC+ElxcU8/QleQHbOurMDlxuDzq15Fljd7ppsDrZ32AlyqghSKvwfv7qZgcXvrgIS2tB98WacubeN9QnnUulFBieGcGTk3L5el054QY1d4/ohkEtcPPQVO7/bANWh4feicF0izCgVymOKf3mq7Xl3FaYxt9mb2HLfsmTZvP+Rq5/bzVf3X7ecfls1Znt/GfuLj5bXYZHhJFZUTxzaZ7PblWt2c5tH61lTWtb6uyNFfxjfLZPSlcbUsJ0pEfpmf9A4XFHdncW4UY1n9wygNWltWREBXHdu6vY3yA9p2Nyo/nXxbldUnodDoVcRp+kEC59fZm3pfPBURmt7VkqXppcwKo9dfy6vYqMaCN/HtMdo+bsWwZEm7TMuLY3NqcHmQy+a2da3QatUsDucnPP+d2J7uC+a0uDO5GoaZYUq0qFnDD98Yc/nEjUtkjhHJv3S8qHd5eU8twV+QxIDaXJ6qLJ5sLmPDTmvru0lFE50YQb1ESbNMx7oJAfNlWgEgQuzI1Gq5Jz0+CUM6Kde9nuWp8QgZ+2HGRsXgzj82O7/F5NVqeXOAKpMHj8uy28fW0fnzFer1YELORrmu1c/fZKilvb2pYU13DP+d24c3jXVTaHQ69WcGmvOL5adyjc489jund6A6093B6RBosDlUKOUaP0hha0R2Kojleu6skL83bh9ojcPaIbGR2EGrg8op9SptHqxOURvemTtxWmdflaQZobb/1wDeta2+iWl9RSVNXM/Rdk8N2GCq8X2pD0cNRKgX7/+jXgXNFV1LTYMdtdyGUyL3EE0vf3t++2cM/53bh31gZuGJTEFb0TeXuJZCp/y9BUtu5v5JGvNuMRRW4YlMy0oWn8+5I8Hvl6M4t3VZMZbeSmIalEB6lJCtPz+Zp95MQGcXHPeEJ0KoZ0C2f+A4Us3FVNdkwQGVEG79+62SZ9z11JkD1dCNGreGJiLvec341as4PUcP0Z0dp+DqcGbo/oV781Wp1oFEKnlEMNFoePQh7A7HCzvqyeC3OP3Dp+stFic7G7uoU3Fu7GoFZw5/B04kI0x9Vufabj7Fs1/gGwZX8jz/68k+EBTFLXlTVgc7qPWcYpTfxSO8qfv95EZZPvg9rUOtFkRhv5/q7BvL9MSrKZOiAJh9PtZ/Y4IT/2jIpQ1aoEdCrBWygDdIs0HFPbRxvMdsk8fN62SlLD9RQkBp/1/dcqQe7TjgAQF6xFhrT46mjCbrY5mdcaqTkwLYybh6SiVwmS4uMIMvWJBXG8uaiEOrODXokhTCyIZWR2YBPgriAqwI5ktEnjM9GsKKn1O2dFSR0TCuIIM6h47vJ8nvhhG802J6NzohmRFck1b69i5o19j6rsaz9RiSL895edDEoPo97iwOF0M+nVZd4dk7/N3ooglzG5b4KfUi9Ep2R4ZiRLiqu9ZG6L3YXnsAfO5fZQUm3mka82UVTVwvlZkfx9fDYl1WaufnsldpdULD82Losr+0rJTt9vrPB5HlwekXeWlvDExFyfSN+oIC3je8QwLDMCpVyGQaP0Fj2vXtULi8ON0Or5c6zGpcnhepJCdV7iqA1ldRafgvRYsK2imU/bKUzmba9kxLZIpvRL9B6z2N1e4qgNL8wvYu59QxibG82c1sIy0qjm/pEZxIV0nEx2MhBhVDOiexT//GGblzgCqdCdNjT1uMgjt0fkqTk7fLzAXllQzGW94nG5PczbVsn/fb/N+9r8bZV8dHN/Tly23alD++/p0THdueyN5d5W7IKEYExaJa9P7U33aOMpVc6WVLdw88w1lNSYiQpS8/rVvcmLN50xsvrqFruXOGrD24tLeGpSHlEmDZe8tszntSCNQkqDQmpRiw3WMm3osRX+JxsVDVY+vKkfKoUUZ/7V2nJWlNQeE3nUYHX6HatosOL0dG4ca7Y7vcRRGz5cXsrkvgld9vc4HCatkr+Oy+KKPglsKm9kSEY4MSYtClsd7F8HJb9Bt9EQkwe6I/vc1JsdfLdhP5+vKSc2WMOjY7JIDtP5PS8mrZKxuTEMSA3zpq11RIhqFHLy401sbNealRMbFLBtt6uwOFxe4qgNX64t58GRGXxwYz+abC48HpF1ZfXcM0tSKMzbXsmQzeFcMyDpmDa0DjRYmfqOlMr46S0D/F6vaXGgVysIN6i4MDeG8a8c8hP9Zv1+Zk0bIJn5Oz28sbCEPkmhXJAdxfTJBdhdHgTZIU/KQelq+qWEopDLvNfa5rvWPoXUbHexs7KZl+YXIQPuG9mNbpHGM16RFKJXEaJX0e10X8g5nHKoFXLy4kw+8096pAGDpnOtu1IytP/66HR78+6uaWHSa0u99fMPmw7w64OFxz3On8k4s0eZPyBqWuw8+vVmDjbaeGCkv5pldHbUCRn8TRolk1oL+jaE6VVe7wWjRklunMmrpJDLZTRZnbw0uYBnftqBxeHmhkHJDE7verrJyUSwTsn0yT25Z9Z6LA434QYV06f0PC6yZ2N5A1PfXuktuPomh/DG1N6nfUA6HoTqVbw+tRe3fLCGeouz9Xsq4MX5u9h+sJkHRmbQOykk4G6VVimQE2ciKkjDNecl8chXm6hutpMcpuOd6/r6KFraEGlU89O9Q9hba6be4uTNhbv5YVMFD43KJCfOdMxxrFnRQeQnmNi4T5psTFoldw1P9yE3xuXF8PFK37aVca0GtkaNkvH5sQxKD8Pu8rCsuJZ//7SDZy/rQfZRvBDcIn5JEPVmB/vqrLy/bA+PXNjdT2r7+Zp9DO8e6Z00zHYXFQ1Wftp8kB7xJu49P51HvtrMzspmbh+Whu4wYrbO7ODqt1eSG2diUkEs6/c1sP1AM3/9ZrNXgSWK8PScHYzNi8GgVgTcxdYqFAFbGNr7ebVHG+l8vLggK5KtFU3EBWt9iBGpBff4CodVpf4k4dLiGibkx6BvbZcJVBeoBDmCXMa/Ls7j4dGZtNjdRJvUp5Ugtjs9foUlwJ4ac0CVVGchAjVm3w0Du8uDyyNSZ3HwVrv5ACTj1UaL86jfhdnuQpDLukQqtqnlWmwu7+LweNKUOkJmjJHfHhrGgh1VJIbqyIs3Earr2KftiHC7wFINVdtBFw5BsZ1O+appsXPnJ+soaU1wq2yyc9PM1cy9b+hJ85WqbrZjdUj+EUatwm9MORyeACkDLrdIQpgOGZAWqfeasCvkMv46Lvuo7ZQNFgfl9VbWl9XTJzmUWJMW02lIlBuUHs71762ipsWBSpDzl3FZ9E06tucpOkhDv+QQJhTEEWlUs3JPHUa1gmBt55QSgcjCIK2SrRWNKIWjp502WBzYnG7kMhnBOpXf+BmqV9M/VU3/1FZyyNYEC56Ete9JP694DQY/AEMfBpX/4O52e/hmfTlPtJpMbzvQxMqSOuY/WBiwBUQul3nHCZvTTa3ZyfLdtaRFGIgN1vpsSIW2ekv+ffZW1pTW0SsxhH+2tg8eLxRyOXKZb1iGQa3Ag5SmGmZQ8+pvxfxnrm8669LiGq7ok9DlMcjqcPH8/F3srpaeabPDTWKozkdJPLEgloU7qxmWGcm36/f7+InaXRJpPzAtjPmtiX9zthxgRPdITEe4lzpDNJfXW7n09WXegnVRUTXzHygkxqTF4nBh1Bz/nHsO53AiEWpQ88Y1vXn0602s2lNHz4QQnr4kj8ggdaeeS71awUOjMli4s8rbOt0rKfiYvFVPFGxONzMWlfgIL6xON79ur+Ka85JO23WdbJwjj04xPB6RigYbLXYXi4treGJiDi/OL6LF5uLyPvFMKIg7IRJ3tVJg2tBUtCqB7zdWkBKu56/jsgk/bFe7vdQ8SKvkorwYBqaFI4oiJp3yuOXVh8PmdNNkdSLIjy39S60QGNwtnN8eGobV4UanFgg9jl72WrOdpw/bqV9dWk9Ni/2sJo8Ugpz8hGDm3jcUm9MNyHjk603eaO/r31vNnHsGkx3r39alUyt4aGQGZXUWbvtorVd+Xlpr4c5P1gWMiJXLZUQFaTjYaOPWD1d4j0+esYJf7htKt6hjM3gIN6p557q+lNaaabK6yI0N8vu7ZMUE8fDoTF5rTSq5bViajy+FSiEnujVi26hRMjInqlOFpUqQkRVjZPuBQ62cF/WIZUlxDXO3VnJxzzi/16NNGqqabF7yqKiqmUteO9RC9Pmafbx9XR9cbpG0SP8Jz+xw89rUXizbXcvuqhZuHJRCtElDeb1vC6LLI2JvVfKMyYvm5QVF3uQWnUrg+kHJfubApwIRRg094mW8OLmAm2aupsnqQq8SmD65J6H64ysmCzMimP6rbxpNv5RQmmwuL3mkVym4ICvSu0gHuH9kBiE6FQpB3mVPoZOFIK2CS3vHs7I1OXBSQRyX94knIURHXYud0GMce7RKgQuyIpm37dDn7x5tRKsSEMXAht0dzTdNVifbKpqYsaSEUJ2Ku0akExesPWqLktvtYV1ZPTfNXIPF4UajlPPKlF4UJAQTolOecCWQVqkgIVTBdR2kP3Ua9aUwYzjYW9Vz3UbCpDc6RSC53KLPeADSQtLp9nCgUXqG9WoFKkGO3eUhSNN5w/1AKK+3cM07q9hTY0atkPP4RdlMKojtMGAj0qghPdLgQ17ePSLdOya+NLknRZXN7K2zMCgt3C9Q4nCY7S7eWbKHlxccejYfvyiLq/snnTSyMBDqWhw8+vVmrxGzw+3hqR+38/vDw3zOazPSPxqCtEoevyibx77dwt46CxfmRDNtaGqnCvJ6iwNRhDn3DGZ9WQP//nkHzXYX95zfjQ+W76WosoXbCtOOOAdVN9t44PONLC6qIVin5MmJuQzrHtnxJoyjBdbN9D224lXoPy0geVRvdfLZal+T6Wa7i5LqliP6h9icbqqa7czesB+1UqBXYgj3zlpPz8QQHhuX5dPuFhus5bkr8rE53GiUAkEnyFtNrxa4eUiqDxHePjEXYHB6uB95NDIr6pjuR4vDzbaKQ0rap+ds56XJBXyysoxdlc2MzYshJ9bETTNXMzonmiCN//OiUQo43ZJqWBRhUFr4canlAT5ZWeZTsMaFaHF5RJ74YSsb9jVQmBHBzUNSz3oV/Tn8sRAXrOXlyT2xuzxdTssGSAjV8euDw9iwr54wg5qUcP1pvccFuSzg2Bak/WPTK3/sT3cGwqBWMCE/lk9WlfHKgmLG5kXz4pUFdIs0EKRVnlDJaZhBzR3D0rm6fyIapdCpnmhBkB81GabJ6qTe4qCk2ky3KAPBWhWGTvhm1LbYef333Xy9fj/RQRqevDi3VcrctQn9WOJ/jwTRQ0CjtsN9ds5GKAW5d7f78W83e4mjNnyxppy/T/Anj0AyArW53H6+BTsONuNy++9cg0SMfrxyr88xUYRvN+zn4dHdO7zWNlJRJpMRblD5FFThho5VIiF6FTcPTuHy3vGAtOg/0v3Rlf76FruLpy7O44s1+9hS0cTAtDAKMyK5eeZqQPLyGZMb7S0Wg7QKbh6SSm2r8qPZ5uTFeUU+xOSBRhsHG22cnxUV8HdqFHL+9eN2NuyTZPmzN1bwwY39uDA32psuBdIErG9NNoowqJlz7xDmbjmI3eVhXI+Y05ru5HB5iDKq+emeIVhajZpDdarj7v9OCddz7wXdmLGoBJdb5PI+8cSYNHyxppx7zpdE8CF6Ff++tAfryhpYX1bP6JxoksP1Z4QfS3vIZDIuyIrikQszsTrcRJk03PrhWlrsLgoSgnljai8v4Xk4GiwOLA4pTUqvVviYjQZplTx1cQ/ig4tZuKua/IRg/nRhJuEGNR6PyJ8u7O5jvDqkW3iHRd3WikamzFjp/XnO5gP8+uCwgObT7VFrdnDvrA3edkqb08NDX27k1at6EWPS+BvFO23gdoLmOFyETwTszTD/b4eII4CiedBYfkTyqLrZTovdhVohRy7zJ5xfv7o3L84v4qvWNKjLesczuW8iz87dwRV9EhieGXlMpGazzck/Zm9lT6vKye7y8Ph3WxjePbJD8ijcqObTW/rz7YYKdhxsYkrfRJ/W77bx9rxOdqY121y8cVga13O/7OKiHrEnlTyqMzsor7ewdX8T/VJCMagFdlX6EncOt6d180Q6f01pHT9sOkDf5BDG5MV0OK80Wp1MmbGSFrsLgFmr96FRCvx5TPcOP1dti50/fbmJX3dIBO6IzEi+uG0gjVYnc7ceZHFRDUEaJS6PB1UAvz2r0830X4tZXCSFlzRYnNw9az1L/jSiY/JIFJG0h+2PtaoOm22YNEofI1elICfapGbnYd9ZR22z++utjHlpsdcIOz5EIoiufHMF913Qza8QDNIoT7gZslGj5PbCNCbkx7JlfyN9k0OJMKp9CMGkMB2PXJjJ9F+Lcbo9XN4nnhFZx9ZGr1cJDMuM8HopFVW1cOP7q5lz7xDUCgGjSmBXdQtxwVp+3V7Jd3cN5su15TTZpPsm3KBiUs9YBqeHc9eIbtidbp/NrWNFtMn37/TQqEzu/2yD9zq3H2imrM7Kvy/NOyv8kM7hfweB1O+dhTRuabjQdPo8jtpDKci5rTCN79bv96qh4kO0DEw7s7p2TjROKnkkk8kuBF4CBOBtURSfOez1RGAmENx6zp9FUZxzMq/pdEOnVvDgqAyMWgW/bK3E7RFJDtcTbdIct7lwIKgU8uMyqT0cVoebb9bv5++ztwJSm8hLV/bkwtzoDnfkHC4PH67Yy9tLpMSOOrODKW+tYOHDw45YJJ0KhOpV3Do0lYe/3OQ9Fh+i7XL6x5kKp9uD2eYiJUCqVyDlS3voW+O/61oVLSD5FigDRMQ225w02VzEhfj/LZNCO/49dWYHby8u4ZNVZQRrlfxjQg59k0MDEqnVzTYWF9VQ3WxnTF4MkUZJ7qpWCkSe4EKlqtnOrR+sZVphKpf3RjprAAAgAElEQVT1TuD9ZaVc++5Kr2fR6JxowgwqeiWGUGd2EBei461Fu/nnxNwO31cuk+HyeHC6RLQq32u2uzxe4qgNf/9uC59OG0CQRsGCHdVkxRj5x4QcEEXeWrQbuUzGRT1iuKp/4mklSZptTtaU1vPMTzuwOt1c1T+RYJ0Sh9PDlX0Tjvv9g7UqsqKNzLi2D4JcxoIdVdz1yXr+Ocn3+w4zqBmZHcXI7MAE3ZmCUL2Km4ekUtloY+h/fvOSjBv2NfDMTzv418V5fs9A+8JULoOr+iXywKhMH1I0wqjmkTHduWN4Oga1gFa0gceFXK5gcHo4c+8byi9bpQjrnonBRyRUW2xOn7ZnkJRxK0pqmdQzrsPP5vKIVB1mjNlgcaKQy3jmpx08f0W+RHCIIjSVw+LnoX4v9LkRkgaBruNWI6vTTYvNiVYpeIkSp9tDg0Uaq9qUZl2GywFNB/yPt1T6H0PywJn81gpvC8ufRmfy8pReTPtA8jwalhmB2e7ii7WHFB6frymnV1IIzTYXD3y+kX+Mz+aaAUldVmNZnW4/bzFRhMpGG3FH8VqIMGq4ZUgqHo943AoIjyj6JRnaAvgnnkg02Zy8sqDIJ3Dkucvzuff8dJ6du8t7LESnxKBWYHO6eX/pHqa3qqNmb6zg5y0HefmqXke8/w822rzEURt+2nKAO4andUgeLS2u9RJHAAt2VjEiK4K5WypZ3Jpme3mf+CP67bXYXCzbXeNzTBRhd3VLwPnVC5Ue8q6ATZ95D7l73cC7q6uZvngztxamMrV/kpeoNGmVPDYumzWlS71Fz4U50X4bD26PSG2LnZ0Hm5HJYPqUnjz69SbqLU7K663sqTGTEWXA5uhcWtKJQJtvTm6AQAyQ2rBvGJTCJb2kDSW9SuiQUO0IZoebEd2jqGqyM3ujlD778OhMKhttFLS2GOfEmvj81vMQEWmxufjwpv4sLa5BIcgZkxvNG78X8/GqfQD0SgzmrWv7HNO1tMclveKZuWyvt8U0PkTnJY7a8POWA/x9fPY58ugczuEkIsakYf6DhSzcWY1Bo6BfSuhp3cA9FThp5JFMJhOAV4GRQDmwWiaTzRZFcVu70x4DPhdF8XWZTJYNzAGST9Y1nSkIM6h5YGQGNw9O6bQi6ExBk83JU3O2e38WRfjb7C0MSA3t0NOh0erkx8NiVO0uD7sqW04reSSXyxiZHcXMG/vyycp9pEfqufa85BNKuJ0uNNuc/Lq9iid/2Mab1/YhLULv7dtPjzQwOqdj5j5Ur+Ld6/tw+0frONBoIy3CwCtX9fJrGxNFkRUlddzx8Vq+uPU8vlhT7m2zSo80MLw1ojYQPB6RHzcd8MZEN1ic3Pj+ahY+PNyvcK5utnP5G8sprZUKtf/+spPv7xpM96N4Fx0r0iOk3fjnftlF/JU6EkJ1aFUCQXI5D47KIClMj0ohw+UW2by/kapmO09MzPU+B0aNkvtGdmNRUbWXGIg1aciKMfLivCJ2VTZzRd8E+iSFeHdsA7UQ2VweFHIZj1+Uw30jpWQKi93N8OcWeoub6QuKmHvfUGJO4LPUYnditksKl2Ctv+fG4ahssnPjzNXeovGZn3bw3BX5fLmmnNG50cedaCWXyyhICGb8K0u9iR3JYTqGZx75/jrTIYoS0fLxzQNYXFTNu0v3YHN6WLO3HrPD5fMMiKLIj5sPeAtTjwgfrSxjbI8Yv10ujVJA42yALT/Ctu8gvh/0uYEgQyRBWiWZ0UdX+AhyOcEBVEmdMbZUK+TkxgX5kBtprc/TgUYbdpcHa7OdEE89ireGg7k1snr3r1KLWP7kwAZWSClW0xcU8fvOanLjgvjruGyMaoEv1+7ntd+Lkctk3D8ygzG50V2P59aGQK/roOKQOguVHqLz/E61Oly8MH+Xj/fJs3N3MjYvmo9v7o/D7cGoUfCfn3f6/d9N+xpJizCwtaKJD5bvZVyP2C4vNg0qBUMzwvl8TTlymURKy2WyLpl0Hi9xBFKbbGFGOAt3HSI8xufHepWRJwNmm8svdedfc7bzw92DWbu3gd93VZMRZeC5ywukDRCLw7tx1Yalu2uxtMbRB0KoXoVcJvkoRRrVrC6tJy5Yi+ooJF8gb7atFU1kxwaxp9bMtKGpFCQE+7xeb3ZQZ3HQbHMRY9IwsSCW5+cV+ZxzVF8PbTCMfgq6jYLi+TgzxrJe7M5/P92Nw+3huV92kRdnYli7oJbkcD0LHx5OrdmORil4N4zao6LByvhXltDQqkLukxTCfy7P5+aZawBpYzA+RHtcaoKTgROlUNepFHy7vpzMaCOzBw/C7HBTXNVCmEHN9gNNhLUSWeFGSd35wrxdfL6mnD7JIaSGG1hbWucljkAKxflp88Hj9kOJCtLw/d2D2Ly/CbmsLUhE5kPkhupVRxpGz+EczuEEQSnIiTFpmdwuvOWPjpOpPOoHFIuiWAIgk8lmAROB9uSRCLRVfibAP2/3Dwq1QiDCePbF+LncHr+WrkarkwAenD7QKuWkRxooOswk9mg7pKcCwToVhRmR9E8JQyHIfBKqzmbUmR3c99kGAO77bD1PTsxFKcjRqxXEBWsJP0qxohDk5MUFM/uuQTjcImpBHvD/1JodPPPTDpxukQe/2Mizl/WgodWENzVc3+HvabY5+X6T72PvEWHVnjoSQn19GrZWNHqJIwCnW+T5+bt44YqCLrV7Ot0enySTIyHMoOa7uwbx3NydfLyilIdGdWfqgEQUcjkhOqVX2ZAUpuD2YekB3yMj0sgv9w9l1qp9RJs0jOsRw5+/3szvO6Vi+ZdtlTw5KZcprQlterWCEd0jWdBu5/rBUZmE6FQIgtyrVHpz0W6fXfEmq4tv1u3njuGBr6MNVoebZrsTOTLCDmsPbI/aFjvPzt3JV2vL0akFHh2Txdi8mA6Jg/nbK/3UBr9sraRHvOmEqRAEuYy3rulNUVULSkFOQogWQXZ2Pq+NVic/bznAU3N2YHG4mNQzjreu6cP1762iX0oo+sOMjx1uj1/rKcDqPXX+EmmHGRY9J3meABTPh+J5MGVWp82ftSqBe8/PYO7WSm9rb3qk4Yi7/e0RZlAzfXJPHvt2C2v31pOfEMwjF3ZHJciZOiCBg002Hv92C28OsRHRRhy1YcVrks9QgOtssjl5/Lst3jj2sjoLOw408/Z1fXjih0NLi0e/3kz3aCM9EzsuaC12F7VmBxv2NZAWoSfGpCUkewLggTXvgSEKRj0Jen+C0uJws/1Ak9/x3dVm5m49yOdrysmJDeKWIal8unqfzzm9k0OY0arqCtYpURyFxPF4RGrMkjG2Rilg0irRqRU8PDqTC3OiMelUeESRcL2KkFNsVB2sU/HcFQV8vmYfy3fXMjwzkokFsSd1U8zlEf3WHC02Fwq5jBeuLMDmcvskWMkARQDFbEdzgEmnlFR62yopq7Pwt/HZdI8yHpWQHJcXw0crfAMcLuoRS4/4IO4Ylo5eLfio4urMdh7/dis/bpY218INKr68fSBr9zawcFc1WqXA4xdlE6xTUm924HR7MKgV6ALNefpwyLsMci7hg6Wl/PPH7T4vf7+xgqHdIrykoUIuo9nu4u+zt7LtQBOF3SJ4/KJs7waI1eHmpflFXuIIYM3eemxON/EhWsx2F/1TwhiZFfWH3WnXqgTuHJ7OurIGnp8vtWM2WB0M/c9viCIY1Qo+u/U8smODkMkkU2CXR9pQy08IZvN+/zFiw756ru6feNzkbYRRw4ju0t/KbHfxwMgM/t1KVstk8OSk3GPyBHW7PTTanGiUAipBTq3ZQWmNmVC9inCD+qR5B9qcbmpa7CwuqiHWpCEn1nTUdeo5nMM5nHqcTPIoDmi/YioH+h92zj+AX2Qy2d2AHrgg0BvJZLJpwDSAxMT/HWavIzRYHLjcHoL1qlNKdmhUAgUJwT6tNcMyI9AeZYfHoFHy6Ngs1pXVU9kkqQZuHJRMmOHM2a06leaepwLt4zD31Vm57r3VDEkP4+UpvQju5OQvyI+eCiOKInaXVFzurjZz1YyVRAWp+eSWAUed+DVKgeyYIFa1Gge3IT1AopstgDeVzeH2i7s/EhosDjaVN/Ll2nIKEoKZkB/b4fUJchnJYXqeubQHDpeHYJ2yy62lOrWC9Egjj12UDUiJNm3EURtmLC5hdGu7QKhexb8uzmVlSR3bDjQxKjuKxFD/6GSHy/8z247i01VntvPygmK+XFNOmEHFExNz6ZMc4pfO5PaIfL+xgs9aC94mq4tHv95Mn6SQDsmjbgH+ZslhOsINanSqjp8tt9tDrdmB0yOiEmToVALNdjfr9tYTrFWSEWUkVK/iwxVlTP+1iLQIAy6Ph721Fp69rAdX9Om4La662c6m8gYaLE4GpoURfphHRkewOd00Wp3YXR60Sikq9kS0GFc12Xjkq83en79YU05ymJ6bh6Rw0+BUP0JUrRAYnRPtJU7aUJgZwMvD3gJr3vE9Vr5aIpU6SR4BxIdqWPBQIUuKagjVq+gRH9ypItHqcPHWohKGd4/ktsI0dle3cP9nG5jSL5HJfRLo/8x89CoFojrY/z9rTBDACwak533uVt/PX1Jjxmz3Hxt+2HSgw+Q6j0dkVWkdN76/2ktEXDMgkYdGZ2LqdR1kTQBBBZrAykaTVsm4vFivuiolXM8/J+Z4/05jcmP46zebUQpybhiYzEcr9yJDxlX9E1EJcnYcbEYpyHjsoqOnme2pMTP1nZUcaLShUwk8d0U+wzIikMtkfLSyzEs2Z0YZ+fCmfie8hfdoCDeomTYklWsGJKFTKU5I6EdH0AVYh1zRNx69WiH5gOE7Tpm0Kh4amcG6skbyE0zsrbVgtktm/keCw+Xh3lkb2NZKEH62eh8vXllAbLC2w6K/e3QQj47pzqu/FSOKcPvwNFLC9bz8626sTinFNsakQds67lY02LzEEUix7y/O28Vzl/fA7hJRCDKMaoHyeht//noTJTVmRmVH8fDo7kd+FuVyYgO0uPVPDfO59uoWO1PfXulNxvx+0wFaHC5eurInQVolTreHikar3/s0Wp3cNCiFkTlRhOtVaI6S8He2Y2N5o9cr7vbCNO6dtd67IdJsd/HIV5t4/4a+hBnUXN0/kU9WllFndmCxu7kwN5p3lvqq3kbnRJ/wa9SrFVzVP4nROdGU1JjpHm08pvbdOrODb9bv59v1+0mN0HP/BRk88uVGVpbWAzAxP5Z/TMg5KQRScVULF7+21KueKkgw8fZ1fc+Zfp/DOZxhOJkjfqDZ9fCKZwrwviiKz8lksvOAD2UyWa4oij5VkCiKbwFv/T975x0eVZm//c+Z3jPpvQdC6KH3oiKoKIgKKGDHAva27ro/XXVtW9S1N2xrF8WKYkHpvdfQQklIr9P7+8eZHDKZdILivtzXxXWZcWYyk5lzzvPc37sADBo06BQ66U9/uL0+DpTbeOSbXVRYXMwcksYlA1IkqXGd3YPF5cHh9mHWKbvcfhWtV/PqnIH856d9bDxSw+husdw0NrtdtbypkVq+vnUUtXZP0IOuaLGq9HRHhcXJxsM12Nw+RuXEEGPoZMbGKUT3ZhrOuieYwnJ2ThaROhU3jMniwS93SbcZNcr22VuUcm4am83yfRVSvfWlA1PCVEcAA9IiwzKY5p+V064Jt9fnZ9GWYh7+WlQnfLXtOJ9vKeKda4a02aonbkja/BXtQnOWB71KQcN6vsLi4vLX1qJTKUiO1DL/g81c1C+Zu8/tHkJuzh6WxrtrDksqQI1SxvRgYHhz8Pr8LNxUxFvBjBCLy8vVb61n+X3jJfJIJEh8EICdx+vCnmPD4epWW/P6p5oZnhXFmkMiEZgVo2fO8HRkgoDL6ycQCCAIgqSiqHd40avl6FVy9pRauOWDLVRYXGTHGnh1zgDu+ngb24MEaK8kE29fM5jjtaLy7GDFCQVjSZ2zxdck/U1fXyu1S+lVcr69bTQZ7ah3tbu8LC0o576F27G7faRH63j32iGkR598NezaQ+EqojUHq3hmRr8Wz9tjusdw1fAMPlx/FKVc4Lazu5ERHXqsVNvcKJxeTCo9eBv9bQShRVKmJSjlchIjtFzWBjkX/jiZSIQ2UT70SDBytMaO2xsgSiennGiiU4cjP7ZGvINcCRMeEe1jzUEQK9SPN/rMlUGysSny05ohphqhyubmwS93hShY/rv2KDePyxGvS22QbAq5jOmDUii3OPliSzHPzezPLR9u4UhQHZkbb+TZmfnMWbCOl2YN4NpRmchlAmqFjMNVNp6Z0Y8hGVFthvhX21zc9clW6Xtud/u446OtLL93PAVl9SEqxYIyCx9vOMa8cdld3mjXFhRyGcbf6HdGG9S8fuVA3llzhM1HxGD8C/smtqhAVSlkTOqdSIXVzcJNRfROMnHHhO6tqoiqrG6JOGrA80v3i9f7VgjUSP2JvJ0AAQTg7H8vkwKUP1x/lO/vGE1OnHguLaoNJ2cOV9mRyWQkR4qvr7zeyWWvrqHOISqAPtkoZmj97aJeYeR/A4ZkRDGxVzxLdol5XaO7xXBWj1Ci2eH2ScRRA34tqMDp8WHSKjFplcwels7qRopHtULG+Nw4EkyaLrE9nu6osbt5NRgILxPA4fGHqd4KK234gjfGGzV8f/to1hVWY9IoiDepeXByT15fcQifP8BVIzLIiNGf1N/O6fFhc3kxqBUhIegRWnHdFVZI0E54vH7eWX2Y//wsWiZ3FNcFr0n9mfWGWJzw5bbj3HJWTpeTR/UOD098tyfEdrf1WB1FNY4z5NEZnMFphlNJHhUBjVecKYTb0q4DJgEEAoE1giBogBignP9h2F1e6p0eLE4vEVolZr0SVTubiKptHqa9vApnsKb7sW/3oFHIuWJoGvVOD0//UMB/g5LpxAgNn940nJTI8I14R+H2+pHLxByMeJOG/5vcC5tbvHi1V7EjCAJxRg1xf/A8oXKLk0teXs2xanHRZVQr+O720aQ0Q3j8nogzqrn73O489/N+PL4A/VPN3DgmK2Sx0RVQyGVc1C+JtCgdn2w8Rs9EEzMGp7b7gp8QoeHjG4djcXpQK+To1fJmF/UxBjXf3DqKt1cfpqzeybWjMkk0adhVXIfXHyDJrG1xEltjd4c1Au0srqfe6W2TPGoNbq8Y0hsIiPL2ps1VluBxXu/0EKUTLSUjsqOlxbggwP3n9ZBeg9Xllax5JybeR5k7JjPkOEswaVhyxxjeXFWIXCZwzchM4kyt2QO9LN4RqtjwB2DbsVpSInWU1Dm4//MdrDlQRc8kE49O6c2BclvIZL8tu1K0Qc2LswZQY/Pg9vmJ0Cp5fPEevtleQlqUjucuz6dXkoniGgfTX11DucVFhFbBt7eNZu67G6l3iJurgxVW7vpkGzOHpLF9kajM2XW8nr2lFuaOzmLhpmLpd8plAlP6JbX6urYX1YbUktvcPp5fup/HLu7T5rmr3uXlzo+3SgvaI1V27v9sBy9Pz8VcswOiskSiQ9VxMqlvSji5MTgjMqRyuimi9Grum5TLvPHZCIQ3CzrcPt5YcYiiKguPjX4Q45LbTzx4wFWg6tymor3w+vyU1bv4aMNRpuYn8/X249J5clhWFH1SInB6fLw0awBymcD2GheZF7+NUL4Lrb0YIWtcsxaxBkTr1Tx1aV+ufXuD9Jn8aVIPTFoFgzMi2RCcjo/uFsOwrOhWX2uAADWNiOgGuDvQtBltUHPfxB7cfnY3Plh/VCKOQCRythfV0i/VjFIuY9rLq3F5fHx/x2h6JkbQPzWyXQodnz8QFoTr8vqxub3sLrGE3X/n8Trc/gDa/y0hbRhijRpuP7sbDrcPvbp1tZPN5eWfSwqk4PJdx+vZfLSWD28Y1uJ1qnlxodD8WLQJVAoZCplogf9s84nmLRAtd2+sKOTRqaKNvF9yBCq5TGowA7hkQEpI3li13S0RRw1YsquMe87NbZE8ijaoeeqSvjx4oY9AIIBepQjb8KsVctQKWUgUQXqUDlmjNz8iO5qnp/fj7dWHMWtFBXm0XtUs+WF1erB7fAgIROmUvzmBeSogEwSJlPQHxPNG0yHWuT3jJRuhTCYQZ9JwYfC6VGN3k2TW8NCFPZEJAm6vn9iTWHNUWJy89MtB1hVWMzw7mpvGZnXZkLjG7uaTjaEW23KLC6/Pj14ll4LVK62uVgdJnYHXL4aNN4XNFX7b/zJsLi91Dg+FlTbSo3WYtcpOh72fwRmcKpxK8mgD0E0QhEygGJgJXNHkPkeBs4G3BUHIAzRAkwCE/y043D4W7yzl/s+24/UHMGkUvHf90GY3Es1h5/E6iThqwKebjjG5bwIVVrdEHIE4kf/nkgIeb6a1p72od3o4UGbl7TWHSTZruWp4OvEmDVqVvMsVLH8UrDpQJW2IQFRxvL7iEH+d3LPdVpjfAmadimtHZnLZwFS8fj9apfykiJK2fte43DiGZ0ejkMk6bFuINarbtMPIZGIY7J8m5eIPgMXhYc6b66WNVUa0jk9uHN5CcLvQ7GfT3MussDgprnWiUciINapb/JtZnR5+3lvOQ1/tos7hYWLPBP4+tbc0lbY4PXyw7ihPfb8XfwBSo7R8fMMwnpzWhz2lFo5U2TgnLz7k9aqbhFKbNAqevKQv9Q4PVVY3MQbx76RWysmI0fO3C3tJf5vWoFHJ6ZloDGtyy4o1UGd388jXuxmSEcV1IzM5XGXj79/u5rGLezPtpdV4/QH+dmFPstqh1InSq4nSq6l3uNl1vJ45w9K5ZEAKr604xJVvrmPJHWN46KudUhPXxfkpVFndEnHUgO1FdTxwfujvq7S4GJAWyYdzh/H80v0o5WJweWukGRC26QKRhPf6/Ygln6081u4Ja5LaUVyHu3QvfHQhCDKY8QFkjAJ3kKBSG0HdNkmTFqXjulGZvLWqEH9AJI6uGJrepoKxwZrTHCxODwtWFuLy+slP6M8Fc5ahPrYCQ+Zg5DHdxFDdLkKt3Y1MJoRUcZdbXEx8djlWl0hWPnGxWBOtU8mJNqiI0qsptzj5ZOMxyb75N7mML+aPoGePs9v8nXKZwKD0SFbcN57DVXaSzVoiggqJV2YPxObyIggCerW81cpxENWRMwanhgQpZ8XoO3yt1KrEDXhhUDnZGCV1Tm4em832ojpqbG6euzyfZfsqWLq3gv6pZqYPSm3zvKeSyxiRE83yRoHUJq0Cg1rB2T3iePK7vSH3nzYgpU0b+emMhnav4loHZp2SSJ2qRYWQUi5DqW37mmtzeflia3HIbfvLrdhdXmjh/B6lV9EnOSLE/n33ud2JbkNxYXF62Hq0lmd+2kevpAiyY8PPmwq5IHFQUQYVn948nEe+3k2l1cXlQ9KY3Dcx5Jxu0igRBEKy47Ji9G2eK8w6FeZWZloRWiWPTu3Nnz/fgc8fQKeS8/T0/iFxAmadiovzkxmXG4tCJgsbkDSgyuri8cV7+XJrMZF6FX+f0puR3WIwdHLtebogQqvkT5N6sPaQaKd69qf9vDpnIE99t5cDFVYm9Iznvok9WnyfkToV43vESdchk0bZ6YiEGpubWz/cwtqgund3ST37yy08NzO/4+UAzUAuE4gxqMPUvHq1QiI39Sp5p5VNrSFSp+T60Vnc+uEW6bZovapZO/z/Kjw+H8v2VXDLB5sldduT0/owNT8JjfKPfRydwf8WTtm3MRAIeAVBuAVYgrhCfzMQCOwSBOERYGMgEPgKuBt4XRCEOxEtbVcHAqey4PX3R53DwwOLduANnhnqg3W9/71uCPUOD+UWVzDfQ4myGTVSYoSGC/okckFfsSnrm+3HAQGVUs6xRq0vDdhfZsXp8bW4IPb7A1RaXRyssGLUKEmM0IRslrccreGqNzdIPy/cVMS3t436w6uHGmB1ebC7fehVLW/ImqLOET6trra78fsDbe1FO4wqqwsEceLeGTTeaFZZXWw5WkNRjYOB6aIFrKtzntQt1A+3BxUWJ3UOLxqlDINa0eJiSC6TIQd+3VcRMpE/XGXns83F3DwuO+wxUXoV95ybKwWIg6hOaGp5K60TVWUNUv7BGZG8PHtg2HS6yuai3uEhNVLHn8/L47HFu/l+V6mUEaBUyLA4vTz5/V5pwX/fxB7cu3A7NTYPvZNN1Ds9jM4JXVzrVXJmDU3j/XUiCfzv6f14b+1Rlu0TN9rpQYIsPkg4tVf6rlXKufXsbqw+WCUpm64clk6CSYPb5+eGMVk89/MBnvt5P72STPzpvB6oFTKW3zsOBIGV+yt56KtdnN8nkfygfbAlBAIBimqc3P3JNo7XOYk1iGqRN1Ycwubysr/shAooK1aPx+fHpFWEEEh9UyJCrElapZxh2dHo1QqGZ0fTM8mETKBdlsUR2dEhU1OAG8dkYVC3/VizTolWKZcCowGGZ5nRlK0Pvlk/+Fyw/B+w7hUgAAOvgbH3g7515UukXsUd53Rj7uhMvMGNW1uER3vQoBp4+MdintMpyU0YxH/y+xOv75pzdr3Dw7aiWl785QAquYx7JuaSE2dAp1LwzfbjUpD7wQorsxesZ+7oTO4/rwfyYDZfrd0Tkvvl9vl58MtdvHHVoHZtgLQqBVqVIqylM9rQMtHb7PMo5cwbn02iWcu320vomWhk/lk5nQr+lckErhiSxqdBOxGIypVLB6bwxopDfLa5mFlD09hytJbXV4hB2T/uLuOHXaW8efXgVl93hE7FU9P6cucnW1l7qJrMGD3PzuhPpF6FViXnldkDeOK7vTjcPq4fncWQjKgOv/7fExanB68vIKlijlTZmPbyaimk+dKByTxwftu5UK1BEASi9Wqp1hzEjbKylQbJGIOat64ezNKCcvaW1HNxfgrp0bo2886KahzMeVM8P2wvqmPhTcOJ1quoCipVNEoZc0dnScSPWiGnX4qZN64chNfvbzanxqhR8KdJPXgqeD0xaRU8Ma1Pm5bH5lBldeEPQJROiVYl54I+iYzpFkuN3U20XtVstnZVTA4AACAASURBVJ8gCK2emzw+P/9de4TPNovf/wqLi5ve38Tye8f/4ckjgOxYPUvvHsfSveUkmbXkxBp4/apBeLx+DBpFi+qvBqgVcuK6oCDH4fFJxFEDlu+rxOHx0RVjgWiDmoen9GLmq2slsuiSAckEEIcdSWYt/ze5Z6e+d21BEARGd4vhrasH8+6aI6REarhpXOfOx39U1Ng8/GXRjhBb5CPf7GZ8j7gz5NEZnFY4pd/GQCCwGFjc5LYHG/33bmDkqXwNpxucHl9YW9mhCitVVjeTn18JiIvaRfNGNFtBHmNQk59m5pFgdsv1ozOZ1DsBvUpBz0RTWFXnhf1ab0g6XufgohdWSRLcoZmRvDhL3CzX2t289Euo1afC4mJPieUPTR45PD6sTi/+QIBnf9rHrwUVDMuM5v7ze0ib8tYwIS+BJ7/bKynABAHmju5aO1i908O6Q1U8+9N+ZILAXRO6MygjstMNNtU2N3/6bDs/7REdoSq5jE9vGk6/RpXB3mBo8eEqGzF6Mbz5VLVqVNvEwPcG201JnYOZr62VbB+XDkzmL+e3vkhpnHvTgAMVFnx+P3KZTJpe1zu8dI83MD43lm9vHcV3O0vonWxmUEYoCeL1+XlrVWFIBsSGwzXsKKpjfKOsiEqLixvf28SmI6JFZky3GJ6bmc/Vb21g2b4KrhuVSbRBTZ3DIxFHJq2CGIOKm8ZmU1zroLTOyWU5qSzbX0GS+UTNcYROxd3n5jJraBql9U4UMplEHIFom3prVSF3n5sboqTyeP0EEO0SLSExQsunN43A6vKiVogEnUmrpKzOyb9+KGDVAdFKt/loLXd+tJUP5g5j09FavtxSzJLdYm7GZ5uLmT8+m1vGdwtTHoqbkgAKmYxbP9wikT8VVhf3LdzG09P7Y1ArmNgrgbeCNdu7j9cTCMC/L+vHXxbtpMLiIifOwDPT+3Oo0srw7GgidSruntCdmEbT8PbkaTUg2qDm29tG8/zS/dTYPdwwOoueyc2HIDeFWavknWsHc8dHWzle52RoZhSPnhWD6ePnxDvE5oLPDaufO/Gg9a9B5hjIu7DZ57Q4RTVTpE6JUaM8qVaqKqsLXyCATinHoBEVODeNy+KZYM13jd1DgkmDRtm2OsMnHf92InXKFlt1DlZYmbNgvfTz6oNV/HTXWDJiFM2WN3j9AYRGXp/mrAk1dg9eX/vtYl2FKL2aq4enMy0/Ga3q5Kq9s2MNvH7lQJ77+QAKmcA9E3OJ1CmlgPMJPeO59YMtIY/ZVlSHze2jdZoREs1aXpk9EJfXH2wRE5sSlXIZ5/ZMYGB6FAECROpUp5X6tTU4PT4OVdh46vu9WJxebhyTxcAMM48v3kNWjJ4ROTHU2Nx8vf04N47JPqlrUUMRwdx3N0obs5vHZbdJbMQY1W2G8TfFx42a9bz+AA99tYsPbxjGqgOVYqti/xRijeHvpbX3Z9QomTU0jYv6JVHn8BCtV3V4A291edl8pIYnv9uLw+Nj7uhMzu+TiFmnQq9WkBDR+TVdvcPDz3tC0yYCwey85vILG8Pl8VHv9KJVyk5be45WpSA1SsFVIzJ+19chlwlhwwyjWhFiMzxZ9Ew0sey+cewsriMlUke8SYNJo+CjG4ajVrSsPOsKmIMqrSGZUSjkwkkNI/+I8AcCIc2GIGbceX6Ha+MZnEFrOENl/sbQqeXEGdWSbQNgfG4cK/af2CA6PD4e/mY3r8waIG0qG3CkysbfG4WQ/v3bPeSnmUmJ1BGpV/HB3GE8+OVOyupdXDowhRmDUluUNjs9Pp5feiDEu72usIaCUguRWaKnvamNBkDTyga1o/D5xdwJhVxo19S50uLC4/ejlDVfG98WKiwunl+6n2X7KuidZOL60VmsO1TNoq3FFNXaeXXOoDYXZbFGFYtvG80LSw9gc3u5aazYptKVOFxhY+67m6Sfr3l7A4tvG03PpM5duKusLok4AnHa/8g3u1nQaNpfWGnj4pdWS8qBSwem8MAFea1msHQUbq+PfWVW/vrFToprHUzLT2bu6Cxe+fVgSF7Iwk3FXDU8o9XPYkr/ZF769WCIlP+KIWkScXTze5tYH8xAidQp+fqWUfRKjqBXC9k9Hp+/WetJYaWN8Y1+XryjBIvTQ9+UCHYdr2f5/kom9U6gd7KJAWmRktIrWq+SFDU6pYIYg5p7Pt3GtiLRBvH80gO8fuUgmi4LooIbg55JEby9upCmKCi14vb6UcpluL0+jtc6eXX5ITw+PzeOySIlUis1+TRFs/ZAAYk4asDxOif1Tg/xJo1EHDVgwcpCrhqeIZFHDreX3SX1PPz1bqptbq4YksY9E7sz7/3N0mdTaXWTGKHBrFMx/6wc7B4f324vYW9pPbeelcOHG47y5LQ+mDRKDBoFdQ43vZIieP7yfHQqeYuT3Vq7G5vLhyCIDUzNnUOUchkZMXoeu7gPXr+/XYqjBqiVcgalR/HlLSPx+UGNm8ivrgZr8FiK6wXH1oc/sGAx9JgcEpzi9vo4XGXnie/2UGV1c9XwDM7Oi+uU3cDj87G31Mp9C7dxqMLGhJ7xPHhhT+KMGq4clsHQjGiW7C5leFY0A9Mjw64jzeFojYOpL66S7BWT+ybyyJTeROlV2FxeLE4PcpnAO0HirwFef4Bvd5Qwf3wO5/dJ5D8/75eeQ6OUcc3IzBCFXGqUlliDmgrriWvglcPTu/Q80xHI5bIuIclNWiUTeiYwMC0KBPE49vh8fDF/JI8t3oNMENCq5FiaZHjI27nxa+l7IpMJf8jpfJXVxdQXV0kKhxvf28Q71wxmzvB0SutcfLv9OAkRWt69ZghWZ7j1tCOQywSGZUWz/L7x7D5eT1asgRiD6qSI25bQ1N67raiOtQeruGZkZouPsbq8WJ1ePD5/0OIZ/nk2EM1J5vAWtfagvN7JVW+tl87Jf1m0k4QIDWf1iO/U84GYfeP3B1DKBfqlhFr8AHLasDdVWl28tuwQP+4po0eCkQcuyOuSjM7fG4FAgCqbGwG6NCogQqvggQvy+OsXO6Xb/jo5D3M7CmvaC41SLElIbKLs/C3PMZ2N2fijQ6OUMyonmpWN1mN9UyK63IZcaXWxo6iOo9V2xufGEmNUt6meO4MzaIwz35bfGDF6NR/OHca9C7dTUFrPmO6x/OX8PKa9tDrkfuV1TvwB8SCXC4K0uP18c3HYc361tYSB6VFolHIGZ0Tx3+uG4vcHwsJUm8Lt81NUE251KyitJzfBKG52J+ay+mCVZLPLiTOQ3UV+51q7myW7Snlz5WGMGgV/uSCPvEQj2mbkmYFAgAMVVm5+bzMHyq1kx+p5efZAusUZ2l2bXR+0DP4Q3AwfqbJTUGbl7nNzmf/BZjYcrmm2Dr4pVArR8/34tD74A4FTctL9aMOxsNs+23yMnkm9OvV81mZCB2tsbrxBlVqdw8Pfvt4Vcr+Fm4q4eVx2l27qauweLn1ltaTaenX5IdRKeUjGQgMOVtjo00oWWGKEhneuGcK/fijA6wtw61k5UoPN/nKrRBw1/N7nlu7n4Sm9W7wQa1UKLh+SJn0/QMxEOivvhOrI5/czID0StVKO3e3l4Yt68c8lBRwotzIqJ4ZrR54Ito7Sq/jkhuH8+fMdVNnc2FxeiTgSnyvAS78c4LUrB7X4Hsd2j0MQdocQZNMHpUiLq/J6MWOmQc34xZZifrhzTIcyCeSCQEa0TrKzgah+dHr8KJqxxcmE0NDYaruHGa+ulc4R/1hSwF8vyGNMt1hJNZVg0kjnI41SzkMX9uTuc7sHVRRq5o7OxukWSaDIFiy7TVFldfHAFzv4fqf4eZ3XW8ycammxLn4ucmmK116Fhrg5b5jKa2DK8/DT36Boo0geJfSCDa+HPihnQljibrXNw5QXVklT47s/3cZzM/tzUf/kdr2Ops91xWtrJSLim+0lqOQyHp3am0i9imHZ0QzLbkvPcgJWp4fHF+8OyYf6ZnsJt4zPQS7AO2uO8PzS/ZzXO7HZjKkks/j3iTWqWXLHGL7YWozb6+OSAalhKosYg5pF80fw3M/7OVxlZ+bgVMbnxv1hwnUbFFp7Sy1E6VUkRmiI0quosLjYEswUa2h6U8rldI838vzMfHx+P/ef14O7PtkmPdeF/ZLQq///mq43YNm+ypCQaBC/ZzeNzeJPn22Xblu6t4yvbx0V/gReNziqxUZBpRZ0sdCM8q0BDRbuU01OTOqTwNurD0vtoZkxes7r03I1e63dLR5fP+/H6w/QO9nEgqsGt0sFHQZnPdiroWq/qIrURooZbMDPe8ppGgrx8YZjDM+O6fDm1OvzU1Bm4Y6PtrK/3Mq5PeP420W92XS0hj0lFuQygXnjslslHGwuL08u3svCoNWtsNLGjuI6Fs0b0eUtwV2BSqsLm8uLKqjabYl4rHO4Wbm/kueXHkAuE7h3Yi6D0iO7RFWlUSq4qF8So7vFUFBqoUeCkUi96v87hc7/Ksw6FU9P78+zP+9n9YFKBmZEce+5uV1KQFZZXdzw341sPiJeqx6RCXx643AGpLfQcHoGZ9AMzpBHvzFkMoHsOAMLrhqEx+dHq5KLVjZfKGnx7+n9WLyzhDdXHiZCKxIrfZIjyE8zhxEL/VJDlRTtbbkyaZTMGpoeojpQyWXkp0Xyw65SrhiaTmqklh/vGsN3O0pJMmsZ2UZNbUew9lA1f/psh/Tz9FfW8Os940iJCv9aVlrd3PDuJkkZcrDCxnXvbODzm9u/0HB4fPy0J1RFcaDcKi1wInXKDgU9d3VeUGPkNBMS2ECMdAbJZi0xBhWV1hMqs9nD06WJldvr53hteOV5ldVNdsvlRx3GoQprWOD7N9uO86/p/Xg6aLUBcVLcVtW2UaNkTPdYeidFSA0oDUTi8Wbqj4trHeIx1+hzs7lE+2LDQjA/zcw/L+3La8sPoVcr+PN5PUKaUaqDgZUN30OjWsFHNw7DEGyIi9Ce2Cgr5DJ6JJpYcPVg/H4/hZXhRK3DIzbhtIQ4o4p3rhnC44v3YHV5uXZkZkiL1KKtxSE2WK8/wFurDvPwRb3anYcUbVCJleJvrMPi8qKSy/i/yXl8vOEoMwanMqV/El9uPVGUOW9cdkhI8uYjNRJx1IDvd5YytX8yy/ZVkBal49+X9Qv5u+tUoTkRDRXDHcGqA5UScQTw3c5Szu+TKLXcNIXb66Okzslryw/h9Pi4YUwWqZE6qSWn3TAlwwXPgMcutpd57GLO0ZZ3Ra9G3xmiba0JthytCbEbAPx37RHGdI/tsPqo2uYOU7AsLSjnfpe3U1Nbl9dPcU348V9W70SlEHj6x30A/LC7lI9uGM6XW49TEVTPZscaGJUjniTkMoGECA03jQ3PHWuAIAikROp4+KLeuL1iJXh7BwCnA47WOJjywkqpQWt8biyPX9yHKS+ukhTFCSYNX94yUiIAGqweZ+fFs+SOMfxSUE6f5Ah6JBjb/dm7vX5qHW6JcO0KeLx+/AR+l81nYjM2qcQIDWsPhqogK61ujlTZQ5UQXhccWQMLrwZHDUSkwuzPRMLkd0acUcMnNw7naI2dQCBAWpS+VRKlwuLimeDxBWIL6Eu/HODP5+e1usaosbsprXOyr9RCfpqZOC1odi2Eb+8U7yAIMO0NyLsIFKpmg7u7xxtRyjt+7FXb3Mx+Yx01QYvND7vLMWkLePvqwbh8ohKpNYIFwOb28vX20ALmohoHNpeP2BaWOlVWFxsO17D1WA0TeyWQFaNvl6ryZFFS52DOgvUcKLciE2De+ByuH5XZ7LF7oNzK/Eb21Kvf2sCSO8aQm9A16iBTsCAgPbp9aner04PF5cXt9aNXKULW77V2N26vH1kwKPsMfn/EmTT83wU9sbo86FWKjq9P2kBJnVMijkAcYj7x3R5ev7J9mYNncAZwhjz63dBYJq9Tyvli3kgeX7yHohoH88aLuSgPLDohTZ356lp+uWccZ+fFMyijiI1BVcXQzCjGdO/87n5YVjSPTe3NB+uPYtYpuXFMNgtWFjIiO5pqm4t//1BA93gTY3NjkQkCPn/nvLcen58am5sAor1EAD5cfzTkPl5/gBUHKrl8SFrY493NWIqOVTs6VKssE8TJeFn9CbuESi5DJoibnien9SVKf3p47i/sl8j7645wsEJ8z93jDZzTSAHTUcQa1XwxbyTP/rSfw1U2pg9OZUJevGRpNOuUXDIgmX/9cGIRa1QrSI/u2iltc9PUzBg9Zq2S60dn8vnmYiJ1Ku6c0C2MkGgJUc2oloZlRYdVEM8Zli6RHk6Pj8OVNp7+cR8Oj4/543PolWTCrFNxyYAUxveIQyYQFhK68XBNyPfQ4vLy3zVH6JcSQW6CiZz40PYpQLLe+RE3R42bTG4ck9WqNU+vFgmynkkmAoFAWJiqvhnVm16taKFmunkIgkCvJCM/3z2WOqcHrVJOUbWDQRlRxBvVPDi5J5P7JrL2YDXn9oqne7wxZFOT1kymRXq0jrwkIx/fMIwqm5vHF+/hpdkDuiwvod7hZnWTTSbA2oNVLZJHFRY3E59dLpGXX2w9zne3j6Z7ZyqH1YYTjWoqHUx4BMbeF/xZD5pwa2RsM4qdxAhNqzlVDQgExGIDl9ePSi4jQqtEJhASrNktztCu52oOZq2SSwem8Mg3u6XbtEo5uQkmVh880fLl9Ph5YNEOFlw1iGqbG41STk6soVMDhVPR2Fln96CQC6fM9tBQ+d64el0mE/hsc1GIFb203slX244zd3RWyOMbSNLchI5952psbj5cf5T31h4hQqfkoQt70T81otMhqj6fn5I6J6+vOESVzc3cMVlkx+jbVEfU2NyU1ouERf80M1H6zlu/+qRE0DvZxM5isfQgSi9mwv3tq51h9zVqmrxPRw18MhtcFvHnumOw8Fq48gvQd+G0o5OIMarbfUzsLw/P7tt8tBa729cieVTv9PDi0gNSU6AgwM67+8EPD5y4UyAAi+8RmyCNCfRNNTMsK0oKXE6P1jF7WHqzOWVtwerySsRRAxZtOc59k3qQFtE+W50MsT218fW0YS22eEcJ/VIiiNSrpCFDjc3NfQu38/Ne0TL8yrJDPDa1NzMGi9EMXp+fCquLn3aXoVbKGdc9llij+qSJaYfbxzM/7uNA8HPyB+CFpQeY2j85bLPt8/v5oMm6FuDLrcXcN6nHSb0Oi9OD1eXF6fFjUMuJMajx+gOtKmhr7W7eWnWY55fuxx8QLZXvXT+UJLOWkloHd3+6jdUHq+geb+A/M/PpHmf4wyhA/5dxKtusHe5wd4Xd7cPXzvX2GZwBnCGPTgvI5TKyYg08M6O/uDmQCdzyYWiwptcfYGWQWHl1zkApdNSoUZxUQ0+UXsX4HrH4AgEsTm8wt8TFwxf1YsPhGoZnxbBkVykPfbULgPxUM69dOahD/meL08NPe8p45Ovd1Du9TOmXxF/OzyMrWs8yKkLumxNrwOL04PT4MDaqNFXJBZLN2pAw4wRTyxsvr89Ptc2Nxx9Ao5ARbRArxJ+6pC/Xv7NRIib+dF4PIrQKVt43nghd++wyvwVijRo+vmE4x+scCIiBqSczGRIEgZQoHY9O7Y3L6yOiybRfKZdxxdB0QLRGpkRp+b8LerZZS9xRROlVXD0ig7eDuSnRehUPXJDH0z8UYNAoeWJaH6xOkZCZOSS10xbJaL2KRfNH8sTiPdQ5PGGKnQqLiwtfWCmFy6/YX8kX80bSP83c6hSuxh7etFfr8HCw0safF+3knWsHM7Z78yRfnFHDonkjeXt1IYWVduYMS6N3ckS7FrctvZ4L+iby0q8HJEWZSaPgyuHpHV4wK+Vy4kxy4oLkXlNrx4SeCUzomUCNzU2VzUW13Y1ZqyTaoCY1Ssd5vROkYOB4k5rZw9K55u0NUvhjBwR9bSIQCPDN9hKGZ0eHqTDPD7ZQNodvdxwPUb35/AEWrCjksYt7t1l53SY0JvFfK8iM1ods3kwaBXdNyG2X7fVAuZVr39nAsWoHsQY1H8wdyoOTe/L3b/fg9QeINah5YlqfTk8O5XIZU/OT8foDfLzhKHEmDQ9N7km0QRkSqg+w63g9K/ZXcuOYrJP/u3UR6hwe1hdW8+bKQiK0Cu6ZmEtalA5VFytq3F4/pXWhqka9ShGi6GxAeaMhxckgEAjww+5S/rGkAIDkSC1qhYzFO0oxqBXkp5k7bPOptLk5/7kVEgn2zfYSPp83ggFpLVsXLE4Pryw7yKvLxbY4QYAXrxjAxJ7xndpwxhjUvH3NEI5U2bA6veQmGAkE4KaxOSzfXymdm4dkRJLQdOjgsZ8gjhpQthP8bdvOTzeI1wBCLGVn9YgLJ8waweb0smDViTy8QAAsdgd6TxN1q6NG+pvEGNS8eMUAcV3k8wfz7zpnD9OrFGHDmR4Jxnbnd4GoeH1yWh/mLFgv2Rfnjcvhow3HePEXMXT+veuHStdtm9srEUcNeOanfZzbK55Yo4bSeieTnl0hWe9jjWq+uXVU5+x/jWB3e0NaXRtQWGkNU4jLZTK6N6MQb05J3hHUOzy8vfowz/60D39AVJK/dc1g3ltzhCFZUYzIjml2CFVjc/Ofn08oug9V2vjXkgL+ckEe9yzcJg1g9pVZmf3GOr67Y/TvVobj9vqotLpZvr+CWIOavinmP2SW2+mOjBg98abQIfrc0a0PMc/gDJriDHl0GsGoUWIEXF4fGTF6lu+vDPn/GUEVSLRe3enq9uYQrVcztnssn2w8xqUDU7g4P5lInYqdRXXkJhj5enuJdN8tx2r5dOMxbhyT1e4FY5XVzZ0fn8h5+HxLMTlxBuadlc23O0ukie30gSnEm9Tc/ck2dpfUc3aPOG45qxuxRvH9vjJ7INe+s4EKi4tYg5pX5wxsljhzeXxsOlLDbR9todLqJjfeyBtXDSI1SkePBCNf3TKKgxVWMqLFkPG2MhDcXh81dg8Otw+tSk5UOzNZThYxRjVmnZIauxt/IIDD7W0xCLm9aG2iEaVXcePYbGYOTkWlkJ+SVg2zTsWd53TnulGZWJweYgxqonQqBmZE8fDXuyUyQCbAvy7r1+nfo1bK6Zlo4oUrBuAL1h83JlS+31kqbU5G5cQwpX8SVpcHl8eLupVp/rjcODRKWQgJccmAFJ78Tgyxf2HpAfqlmFvcxCdEaLjn3Fw8/kCIjavK6qKwykZFvYv8NDPRBlW7vmNxRrFJ7Je95Xh8ASb0jCe2GSVWZ2FxelDIZGhVciotLq56a720kB6YHsmrcwaiUsi4eVw2t5/TDY/Xj14t59d9lSGtIZcMSGlWJdUZ+AIBNh2pYUR2DDePzeadNYcBuG5UJt3jDZTVO9l6rBalXEafZJO0QWqOpDF0UKV1MogObt6Kax3U2Nz0SDQR044FW6XVxfwPNnOsWiQtKqwupr+6hu/vGMOk3gnY3T4MGsVJXxOi9CquHZnBtPwklHKZZAeJNYrE1BNB6+QFfRKZObjlIobfA1uO1jD33Y3Sz7/uq+CXe8aFhb6eLMw6JVcMTWfz0ROy/01Hanjz6sG8u+awpASTywRmDu5YS1dLqHd4paxDo1rBA+fncdVbG6R8qtQoLZ/dPKLVTV+t3Y3d7cPrD6BXydl8pDpEPQXw8q8HeXZG/xZVW1anl9dXHJJ+DgTgoa92MTgjqtObvBiDmhiDGo/Pz9fbjnPXJ9uY0j+Jj28YzvbiOnJi9fRINCETBHYU1XKwwsagjEiSFDpkumiwN1Ifpg4BecvXLJfHR63DQ3m9k2iDGpNGcVq0e0XqlDw/M5+HvtpFrcPDhX0TmTM8vVVFiccfCMsv2l3hISFlkJjF1oDss0VlZBDRBrVkeay0uPhm+3EOVVg5Jy+e0jonOfFG4ozqNi35Jp2Cp6f34+5Pt+H0iETUM9P7d8hOKQgC/VLNLL9vHIcqbCREaPh+Zyn/+kEkSb3+AA99uYv35w4lxqAOe78AHp/4d/D5/by18nBIZmOFRVQhzRqW3u7X1ByMGiXn5MWHEEgyQWwlaw7TBiTz8YZjUuZVryQTY7qdnBqu1u6WrMMgWvD/8f1eeiVFcMsHW7hmRAb3TMwNO3YPV4db5Xcer8Pj84cpd8VcRh90Ph3hpHCkys7k51dKhGSPBCPvXTe0y2IyzkBErFHNl/NH8saKQg5X2Zg1LJ0BqeY/lHX8DH5/nCGPTkOoFXJuGpvND7vKKK0XLS6jcmI6Z69oz+9TykmP1nPvxFBZ7dl5cWGTHoDNR2twef3o2rl52HqsNuy2n/aUc/mQVL69bTRHq+3BpiQl019dI22S3llzhBq7h8cv7o1BoyQv0ci3t47C6fWLaiK9qtmMolqHh+vf3Yg9KM8sKLNw96fbeP7yfG79cAubj9YSrVdRa/eQGqXl4xuGt3iB8vr8bD1Wy/XvbqTe4SVCq+TNqwfRPzWyQ/lInYHF6eHXggoe+WY39Q4Plw9J4+Zx2ZTVO4kzqjFplV0e1l1n93CsxoHXHyAzWocvIOahaJUyovXqdufotIYInZKIJu0gU/oncbzWwUfrjxGpV/HwRb06PQnx+HxUWNz8vKccg0bByJzosAtjfNBCdMtZOaRH6Xhl2SHcPh83jc3mgmB9cXOIMYhNe//5eT8Wp5cZg1PZFtzUAKgUsjYvwgq5jMaCiCqri3nvb2ZdoahI0SrlfHXLSLq1crwHAgFJsh5v0jCzGatnR+H0+HB5/URoldQ5POwsruO15Ycw65TccXZ3CkrrQxbQm47UsO5gFX1TI/D4Aqw+UEG13c2EvHhG58TwzrVD+Gl3GaO7xTAoPbJVMtLh9mFxevAHQKUQxMl2ow2Mzx/A7RUz4hQyUSU3/dU1zBycyqtzBgLiNLbC4uLKN9dLSpDUKK2UizahZzz/+Xm/lNVjUCu4ZmQG8k7YNjqLxpu39sLr87OvLNTaUmP34PL4SGtn7kV7oZDLiGlCQpg0Si4ZkMLZPeIIIBLQTa2ZvycsTg9vrgxtJXR6TFZKFQAAIABJREFU/Kw5WMW0ASld+rsEQeCcvDieuqQP/117hBiDmr+cn0dihLggf27pfgQEbju7W7OZPp2BWimjW5yBdYWibfSzzcUhwebHqh0sK6jg/D6JzRI/1TYXj327h8+CBFR+qpn/zMxHKRckAh1Ar5K3Wvnt9Qdo6myotbsJcPJ2hxq7W2qR/XLrcb7fWUrvZBMvzxqIQibw9293s3CT+PrlMoGv5g2l16zPYOE1UFMISflivo+u+ZD4QCDAjuI6Zi9Yh9PjRybAI1N6My0/+aQyRaptbg5X2thaVMvI7BgSIzQdHroYNUom9k5gSGaUZOtvywqoU8nJjTdSUHZCfbWxQsa46e8h+/VJOLYGMsfBmLvF0OwmqLS6uObtDVI72jM/7eeFywdw18dbeGRqnxaJkQZolQrO6hHHsnvG4/D40KnlnSKvNUo5CRFaEiK0HCizSOq6xq/TH/zS6VRyhmRGsr7wRBHGzWPFQo9AgLAMOGj+to5CpZBx5fB0SmodLNpaTIxBzWNTe7e4Rog1avj4xuGU1jmQywTiTJqTzhNqbHVvwL4yKxN7iUHs7687yk3jssOO/9x4I3KZEGJJOicvHoVMIDfeyN7SE98fjVKG7hTmeLYGm8vLv38oCFGy7S21UFBmOUMenQIkRGj506QeePz+37VlrcrqwuMPoBCEM5/zHwxnyKPfGQ2bJmWTuuAks5avbx1JUY0DnUpBjEHVpYn77UF6tI5xuXE8v/RAyO2T+yZ1aMGVlxi+CR6UERl8z0ppanm40iYRRw1YvKOEBy7Iw6BRopDLJFtNYzTkKVmcYlis1eWViKMGbD5Sg88fYEMwK6pB7XSwwhYWYtsY1TY389/fQr1DXITUOTzMf38LX90ystnX0pWosLi4tZF98e3Vh4k3qVlXWM2qA5W8PGsgY3NjukwFVWFxccXra9lfbmVS7wQm90nkL4t2UO/0is1m1w45ZQRmlF7NXefmMnd0FoIgEK1XdZqoOl7r5Lz/rJC+A8lmLYvmj0AmCOwpqaekzsnwrGjmj8tmWGY0sxeskx77wKKdpEfpGNXCpLChae/JaX2xOj38edEOftojEqwNzSodDX4+VuOQiCMQQ7Sf/H4vz87o3+wmosLi5LPNxewqruPSQSmtKp3ag0AgwPFaB88vPcCRajs3jM5EKZcxe8GJCvofdpWxaP4IFDIhJIuqtN5JT5+JOz/eytHglHPBykLevXYIA9LMjG1HHluV1cULSw/w2ZYi4owa/jQpl3qHl3G5sUQb1FRYXHy68Rhbj9VyUf8kRmbH0C3OwEuzBvDC0gPsKann5nHZbDpSzb4yW4iF6Fi1I0hUpxEXtDH8WlCO0+MX7Q6nSUhog7rR7w+gUclDGg4Vchl5iUb2lJxY6McYVGhOUSYCiKSALXj86FViGPypPt91Fkq5rFnly6myPJh1Ki4bmMo5efGoFDLpGO2TouLZGflA11ZNa5Ry5o/P4ZeCCnQqBfXN1NYX1ThYsLKQK4amhW1U95dZJeIIRPXw19uPM2NQKu+tE/NZ1AoZt53drdWcDa1KTq8kUwiBPC0/pdlGxs7A2kgJ5fL62XSkFpfXj9vnl4gjEInk2z/ZycIbh2G+7gfwe0GuAn1Mi89dZXVLKhkQc2se+Xo35+TFdZo8qnN4eObHffx37RHptiem9eGSASkdzh5TtrC2aQkxBjXvXjeEl389yPaiOib2iufSgSnIDGqY9AS4bWImm7J55V1ZvVMijkBUkb22/CBT85N55scCnp2R3+Z3WKtSnLQSujEidEpSIrUU1ZxYA84YnCpdT6MNal6aNZDvd5ay8XANU/OT6JdiRhn8W88elsZnm4skokSjlDGpV8stdx1BtEHNQxf14p5JuQiI65XWhoeiJbDrzj/p0fowm+DY7rFsCSogW3otZq2St64ezF8W7aCs3smUfslcOyqTGIOaZ2f2Z/Yb66i0utEq5Tw9o1/YUO+3gs8fCFNCgjgYOINTA6VChpLfTz18tMrG/A+2sKO4juxYAy/OyqdbnPGUD+XPoGtwhjz6HVFpdfHsT/tYvKOUjGgdj1/ch5w4g2QHiDVquryy1OL0oJLLcHh8FNc4WHOoin6pZpLNWsy6UCVLpF5NRgD+eWlfnvp+L3a3j6uGZ3Q4oDvepOHWs3J4+deDeP0B8lPNXDYwhfs+287F+ckMyogiUqdCo5SFTUmSI7XY3a1Pj/aWWJi1YC31DrEp6vs7RqNTyUMIpAHpkcgEMSepQc0FovqgtYWeOxjC2Bil9U48v0G4XGNCoQEr9lcyOCOKXwsquHfhNpbcMYY4U9dsIn8pKJfCO68ekcH172yUZOAldU5u+3AL710/9JS1cmiV8g5XBjeF2+vn5V8Phnz2xbUOVh+oYvXBSj7ZKNYCq+QyFs0fwbpD4aHLn2wsYmhWtGQbsDg9WJ1eKq0u4kwazFqlZP97YlpfJh+opLjWwQV9xBpzl9dHnUM8ztpD6tQ2k6NUZRXJ0ECAkEl2pdXFnAXrpYnh19tLeGRKL64YkkqtQ7x/VAuKvJZQYXUx9cXV0vc8P9UcQlSASGhtPVZL7+SIECXh2O6xFFbZJOIIxIXgGysKeXZG27ZDj8/P++uO8lYwA6veYWXe+5v55MbhfL2tmHN7JfJrQTmfbiqisNLGD7vLuP3sbswbl83EXgkMSo/E5fUz7/1N5CaYpCl1Y5QHj3dBEIg3aZgx+ORVWl0Jm8vLiv0V3P/5DmrtHoZmRvHc5flSVkdMcNM0992NHCi3kmzW8vLsAUR3cTNKpdVFpdUFAXFjfMuHW6iwuJiQF8+Tl/TBHxAt1Sp5UPV5mtjWNEo5t53djR93l0kbkF5JJvLaUE+cDGSy5hvPTlVQd6JZyxfzR1LnEK0lX207Ltl41AoZ43JjueL1ddQ5PNw7MTfEdrS9qC7s+TYfreHJaX0YnBlFjd3NhLwEYo2h36eGDJK1h6qIN2nITTDy9jWDeemXg2wrqmNkTjTDsqJ58ru93D+pB1EncV0wqBVMH5zCe2tPhA33TzWjU8nDgplBzHJx+wJgal+JhJ8Ax5pYeNw+f1jzZ3vhcHups7t5b92RkNuf+n4vZ+fF/Sa5MfEmDX8+rwd2jw+TWnHieFTpQqxqzaGx4qwBbp8fpVy0ZPtbaQA9VYgNttQ9+9M+9pVZmdI/iSn9k0IUqDEGMU9v5pDUkKBvj8/P1qO1/Pe6IXyyoQiVQsaMwalsOlJNRkzXqDP1akWLx3e1zcWBchvbi2oZlRNDYoQ2jIhxenzU2t0cKLeSEqkjUqdsd1NcpF7Je9cN5f7Pd1BUY+eCvolM7pfI1W9uAIINqM0MrXRqBaNyYlg0byQQQKtSYAi+h5xYA4tvH43dJcYxRGiVp7RBuDWYtEpuHJMVYqUzaRXkt5LBdgZ/XFRZXcz7YLNUlnCwwsrVb27gq1tH/m6ZW2fQMZwhj34nONw+nvtpv7RYqra5ueyVNfx899hTMuGttYuLwPfXHWVq/2TKLU6e+v6ERPj60Zlckp9MXlJoS1C0Qc3U/GTG5cYRIIBJ0/ELjFmn4saxWcwamo7b62NHcR1Xvrmekjoni3eU8uiUXlwxJA2DWsk953aXXpdKLuPP5+Xx2vJD3DuxR7M2pkqrizs/2Sopg9w+P0//uI/XrhzEHY0yj/59WT9ijRqemdGPa97egNPjRykXeOqSPsgFOFZtR6WQEalThoSsahRyMmP0IY0g3eIMqDvZatQRNLf5yUs0caxGXATX2D1d2pBwpOrEexQgJD8ARBlxc5vzUwWPz48g0KE2GH8gEPa6QWynOVx1YvPg9vl56ru93DsxvNp5xuBUDpZbWbavgjHdYtl0tIYHv9yJPyBOM9+7bigD0yMRBIFYo3h8NKDa5uKNFYV8ufU4SWYNj07pTXacodX8irxEEyaNImTyNm1AMvct3I5SIbYANhAJtXZPiNQcwO7ysXRvBf9cUoDH52fe+GzO7ZnQbjXSsWpHCEFqc/uaVU/FGtTcNDaTxxcXIJcJ3DWhO/ERmpC/awO8fj9COwiseoeHxTtKQm7z+AIoZAIqhZx572/GpFHw6JTevL/uCN/tLOWtVYXMGpZGBKKVxuPzU1hpp6zexVOX9GXh5iJpY62QCUxp9PmcjqhzeJj/wRbpWF5XWM0/lhTw6JReEpmfGaPnoxuG4faK562uspA2oMLiZNYb6yR7XN+UCJ6/PJ+Zr63lxz1lnL8vgSW7S/l+ZxmxBjWvzBlA3xRzq9/r3xIpZi0/3jWWLUdriNSpyI4z/M9VTzeoGaxOL5/dPIKXfjmARilnzrB0Xlt+CIfHx68F5dw0NjvkGj2meyyPLd4T8lwX9Ekk1qhhSv+Wj43CShsXvbBKUjv0T43gjasGM2NwKnEmNTuK66SB0JDMKC4d2PmMJ51KwV0TutMtzsiSXaUMSI/kquHpRBvU+ANio2NjgvryIakdUkloFHLOzovjx90nbPjJZi16dec2y5VWN+UWV1gOj8PtowtcfO2GWikPIVfai2SzltQobYjSe/bQdL7bWcqtZ+V0ukHvZJFk1vLwRb1xenyYtMoWhyAKmQyby0u5xcWPu8vIitEzqlsM89/fzKCMKLx+P3Pf3chrQUvzycLvF9sui2ocRGiVROpV0nq03uHhw/XHeHNlIVU2cRD0xLQ+XDowRTo/BgIBth2rZfaCdRJxd8v4bK4cntGu9b5aIWdwZhQf3zAMPwFkgsC+MgvXjMxgfI84cmINLQ7eZDKhWRWUQi4TN+q/U8ZRU+SnRfLB9UNZsKqQWKOa+eNyuryw5QxOD3h8fok4akBpvRNnKy6QMzi9cIY8+p1gcXr4bldp6G0uL2UWV5eTR35/gB93l3Hvwu0A3Dwum79+EVqH+87qw1zQJ5FKiyvMe9qSLaAjMKiVGNRKdh+vY/4HoU1yC1YWcnZePElmLZN6JTAkM5qSOofYKLHqMBsOV3PXhO7Nv7dAgIMVoXkg32wv4f5JPfhi/kgCAdEr3zAlHpAWybJ7x1Njc2PWqfD6/VzyyhqOVNkxaRQ8OzOfEdnR0uI72qDizasHc+uHIkveNyWC5y7P/002JmlROmYPS+P9dUcJBKB3sonJfRO5/PW1gKgQ6czCsSVM7Z/MS78eJBAQyZUovYpq2wlVzMD0yN8kJNfm8nCkysGClYeI1Km4ZlQmCSZN2EIyEAhQYXGxfH8lXp+fcblxxBjE0O9vd5RIC3u9Ss6YbrE82qiGHKDe6SXGqGZoZpSk8rp2ZAbFtQ5mvbFOes+PfL1byvpwevzc/ek2Ft40IuyY8Hj9vL36MC/9ehAQFU+XvLyaX+4Z1+oxHaNX8dUto3j6xwJK6pxM7Z+MQi5j5QExMP/BL3fyr8v6YdQo0avlIYv+GIOKfqkRXP76CevdfQt3kDpXR35aJHUOj3gMKOW4fT78ATBqlSELTUOTDdS324/z5lWD+WlPmUTEdY830DfFTJROycD0KAQEooLWwr6pEcQa1VKWkCDArWfltCsXR6OUk5tgxO31M2d4OunReios4iL9L4tOnKPWFVbz0Q3D+HlPORqlHAGkDJMJefHcfW53HvxyF8v2VfDanEG8v/YISoXAnefkSvlWpyuKauxhJPC6Q1VYXV50KgUWpwePz0+UrvNWzrbw1baSkFyl7UV17CmpZ1B6JBuP1LCusBptMEi+wupi7rub+P720aeNlU0ezP6a1Lvltr3/FRg0CgakRfLIlN4sWFnI7R9tldS0fVPMYYRIQoSGf13Wlye/E9XDVw5PZ1xu64odq9PDP5aEZpBsPVbHkSob6wurQwZPAMsKKpjSP/mkyESZIHBh30Qm903EpFVKzxVrVPPxjcN4YekBCkotXNQvicn9klB3oEnPpFXy+MV9MGkKWLavnLxEE3+f2rvT1/FfCypQK2UMzoiUrPAgDh4Mp0h91h402F/tbh96lZxIvarZzyTWqGbhTSP4aP1RDlbYuDg/GY/Pz72TcsnqIqVOZ9HemvLtRbXMemOddG0emBbJ36f2Zubra5HLBOaNy+50W2tTHKuxc/FLq6X10OS+iTwypTdymUBJrZht9MyM/hyssPLoN7vDFGiVVjd//nxHiOLrpV8Pcl6fxFbbXZui8do8xqBmRHbLVs1TiUAgQIXVRUmtE71aQVQjMq2zMGmVjMiJoV+qGYVM6NK17RmcXlDIZGFDebNOiaaL21HP4NThDHn0O0GlEA+ehg1XA6JOgee4xu7mrVWHpZ/lMgGXN5Th9fjE2MtTLVdurjpZr1awq7gOnUqOQaPkijfW4vVBlc2FPyBuRCO0zV+Y1HIZY7rFsGzfiWa6OKOaQ5U2rnxzPb2STLx19eAT91fKiVfKiTdpqLa5mffOZo4ElRP1Ti/z3t/EsnvHS+SRIAhkxuh555ohYkCxTEZUF7ZZtYYovYr7JvZg/rgcMVROJvDcz/sxqBWMz43iwQt7hl2wK60u9pdZqLS6GZwRSbRB3e4FfaJZy4dzh/GvJQUs2VnKgqsGcefHWzlcZad/qpn/zOwf9vusTnGh2pSQOBkcqrBx0YurJPLnk03H+PHOsWGVu+UWF5OfXykdQyatgu9uH0NmjJ6vbxnFq8sPYtIouXFsNjqlDINaEWKBuH5UJka12BoTAAL+AHK5jCkvrJLu4w8SaY1xrNrO/2PvvMOjKvMv/rnT+0x6LySEQAiEhN5BFCkqICAiIFZw7b3srruuq+vadl3rir13RQSRYqML0ntCDaTXyfT++2OSIcNMIIGgYX85z+PzyM2ddst73/d8z/ccX5j7pN7mYtG20qBtFqeHIzXWUy6yxWIR6dFq/jm1N1UmBw98sSMQ5w6wqrAai8NNmdHOqsIqHp6Yg93l4b7Pd5CfGhEgmZqjwe7m/Q1HeXZ5IQ63h/G9Eri2sRVxet9kbhqVGSBUY7RyhmdFs7ox3dFoc6GQilh590h+OVyDQSmjZ6IuMHE9uZU2RiNn0S1D+WBjMRUNdi7LS6TO4qTW4jzthFItl/DQ+O6U1Nn4x9J97C1r4LHJuXy4sThoP78HSh09ErTMHZKORCRwb6OHyTc7ykgw+BOnqkwOeiRoeeaKPBRSERp5xzF2bgnJESpEAkFmxH1TI1BJxRRWmHhi6V6qTU7mDE7jopy4ID+k9oDX62NfeWgUdXGtldhG4m1IZhTPN/O+q7U4O2yV0GR3UWtxsq/cRPd4LZFq2SmVFC6393c3Dj0TaOQS4nQKaiz+8a9bnIb7L84O+R0auZhLeycyspufMNIoJKcdq10eX1BaYhOMVhdDMkNNqcf0iDtj4sjr9XG42sKfFu6kqMLMhTlx3Dc2O2ihnKBX8vAlOdhcHvQK6RmRqDFaBY9O6onFkY1cKmpxTtEaJEUoeODznbwyu4Af9lWyp7SBkdkxXJbXNj/I9oTL42HTkTrmv7cZs8Mf7vHWNf1Ji1bh9frQKaVBhFucTsGtF2Th8foQi/zjT0dREoK/taXa7MTl8ZKoV+ADrE4PUrEIkQBPLN0XNGZuLq5DJZew9oEL8OE3+m8NCXU6mB1unvxuf1AhbfGOMu67OJsf91XyyDcnilJ/GJnJtUO78P6Gowj42ysj1DJ8+EJMr70+sDg8rC6sYko7G/ufa5TW25j88rrA3OuinFj+eXnvdvFlPVetv53oOIjSyHjpqnzmvuVPz9Yrpbwyq4AIdcefr3XCj8679HeCQSXj8cm5TH91PfVWF4IAd47JOidyYbFIQKc8cao3Hq5lQq8EFu840S4yOjsWu8tzVsa7rUGkWsrQzCjWNvY2CwLce3E2cVoFVqeHeJ2CT+YN5onv9nGk2sKkPklc0a9lA0q9SsaT0/L481c7WV1UTY8EHQ+N786T3+0DYHdpA2+sOcw9Y7ND3sPt9bLjeHASnN3lxRKm7em3Nitvgk4pDepl/9PEHtx9UTeUYRJZqs0Orn3rRIKKSiZm8W3DyIhS+SONRWJQRbb4WRq5hEEZUbw2tx8+nz9C+PObhuD2+pBJRCFEQEmdlceW7GVXqZFR3WK5fUzWWSvUbE53QP3UhAabmzVF1UztGzzBWrqzPIh8bbC5eW/9Ue6/OJvcJD3PTM9DhIBUIsLr9fHNbcN46ccDlNbbuXpwGr2S9Nz72Q6W7SlHJhbxjym5DMqM5oWr8tlwqIY31x7GZHeFmHhe0D02bOumXCIiNUoV0sbV2mOikkmQS9xsPloXtH3ukDTWHqjhns+2B7ZNLUjizWv6k2RQsKs0eOEfpZYRo5Ez/73NgW1LdpSRFathQJdIXltzmHiDkmsGpyEWi4hUy3luRh8OVVs4XmdlQJcootQyFFLxKdtamiAIAjanhwOVZnQKKfd/voMyo52np/VmWt/k06bPiUQCt360NTC53nasPkBaNEd6tJp/zcgjWqPA4fZwrNk5WbDqEO+uP8LKu0eSHHFqv4+OBp1SyjPT8/jL17sxO9z0Ttbz0ITumB1uJr24NmDof//nO/jXFXlMyU9q11hdkUhgRr8UPmv0A2vC6OxY/vr1Lu6+qBsyiYgDlSeUSTEa+Tk17D5T2F0evtlexh+/2hnY9o8pvbi8IAmFVIzN5abW4k8SzI7z+wu+tuowpUYbcwen0SvZ0GbD+98LOqWUWQNTuSwvAafbh0omDiJcHC4PZUY7b6z1J9HdMKwLCXpF2ALOyYhQy7h+WHrQWKRTSuiZpEcmFnHL6ExeX30Yt9fH9L7JjOh25gqIGouDKxdsCLTOfrLpGE63h8cm9wpaSCqk4rP2ZDmVb01b0DvZQFKEgpmvbWBCbjwXdI9lYu/4322eAFBncXHrh1sCalGjzf/vRyflctcn27hpVCZXDUwNIp/FIiGg6O1Id3O12cH89zaz+WgdWrmED24cyJ8X7mLHcSMysYgPbxzobxE8CU63t93VkA6Xh+JaS8h2j9fH0yelw72x5jCfzB/EFf2S2XCoFo/XR36qf0y5rE8in2w6Ftg3OUKJ2eFm2zHjeUUe2VyeoNRSgBV7Krl5lPV3vf47cf5AEASy43UsuX0YdqcHhVRMhFrabuE/nTj36CSPfkdkRKtZfucIaixO9EopGoXknEQgG1Qy/jihB1NfWYfL4+PVnw/x3vUD6JsWwU/7qyhINXBpXiIRKlmbU0Laiki1nGevyGP9oRqqTA76pUeyaFspx+uszB+ZidvrQyOX8PS03jhcXvQq6Wk9b+J1Cv51RR/sLg/lDXbu/nR70EJn67F6bE43Mkkw+SETixjQJTLIpE/bTpPLcwWtQtoiwVhUYQpKULE6Pfxr+X6eGiZC9e0tINfCRY9BfE+QtrzAbj65bCk+s8rkYPYbGwOy0/c2HKXa7ODJab3bdA27PV5qLE52lxiJ0siJ18mRhal+en0+qkx2IlSyQOuc2RFaGW+eztG8yioSCSRHqPjrpT1xe7woZRLeWnuY7xpbRyf0SkAhlTDj1fWUGe1c3DOON+b2559L9/LSVQU8s2w/e8sbGJEVw4Pju4c1p9Qppfz1kp5c/sq6QJT23MFpRLRBTahTSnhyam8e+nInDreXWK2cWQPTmPLy2qD9vthSwt1js0kyKNEopPRNiwgs9IZnRbO7NNQkd9ORWgpSI1i+p4IlO0q5PD8pkPDYFCHfP71lcvFUWHuwmu92Bbfhfr+3ggt7xOLy+MnHlohpm9MTVJX9Znspb17Tn+/3VgbUDwVpBvqkGALyfpMdxvaMY+nOE58ZpZb/Jl5k7Q2NXMLEXgkM7RqN2+NDKRMTqZaxbHd5SBLk+xuKGZ0dG5TM2R7IitXy3Iw+vPDDAcQiuOeibLLjNXwyfzB6pZRSo52usZpGs1clL89qf8PutsDu8lButPPBL8UoZWKu7J9CnE6B0ebi8SXB7amPL9nDmB6xyCUithXXM+eNjbi9Pj6/aTA3vb85kM63Yk8Fr87uy8W57ZPQdDIabC4abC5qLE4S9IoWW4rAvwh2uD2nLSadigypMDm4+LlVgdazTzcdY+XdI0mJbB25OiQzmtfn9uOddUeI1ym4bUwW0Rp/ytQto7oyZ3A6+EAtP320fNNvagoH0MglAYVOg90dEkrx3a4KHhrfo8M+i6M1ct6Y2x+jzYXXB8W1Fkx2Dy6P3xOnPVPIWgunxxtiLl5qtKNVSDA53Dy9bD+5SfpWJWD+3th8tC7wPJucn8QHvxQHjN+dHi8v/XiQG0dkcH+jFQP4yZhEQ/h0ubOBQSVjWkEyu0pOjCtyiQi5RBQyPjs9XqI0cqa+ckKVkxKp5JN5g7n/4mwMSikr91bQNVbL/BEZ/GnhTh6b3Kvdv/O5hMPlCetzWFxr7TS47kSrIRYJnebY5zE65pP5/wnEjfGsv4VvRLc4LT/eO4p1B2tIiVCSEqmid7KBKflJiAUBtVxyzvw0ToZBJSNSLUdAYO4bGxmZHcOkPknMe/dX6qwuusZqePOa/qRGqqgyOVh/sNo/Ee4ZT6xWHrb62KTQsTQqIJpjbE4cmjCTW4NKxtPTenPLh1vZdqyeRL2C52fmt2mx35HQXFbdhBqrC9fhX6Fit3/DW+Pgti0QkXZWn2V3eugaqyErVsPqompsLg/Ldpfzt8t6tok8OlprZdKLawPV0gm58dw2JovvdpcHFj1JBiVdotWMefZnlt81kni9/36Z1CeJF344ENhPLBK4Zmh60HVcbXbg9Z4gLxRSMUjFmO0uVhVWBV539eA0rnh1fcCT4Nud5USq/aaNyRFKXpyVj8PlPW3lOj1KxYq7RlBmtGNQSdErpadU83m8XsTNyFGVTMK4nvEMzYzG5vKgkouhUd4e+lr/d43WyFkwpy91Vidur48YrZzykyTyAH1SIgL3Rk6Crl0k/U042dw9QiXlnrHZ/H3xXn4qrCI7TsvjU3JJj1KHjDMKiTgohrjO6uKNNYdZesdwiirM6JRSUiKUQVVNrUL2VmNXAAAgAElEQVTKo43X2o/7KumRqOPRy3p2GJNkp9tLvc2JWAifymV2uKk2OVh7oJqsOC2ZMeqQtszYMMRtgkFxTgh+vUrKZXmJDOsaDYJfvdZc3RRs2O1PW/utnhfhUFpvY9xzqwMtpW+vO8zyO0fi9fmwnKRIsDg9eLw+aixO/rxwN26vL2DA3EQcNeHVVQcZ0CWy3ck5o83F66sP8UJj659GLuHTmwaTEyYUodxo49WfD1FYaWJqQfIZk4Xvbzga5FnkcHv5eFMx913cvVWvN6hkXNgjjoFdInF5vByoNLNiTwUju8UQp5MT34Z5i9HmZPH2Mp5ctg+708vMAanccWEWkWoZapk4JGW1S7S6w0c2K6RiPvn1GE81+j+JBHhmeh7ZcVpyEnVB94/J7sLscAc8GM+FwlsuEZEWpQq04YM/dbC5anbRthKGd43+Xe/dU6HG7MDj9SGXiFDLxFicHjJi1Hy+OVgV+eP+Sh4Yn8071w3gw1+K6Rqr5urB6WetfA4HsUhgUp8k7G4vH28sJlan4OGJOVSZ/XPSpc2KJiOyoimpswapco7V2vhuVznXDevCH0ZlMi43nvUHa3h44S6uHpxOZszv6zHVVuiVUqb3TWZjszRgqVig3xkWnsKh2uzA4nAjk/jtBn4vA/dOnHvUW52UGu1sPlJL3/RIEvWKc94B04mzh/iRRx75vb9Dm7BgwYJH5s2b93t/jfMOErEInVJKz0Q9KZEqVDIJIkFA0ZjWEa4NotrsoKTO5q+u4TtjTwiHy0OV2cHaAzVYnW4UUjEpEUreWX+EbceNPD6lFzd/sAVTI4FQa3Gyu7SB4VkxXPXaBj7ceIzVRdW8v+Eo43MTTjlBkIoEchJ0bDpSh9vj48oBKVw3tEuLC36dUsrYnHiuGZrO3MFpGFQyfD7OS7O+SJWM7glarhvahf7pkRyutnD7sHhydj0DDY1ePD4vxGRDYv4Zf47b48XidFNab8OgkvLguO6UG+043F7G907A5fYhkwhBpEg4mB0u/vr17qBY+KJKM1Pyk7hmSDqxWgWju8dyw7AuPPjlTsqMdjJi1PRKNgCgkIi4rE8iNpeHrDgtz83IIzlChVQswuP1UVhhYt67m3li6T62HzMyJDMqMAkRi0TU25ysKqwmVisnL9nAkp3ByhmjzcWto7sSo1WgkIpRyyWBhbvH66OywcHiHaXsKzcRrZGhkokRiUSo5RLiGx+ALbVZNNhc7Clr4F8rijhYZSEtUhW4RqUSERqFBINKFiB17S4PvzZrIZlekMTQrtEs2l7KtmP1pEerSTYoidUpUMkkyMQilFIxW47W4/H5GNUthun9Unh62X7SotQ8NS2vXR/QCqmYGouDPY3n8k8Te/Dpr8f5ZkcZNpeH43U2vttdzuT8pJB7USSCLlFqfthXidfnX1g/NiWXrFgtaVFq4vWKsGOPWi5hWNcopvVN5rK8ROJ0inZt5zpT1FqcLFh9iD99tZNluyvIbvTdkTRL3ll3oIbLX1nH9/sq+WzzcUrqbAzpGhXkRSMTi9hdagyYo+sUEl6YWXDOig2CIKCSS1DJJGGPo0omaTRtD//33wouj5cXfyhicNdo7r6oG+Nz42mwuXC6veQm6dlVYgxKkRraNYpJfZLweHy8uuoQDrcXuUTExbnxQa3bAF1jNVzSO7Hdx/8as5P5759oI3V6vOwpbWBsz/ggErfKZGfaf9fzc2E1x2ptLNtdQaRaRl6Koc1kyqbDtYEggCaM7BbDgC6hnkWngtXh4Y9f7eSJpftZVVjFu+uPkpesJyNa0+rr4Ei1heve+RWH24vH52P78XoyYzXkJOgQBD9R1eTdppaJeXVOv3aLWD9XqLU4mPfe5oDvjg9/y+3QrJggZVWtxcFzK4u485NtvL76MEeqrQzOjGp3jy2VTMzIbjFsKa6n0uSgIDWCv17ak398uzegSLpmSHrg+dmR4HR72FXSwC0fbuXFHw8gEom4f1x3Fu8oJVIlo0uMmm3HTlgMCALMH5FJ72QDF+XEMbRr9DlR7TdBKRPTJ8XApXlJjOsZx1PL9vHC9wd4+JIcEvQKRAJM65vMvRdn8/GmY0HfFaBXko5eyXrcHh8pESoyYtVMyU+ib1rE7+aRdaYQBIFEvZJYnZziGisZMWpevKqA1EhVuwSqlBv9yZ/PrijkrcaW256JurNuWe1Ex4PN6eH9DUe5+YMt/Li/ig9+KUankJKbpO9Q/mv/X/G3v/2t7JFHHlkQ7m/n16j1/wxOt4cqk5OVeyswqKQMyYwKMas9V6gyOZjzxi+BWPBBGZG8eFXBGVX2iyrNTH1lXaAKOjYnjn9O9fuhfLGlBI/XFyL/rTU7Kao0MSo7lr9PjsXp9rJwaynPLt/PczP6hFUSAWgUUsblxjMwIwpB8CEWifD5fHi9vharbZEaGfVWJz8VVvHmmsPoFFIemtCdrrGaNiW6/J7w+Xw02F28vvowe8oayE3S8fKsAhIdh+D4puCdI9LP6rMqTQ7GP7c6QPa9u/4oH9wwkIoGO48s2s2vR+r48g9D6JmkP+X7uNx+AuZkHKgyU9XgQCkVs2JvBf9cujcwQW8+OZFLxWTEaHhscm4I4VdjcTDn9Y2Bdoj1h2q4+9Nt/Hd2XwwqGWKRwOQ+Sfx6pI4f9leSFEbu3jNRh6oFdU5Fg51x/1lFg81/DGK0chbfNixEPdISNhyqYV4zT6KPNxXz7nUDUMkkqORiTDYXZrsbnVJKpFrGvBGZZMVqWbyjjH5pBiblJ3HJC2sCarNnlu3nuztHBGT7BpWMG4dnMKN/Kl6f32zd4/Ox8u6RaOSSFtsRzxSRahl/npjD3Rdl4/b4kEoE/rYouH2oosHhV1CdFA2skkm4ODeewZnRmOyuxijk1i0ElDLJ79Ii0hI8Hi8Lt5bw/PdFgP83z1ywgZ/vGx04NzVmJ48t2RPk67VkZxkPju8e1DIapZHz/JX5lNbbqbU46J6gI7ozuhiAK/ql8uqqg8x+/Rf0Sr/KLT1KSYRKxr9n9OHVnw+x/mANgzOjuGlkJhEqGTaXh+l9k3l9zWEqTQ6kYhE9E3XsbvQMk4oFHhgXviX1bNFgD22xLa614j7JjL/G4gwivsCfhHp5QXKbVRVXDkjl7XVHaLD7xyidUhLiG9camB1uvttVEbTt8W/30jctstXfKZyp/9Kd5UzIjUejkHJl/xQm9kqg1uIkVivvUMapLo8Xp9sbQno73b6g9Czwp2opJCL88SN+FFaYebux9U8qEfhudzkjusUwc0BKu5KwgiCQEaPh7Wv74/H68Pp8PP/9AQ5W+VvLh3WN4sIecad9n1qLg3KjnWqzM0B8n81CzuXxnvb1dVYXMxasx+7y3w8fbSxGJRNz86iuLN1VzsuzCiivt7NsTzl6pZRHJ+ViaFSInympUGWys/loHUabixHdYog+TbiIpDF1+HC1hWW7/ffD7Nd/4cKcOEZnxzK9XzKRajlTC5J5e92RwPguFglcmpfEDe/+isnm5vYxXRmSGX1OxpnfChFqGXOHpHNZXiJikUCkun3mEzanh/98X0hRo0La6/On0k3OT+pUo/wPosHu4rmVRUHb/vN9EVP7JrerMr4T7Y+OM+vuRAiO19kY/5/VAdIlLUrF5zcNDksgVTcukkUC6JWyNlcpXW4v9Y0+LZEqCV9uOR4gjgA2HKpl05FaxrcxCrne6uTRxXuC5PPL91Rw78UOeiToeHxyLjLxCYlyE/JTDSQZlDjcXq59axMKqZg/jMokTicPStgIB4lYRKRKSnGdjae+201JvY0Z/VKY0CuhRfn/piO13PnxtsC/p7zkj1hPimj/HvpzgRqzk+ve3hToRfdX8bbw8XX5aLXxYGpU1aQOgbjcs/qsL7ccDxBH4PdWWrarnMQIJWsP+P2j/rZ4D6/O6XvKZCiDSsqcwWlsbValU8vEZMdp+dfy/bwyuy8v/XiAEd1icLi9HK60hPVrCGcAa3V4Qnw0NhyqxdnsOozSyHlwfHeuHdqFKI2cB8Zl8+zyQtxeH2lRKv44oUdYktLn8/HehqMB4gj8ZOvSneVcMzS9xd/bhBqLg+d/CH5gHq2xUlhh4j8ri3hhZj7jn1+N3eVFr5Ty8bxB9EjQMbVvMiOyolm+p5zPfj0e1KbYYHfzwYaj3DfuREuKqln1+7eAQSXD0GinUm1ykB6tDmohlYqFFlOeVDK/4qWpJfF8hdHuZuG2kqBtLo+PnSXGAHnkxRd07TSh+RjZhCYvqragzuLE5vIgFgnoldL/uYqtgN9P6+vGZMMai5M/frWTH+8dBUCsVsH9F2djdrjRyCUBUlkpFXPzqEyitXKW7ChjTVEVr8/tx57SBkrqbVyQHXtWpGq12cHqwiq2FNdxaV4i3eK0gQVPlFqGQSUNSjCb2CshpB0jXFSxTinlTLqM4rRylt81giU7yxAQmNDr1KrdluAO88C1OjzAaR7EzdAnJVTtkpeiZ93BGgpSI4jWytEqpOfEs+ZsUNFg5801hymsMHNFv2QGZUYFnmkquZhucRoKK06McWNz4qgyOeiZdKIdcU+JkXevG4DF6cbh8pJoULJiTzlOt/ecKJybjxf3jcvmltGZeH0EItVPhVqLP+1zxZ5KwP88XnjLULLitKd8XUvv9dP+Kn7cV8mo7FhGdY8hqgWSobjGGiCOmrB8Tzkf3ziIqwamEqmS8eS03jzi6okAZ22uW2Wyc8WrGwKejSqZmKV3DCct6vRqN0mzm9Ht9fHdrnJ2lxq5vNH0Oj1KzSfzBvPiD0WIRSLuuDCLN9Yc5pfGBNWb3t/CVzcPOaU/UK3Fgc3pRSSiw7ZtSUSidi9m21zuIN/OJhyqstDtDK7BTnRseH2+kDRjp8d7zlO/O3H26CSPOihsTg/Pf18UtKA4WmNla3E9Y3sGG3oer7VQZ3Xxw/4qDEopY7rHEqdXtLpaVGdx8tHGYl5fcxi5RMSLV+UHqrHNsa/M1GbyyO3xUmMOVZcYrS4iVFI8Xi8+n4//zunL3Z9u90+8EnXcPy6bnwureH/DUcC/sPrn0n0svGVoqyo2NRYnk15aE1ik7ThuxO31MXtgKuKTjovJ7uK99UeDtjk9XtYerOaKfilt+r2tgc/no9LkwGh1oZCJkYkFItSys1I52d2hJoYHKs04kMK8VVB3GGRq0CaA+syTcYAgb4omODxeNjVrkahssOP2nPoBIAgCF3SP5ZnpvXl/QzExWhkPjOuOXinlk3mD0SgkLLl9GNVmB6X1NvqkRhCjaV31SSkTo1NISI9WY7a7OVRtIStWE6I+08glvLPrMDmJemotLj6dPxiPz4dYEFpMXfL5go25mxBOXRD2d0NYE3iRIFBSb+OLrSUMz4phxZ4KjDYX93++g3euG0CkWkaN1cnPhdVkhPFJMDs9VJnsvL32CBqFlCn5ScRq5b+Jv4Xd5cFoc+Hz+Y99tFbOM9PzuOq1DVidHkQCPDwxB63i/Hrk2FxujDY3RqsTg0p2WjJGIRGRGaMJmLs2IaUZCR2hlHH1kDSeXV4Y2JYRrQ5U0s8GlQ12bvlwC5uO1KGWifnLpTlMCENSnLcwV2Jyy/lhX2XIn3aVGOnS2Ookb2zHPhmRGjk3DO/C9L7JqGRilDIJCfqzJyxqLU7u+GhrIEX0vQ3F/O2ynlw1MBWp2J9U+flNg3l44W4OV1sYnxvPLRd0Damu6pVSxubEsXyPX9kgEuDhS3LOKMVILBYRr1dy/bCMs/ptWoWE7Dgt+ytOFJOuHZqOoQ1R9xkxGmYPTOWDjcX4fDCgSyRDu0Yzc8EGeibqeG1uvw5nnlplsjP9v+sprvU/V3/cX8kjl/Zk9qBUJGIR0Ro571w7gKeX7WdHib8tevagNKLUMjTyE/fb2Nx4rnt7U4BkitXK+WT+4N+kNT5CJTtlAedkVDQ4AsQR+P3CHv92Ly/MzG/TGGKyu3hi6b5AguM3O8qYUpDE3y7tGXb+FhcmXTMrVoNWcSJt9uTk2bPB5qN1AeII/AWwF384wGOTc1s8Lw02FzanB4lI4KHx3Xli6b7A3x4a34OoRmJOo5AwoEskL80qQAA+3FjMp78eC3qvDzcWk5dsCPtsrjY5uO3jraw/WINYJHD9UL9XUnv7sHVEaBVSLsqJZ1fJifWHSIDcpFBvuE6c/1BJJVzU48TzDuCiHnGopOfXPPH/IzrPUAeF1+cLmAg3x8kx8nUWB5UmJzNf2xAgmt5Yc5hP5w8ivpWT4k1HanmqWeToH7/cxUMTurNoe2nQfuPOIIXGoJIxa2Aqjy7eG9gWqZahlIk5Xmdj6a4K/rJoDyOyonllVgHxegVKqRiVTBKQBjfHhoM1YauYJ+NglTmkuv/hL8VM7J0Q0nonFYvCKowS22FR0QSH27+4lopF2JxuJr+0jkqTA0GA64Z24Yp+yWTGaM64Z1wmFhGjkQepbeJ1CqRiAbRx/v/aCdP6pvDqqkNYG5VicomIy/ISufqNjYF9Zg5IDRiPWx1uyhvsfLb5OHFaBRN6xQd8WwwqGVMLkrmgexwysRBQ+ogEB099t4+vtpYSrZFx37juvLPuCNcN7dIqzxetXMKiW4fxw75K9CopiXoFUWp5yLmP0si5YXgmU19ZR5nRzmurDwX+tu7BC8JOmEUigblD0vlo47EAkSaXiJiSf/pYe/AnDt47Nps5b/4SkLZ3j9ciCAJ1VheVDQ4MzSbJB6vMuD1ebC7/xHXtgWpuGpnJW2uPBO55iUhgzqBULnl+DRWNZp2vrT7E0juGt7qVrjWoMtnZU2YiRiMnQiVFLBaQikR8s6OUJ5fuw+ryMKZ7LE9c3pskg4IVd42k1uIgSiNHpzizJEOT3YXN5UGE0KIyxOJwY7S5OFRtJj1SjV7Vcipha+F0e1hTVMMtH2zB6fGikIp4/ep+DM6ICiGgm6CSS7hnbDfWH6yhvMFvWj61ICloLJZKRMwemEaSQclXW0vISdBx3bAuZ232bXP5Cw6bjvi9sSxODw98sZPBmdHnP3nkcUPlHvjyBlQpw8lPmh2kWARaXZmWiETtHiltcbgDxFETXvihiAm94onRKpCIRXSN1fLK7AKcHi86RXgSMkIt44nLe3HD8AwOVZsZkhH1u8dfR2vkvHfDAD7YUMyuUiOT+yQxrGs00jYYt0eq/WP4TaMyqWxwUFhp4g/vb8bt9bH9uJEasxOpSNShFshVZmeAOGrCm2sPM7H3CQVXgkHJY5NzabD7n+3NlW5N+PVIXZA6qdLk4PPNx7j7om6n9QX8rRGu0FfRYA9S7LYGFoeHL7cEKzC/3lrCAxdnhyWA9Copt13QlRd/PIDP528D/8sl4Ymm9kBTK2dzGG0uPC0oHqpNDv60cCfL91SgV0r522U9WXrHMNYdrA0YyJ9MBDWNueHIu26x2rDEkdvjN7Vf3ziWeLw+Fqw+xMTeLavm/5cgFYuYPTCV0nobX20pIUoj47HJuW0iQDvRceHxeKmzOhGLROiVUvQqKf+4vBcFaRGsLqpieFYM0/smoz9PQ4v+P6GTPOqgUMsl/GFUJiv3nqgC6RQSBmcGq0bcXh9vrT0cpFAqrrWyrbiekdmygEJCq5SGbRlxuDx8tTX4Ib+/wuQ3rZ2cy39/PohMLOLei7PD+sKcDhKxiCn5ySilYj799ThJEUquHdqFv3y9mwOVJt68pj/T/rueVUXVrDlQzfqHxhClkePx+uifHsGKPcEEUn5q68wewz1oY7ThY+AVUjG3js5i2e6KQCtQQZqB7glnJ5N1ur0YbS4EfHy2+Tjvrj9Kgl7JA+Oy6ZWs5/u9lfh8frJvQq94v9/DGS70I9UyXp5VwA3v/orR5ld1vTK7oEWZ+NkgVidj+V0j+OCXYjweH1P7JuP1ehmWFc3xOhtTC5KY1CcpQIQdrDIz+eV1AaLltdWHWHjL0MAEXBCEIDm9y+Plg1+K+aSxallqtHPPp9v4/KYhrCmq4vK+p1eDlTfYmfj8moCXVk6Cjneu6x92X4lYwGgLVQ25PC1PmJMMSpbcNoxXGu+PP4zKDJuO1RL6pBhYducIFm71T5Byk/SBtslLeifw4BcnIojHdI9FAP757d6AGfqrqw7ywQ0D+fTX4/h8PuaNzGD9wZoAcQR+NcRP+yuZ0T+VKpOdVYXVlDfYuaR3ArFaeZu9gioa7Ex6cS33XtyNTUdqeWftEXRKKa/O6ctfvt4d2G/l3kq6rz9CjdnBRxuPEaOR8+8ZeQzMaHsaS2WDnYcX7mLLsXpenlXAqqIq9pWZuDQvkbQoFTqlFJfHw6qiKm75YEugpfUfU3KZUpCE8iwqWHVWF/d8ti0gq7a7vNz16XaW3DbslPdpkkHJotuGUm12opGJ0YVJ3ItQy7i8IJmxOXHIJOJ2SVCzONwhBsngv/9SWxnP3mFhrYH3JoG1FrmxhJvm3MTGYzp2lTQgFgncNDIDpVRMudGOTvHbtmu2BJ8vtLHr5OvA7fGGFAyaWhUHdGm/9KKzRaxWwW1jugYSJ88EeqUUp9vDzR9sCRCrTbC7PGwtruOCVnjy/FaQh5kraOSSkBZCu9uLWCQgEYnCqlZKjbaQbcfqbHi80NE8YbPitGjkkqDC5cz+qW32mxEEEAsCnmZ3gN9KIbwKVq+UceOIDGYOSMXqcKNTSYk+B3OXJgzPig6xSpg/MiOsibnT7eW1NYcCxcx6q4s7Pt7G6vtHc/2wLqf9rNHZsfRI0AaCQTKi1UzKTwy7r93lCUoxa8L2Y/XktaJo+r+AKI2cv1ySwz1juyHgL7Z19OTFTpwe9VYnByrN+IDdJQ0UpBlI0CuI0Sq4cVgXZg1MRSUVt1iY60THwu8/w+pEi8iO0/L1LUN5bfUhv2nu8IyQth0BIcRsGiAtWs1LPxbx+prDCAjMH5nB3MHpIaSKVCyiT4ohKG4UwORwc2X/FC7uGYeAf3F/pu0vEWoZ43slIIgEDlVZuOm9zQGFTEm9jUS9glKjnSi1PDC1EIsELi9I5od9lWw4VIsgwIx+KWTFaVr1mbFaORf2iA2Qb0qpmIcv6RFSyaoxO9hd6q98fnPbMA5X+aPBkwzKs6r41pgdvL3uCN/uLCMzRsP8kZl8t6ucLcV1XPPWJj64YSA/7KsMKE/K6u1n5fcgEYvok6pnxV0jsLk8KKViItRt9746FapMDnYcr8fq9DCgSyT3js2mqMLEtFfWoZSJmVqQTL/0CFIiVeiU/qHFbHfx75VFQa1uJfU2dpYYuaB7bNjPabC5WL4n+Hr0+mBfeQOaVixcrE43/1pRGLgvxubEcUX/FKxOD2aHK6ilAEAr9xu2vrn2SGBbdpz2lIsklUxC9wQdT03tjSCE9106FTQKCd0UWm4c3oWiSjPPrSgiJVLFXy/NIVYrJ1anwGhzMaZHLH+akMOzKwr5eJNf6fTHiT3YV25iy9E6bhqRgU4p8ZM4Px0M+Ryfz//Qbu7v8O8VhXx9y9DTGpqfjM9+PYZeKUUiEvFiY+R4apSKTUdCJ7vrDtRwYQ//+a0yO7j1o60su3MEcbrWH6dqs4PHluxl2Z4KnpvRh6e+2xdQ1SxYfYjnZvTh0rxE6iwu/vTVriAvtEcX72FMj7izIo9cHm+IerHK5Ai6lv0EsRMQMKikSMUiBEEgVqtoVRtOS8b/ZwKNXMKgjKiA2WgTusa0bszs0HCawVob+P/Yz6fwzgVPY00eiQ+BL7YcZ/SzPyEAT03rzfhe8Wd17tsKtVzCkMwo1jVTH916QdcWK+b1Vie7Sox8vrmE3CQdk/oknZOY8faERCRCIj+7iX2ESsb947K5+9PtgW2js2PZW9bAr0frGJUd22Fi5CPUUoZnRbO6yG/2LRLgjxN7BOYFXq+PQ9Vm7v50O7tLGxjaNYonL+9NwknP8Qm9Enh2eWHQuHH1oLR2IYzbG1FqGV/fMpQnlu6lzGjnyv4pXNJoitwWaOQSrhuWzn9/PqHknTskHc0p2pZ1Cuk5TUxrjmiNnG/vGM7LPx6k3uZk3oiMFpWLJruL1YWhhu97yxpIaQUpH62V8971Ayk32vH6fCQZlLi9PkrrbcglwSpIlUzCmB5xrCoK/ryBGa1LSKy1ONhXbmLzkTpGdIshLUp1XhpNq+VnplLuRMdFudHO1mP1PL7E34USqZby5tz+uD0+5FJRu5mud+K3Qefd2cHg8fqoszoRCX7GPS/FwDPT8xALQliZeLRWzvyRwQqlfmkRlBntvPjjicXkcyuLGJAeSX6qAZPDjUgQiNb4pbaXFySzeEdZwKhubE4cvZP0jekS7dPyIggCm4/4J4cX9ohDLBJYuquMCJUMs9ONSIDHJucGKVCiNXJemdUXi8ONSCSglkvC+tDUW/0JNT/sqyA/1UDPRD1RGjlPTetNab2digZ747YTrzXbXTTY3X6T06Ia3lp7GLfXx3vXDSA3UX9WE1iby8OLPx7grUYy4mCVhW3H6nn2ijzmvLGxMbrcSrxOQZnRjlwiIi1KFVYV1RZIxWJi27A4bwua/B+afJX0SilLbh/Gij3lmBxuTA43r/zsv94m9IpnSGYUSpn/94Qzvwvnm9QElUxCz0R9UN87QHq0mszo0y+E3V5fwJj2huFdyIzR8OAXO6i3upiSn8SD47sHTdiUMjG3XpBFWqSKJbvK6ZWkZ96IjFa1ETVVmmstDg5UmtlT1sDwrjHE6uStahWSS8TYnB7uvTgbp8fLO+uO0CtJz4I5fRuPhRiby8Pnm/0qrPd/KabK7OCGYRkMTI/w+6lo5NRbncwZnM7CbaUBg1uDSsro7rHsKjEG+Tu4vT6eXVHI81e2nFp4MrxeHyX1Nnqn6IOSk47VWekeH+pHkJ9q4EDVCRKj3upqU+uDx+tP4ltVVIVEJJBoUAaIoyY8u2I/Q7tG4fURZB4OfpXQyUlWbYVCIiYrVhNExvRJMQTOeZ3VyZdbjvPiDwcQCQq6Vb0AACAASURBVAK3j+nKpD6/XyqMxelm/sgM4nVy/r2yCKVUzCOX5QTaR89ryFQgVYKrUcVhPEbU+n/gvfJbpr22iaPN/N4e+nInw7NiEBCQiIR2iY8+HSLVMp6fmc9P+yvZcrSeSX0SyY7XhvUddHu8fLO9lKeX7adnop7tx+v5amsJ71434HdvUTvXkIhFXNgjjoU3D2HprnKy4jQYVDLu+ngbf70sp8MQR+Cffz03ow97y0wcrDIzMjuGmGbnp9riYPbrGwMqqlWF1dz96XZemV0QNAbEauR8+YchPLVsH3aXl1tHd+2w5r8SsYjMWA3/ntEHp9sbSCZtK+QSEdP7ptA72cDmo3XkpxroHq9D3kEIM6lYRFqUmkcn9cTj84VVHDVBLZfQNy2CPWXB85FwJuLVZgcWhxuZRIRaJgkUK6M1/pZ5m9PNuoM13PvZduqsLvKS9fx3dt8A4SgSCVzSO4HdpUa+3FKCSibmvouzidefflxosLl46rv9fLzJ76/07IpC/jyxB3MGp503qcGd+N+E1+vD6fbyfGOyWpJByUfzBvHk0r38XFhNtzgt/5zai8wYTafK7DxBJ3nUgVBvdfLd7nJeW3UYlUzMHyd0Jy/ZcFoJfo94LQtvHsIbaw4TqZZxx4VZ/LOZmV8TvttdTnGtlceW7CXJoOSJy3vRM1FHjFbOe9cPwOJw4wPUMkm791frlVJuH5PFdW9voqjSjEQkcOsFXekaq+Y/M/Ibk2kkIRP9CLXslN/F6fZPxB9u1jZzWV4if7kkB7fX71PSK0lPlFoWkEPWWhw8s7yQTzcdQyQIzBqUypPTenPPp9v5y6LdfDp/8FlVgU02FwtPagWsNDkQCQIysQinx0tqlBqvz0ePBC0Pje9BtDY4Vcnh8lBpcvDV1hI0cgkTG1uN2hLt6/F68fo4pXG6zeXB5nSjVUhPud/6gzVBhtxGm4vXVx9m5oAUnl0RnBw2rGtMoCVKo/Cf958LqwIqq1itnLyUllUvSpmYOy/MYvPROg5UmhEJcO3QLqRHqYluhWG2TiHlhuFd2Hy0jnE945n23/WBv322+Tjp0Srmj8gMutYi1TJmD05nUn4SKpkEqVig0mTnUJUFlUx8SiVavdXJI4v2BHmEvTK7gLE58ad9ENpcHjYcrmXRtlKSI5Q8fEkOSQZl0DVvb0zoafLfWLa7gpV7K1l132jiGieVRRVmPvilmI/mDeKb7aWoZGKu6JdCtEbOrjDpJQ63h+Z+5l6vjxqLA7vLi0wiIvKkNBuRSGDOoDQeXbyHC7qfaC1psLnZfqyeB8dl8++VfoP/4V2jmdQnkenNjntKpLJNqV91Vic7S+rpHq/l1yN1+MIQkF4vgIBSKjCyWzQ/N6sO90rSn3XKWLRWzlvX9OfBL3ew/ZiR/l0ieGxyrwDBvbesgb8383L766I95CTq6Z/+27Yb2V0e9pY18Mii3dRYnFzZP4U1D4xGEPxqqLYuHDxeHzVmBzaXB4VUjEEp/U3MfU+G0drodSVAhDwC6ZQF8NV8cFlBEweXv4pPJA3xpblldFcOVpl5d/0REvVKrhvWhQS9ol1j0cMhWiNnWt8Upp2mrbbO6qTW4uS1q/ux4VAN6dFqlFIxRrvrf548Ar/xcWqUigiVjNdXH2ZfuYkx3WMZnR1eifp7IkIlY1hWNMOyQkMmrE5PSPvd+kM1IamJKrmEvBQDr8zqi8frOy+8a87WI63W6uTKBRtQy8VkxWn5YV8lRpuL7+4Yfsat+ecCrRnXFFIxt17QlZ0lRrYdq0cuEXHP2OyAQXYTKhrszH79F4oqzQgCXD+0C7ecpD402t384f0tgVbo7ceN/HXRbp69Ii9wzKM0cv5yaQ73jM1GwN/q2hqVmsXh5pOTjLmfW1nEZXmJ56yo2IlOtAYikYBSLsbi9Cu5/3F5Lo8t3hMwyt5SXMes139h0a1D2yXAohPnHp3kUQfC5qN1PPjFzsC/Z73+Cz/cO4r005BHGoWUPqkRPDNdh0gkIBWLGJoZzaeNnjFN6JNi4K21RzA73OyvMDHztQ2seWA0HquT9YdqiFTJ6JmoPyeTG38r0f5AFd/t9fHcyiIm90lidLP2JY/Hi9HuRiERtcq3wmhz8uyKwqBti7aXcvuYLC5+bpV/sqbyx51nNyok1h2s4cNfihv39vHW2iO8ODOfjGg1FqcbXxsiiMNB3KiUqLMG++ioZGJcXi+zBqaSHKFk4S1D8fn8aTYnT9ZKjXbGPbcqMBF9+acDLLm9debHXq+P8gY776w7QpXZwbVDu9AlShWiMik32nn++0J2ljRwUU4cswamtrh4OVnZAf4qW6xWzrwRGby19jAer49L8xK5KCd4EZAdp+W7O4bz/oajxOkUTO+XctqWngS9ko/nDfJX8cQi1HIxulam+9RZnGTFanj3+gFBCUFNWLGnkqsGpBGhllFjdlBmtGOyu8mMURPTSNCV1tuY9NJaqho9hPJTDbw2p19Yw2azwx1iLv/4kr30S4s8JQnpdHt5c+1hXmlsNyuptzFzwQZW3jMyaL8ojYy/T+7Jje9sDkw6bxmdSWFFQ8Dofe3BahZuK+GnwkpGZMVQ0eDguZWFPD0tj15J+hAz9VtHZwWp+A5Wm7n2rU0cr7NhUEl5+aoC+qVHBLXjpUaquOvCbsglIoZ2jWLtAX+LzpajdTwxNZcpBcl4vD5UMjEWh5vcJD2bj9aRm6TjPzPyW0X8NUEiEth8tI6/T8qlosGORiGhV5I+KMb3ltGZRKikSMQinpmex39WFrH2YA0FaRHcNza7XRbiyZEqXrqqAIfbi0IqDmp7XbStNGT/xTvKfnPyqNbi5IpX1+NqZAOfWV6IXill1sC0M1JyFFaYmPvmRipNDrRyCS/OymdQl6jfjECqMTtwuL38aeFOftpfhV4p5e+TchmddRGa27b4ySOZGtQxyO1eRmSdIA77pBhIj1Jx5YINgff7amsJSzvQolUi8qsernxtQ4BQH5Udw+OTc1t8Tb3VidXpQSwS0CmkISlt5xsi1XKuHJDCZX0S8TUqPzoSqVJjdjS2zNdwSe9E+qQYQr6fUipGKRUH2QZkRKsRt0BSnivz544It8dHldlBlZmgopOrhQRWo82Jw+VFLhGhb6Ny0+JwU260s3BbCSmRKkZnx7R7hHycTsEbc/s1hlaIQnzV7C5/WlvT/Nbng9fXHGZa3+Qg8qja5AiJJt90pBab0xM0B9TIpSHt9aeD1wcn11hcHu9ZzmY70Yn2gb4xSW/Z7nLSo9QhialVJgcWR6gFSyc6JjrJo98BLo+XOosTV2OvZ7RGjtXpDshNm+D1wQ97K7muFaZ8EFxFGZYVzYRe8Xy70+8dc2mePyGk+eJLr5RSZ3Ux+aW1geSs7vFa3r9hYIstO9UmB8fqrHh9PlIj1a1W6FgdHnae1IYEcLTWQnpjvHKtxclXW0v4elsJmTEa7hnbjSSD8pQVYx+EbYcx2lyB1qg6q4sHvtjJm9f0R6eUsHJPaMzz5uI6suK09EuPOOtkhyiNnMcm53LlghMJeNcP64JBKeXne0eFNdBtDpfHy6s/HwyqYFabT5gfnw5VZgcTn18dIK++3FLC5zcNpl/jotbl8VBlcjL3zY2Byc7OEiMl9Tb+cklO2F7zi3LieGLpvqDvdMOwDCLUcu4Yk8V1Q9MDqrWTJ8lquYTseB2PTsptU/W/SerdFtSYHfx54S6W7ipnYJdIHhzfPWSf/BQDKpmYGrODm97fHGiHilLLWHTrUDRyCa/+fDBAHAFsLa5nV6mRUWGq4+4wE2KT/fQkpNHmCiGdTA43x+tsQSShIAhUmxx8Mn8QJfU2EvRKVhdVsaqwmr5pkeiUUoZmRvPSjweYMyiNkd1iEAQBicg/JsRIRCy6bSjvbzhKmdHONUPSA5HmTcfs9o+2crzO3xJUb3Vx0/ubWXn3yEDF0ufzIZOIGJgRhcnmCrQ1CAio5OKQe8agkvH61f1webxIxEKb+9kNKhm3j8ni8SV7WVVYxaCMKF6d05flu8vZWWJkWt9keiToAuqxGK2CP03MwexwoZa1r2FyS4uZvmkRIWN231Ya+rcnth+rD1mUfbmlhAm9EtpMoFU3XguVjde+yeHm1g+2svKekcT9BuRRjdnB19tKOFhl4cd9VYD/erz9462svn80moiEoP31KjFPTcvjkUW7WVNUzexBqXwQKAw0vqfFya7SBi7QKXB7vNRanNTbXOgUUjQKcZsXaWcLt9fLCz8UBS30ftpf1eLCutrs4J5Pt/FzYTVyiYi7LurGzP6p530ijUElw9ABfdzrrE7u+3xHYHHzxZYS7hiTxR9GZQapGfVKKf+akcedH2/D4faiV0r5z5X5LSZC/n+CTCIiJ0EX1OrVLU6DXBqqoCmps/LQVzvZfKSOgrQInri8F8kRrb8w9pQ2MGPB+oDnXWaMhk/mDzrr9MqTcaqx1Ob0hFX4Hqgy0z3hRFt3tEaOVCwE3et90yJQtAMZrJKJGdEtmlXNFLhXDUxF2+kd1IkOgFidgr9P6smFPWIRBP992ry4KxUL531R5P8TOkeV3xgOl4dfj9Zx+0dbqbE4yY7T8trcfiTqFWTGqFlx0v4ZMeqw73M6RGnk/GNKL/48MQcAmVjgr4t2B+1zaV4iL/94IEAcAewrN7GntIER3WJC3rPKZGfma79woJFwSI1U8flNg1sXna6QcEF2bOC14FfopEaoqLM6UcskvLX2MC80GvHuOG5k/cEaFt02tEWVitnhRkDg2qHpvNTM32lQRiQHq4JNYw9U+uPOJSIRI7OjWbgtuK2sf3okUrFAfqrfR8bicGN1etDIJWc0oOUk6Pj5vtEcrDKToFcQqZa12gvF5wuf9NXS4uJkbD5aF6J6evHHA7w4Mx+NQsrhKisNdleIse5XW0q4Z2y3sORRtEbO4tuH8Z+VRVgcHm4elUlmrP/abK25YRNx5Pb6z0M41FqclNbbKKo00S8tkki1rE3GiQerLAHz918O17L9uJF5IzJ4Y41fGdUzUcf8kRnIpWI2HqkN8tGpsTh5+aeDzByQwvH60IScJnLlZGjkErrHa9lXfuJBOHdIelh/ruaQiQVSIlQcqw1+36gwCp381AjGPbcKnVJKg82N1+fjo3mDOFBppiAtgq6xGj66cRALt5YwY8EGPF4fF/aI48mpvYjSyEnQK7nnomw8Pl9Ie6Lb6wskwTShwe7G2lhRrzY7WLy9jE1HapnYO4FBGVGtMoM+GyWBye7i8SV7A+fy+32V7HxpDcvvGsnVg9PDKmqUMnHYe7Xa7ODHfZXsOF7P5PxkMmPU7eJLNLp7bJBJ8ohuMQzKiKKywY5cKj7t+W8vhDNtTYlUUWtxolVIAuqxeqvTny7kIyzhB/6WtZPHBZPDjT1MKMO5wNFaK1KxOCRxyOfzt2aGW1TG6RQ8Na03NqcHkUhg8faykH3UjdfFgSozM17dgNHmQiTAny/J4Yq+yS16f9VbnRyrs7GqsIqCVAPZ8dozNvb0+XxUm5043N6gNKsmuL3hxnwv7284GlBW5SToKDPaabC7znvyqKPC6nCHVMVfW32IWYNSg8gjhVTMqG4xrLp/NBaHG428Y6mnfk9Ea+QsmNOX+z7fwZbiOvo0eneeTOhUmx3Me28zu0v9JNPqompufPdX3r9+YKuI73qrk2eW7w8KSzhYZeZItaXdyaNTQauQcHFuPFuP1Qe2CQLkJQcXE3RKCS9dVcB9n+/AaHPRM9FfVGsPo/AItYx/X9GHxTvKWH+ohnE94xnRLaZDJE92ohPgTzYWgI83HuMfl+dy7VubaLC7kYgE/jQxB1UYcrkTHROdo8pvjHqbixvf/TVA2OyvMHHfZ9v57+y+XDOkC4t3lAUWqQO7RJLbikQkm9OD1+cLWWSfXNm7f1x3th+vp2usFoVUzLCuUby97mjI+9WFaVEC/wKuOflTXGvlq60lzB+ZedrvKJeKmTcig1KjjaW7yonRyHlgfHcWrD5EjwQdl/RO4JOTqvjlDXZqzM6wC9Vai5N/ryjk883H+NcVffjXFXms3FtB//RIJuQmBLUtAFzYIzZwfEZkxTC5TyJfby9FJAjM6JdCnE7B8ysLyU+JoNxo48nv9rOluI6hmVHceWG3Nrc8yKVi4vVi4vWte121yUGd1YlMIkKvlDJ/ZCZfNzM/1ikkXNjKGONwXi8KiT8Fymhz8fi3e7hjTDdEAoFJlyDApD4JuN1e6q3OkMW1XComK1bL09N64/H5zqhaX2Wys3Bbqb9S2D+F7vHaoM8xWp08s2w/H270KwdEArwxtz+jsmNarVg6eNLC9++L9/DY5J4sv3MEtVYnZfU2vt5WyvR+yewvD21pO15nY1txPRN7JfB9MxN6iUhgZBhCFfzeOO9eN4D3Nhxl53Ejl/VJZFR27Gm9ZvQqGX+7rCdT/7sukOo1d0g6hjCkg0El5YMbB/Heev/9OnNAKh9tLGbWQL8SLUItw1vp4/1mqouVeytYvCOaOYP87UsikYAoTFSyVCzQJ8XAtmYT30i1DJVUTK3FyR0fbWVtI0GyZGcZN4/K5LYxWSjPoRLF5vIEHX+ASpPfK6YtxE+N2cH89zaz+aifJHxvQzFPTevN1Pyks46EjdbIefGqfCwOTyCa+vEle/ixsIr8FAOPT2lbBf1MkWhQcknvBBbv8JMmsVo51wxJ58Z3f+WT+YOJ0/lVdg9/vSugRB2dHcPT0/OQiARqLU7KjXYyYjRIxAIFqRFsKT5BqsZo5L9ZRbC83s7BKjN5KYYQEutUhRStQhpo+7h/XDZrD1YHyPZucRoyYzXUWhzc37hoA//Y9/iSvYzPjQ9LHjndXhZuLeGRb/YEtl3ZP4U/TghN7WwJLo+HOovfu8nt8XH9O5vokxLBzAGpPLfyhFdcZowGQ5i2XKvDb7ArEQk8d2UfGmwuVhdV8+3OMqb2Tf5NF8hNqDE7sLu9SEUCEWrZKb3yzkeEe9a01IqmlEkC/n4dFWaHC3ztm+zYGiRHqnhldgFOjxeZWBR23Ha4vQHiqAl7y0zYXa0LO/BBYI7UHOG2nUtYHB4m9UmkuNbCF5tLiFLLeHRSLpHq4GOukkkYlR3DirtG4PL4UEhF7epzFqWRc/XgNK4ckNJpkt2JDgWT3cUTS/fxWaOdyu7SBj6aNwiZWBSYX7i9PjxeX6dp9nmAjv3U+x9Ek6KlObYU12F1eojTyfnq5qGUGW3IJWKiNbJTPlicbg/H62w8/30RZoebm0Zmkh2vbdHsMNmg5JP5Q1i0rQSzw01ShIqbRnbh58KqwD5qmbjFWNAj1daQbYerLXi9vlZ5a0Rr5dw7NpvZg9Iw2lx89EsxPxVWkRal4sIeccRo5YF2icD3aaFqsqqwivc2+BfSf/hgC/kpBp69Io8u0Wo8Xh+vzC7g/i92cLDSzIU5cfxxYg/sLg+1FidysYgHx3dn9qA0fMDqoipmLtjAgC4ReLxebnj310DS19EaK8frbTx/Zf45S1GqaLAzc8EGDjUmYl2UE8s/pvRm2Z0jeHvdETQKCXMGpbXaM6ZXkp7USFXASFYqFrjzIr+iqMbsoNLk4KfCSq4Zkh6Ip39mWh5Wp/v/2Dvv+Kjq9Pu/p/dJMpPeCwFCSUKAQOhgwQJIExELioplFXVd/brq7urqru66lmV1LejaFXsDERWUIr1D6CSQkN6T6fX3x01uMkwCCQREfzmvF3/kMv3e+ynnOc853PjmFkK1Ch66LINIowqFVBogwz9xoez1+ZB1oCJqi2qLk2te28jBCmFD+Pn2Ev51ZRbTBsWJE4XV5RWJIxA2d49+nc8ncSM63R45opc5gBQTWhclPPLFHtYXCASISi7l0gHRgjLn2/0Biq6rcxN4dXUBV2TH8cTUASzeXIRBpeCBS/qc9PePNKq5+4J0HB5vl4i1lHAdP9w7lpJ6OyadkpAOWhpNOhXHqm2iKun3H+1Aq5Tz0KWtG+otJ6SRAfx8uJpZQxJOuvk36VQsvHoQt78rVIATTBpenJODSaekvNEhEkcteOPno9wwMvmskkcyiYRekfqAtgeFTHLSVJz20OjwiMRRCxauOMT4PpHdEo1u0qkw6QQy++a3NrOtSCDgVh2sZt6bm3n/lu5vnwj+DEoevjyD6/OSsbk8xIZqcHu8PDUjU0yc23y0ViSOAH48UMWP+yuxOD081kyOqBVSvrhjJAuvzmbBBzvYVlRHWoSeF+YMwtSFsc/n81NrdeEH0ZOqsxiUFMqfv9rDouuHcLjSwo7ietQKKX+8NKPT7cSpEXpW3jeO7/dWEGVUk5tiIlyvorJRMMBvC6/Pj8XhgXZqNPV2F8+e4Kf34ZZi7r4gvVPkkd/vZ29pE9e9vpEHL+3Lh5uLOVpjo6jWxnNXZfP3aQP4YV8l/WKNXD88qd12J51Kzuhe4fSO1LOzuIFFa4To82V7ylmxv4KXrx18TiOOj9fZmP/2VvaWNWLSKXn+qmxyU0xnbE5/PkGrlDFpYAxLdrcq2O6c0OucKQm7CzaXh4IqK8/9cBCv18+CC9PpE2U4pxHop1ozyaUSzDolNW0KlmFaBQpZ5zaPYVold03oxQ1vbBaPxYVqSIs4dSprd8HicPPGukJeWVXAtcOTeH3uUKKMKpLNWhTtEDhK+clTcauanNhcHlRyGUaNvMM5z+b0UGlx8v3eCpJMWnISwwhv9mzsIY56cL7B6vTy6dZWH95VB6soqLLwzk3DuP3dbewuaSAmRM3C2YPISggJ8NvswfmHHvLoHEOvkqNVygIIpMFJYfywr4KJ/aOJDlF3elNTbXHx0k+HmTYoDoVcyvL8CuRSCdmJYe0/3upiyn/WihP1otWFfH7HCBZdP5j3NhRh0im5c0IvfH4/FY2OoMSlqYNieWX1kQCvhtm5CV0yZfX4/EGqIL1Kjkou5bEp/bl60QZxMz9zcDxGdfAl6vJ4+W5vecCx7cX1fLWzlHsu7I1cJqFvjJE3bxyKx+tHq5LR5PBw7f8E8kIll/LQZRn0jTZw3eubcHl9xIVqeGLaQNw+f1BE/OqD1Z2uhHUVbq+PN38uFIkjEAyd541sIi8tnMem9Eciab8a2hFkUgnv3TyMNYeqaLC7uXxgjKicCtUqmZObxKNf5/PI5Rm8f8swbE4PFqc3ILHuypfX8+Gtw3nki928dM0QEs2BCoo6q4sdzb/5kOQwJvaPPukmudriFImjFrz442HG9o4Qr/cTU2pa3qcrBubheiVv3JjLE0v20uhwc31eEglhGpE4kkslPHhJXz7cUkxxrZ3X5w7lpVVHaHK4uWpIAtkJoaRHGfjLV/mM7GVmRk48kQYVvSL0p6wwy2VS9F2swstlUiKN6k4p23pHG5ijTuSLHSXcc2FvJvSNCNhwjuwVDssPBDznon5RqDshBU40aXl7Xi6u5tbOcL0SiUSCtJ3rTiEPPuZwe8XWje4wVjbrVTx9ZSZXL9pAo12QNT82ZQCGdsaDrqKd4LYzhtPjFYmjFhyssIjtXnVWFw0ONw63F7NO1S3EVVuo5DKe+W4/D0zM4Kll+1m5vxK1Qsq9F/Zm9tDEoDYwENo6255eh9vH/326i7fm5fLaXMGvSiaRdMnDpdHhZu2hap5efgC318dtY9OYlBnTaeLdrFPy9rxhvLzqMLeOSSUtUo9OKUcmFZSInYFaISPBpA3yCtSp5FyYEckXbYzOw7SKjkkBf/CY1FFLcXuotri458MdNDo8pEboKW90oJJLcXp83L14BzmJYbxwdTaRRnWHBJtcJuXqYYkU19q45rWNAf+3qbAOq9OL6fQ627uMepuLBz/dJRK6tVYX89/Zwqr7x/+myKNQrZLHrujP5OxYNhXWMrF/NOlR+l/dhry8wcEVL/4sej+uOlTFsrtH0zfaeIpnnjuYdEqeuyqb+e9swdFsmP3srGzCdJ0n6nISw/jyd4KnX5JZy5VDErp9fD0Zmpwe/rPyMF6fn0VrCli0poAoo4rPbh8BSNCpZJ0e/4pqbVz3+kaO1dhQyaX8beoALs2MQdfO2iO/rJHZzS3qANkJIbw2d+gvokbsQQ9OBYlECItoaxg/b1QKD362S/TiLWtwcOObm1lx31iiehICz2v0kEfnGCEaBYuuH8Ldi7dTbXHRN9rAAxP7smDxdrRKGVcOOXnMb1uU1tvpFWlgweIdONxeZg6Ox+v342iOWD4RPx2oDKjwuLw+3lh3lCsHx/Pv2dk0ONzc9s429pY1EqpV8PK1gxmcFCoSSH4/vHB1Dq+vLcTn93N9XlKH3jUdwaCWB/iESCXwwEQhGUmnkrP6/vHsKmkg0aQl2qhud9JVyKSM6hUeUEkHGJYSqJhqqchanR7+/s0+kbxwenz85at8Vj8wntUPjMfp8aJRyojQC8qnExNUTDplpzcuXYXT42NfO+1TByss5KWFBxJz9nqQq0DRcZRldZOTeW9tZndJA4MTwzDrlVw6IEa8HmRSCZMyY5DLJCzeVERapGBM/oePdwW8jsvrY3tRPRKJhHs/2sFr1w8R/RycHkEh9HQzUfH59hKW7CzlxWtyOqyCtyf7l0slAZtXvUpOWoSOI23UAbNzE7vkB6BTKRjbO4L+84fj9wvtfu9vLEIiESK8L8yIRKuUc/FzqwHYW9bI9EFxpEbo6BWhJ8Kg5v8u6UNusokV+ytQK2QMTzVjOA+qzjqVnPQoA/dPDDYBB0gya/m/S/rwn5WHcXl8XDkkngsyojpNPLanctQqZUzNjg3YcP/+wt4BLTaVTQ7+++MRNhXWkpdm5raxqd2SdtM7ysAP946l0e5Gr1ZgULd6a9VaXVgcblxePyEaRdBmoc7mxOeDcJ2SnKRQth1rJXYWXNALUzf7xcikkqBEO6NajkImpcbi5OHP9/BtvjBexYdp+Pi2vG6NpNUoZTxzZTZ7ShrY3EwUOdw+nly2VCaCGAAAIABJREFUn3F9IpiUGSuqDNUKKRdlRHHDiGSe+S6QbCxtcODy+jrladUeSurs3PHeNvHvR77YQ7JZy6j09ls+T4RSLqNfrJHHpw7A4vCw+Vgtzyw/SJhOyR8u7kP/WONpt3noVHIevrwfEomEFfsqSIvQ89SMgUGR2y3Qq+SCkmBtoXhsRJqZg5VNhOmUp4wz9/v9FFZbmZIVS4RBxaNT+hOhV7GhoJZnvz/A4com5DLpKZVZ4XoVHq+wsT5RtXwu5f0uj48tJ6j4HG4fVU1OlDLpb8rvx6xXMbF/NBP7R5+T96u3OtlT2sju4w1c2C+K2FDNGSuEPt12XCQWQFi/vbPuGI9PHXBaKYxnAwqZlNwUE6vuH0+D3U2IRiBz2xYtTwWjRkFWQigD4oxIJZIuFdq6A26vP+B3BqixCF5ps1/dwKUDonli6oBTjlsNdjePfLGbYzU2pBL49+xBZMQYKG8QSOcQTWtrbr3NxT+W7Q943x3FDZQ3OHrIox6cl9AoZMwblczLqwrEY8NSTDyxdF/A4yxOD9Z2PAF7cH6hhzw6x1ApZELs9/VDcHl9lNY7uP+TnRyvs6Pv4mJBLpPw5LL94t/vbSyiT7SBzA58kk6c4AB8fj99og24fX5ufGOzuHGvt7m59Z2tfH/vGFFi+8nW42w5WsvkrFikEgnvbSwi2azl6ZlZnV6MWBxu5o1KYdaQBIpqbeSlmdlYUMOAuBDB2DdUQ0zoyTdVEomEif2jWXWgivWFNfSONDA02USfaEO7j7e5vOwsDk7CKKmzkZcWHnDMqJHz58n9eOjz3fj9Arn192kDztrCWK+SMyMnnp8OtLYOSiQwpnebz2WrhSMrYdtbEJoMY++HkARoZ5F0qLKJXceF79qy0FfJpTw1PVM0TgzTKblqSAIT+0ejkkuRSiUkmrSsP6E9KTpETZ3VTVlDY0C1vcHu5pVVRwIeu76gFttJquAmnZJBiaFsb6POuH9in4CNW4RBxXs3D+elnw6TX9rIpMwYpmTHnlZVu+0Cakp2LEaNguN1Nm59Z6toIg+Ckfo/lx8gyaxl8S3DkUmFZLAZg+OZlBlzzuLJT4Sl2aTYqFaglHeOoA3VKrlxZArTc+IBoQX1TH0uQrVK/jSpHzNy4tlWVMf4vpEkmrTiZ6qzurjr/e1sbCYs9pY1cqiyqVvaPBUdqLJqLE4e+nw3y/MrAEiL0PH+LcOJMqqxODzsLqnn3ysEP5k7x/fiv3NyWH2omp3F9UzPiSMtQn/GfkcnwqRV8uxVWdz81hacHsHj4+krswjTKtlVUi8SRyD4ar380xEeujyjW9QMlY0OFq44xPqCWoYmh/HWvFxuf28rFY0CkbWjuIFLB0bz0GV9+T6/gkcm9WPZnjL+t7aQuSOS6Rcbwos/CkEF0wbFEdLBNdOS0vjVzlLUcimXDhASPNuO/d+0afVpwcdbjzMs1dwlbxyNXMYX+0rFkIfiOjvz3tzMj/eNxUwDqEMEIr0d2JweGh0evD4fGoUMU5uxIMKg4vGpA/jjpX2Ry6SYTjKua1VybhiRTIJJy/oj1fSLDWF4qom/fJnP2/NyT0keKeVSbhyZxPDUcC59fo1Ycb1jXBr3XdSb4WnmTisszHqh5fvhL/aIxyZnxaI9h+k0SrmUIUlhrD3cOk+oFYKS6v1NRcwfnYriJGNVVZOT/eWNNDk8DE4KI1yvCiC/hBZCNxqlvNNj3m8BZfV23tt4jJJ6B5cOiOaHfRXkppgYnGQ6o9dtjwCOClGdN8RRC9QKGWqFLCBh9HTQmfb5swGtUkafKENActRlA2P4+bBgcr9sTznTc+K4qN/JiUin20t+s+r9lWsHs7Okgbs+2Ibb62d4qom/TxuIXCr4w3h9/oACZwvOVbABCGRyvd2FTCLpVt+mHvz24PH62F/WSEa0kRfmDGJ7UT1j+0Rg0inJig8N8FjUKGTntLW2B6eHnjP0C0CrlBOqUXLpwtViO1SCScOQ5PbbzTpCe60IPx2oYubgeNpbkk7oG0WI5oBoGCqXSrh9bBqhWsHbpIU4ijSomJwVK05SLchLM/P62kJ2Hm8lYq4ZltilxYjT6+fmt7aQGq4j0qji1dUFRBhUzO5EBH1bmPUqnpg2gDqrm81HaxkYF9KOFbAAvUrOmPTwADNhuVRCsjmY6dAo5EzKjGF0ejhFtTaSzbrmStjZW5iM6hXOHy/tyxs/C/5GD1+W0arc8Hlh75ew5J7mR6+Gg8vgtp/BEGygXdOO2XmVxYX7BOJQKpUEbJzumtCLH/ZWiM/PSzMjk0ooqbczOCks6Pu3V/E+WcHPrFex6PohrDtcTZXFyUX9onF7fJQ1ONCpZIQ0K1miQ9Q8dFkGdrcXg1rRLZV1s15FXpqZ0f/chd/vJz5MI7aPAFw+MIYFF6TT5PQgbXBg1AgmqG2JI6/XR43Nxb7SRhQyKelRhrMmjT9eZ+Mfy/azv7yJSwdGMzcvudOLM7VCht9Puwb6XYXT46XB5kYiEVriRrdjGG53e0XiqAWrD1Zjd3s5W6H1ByssInEEQsLeW+uOcu9FvSmuszHntY1ia9rGwk18ccdIZgyKY1YXVJ1dhVwmZWiyidUPjKfW6iJMp8SoFjbBhSf47AAcrLTgdPvOmDyqs7lYsHg7GwqEc3CkykJhtZU7x6fzpy8FoqFvtAGH28vcvCQmZ8Uy5YWfqWr2lvtsewmvXDeYS/pH0SfayPV5SXh8fhqaHEgQ1Jst92BZg5NLnl8tql8WrjzMNwtGB4QCZMQEt8QMjAtB3sX7uN7uZsmu0oBjHp+fbYeLSTj6OISlwogFoA+8Jhvsbj7cXMwz3x3A6fGRkxjGy9fmBBCQepW804UahUzKd/nl9I02sLO4noUrDjE9J65Tzw/VKrl5VCrXvLYxQKr/yuoCVt0/jpgQTafHN4VMyqTMWLISQlm5v5JBCaH0izWeNR8+q9ODVBIYnRyqVfLUjEzR8yjSIBjGH6uxsre0gXq7q0PFYXWTk6sXbRADN0I0CpYuGCUaytdanXyxvZRle8rIjA9l/pjUU5MJ1mooXAVH10K/qRA9ELRnRrica1Q1Obnq1Q2iP+Hn20t4asZAlu0po1ek4Yx8li4dEM2rqwsoaU4OjTComDWka+usHpwa4XoVb83L5d8rDrLreAOjeoUzoW8kN7+1RXzM1mN1pySPdCo5o9LDWXOomkijmhfe2Sr+34aCWt7bWMTt41LRKGWYdErmj0nl7sU7xMfEhKhJMp/9gAYQikbvbyrivQ3HCNMp+cvkfgyMD0Gj6NlS9iAYtVYXd7y/jWqLi2SzlvQoAwtXHOKVawfz7KwsbnxzM4XVVkK1Cv49O5vQniTR8x49d/ovhLgwNSvvG8cP+yoI0SgYkRbe5c3ooIRgsik3xdThhiTCoGLZ3aNZvKmIRoeH6/OSiGle+CukEgbEGYk0qLltbBpvrz+KxeGhINWKTi3HqFYwKCGU6TlxfL69BL9fWJx0lEDVESL0KlLCdRRUW0Wfn4cvz+iyssfl8fHjgSoe+KS13Wr+mFTumtArqCKsUcq4+8J0yhsdrNhfSYRexT9mZHa4MGtJ7jkXSUkgKIHmjUphWk4cUolgIClKr221sOmVwCdYq6C2oF3yaEhSWJCn1ryRp46NjwvVsOye0RyttqJWyCitt3P/JztJj9Tz3KysgPMTqlFy74W9+fNXrR5JE/tHnTISNlyvYkp2HGUNdq5+dQNHa4QF83XDE/n9RX3E91ApZN2u+HF6fCIR+tqaQl6Yk8M/v91PilnL1EFxTH3xZ+xuLyq5lP9ek8Po9HCUciGlavXBKvrFhnDd6xtFQ/eUcB0f3ZrX7QRSVZOD2a9uEBMXD604TK3VxcOXZZzSc6mtgX6T08OtY9LIiOnYQP9kqLW6eHPdUd5ZfxSDWsGfJ/VjeKoZ/QmeQzKpJKjNU6+St+uV1F04WBHc5rm3rBGvz8/izUUBnkZ+v6B8SQnvg1FzdivTHVXQh6cKRGxbIn5mTny3+Dc53F6ROGrBxsJa/jCxD2qFlNvGprGxsJZXVx9h2d1jOFDeJBJHLXjz56M8Nzsbk1ZJk8PNX5fs5fNtJZj1Sp6YOoDhqWbUCilv/FwYMK7UWl18u6ecG0Ymi8dyU0wMTzWJnykjxsAV2XFdbiXRq+Ukm3VsPsEEPtEggeNbYd8SsFTC5c+AqtUct8bi5O/ftMrgtxXV8dJPR/i/S/ueloIxVKvgd+N78YePd1Le6GBcnwjuv7jPSce6Jocbu8uLWilDKZdSWu8I+H+vz4/H2/VEmRCtghBtSKcSWLuCGosTh9uHXCZBJZdyuNLCS6uOoFfJWTAhnQSTRjQvjQ/Tsuj6wVQ0OYjQq/l4SzG7ShoYkWamHWGziC3HagOSWhvsbl5edYQHJvZBIZXy/A+HeLs5SXLz0TrWHanmnZuGddyCY6uDr++B/V83v8H/YMKfIO9OUJx5y2xn4XR7cXp8nU7fOxHH62wicaRVyrhkQDSNNjdj0iM6LIa1oMHups7qorjORq8IPaE6RcDmPdKo5ovfjWR3SQNen5+shBAifqUKEb9fMOGXSSVnRJg63V7KGx0s3lyMVilj5uB4Ig3qMy5SRYeo+fOk/thcHkrr7cx8eX2AX9rF/aKxuzyUNTj4cHMxYTol07LjiDSqxLFRpxIKhy+tOhIQFNGC3SUNOJuLzRKJkP767k25vLOhiJRwLTeMSOmWdvFTwefz821+uWhbUNrgYM6ijfx0/zjiw3q2lD0Ihtvrp9oiFKaP1tjEtb/D4yPJrOXjW/Owu70o5VLCtIoes+xfAXru9F8ISrmM2FAN1+cln9bz/X4/CSYN1wxL5P1NwoZpeKqJmTnxHU6EMqmE2FANv7+4D36/P2BBb9areHFODk0OD1e+vF7cDP50sIrFtwxneJoZs17Fo5P7c//FffAjLHa6OpFHGFR8OH84H2wu5kC5ENmeFR/a5cm73u4K2CQAvL62kBtHJre7WY4wqHlmVjYOtxepRIJJq+j21pUzgUImbd9nRCoHTTuKNHX7ppdmvYold43ime8PUmtxMW9UMkOTT12NlUgkRBrURBrUeLw+oo1qli0YjUohC1rAK+VSpmTHMjA+hOX55QxKDGNIUlin0pDsbi8LVxwSJw8Q4tPnDEs6q54ZepWMmBA1ZQ0Olu4uo7Tezp8m9SMtUsfUF9aJ17vT4+P3H+3ku3vHoJR7uf+TXWgUMvaWNQUkARZWW1l1oJKZ3axmaXJ4ROKoBV9sL2XBBemnJI+qmlxctnCNqGZcsa+ST2/P63L7g9/v54d9FSxsbv2qs7m55Z0t/HjfuCDyKEQj5+HLM3ikTTvNnyZlnLJy5PL4kEslp9VCMaZ3BBJJoPH19EFxglFyO4RvlFEFXTBdPxVcHi91NoEg0DZXgU/mW2PWKXn3plweX7KPepuL6/KSmNA3slu8ORRSKU9NH0hBtZVPth6n1upCr5ITbVTz5o25LNlVxnsbD+H3w3d7y0lpR22plEvRKWVIJPDuxiI+3FwMCOaVt7y9hdUPjCc6RI3TE9wS4fIGHgvXq3jxmhwabG58foF8CdersLk8NNo9WJweDGo5YToFyhZfE2sVVB+ChuOQNAK04WiVahZckM7qQ1Vi+90lGWaSvMegqbk1Lv9TuOivAeTRgXaIxc3HarG5PAJ55LaDvQ4q90FoAmgjQNux4rfF8+yrO0fi8wttWiGajsepsgY7f/16L5sKaxmUGMoTUwcwKTOGz7aXiI+JD9OgU50fi+PSejvz3xHSRQfEGfnzpH7MeqU10OLbPeWsvG8ccWGtreRapZwGm4enlu1k89FarhycQN9oI9VNzg5/n6omYeMgkYBUIhCpVU0uvtxRyoi0cPaVBce1n+jvFACXpZU4asHa52DQdeeMPCqtt/PST0corLYyOzeBkb3CTzkH1ttcHK608OWOEnKTzWIQRUaMgSenDeTzHaVsLaqjd7QB30mc/S0ON++sP8q/vhPSAOVSCW/eOJQRJ/gkRhhUTOgbeeZf9hdEvc3F6oNVvLqmAJ1Szh8v7UufGMNpqVxK6u1c0qaF9PW1hSy/ewxRIWd+zWiUMjRKGVKJhDvGp/HqqgJkMgn3XNCbXpE6jtXYmPSftXiaWdbX1xSydMGoAFVkpFHNPRekB6UOA+SlmgPGjVCtklHpEQxJNiGXSbrsP3q6aHS4+Wzb8YBjHp+fLUfrzlnBtQe/Lqjk0iA/095RelQyKZIuhnL04PxAD3n0K0VhlZXPd5YwLTuOuSOSUcgkGNWKTre3tLdxSTLr+HBzUVAv9aK1BQyMD0HXnBQnbCK6HpvdgkijmrvG98LtO4O2DT9CxHIbeH3BxoVt0WLG2Bl4vT5cXv9JI87PCbRhMPHv8PrF4G1uSUsdD/pg1ZHN6cHu9pJg0vL0zEzcHj8hpyH/bEkAOxlCtUoGJSoZ1EGyX0dwuLzsKwve4BVUWQJaXqotTqxOD3KZFLVcitvrx+f3o1HITotkCterWDx/OH/+Kp8DZU1kxBjoF2PE5fUFmByDUNF1e314vD5W7q/k6twEaqzBi7mSBkfQsTOFRiELIkaiQ9QnVfI43F6qmpwszy8PSgV8dXUhz18V0qXr2OL08NWOwJYhvx/WH6khOTyQfFAr5EzJimVUr3AOVjTRN9pAmE7Z4X3dktL36bbjDIgLYUZOXJerpRF6FR/cInhj7Str4saRyYxuNmSelBnDW+uPUlwrEHAJJg1XZMeiUsg4XmdjzaFq4kLV9IsNOS1jUZfHy6bCWm5/dxtNTg8mnZK3bsxlQJyxQzJIq5KTlxbO2zfl4vP7CdMqu6UNttri5NU1BazcX0m/GCOvzx3CHz7eyW1j09hUWMN9J5jgF9fauLhfNKnNyk8QNp1/uLg3BrWCWouTPSX1SCWIKhKfH/aUNBIfpuWmkal8vOW4mIapVcqYlBkb9LnMOhXmNsb5NpeH5XvKeeDTXbi9foxqOe/ePIzM+FCh9ejjeXBUMLBHroKbfoCYTBJMWr66cxQVjQ70Silhx1cS9vUdrW9kjAvqle3XTtvc2N4RGFTN42DpDnh7SutYmncXjPkDaEJxuL002N14vD40SrnY1iuTSjp1jdZaXfzuve2if8MP+yqpt23nxWtyCNMp+WFfBRnRRh6+XFARFlZbWXOwit7RBtIj9efcN6TJ4eaxr/PFdNGhySbeWncs4DFOj48f9lUwd0SyeCxMpyQtQsemwloendKfBrubO97bhtvr4/q8JG4f1yvIS+qCjEgUsoH0jjLg9vlosLlRK2T8dcleFq48zMLZ2Vy9qDVNTiIR1NBdx1mIUmwHlU0Opv33Z5HYXHu4mieu6M/VuYkdFqU8Xh/f7C7noc93A0LR5MP5w+kXY+TPk/tx27vbKG8U5pTl+RUsnJ3N5KzYdscVi9PDcz8can1tn58HP9vN53eMOCfqk3OJHcX1LGjTnjXz5fX8+IdxJJi6tv50e30sWlMQ0EJab3Pz/b4Krh2e1G2fN0yn5LYxaczJFVoEQzRKvD4/L/x4WCSOAKosTjYU1jIlK3AMDdEKyvO/TR3AP77dj8Xp4fKBMcwZlkioNniMONdJh2qFjF6R+iBV6Ilrgx70oAXhBhWvzR3K3Yu3s+t4A9kJoTw/O7uHNPoVo4c8+hWixuKkyemhzurmwc930y/GyLxRKV1KpeoI5nbSssxaJXKphHqbi6W7ynj+h0N4/X7uGJfGjJz409rMS6USVNLTn/S0KhkzBseLVXKAIclhnTYQrbe5KKiy8tOBSgYnm0iP1COTSgjTKmmwu3h/UzF7SxuZkRPH0BRTp1Q1Zw0RGXjvyafW6sKv0GJQy9DoAlsXSurt/Gv5AfaXN3LJgBiuHZZ4XpoYGtVyLhsYzY7iVuNsmVRCVkKrQ05loxDXmV/ayGNT+lPR6GDRmgLcXj9j0sN59qrsLm/8JRIJSWYd/5k9CIfHi0GlQKMU2tIy40NEk3GA9Eg9aoUMV7PsfM2hah6/YgCfbWtVD8ikkqBFX3dAq5Izf3Qqr6wWEikUMmERebLvW9nk5K73tzNrSHzQ/4Xpuu4bpZbL6B9rZG2z4WcL0qP17T7eqFFg1CiCFo8enw+rwyMa4Hq8Pr7YUcJjX+8FYMmuMr7aUcrbN+V2+nz6/X5sLkHBcuPIFPpEGzDrVKLBbnSIho9vzeNAeRMenxAGoFHIOFhuYfpLP4vER0toQVevozqbmzveF4gjaCYM3t/Gp7fnnXLT1p0pOBaHm8eX7OXLZpLvcKWF/NJG3p6XS4hGQWWTE7lUIm5WFDIJs4cmCsrPW4ez+mA1ZQ12JmXGEmlUUWt1UdHk5IqsOO4Y14sXfjzMin2VAKRGCOc1LkzD8nvG8L+1hajkMm4Ymdypts0mu4cHP9st/vaNDg/3friDD+fnEW4pbSWOADxO+O4RmPU2aEKJMqqFNkBnE+w7CK7myqVUDpP/DdrAwAOTTsmzs7J47Ou9NDrcXNwvihtHpghGztYqWHpvK3EEsOEFGH4bTRId3+4p5y9f5WNzecmKD+GV64YE+Dm1wOnxYnN5MarkAUSB0+0NMP7sHaXHj1CIuH9iH24bm4ZGIUWnkvPTgSrmvbVZJIkn9o/iqemZ5zSxzO7ysrVNeprV6cWoCV4StveZ5DIp8WEa4kI1PNqmfXnRmkKyEkKDSEWFTMKP+yt58DOBOOkdpee/1wymuNaGVCIhwaRl5uBYftxfTY3Vxdy85JN7tin10HcS7F/SemzkPaA+W05rgSips4vEUQveWHeMSwbGtHuf+3x+KpscmPVKJmXGsHR3GX4/3L14B1/+bgQHKy0icdSCV1YXMLJXeLvzeNs27BaUNzg4iVjpVwmby8N7bbwqQSDKVu6vDCA0O4UOfhv/WfjRVAoZEW1IHbvL2+77dPTeRo2CK4ckcEFGlFA0U8p+2TVoG6gVMu6akM6qA1WUNhfQJmXGkGjqUR31oGOkhOt484ZcPD6hRbqjZOYe/DrQQx79CuH2+vjvT0dY3pzgc7TaSkGVhZevG9yp5zs9XuptgrpCfUJbUlZCKL0i9aI/gV4l53cTeqFSyMgvawxIe3li6T76Rhs6HcPcndCrFDwwsQ99ow18t7eCoclhXDc8qVMDksPtZfHmYp5qk1Q3IyeOPtEGLugbxe3vbeVghfD9l+eX86dJGczNSz5lpPLZgsUrY80xL3/9+gCNdjdzhiVx+ziNWN2tanIy+9X1otpiX1kT1U0OHuqET865hkwmZebgeCobnXy0pRizXsVfr+iPqXlh5PH6eGfDMfJLGwnXK0k2a8XEJYDVh6r5YGMRt49LO63zYdQoMLaxk1fIJDw9M5O/Ld3HlmN1ZCWE8uS0gYTrVdTbXFw+UFjobz5ay4tzcnh34zEUUgl/mNiHqLNQNQnRKLh9XBpXDU2guNZG72jDKReNX+8sYefxeh66vG+AqsSgknPHuF6nTC5yeXzU2Vz4/H7UCmGROm9UCiv2V4rjwNTsWFK7UFmssThZvLmYnw5UMizFxNwRKfjx80qbmFYQvIoa7O5OEysVjU4m/2etqBZLMmv55LZA4kYuk7LqYBX1NhePfFHLo5P7sb0NWQmwvaiekjp7lwkdp8dHoz1Q8VhUazup4vFswObysmRXYLLZkSoLHp8ffbPR/DcLRvPfnw6DRMLvxqWJREiEQc2Mwa1EY53VxZ+/3CO+nloh5bXrh3KsxsrF/aKJbL7O1QoZqRF6HruiPxI633Job/aFaYuCaqvQluMITsHEXgs+d+AxlQFyb4EBM6H+GIT3Ftp5T2jVMKgVTMqMZVR6OD6foI4S/Wh8Xmg8IQ3O7weXjQafmwc+3SVuvnceb+Cfy/fzxNQBAQrbikYHL/10hN0lDVwyIJrpg+LEzb1MKvjVKWRSnpmVRWm9nVqrC29zamcL0VZtcfLE0n0BG/3l+RU8fJn7nJJHGqWMockmlu0R1hHf5pfx1o25LN1VRmOzqjfZrCUvNbjtVa+Sc/vYtHZDO2xODwfLm1i6u4zUCB0je4ULJvd7W03uD1ZY+GhLMbeNSWFOPwUR257laU0dzptvplYeiUZrOLmPkDZMIA/7TxMMs/tPhejMc9aypmtnXg3RyNsl6uttLtYdqeHp5Qdwur1cMzyJ0ekR/N+nu6hscuDy+ght57tqlbIOiX+tUk6yWRvQ/j05K+acpu+dCyikUhLDgtN3E0waqhodfLq9BKlESB6M0KtOuiZQyKXcMjqVT7eWiOqjEI3ilEbW3QGNUsadE9L5Nr9CnCvC9UqGpZioanIikQQXF5Ryabvk9fmA2FANX945iiqLE61SRohacU7Hrh78OmHS91wjvxWcXzvLHgShySEsolt8fMobHDg9Pr7fW45BJcTKJ4fr8Hj9SE6wWPT5/EELfJvTww/7Knno891YnB4yYgy8PncosaHCBB1hEFpC8ksbaLC7GZZiJrz5hv/mhM0KwBfNngXdFf9a1eSkotGBQiYlXK88qXrGrFdxfV4yM3Li0ShlnW4FabS7+c+KQwHHPttewqe3jaDK4hSJoxa8tqaQyVmx7XsSnQNUWVzc/u428e9FawpIMmuZkysk3VmcHpE4asFn20q4a8KpfXLOJeptLhrsbmqsLm4bm8YtY1KbY15bDcIdbq+oAko06do1jlxXUMPcEcndYoBcb3NzwxubmZuXzA0jUzhSZeGZ7w7w+NQBhGqV/PWK/kzJjmVTYS1JZi0LZ2ejVshOy4S6swjVKgnVKkmNaF/pcyJayKX7P97FP2dmcqzGhtfnY0LfKPHe7QgWh5vl+RU8+lU+TU4PI3uZef6qbKKMahbPH06Tw4NCJkGvknfa36zR7uYvX+WLZMTmo3VsLarn2SuzUCmCz1lnlVE+n593NxwNaDM8VmPjx/1VzBra6j11uNLC/34+ysQB4N/iAAAgAElEQVT+0fz3mhx+PFCJXiXn41vz+NOX+ewuEa4vi9MT9B6ngkYhIy5UIyYYgZAmdq6jxSUSIRWzrE3rpFwqET+HRimnd7SBp2ZkIpFw0vbgaoszgIhyuH28+ONh3p43DINaHnStdzUSW6eSEWVUBSg1xvSOEK6F8HTQmsHWGv9O7q2gMQe/kCZM+GdOPen7KeUd+MepjJA5Cza92nrMGAfqEIoqbUGqja3H6rA6vSJ5VG1xcv3rm0Rfpa3H6iiqsYokfZhOyb+uzEImlfDE0r1ie+6z3x9kyV2jSI8y4PL4cHt8WJwnkGMgKh3PFQxqBX+e3I/yBgfbi+uRSSS4vX6+u3cMGwtq0arkZCeEtqsuM2oUXJ4Zw/aiehataSWEcxLDMOlUTPz3avH3vGZYIintEM9Hqiz87bIUov43RPChAtTb3iD21jWga+f8nwhdOAycKfw7xwg3KBmdLoSczMlNxOvzExOqxnCCWqrG6uRYjY073mudv59efoB35uXy6e0j8Pv9SKVSooxqshNC2FEsjE0yqYQHL+3b4ZgbYVDx3i3D+ceyfeSXNnJhRhS3jElFfxbnpV8CCrmUm8ek8vWuMtEHKDshhIxoI+OfWSWO4S+sPMzye8agaQ4LkUgEgu9EAjIuTMP3vx/DexuL0KtkXDkk4aylpp6IJLOW7+4dw/sbj2HSqZg2KI6XfjrM2xuK6BNl4LmrsukdqT+vvDhPhgiD6pz9dj3oQQ/OL5w/O8seBMDqdHOgwsLz3x9EKpFwz0XpxIZomPHSOp6aLigj/jZtAO9uKGLVwSoA0iL0fHDLMJRyKfvKGvlkq+ArMjkzVuwtbXC4ufejHWL1Y19ZE49+lc8zs7LETUKEQcW4PsEmi9mJwZLwnMSwbiOOKhodXPnyejF9ZGhyGC9dO/ik6gCZVNKlpBOn24vH5w/oPQehAO2n/Y2sRiFDesrsk7OHTYU1QceW7i7j4n5RRBrVqOTSIJ+cKKO6Wwx5uwsNNjcLVxzifz8fBYTK9Se35dH3BI8SnUrOpMwYVh2sorDawsC43kGvNb5PBLpuqrDWWF2UNTh46ttWFVpsiBp3c2XSrFcxsX80E/uf/erk6eLCjChe/PEIRbU2Zr+6gcFJQjx5Z7wv6mxu7vt4p/j3z4dr+M/Kwzx0WQbhetVptVrZXF6+2R1INK8/UoNcJuH+iX248/3t4vHR6eGdbrf1+f1BrR1A0LGqJifheiU3j05h9qsbRNXLm+uOsuj6Icx4aR1hWiXpUZ0j59rCrFPy5o1DWbB4O/vKmshJDOXfswd1mwS71uqirMFOca2drPgQwnTKdj0tTDoVT04fyE1vbRHH8nsuTA9KcGtpvzwxIAEEj7g6m5Mai4sT0ULgdwdJatapeP/m4dz/yU72lTUxOj2chy7LED63LhJu+RFWPQX1xTDkRsHT7WyYvyq1MPb/QBMKe7+CiAy46DEwRJHstQd4PYGQkqdvY1BrdXqCDLk/2nJcNLNXyKTkpZrYeqw+wNfN6fEJhPQVA3htbSEahYxrhyXxzPcHxcekhusI/QUq9zEhGl6/YShOt1do29YpUMhkXDEo7pTPDdUqyYoP4crB8Xyy7Th+P9wyOoV/rzgUMBct2VXGh/OHBz1/SlYsETVbROIIENRha5+DKS+c09S0rsKkU/HcrCw2FtZyzWsbcXp8hGgUvHvTMAbGCy3lFoebz7aWUGsNvL/SI/VoVXJufmszdTY3MqmEv08dwKvXDWHX8QZ8fj+DEkPbVTe1RVyohienZwotlBr56ftHnkdwe3zU212oFDJxXog2qlm6YBQFVVa0SiFoZvHmokDyXwLL9pRhc/n413cHkErgqqGJ3D+xd8DYrJLLSDLreOiyjLP6PWqtLqxOD1KJoBIL0ynRKuWkRej506T+WJ1u7l68nR/2CWv3/eVNXPvaRr69Z/RvzrOqPbQkUqoUsk77kPagBz04f9BDHv3C8Hp9ODw+tEpZwOL+eJ2DGS+tExdhqw9V8c2C0djdXv7381GenD6QJodHJI5AqOS9s+EYw1JMXPv6JgA+3VbCJ1uP8/a8XMx6FRUNjqAWi+1F9dhd3lNuFPJSzYztHSG+Z25KGBf3DzZuPh14fT7e23hMJI5AUCxsL6rnon5dew+b00OjwxPUK+71+dlRXM+qg1VcOSSBdze0moOO6xPB7pIGQtRyxvWJ4KcDrb/rg5f2DTIAPZfoE20IOtY7SmjXm5Idi04l5+ZRKSxaUwgICoQnpg44perkXKLB4RaJIxBUH3/6cg+Lrh8SUF2VSCRckBHFHePSeHv9MY5UNfHI5Rk89/1B7G4vl2fGMCMnvtuqc3GhGgwquehhA4IEvjv8w84VIo1qPv/dCLYdq8Pp8TE81dyud1l7aBuf3YL1R2qwOD2nbcTZUvVt+5sqZVK8PhiTHsG3d49meX45/WJDyEkM7fS9JZdJuWFECp9sbfWekkslTMkO9FcZmhzG5QNj+HBzcUC7VLVFMOu+f2IfLs+MPa3YaqlUQnqUgXdvGobX50cuk3bb2FBnc/HXr/P5otnHSCGT8OH8PHKSgk3pZVIJuckm1jwwnkMVTSSZdYTplOhVrddtrdXJhoJalu4qIzfFxOWZgX4sRTVW5izayMI5gwjRKGiwt6phrhqaQNhpmO23B6lUQpJZy58n96PO6mZXSQMzX15HRoxRIN7CkuCyZwQvIs3pedb4/X6qLE4sDg8apQy9KlgxBQhqldH3w9D5oNCISW1GjZwX5uTw0Oe7qbe5yUszc99FvQOUm0pZMEl/YkupWinH4gpWtDU4PKzYX8krqwuQSSU8f1U2T00fyLd7yukbY+DGkSnd6onVFZzJ9WvSq/jTpH78/qLe+PyC0tntDVRQNdjd+P3wynWD+fs3+7A5vdwwMpkx6RHIDtcHv6hUDr9gsaaz8Prh/k92iWNMg10gBD66NY9wgwqb28uXO0q47oRE3evyknhiyV7qbML95vX5+ePnu9nw0AQGxofw9c5Sdh6v58rBCURJOKl6WKeSn9wb6leEGouTN9cdZcmuMlLCtfxpUn+STFqkzYb1bUmVhubW4VCtgiemDsCgkuP1+4k0qPl+bzk7jzfwwaYiLh8Yw6j07rmvqi1O7C6voMRVywPG2hMft+CD7aw7IhT9JvaP4u/TBgao6K0uLyv3VwU8r8bqotbqQsJvO32qrMHOY1/tZUNhDVnxIfxt6kDie/ySAuD2+qhrJp2lUsGm41wbo/egByfDb2PW+ZWiqsnJh5uL2FZUz+UDYxjfN1JcyL2/sShgkerzwydbjzMyzczXu8oYlW5u12djX1kjqhNaKPJLG6mzuTHrVUQY1ShkEtG8FAQSSC4LXqxVNjnYV9aEUiahV6SBCIOK567Kxub04EdoR+iuirvb6+dQRfBG9kilpUvkUb3NxXsbi1i44hBOj49Rvcw8f9Ugwg0qaq1O7vlwBzUWFy/MGURGtIH1BTVkxocyIM7I41/v5anpmfzrykzySxrZV97EBX0jhbSr5kWxXCo554qeRJOO2UMTWNxsDp4RY2BqdizXvraRCzOiiA5R87vxvbhqaALHamz0izESqlOcV8qjeluwuuF4nT0g+aQFJp2SBRekc8PIZCSAXikkevn8glF6dxI7Jp2ST24X2pmKamxMzopl/phUVL+yiTrSoOaSATFdfl6vyGD1TW6K6Yw2JKFaBX+8rC8Pfd7qj3bnhF4Y1XK0KqGV4ETFWWeRbNby0a15/GflIRQyKb+/qDdRxsAxyKxXcuvYVJ7+9mDQ870+PzKphE2FNSSaEoL+v7M4G2b0jXa3SByBMCY++nU+b9wwtN3306qE37Ol5bgt7G4vr68t5MUfjwCCUnF5fjkvzMnBpFNS0eig2uLiudnZOFwe/jd3CC+vLqCkzs7MwfFMHRTXrn9Inc2F2+ML2rTWWJy4fX7kUgnhepVgEItfbPmqs7m47Z1tASqxNYeqsTYn1qHUAqe/gThWY+OqV9dT0ehEKoH7J/bhmuFJ7Y8VciXoW336qi1Odpc0oFZIWXrXKCQSCVqlLKhlSKuSc8OIZN5oJsElEnhsSv+gOTA7IRSjRh7gjXXLqBQWrjwMCNfgXR9sZ1iKiYVXD8Kk6570vV8KLYb5IJB488ek8vuPWtWMSWYtWpWMizKiyEkMxe8XyM9amwtD8ljk+kiwCObsyJQw6vegOP83z3a3YJzeFgXVVrzNCzcJEmqtLqKMKkakmUUyISVcx5GqwLWOH3B7YdqLa8X2rFdWFfDNgtH0bqd49FuDw+3lldUFvNocFFFYbWVn8TqW3T263eTXa4cn8da6ozw9M4vX1hSwsdl7K1yvZNH1Q7jxzc3U29xsOlrDqPTwoOd3FeUNDm58cxP7ypqQSyUsuCCduXlJhLTTVvhdfrl4rkHwM5ueEx+gXpZJJPSJNgQoFFVyKU0OD3d9sJ33bh7+m2sJszjdVDY6efCz3aJX2qqD1cx9YzMfzh/+mybMuoJaq5P3NhaxdFcZaRF6bh6dwu7jZUzKivtFi9g96EFb9JBHvxBqrE7mv71FNHJdub+S+WNSuffC3miUMmJCgyfM2FA1Xr+w2f73ikMsum5IUCV02qA4lu4O9iZq6cayOt08PTOLJ5bupdriIjfFxPwxae0md0x5oXUhkxahY/H84UQY1GdlAFMrZMzOTRTNO0FYnHdV2VTR6OTp5QfEv9ceruHt9Ue564J0vD5Ej5D572wlJzGMEWkmpg+Kw+Pz8/ZNwwhv9t8Z20fN2ObWvTqri+/yy/l6ZymDk8KYlBV7TqvEJp2Suy9I56qhCXh9fioandz1wXY8Pr+YVN3ik9Mr8twvNGssTsobHbg8PuLDtEQYVFidHqxOD0q5lFCtkmijOkjdMCUrlpAOiCC1QhZQadF0QGY02FxYXV78foHM7KwvTwvkMil9oo28et1gXB4fRk33VnjqrC4cHqElxKRV/mKm6x0hVKvgyekDeXzJXmwuL0OTw7j7gnQ0Z/AbqOQyLs+MZViKmR3F9QyIMxJlVKPthgq5Xq0gN8XEi9fkIG3+uy2qLU6qmpzIJHDr2FS+2lUqjm1GtZwhSWHMfHk979487Iw/S3ejPQ+m6ianuBntCpocbv639mjAsXVHarC5PHh8Pq59bSOHmlVnuSkm7ruoN32jDTwwsQ+p4TpR2efy+Ki3uZBKJNTZXPzxs90cqrQwoW8kD13Wl3C9ioIqK797fxv7y5vIiDGwcPYgPt1WQmG1hTvH9yI1ojl1rJ1ih68bko4Ej609oqeSzw//+PZApxSE1RYnt7y9he1FwjyskEn49PYRZMYHK6BCNAoWTEjnysHxHKywMCgxFLNOFdTqHK5XsfSu0bz402GqmpzMG5lCWoSe/NJAc/D95U1I4FdNHJ0IiUTCqPRw3p6Xy6fbjhMfpmHm4HjCtApRQbK/vJE5izZSa3WRFW/k/Rt+RHvoKySOBsi+GgzRuL0+6m1uFDJJl8d0ENKtQDAqPlvQKmREG9UBhOjwVBNuj4/95Y2YdUqevyqb297bxsOXZ3DvRb1RyqQY1HIm9I0MIIqHp5jZcrRWXG+BkCr2n5WH+OeVWWc0Hp8t+P1+UaF6ptdwo93N59tLAo7VWF1UW5ztkkdRBhUr7xvL/vImkTgCQV26eFMxkzNjeWfDMcb1DrZf6CrsLi8LVxwUiR6Pz8+z3x9kUmZMEHnk9fnYVFgX9Brbi+oCyCOzXsVzs7K55rWN1FhdqORS/jK5Hx9uKeZghYXdx+uZkNE9qv7zBQfLLbh9viCT/SNVFuxubwfP+v8LDreXl34qEH3k9pc3sa2ojn/MyGTL0VouPo/tE3rw/xd6yKNfCDanNygB6O31R7lhRDKF1S6uyIrlrXVHRbIjLlTDpMxYpFIJeanhFFZbiQvTsOj6ITz5zX5sLg/zRqUwIi0crx++2d1KwgxNDhP7io1qJUt2lfL0zCx0KjkHypv4cHMRf2zTA+7z+Xlv47GAhcyRKiurD1YHpPR0N7LiQ/jnzExeWVWARinlwUsz2l04nAy7S4Jl8OsLarhpVApKuZTBSWFiPPG2ojrqbC7mjkgJSrXw+vzU21zIpBI+317CX5cI8eJf7ypj6e4yXr528FlRH3QEo0bBW+uP8nKbtKq7L0jHqP5lb+HqJic3vrlZNCGOD9Pw0a15PPf9Qb7bW0F6pJ6nZgwkyaTl09vzePSrfI7V2picGctNo1LOSOFTY3Hyt2/28fn2Evx+uDAjkn/MyDyt83I6G5RTobzBwYLF29lUWEuEXsUzs7IYmhx2ShNzj9eH1eVFp5R1mmxqtLuxujz4/bSrmugIBrWCaYPimNA3Eq/Pj1oh7RY1YYhGQYhGQVo7yqaO4PX5qbE4Kam3E6pVEqZVdPg92iMFqpuczH1jE/mlgsn6HePSWHb3aN5ZfxSlXMbkzBie+nY/I3uFk96Fz3WuEGlQBRlLz85NIFRzetemUi4NWpRLJBI+3VoiEkcAmwprOVJlZd2RGq4dniQSRw12F0t2lvGP5ft56ZrB3L14O2kRep6emUmIRsGB8iaIlnDTW5vF1Kd9ZU3c9u5W7rmwNy+vOsJ3eytYdvdo0iL03DE+jce+3iu+7+CksCCPptOB2+MLCjkAqGxyEh/WqmZyuL00OTxoFFKRdCyps4vEEQhqryeX7eflawe368URplMSplPSLzakw88jkwrR849N7o/H50enkmN1erhzfC+e+6E1qOGRyzO6NO40OdxUNjlZd7iavjFG0iJ03XKvVlucONxeFDIpId1Ankca1Ji0SgbGGZFIhJaLlnGsxuLk/o93iT5AO483MuTfu/n5wZvFolSt1cUHmwr4eEsx0SFqHp3cn7RIHQrZqT+XzeXhWI2NF1YKv/OdE9JJDteiUXT/PCmTSlh4dTaPL9nH3rJGRqSaefCyvsx6ZT2lDQ6SzFo+nD+cpXeNYm+zIry03o5K3uq588O+SlIjdDw5fYBolt0WXr+figYHBrX8nK43ToVaq4vl+eUs3VVGdmIoc/OSOuXVU9XkaPZ1gqyEECL0KiQSCXKZlNgQNVVt1pxAh1YKKoWMuDAt6wuC0/6O19u4Pi+ZmBA1KRGdTwjtCDaXp91zc7jSEhRqIZNKuSI7li92BBJh7Xkm9orUs3TBKMoaHHh8fj7aXMzHW48DAnH2W4LV6eGlVUeYNSSBSIMqYG+hU8rOeeDE+YpGu5tPtx0POFbW4EAuk7Bseznj+0b+pooNPfj1ooc8+oXQnjGzTilnX1kjN721hUEJoXx8Wx6HKixIJNA/1ihOzm3Z57hQDdkJofj9fkK1gvx9bO8Iltw1iiW7SukXY2RYikl0EDCq5cwcHM89H+6gwe4mKz6El68dHDBJ+/x+SurtJJg0XNwvGo/Pz7LdZQEJQ2cDoVolM3LimdA3Egmn1xqSnRDsDzK2dwQ6lRy5TMoLVw/i4S92s6GgloFxAll1ojy4zuriq52lfLSlmNhQNfPHpJGXamZ9gSBF3ny0DpvLSyfyYE4bLYaCEolABpTUORjZK5zhqWZ2H28gL81McrjuF09T21BYIxJHILSivbvhGFaXhwa7my3H6pj96ga+uXs0vSINvHhNDi6PnxCN4owXDDuP1/PZttZF2g/7Klmxv5JZQ7rWjlRrdVJSZ+d4nZ2sBMGD50w3UBaHm8eX7BWrbFUWJze/tYXVD4w/6TmrsTj5aMtxVh+sYkQvM1fnJp5S5VZrdfHPb/fz4ZZi/H64uF8UT04f2On7p0Xl1eIVVlBlQa+SY9KdW6XUsRor019aR32zF8isIfH88bKMIF+ZRocbh9uLXikPUDOtPFApEkcA//3pCIkmDY9NGUCTw83xOjtPTB2ISafotnbb7kS4XsWnt4/gme8OUlBlYfqgOCZnx53WfRKqUfL7i9L5y1etZM0V2bFoFEKYwokorrXx7KysAJ+j0noHD38htB7KpRL6xRi5YWQKj3y+m9IGB32jDbx0TU5Qe+yRKiuRzWOq3w9v/HyUv00bwNRBcfSOMvDZtuPkJIUxsX/0aZ+HWquLPSUNbCioYVyfCP51ZRbXvb5RNLxWK6TEtWnnq7Y4eWHlYVbur6RfjJFHJmUQH6bF1o4/kcXhwes78+QzlUJGy7fTqeTMHZHMpQNj2FvaSFZCKOF6ZafPrdfnZ82h6oDUrmmD4vjL5H5BBFSLWkwiETyZTnYPl9TbmffGZg5UNKFTynhyeiYXZkSesUpQLpMS1s659fr8HKoMNB23u33U2VyYdEo8Xh8fbSkW1cNHa2xMf2kdP/5hHFHGU4/J5Q0OJv1nrahy+za/gu/vHdPp5MquoMnh4ZEv9nDDiBTSo/So5FJuenOLqEQ6VmPjjXVH+cPFfbggNAqXx0efaINobP23aQN56DIPcpkEk06FRinHrFOKxIFMKuHq3ESufX0jfaMN/HNm5nkxbtldXv7742FeWyt4LK49XM2qA1W8eWP77bUtqGx0MO2/68R1ZKRBxdd3jSLKKKjZn5g2kCtfXofDLdx780Ymn5JcHpZiQimTBrS//z/2zjswijJx/5/Z3rLZ9N4JpELoRZqIUgRBQBF77/XO7p2ed+fZzu/pWbGfnNhQFAtIURCVXqQHCCUE0vv2Nr8/Jplk2SQkEBTvl+cvGIYts1Pe93mfMq1fAkPSwhjTO6pbVMQhOjXjsqMDml8FAXLi27ZeFyRZuPe83sxddQClUuCe8Zlttg2qlApiQ/UcqLRx6Zvr5O16tbJbrHZnEpQKqbF13ppDPDo1hz9+/AsurxQD8dTMvli6KV/v9w6lQiA6RBsUsq9XKxmYEtZDHPXgjEEPefQbwahRctGgRD7Z2MIy3z6ul8w6bzlSxw3vbWT+9cMI68AmJghC0OQyVK8mNCGU9Cgja4qqmfnaGkL1ah6dkkN+QijjsqJZes9ovH4RvUpB+HH/X6VUcOvYDI7VJfDhhmLUSgUvXzqA+DasdN0NpSL4+3QF0SFa/jYtl6eXFGJze5mYG8ucIcnyADrOouf52f1xenyypcrq9GB1+aR8HZ2ShVtK+OtXuwEpL2rdgRreuWYIM1/9WX6f0xknVGV18ZdFO1m8o4xeUSb+NbuAqS9JA+LEMD1ZsSGcnRXNtiP1jOod0akV2Y4giiI1Nkll1VUFzqEqW9C2IzX2gMDmKqsbq9NLdAiEnqSKoi38cqSOnDgzJbV2GpzSJPCn/VXMGJCAqo22phqbm2qrizqHh8QwPXaXF58ILyzfJ1s91UqBj28aTv/kYBKyK7C7faw9ENiS5/b5qWx0BqncmtHg8PCnz3fI1s01B6rZfLiWf80u6PB32Xm0Xs7DAli6q5xxWdFcMiS5C5/XyzfbS3lo4XY8PpEwg5r3bxhGzklmE3UVjU4PT3y9WyaOQGqyunF0RgB5dKTGzl8W7WTnsQZG947k3gl95Fr2vWWNQa+79Ug9swdDqEHTZj7FmQRBEEgMM/DE9DycTe1NbS0ydAYalYJpBQkUJIXx3Z4KBqZYyI0PJdyo5aJBiSz65VjA/tMK4kmJCJzgtM7t0KgU3Dwmg1vnb5Z/oz1ljdzz8S/cdnYG936yTd431qyjwdnyO4YbNCgQCDNoOKtXJMPTI06pobPB4eHZbwv5YH0xIJGE95zbm6dn9uXRL3aSFK7n6Zl9ZSKsmcj9oskmVFxjZ1dpA5/eMoKMKBNRJi2V1paV8BtGpQURls2osrr4bk8FGw/VMK0ggdx4c6fvmc3W4t4xXbcW19jcPPH17oBtC7cc5d4JfbC0ioqqtbl5f91h3vzxIBqlgvsn9uG8nNg2G0kbnB4e+2KH3CBnc/u45+Ot/PjA2d1iMQVJRVljd+N0+9BplOjUCs7OimZxK2W0xaCWK+7rHB4+O27l3e72sa+8kZhOqJDnrysOsEf6/CIfrD/CI+d3f7uWXqOkrN7Jwwu3MzQtnJGZkUHNj3vLrLKq63ii8PjcsCiTlq/vHMVHG4qptLqY2jeez7YcpaRpYaOi0XVGkEeNLg//XXc4YNv2o/XUOTxN1m8VxjbCpL/ZXhawAFnR6OKTjUe4fVwmAH1iTKy672wOVtmIMWsJa7peOoJGJfDGlQN5dVUR9Q4PVw5PpXesiVWFVYzoFXFC8sju8srFDmadqs2FHY1KwdUjUimpsfPltlKJ6Jqe126hQJhRww2j07l4sLSIZdF3TBLnJYQy77ohvPHDAUINau4Z3/uMKjvpDujUSu4Y14tJL6wmVK/mgxuGYXN7SY8yEWZQ/080BXYHIkxa/j49jzlvrJVzaS8ZnMThahsT83osaz04c9BDHv1GCDVoeGhSNhcNTGL70XqGp4ezfHdFgN3sYJUNz0msgDY6PRyrc7J8dzm9ok38e05/nm+qBT5QaZUDLmM6eDB7fCJXv7NeXsldsqOM5X8Y0+XP8mvDrFdz8aAkzsuNlS08xw+cWwd81tjcPLe0kA83HEEhwLvXDAmYiAM0OL0cq3MQF6qjtN7JxLwYTKep4cTt9fPW6gN8tU0iM/ITQ5m39pA8IG4eSPaOCeFYnYO8BDPRnViRbQ/1Dg+r91Xy2qoi9GolD07KIjvW3OnJw6T8OJ5btjcgd2tK33ieaZU7pVJIAbTdBVEUaXB4mZwfh8WgISvWzNYjtTzzbSGT82PbJY7+tHA73zQRMxaDmreuGoTfT0BGmMcn8viXu3jn6sEdkrYngk6tpCDJwoo9FfI2VVPmR3uwu70s2VkWsO37wkocHh8ddVCtOxgs3f9pv2Qx7exKVYPTy8MLd8gDllq7h3s//oV51w35VewSTo+fw62aFptR0eCUQ70rG11c/tY6DjdZpD7eWEKt3c1zFxVg1qu5cECCvBrejNmDk86o4PjOQArCPvXXaSYr+iUFnj35CaH848J8XltVhEal4P4JfUgICw7d7pfYYqC6QfkAACAASURBVM36alspM/onBJB7AFuP1PHypf257ewM3lx9EKNWxdMz83llZVHTZ1BzxfCUALLoVIgjAJvby0cbigO2vbayiO/uHcOq+8eiOG5BxeHx8fW2wBzA4ho7NpeXlAgDX9x+Fq//cIAjtXYuH5ZC/yRLm+dMjS2wRenjjSU8PDmbq0ekdjg5FEVRItBdTZY5rSooq+tEEBFpdHmCth/fbLbhUA3/XNoSFH/vJ9v45k4zOfpgm53T7WPrcdZ5n1+kstFFXGjw+dBV+Hx+fimp44b3NlFjcxNp0vDWVYP5+7Q8EKWcx8wYE/+c1Y+IpnutVqUgKcwQZEPsrH09oo1J9+kKmQ0zqHn9ykHc+v5myuodjOwVyb+W7aV1tNd5uTGsKapmSFr4CYkQhUIgNlTHNWel8erK/dz6/uYA+1KtLfj3x9kAXgdozaDWU2Nzs7e8kXUHqhmVGUValLFdIrQ9VDQ4WfTLMQ5W2ZgzJJmUCEOAMl0AQrRqnJ4WwlUQJFL33P9bxfOz+zMhLwatStlkwfZi1KiotDqD3qu8wYkoigiCgEalJMas7BRJ2AytSsnSXeWMz47h7D7RPLeskIcXbkcUIS5Uxxe3ndXuuVNjczN3VRHv/nwIgOtGpnH9qPQ2z5fIpkn9w5OzEQSBcIO6w8ZXrUpJdEjnxjxmvZpRmVEUJFlQCkK3EbdnGhLD9Hx/71iW7SrnSK2dERmR/3Oh4N2BvIRQfrj/bHYfayA+TI9Zp0KnVvWEZffgjML/5l3qd4Jwo4YhaeEMSQunyupk3prA1ZzzcmIwdFF2K4oiP++v5qb/bpK3jeoVwZMz+1Le4KS41kG428ehGjv5CaFtDiy8Pj/v/HQoYBDk8vr5alspt4zN6NqX7AZUW100Or2oFAJGreqEk3qtWklMG8dNFEXqHR60KqUcpLnuQDXvr5MmIj6kyVB0iC5o8JoeZeSyYcnkxJnpl2g5LRk5IBF/3xe2VLi6vX7MuuD30qmV1NjcbYbQdgU7Suq5ff4W+e8Xz13Lij+OIVWrotHpodEp2c8ijJo2bUyxZh3zrx/KM0sKcXn93DI2gz6xIVQ0rcAqBPjzlJwuTZasTi+NLmkV06BRyQMMUZTCwjcX13KszsHfW63E33Nub16a058hqW2bCcvqHTJxBFBn9zBvzWFmDw5W51RZXXhP0bZi1qv567RcSmodFJY3YtKqeHJGfocyfEEQ0KmUATk1WpUCxQnIj7Ozonjp+/0B2ybmxXZJ4uxweYOa7/ZVNJ5UWPPJwGKQspdah93r1cqAzKTmPJPWWLG7AqfHh1mvJinMwOtXDOT/lu3F5xe565zM02JX+b3DYtAwe1Ai5+bEIAgQYdS0SZakR5m4fFgy768r5q0fD3LJ4CTMOpWs8gPJTr3mQDV2l4+V941FKQgoFXDViFTmDElmeEYEUd1MPooiHH/b8/lFFIIgq9BaQ0Ag3qKnuBU5qVII6NQKBEH6t0cmZ+P2+TtsGbS5fAFqLIBXVu5nev/4Nt+3GYdr7Fwydy1lDU4UAtw7oQ8z+yeiVSs6/Rwx69RcMSxFbs8DqXUzpNXndXl9QVkrINl528poMmiUDE2LCCDPNUpFl3MG20O1zc3N/90sWzCqrG5ufX8zn982gmdm9cXh8aESFIS3InxCdGoeOT+bjYdr5XKFGQMSOn0OTStI4O0fD8lKsiiTlmkF8d3yfY6HRiVZSb6+cyTHah0Y1EreuXowTy7eg9Xl5eJBSejUSm6ct4lPbh7O4NTwTr2uUasiNlQfQByZ9Soyjs/vqSuGxQ9C+Q7IPA//6Pt46+da+RxZuquMD+akI+5fg+D3QvpYMMVI3d/toLLRxUVz17Qi6I/wn2uGMKJXi40qzKDhT1OyuevDrfK2Gf0TWHegBr8IjyzcztD0cJQKL59sLOGHfZWM7BXJ5cNS+HD9Efl7CYLUmnYq5L7FoOHu8b1Zf6CaeWsPByy+ltY7WbGngjntKHC3Hqll7g8tGZKvrCxieEYEozKj2tzfpFN3mfTtCtrLd/pfgUalJN6i56oRqb/1RzmjoVMriQvVdwuB34MenC70kEdnCMIMWj64cRgPL9zOvvJGzsmO4YGJWV1+WJU3OHnm2z0B21bvr8bp8XHDexupaVq9mto3jrSItlelFIKApQ2Ze6j+1z9dKhudXPX2Btlv3tU8l2bU2tys2F3ORxuPkBxu5O7xmcSH6gKUIQCfbDzC/11cwObiWrmGd2JuLHGhem4/O7N7vlQHMGhU9EuysKfJgrNidznv3zCMBZtK5ElblEnL6MxIftxXeUqB006Pj3nHyc99fpFlu8q5bKg0aXx6yR5EURq8fnzj8KCKdaNWxfCMSN66OgS/KE1EvX6RFX8cQ7XNLVsSXB7JFniiCvh6h4f56w7z3NK9GDRKnr2oH8nhUjZJvEXPgwu2cdPYDO775JeA//fqyv18f+/YdonF4+0EAPsrrUSaNESFaAOCOmcPSuLbnWVkRJnIjuu8LQUkgqPa6mb1viqyYkN499rB+PwiaqUCywnk2aF6NfdO6M3fvmohxe4Y1+uEuQ/pUSbum9CHl7/fj88vcvnQZIZndC0zwagNzNsAKSvs12r5USsVzBmShMfnZ8GmEuItev5yQS7hxpb7kFalDMq3iLfo5cmHWa/m3JwYBqRIlkOfX8Th9iI0/duZBLvLi9XlRakQTknZVWV1sae0gbJ6JyN6RRJh1HTqnqBUKk646htu1HDfhCxuHdsLvyhi0Ch5/cpB3NakiEgON/DY1FweWSg1sOXEm5k1MBFBEJicH3fS3+lEMGqUTMyLYcmOcnnbZUOT21WDRpg0PD0znyvfXi8r6/54Xp+A/dUqBeoT5A+1NcVVCEKb25vR4JCsYc33H78IzywpZER6BP9ctpe/TcslJdx4QjWWTq3kupHppEYY+fKXY/RNtHDl8JSAc0etUFCQZAmYQIOkXm0LJp2aR6fmUGl1sf5gDZEmDf+8qB+h3VTCINl0AwOQj9Y58PhEokLU7U6WU8INLLtnNMU1dsKNGsIMmk6rQAvLGph7xUA5hy8/IZS9ZQ3EW07PRKzO7uGqt9fLi01T+sYx9/KB/HK0jmU7y3l+uaQC+3zL0U6TR0qFwAX94lErBT7acIT4MD33T8giwqSl1ubG4/MTIdSj/M9UqD0k/acNbyA4agiz3AVI5OgbFyZhfu8caGw6H+L6wSUfQGUheGyQOBiMUaBouV8crrZxuNqOWilw/8Qs+idZsLq8lNU7MOvVTYtZasZlRbPiD2P4qaiKWLMOq8vLQ59tB6DR5cXt9fPE17tlJe2aomo2F9fy6S0j+OfSQoxaJZcMTiaxDcVjVxEVouWcnBhW7a0M+rfW7a7HY+nO8ja3tUce9aAH/z/C4fHR6PAgAiFa1f+sMq4HXUPPWXCGQKkQ6BVtkivDj/fDHw9JCu/C5fWjUSnkGnBpwhRce1ln92BztWz/sgMVkUIhcNVZqXy4sZgGh0RYxJp1jP+Vq0N9fpGPNhwJCCpcuqucK4alMKp35x/wPp+fRb8c47FFOwEp8HplYQWL7x7F2VnRLNjUkrFwqNqOIMD3945ld2kD0SFaYkN1v5pkVK9Rcs/4TLaX1LOrtAG3z8/BSitL7h7N8t3l+PwiA5LD+GrbMR6bmovyFBwgKoVAaoQhaHtKuAGby8szTcQRQIPDy4Ofbeftqwe3eSxaZzGolQLRZh3RZh3VVhfz1hbz5S/HyIgycv/ELBLD9O2uNtbZ3Ty9RFKfPD2rL/9de5jV+6oAiDRpeOPKQYCUz9EaTo+fjkQyOXFmdGqFHMYJMCkvjk82HmHu5QOZt/Ywh6ttTMqLIzncwG3zN+P1izx+QS6XDU3udHD0rtIGZs9dKyvChqeH89JlAwIyoNqDTq1k1oBERvaKYktxLf2SLMSF6jCcIBQ9zKDhupFpzGpqQjyZB3y4UcP8G4Zy7yfb2FveyNg+Ufx1Wt6vuhoabtRy69heXDY0BZVSCCK2zToVf5qSzWOLdiKKkirr2Vl9ZcsLSOotpULgPz8f4tWVRXh8fqb0jeOxqblnRFtRdVOz1Yvf7WfJzjKSww08OSOf3jGmdrPLvD4/tXYPYhOB07ygcHzNvFal4IvbzgoieE8Fza15zRiYombxXaOosbk5WG3j8S93ys1t32wvY3J+3AkJ4vbg94tU29yIiBjUKkztkBihBg1PTM9nXFYMP+6rYkJuDMMzItt9X0EQKEiysPr+szlUbSfeosei77qKwKBVMaZ3VMAk9aGJfVArFVQ0OgnRqoOq4Z0eX5tNcOWNLnYcreeS19fy5R0jO1QuNSPcqGHWwEQm5cWibaMeXaEQmNE/kW+2l8l2tAm5MfRNaL8ZLsasY+7lA3F6fSgFoVtD8rUqBcnhhgDFV0aUCc0JXl/ZpH46GQXU8l0VzN9QTF6T0uovX+7k0iHJjM06PWOXVYUVAb/vV9tK6R0Twvaj9Szb1UJOjOnCeAWk3JxLBiczMS8OjUqBTqXgQKWVhxduR6NU8Pa0SJTNxFEThF1fMPbyR/g7MCIjgpCiRS3EEcDEJ2HeNKhqavzTh8FNq8HSUjDR/Fh+cFIWRRU2OWfLrFfx3rVDefOHA4zMjOS83Fgyok1EhWi4f8E2lrQiYvolhqJUCHy7K5DEXL23Cu10BXeM60VJrYPYUB3KDlRQXYFOreTakWks2FwiqxK1KgVT+rZPYo/MjAyKKOiuoGqnx0dDE3FlMXQ+GP90wenx4WpS6P7ebNw9+O1Qa3Pz3tpDvLbyAH5R5MrhqdwyNqPHQteDHvLoTENnVQ5FlTaufXcDxTV2Ik0aXrlsAP2TLYTq1Vw1IpUnF7eoj3pFm3B4fLi8gbaUjupAY806lt0zhh/2VqJVKRiWEdGpAW53wu31BzR5NWNnaUOXyKNau4f3jrMEVtvcHKmxMyIjgosHJbJgUwmCIHDZUMnjH27Udsl7352IDdXz3nVDcLiloM0QnYp6h4ef9lUxLjuaIzV29BolV72zni/vGEn7U4Ng1NjcONw+lAowaVVcPSKNz7cck1fG+yaGMiAljGqrG39z7bteTVmDkwNVVry+tu1czdkbrSc0Lo+PN1cf5NVVkox+V2kD6w/VdDhZKqmVAjXjQnUoBEEmjkCyPcxbe5hpBfGc3Sea7wtbVGNn9YroUCUTbtSw8Naz+OuXu6hodDJ7cBITcmMpb3Ch1yh5dEoOdreXWrsHl9fPo1Nz+Mc3u3np+/1Mzo/tVA1xrc3NP77eHWAlXHOghqpGd6fII2gJdu4T27VQ3ebGtJOFSqmgT6yZd6+RlFI6jRJzO5Nrt9ePILT81lWNEomtVgqEGdWnFOCuUbWviDFoVVzYP4FzsmMob3CSYNETqlcHqTaKq+0836oSfdEvpQxODeeyoSmnnLdzKqi2uli09SiF5VZ50lJnr2f23LV898cxbWaXWV1eVu+r5NHPd1JrdzOtIIGHJ0sqhOIae0DNvMvr56kle3hxTv/TRvqpmyb2h2vs3PLfzQH/Nig1DN1JTpIcHi+bDtXywKfbKWtwMjkvlscuyG23PCHCpOXiQUlc2D+hU/ZMvUYKw409BStAuFHD/13cj5+LpCD7WQMTMOrU3PXRVgpLGxmXFcUfzu1DZKvz16BRccuYdP7y5a6AJrgok5Z6hwdRlGqs6eTlbnNLAb/ljS5CdCoijdqAczoyRMtbVw3C5vKhUEiKwhNl3pxKtltHUCsVvHb5QO7+aAt7y61kx4XwyqUDA45Pd2Ny3zjeX18cMG44v4lAqLG5sDapd006VbeETx+sDi6MKK6xMyDZwrJd5WhVCt66ahAOj48/f76dcVkx9EsK7dR7KxSCPEmraHRy8dw1jM+O4bzcWBq8dqIUKvC3agsMTZLPMb1GicrVauwU3x/Kd7UQRwCOWljzMpz3N1BK94uUcCPZcSH0TbQEKGAbHF6e/XYPo3pF8eBn26lzeLhuZBpmvYbHp+Wh16hYd6CaQalhPDw5G6VCgVYVuFjzwKQ+vPzdfv7bFBOgUSr44MahDEzpnCLrREgON7Do9pG8unI/OrWS287u1aHdcXh6BNML4vmiqTzgwv4JDE49taIMkMZY7/50kDd/PIhSELhzfCYXDUw8bVEHJ8LROgcvrtjHgSobMwckcF5O7Gm75nvwv4W95Y38a1nLPeON1QcYlCo1pfbg/2/0kEe/Q1RZXdzxwWZ5Ra/K6uaG9zax7J7RIEgT72dn9WX57grSIg1M75/AxuNCdQ0aJZnR7Y9YlQqBGLOOi7pYe36yqLW7qWhwcrDKTl6CmXCDBoNWxfSCBL49Tl48KjOSsgYHIVp1p1a5lUqBcKOaolaqZoUghXCGGTQ8OjWHP5zbG+CkwkxPB46fNFldXn4qqubbVquZoXo1yi6sIknnzRbWFFWjVAhcNzKNW8Zk8OUdIzlYZUOnVhBv0RNp0uL3i/zjwjzSo0yU1TtJiTCwpbg26Hh7fD5K61y8vroIp8fPDaPSSAozYNBKhFdrVRdAeYOLGpu7XfIoPdKIqmnQfKxVM0szjtY6KCxr5NazM8iINrLpUC3D0sO5dmR6hwMijUpJdpyZVy8fgM3lZe4PRYx7bhU+v8i5OdE8NjWX2XPXym0wU/rG8cSF+Ty7pLDd1zwePlEMyINpRlt14GcqOlLnONxejtQ6mLuqCJVC4LazeyEC1/9nI/sqrIQbNTw/u4Ch6eGnrT0lRCfZXRI6sKEc33IHsGpvJTMHJHZZkVVnd+P2+VEpFKe82nao2kZkiI5XVx0I2G51eSlrcLaptKi1STkxzaq6TzeXkBxh4NaxGTS2YclocHjw+k5/TlVGlJE5Q5L5cEMxoigRR7MHJXUYItsR6uwern5nA96m2e+X20qJNuu4b0KfDklRvyji94sygVLZ6GRbST1+EfolhRJl0nbrSnuEScvUfvFM7RdPRaOTC19uqR6fv/4IjU4vT87oi9vnZ2VhBUt3lTM8PYIvbx/JNe+uJ1Sv4aHJ2cz94QCiKKk/9erOnZMOt5ef9lVx10dbcXr8RJm0fHjTMDKOy/WKMGmJ+I2jvuwuL6+tKmLV3kpuHpNBgkWP2+cnMuT0TlrTo4zcOa4X7/x0CIBrzkolPcJIldXFbe9vlssFhqWH89KlA06p2RVgekECr6wsClC9XjY0mdQIA5Pz41ApBF5eWcT8JsJk3tpirj0rlT8cZ5s8EWptHhweH3OGJHPx3DXcflYs1496BNOqx6UdlBqY9hIx0Yk8OUPN+oPVCAWXwvp/g88jBWo7gosVaCwFv08mjyJDtMy/fig7jzUQY9Zy3ch0+iaGcqTGzuIdpUSZpeP137WHmTkggagQHTFmHX+fnofN5ZUV8w63jz+c24d/fCMRUAoBRvaKCiCk3D4/f/58Z7eVMhi0KvISQvnnxQUo4IT23QiTlsen5XL/xCzZUt8d9uYtxbX8+7uWDMInvt7NgGRLt5FkXUFlo5OZr/wsLw6uP1hDrV0i/npq33twInx3XKwHwOLtZYzPju421WAPfp/oIY9+h/D5RXaXBtZS1zukwYVRq+Ll76UWncGpYRTX2Jnx8s+suHcM9U4vCzaVEBuq4y9Tc4gw/fYkCUgTnhdX7OPtpgFfc+vZqMxIhqVH8MDEPrz140F0aiW3ju3Fkh1lvLKyiBfn9Gd8dswJJcFhBg1/npLDrFfX4Pb5iTXrePOqQawqrGR3aQMXDUoiLdIYYM8402AxqPnb9Fz+8PEviKJ0jJ64MK/Tq1lev58P1hWzpinw1ecXef2HA5yfH0e/JEuQ2kOjVLC33MrDC3cAkgT8oxuHBZFHlY1uJjz/gxzyvHDLURbfNYreMSEoFQLR5sAabABjBzYsi1HNu9cM5k+f76AgyRKUcTN7UBIhOhU/F1Vz3Vlp3Dw6HfMJqnAD3lur4rVVRby3pqWtKd5i4MUV+wJqhL/aVsqMAYk8OKlPp9tqmu1jzdkPICn4Osp18Ph8VFvdbC2pJ8qkITXC2O5A2u31U2d3IyKRv6fTUlbv8ODx+rAYWmwspfVOJr+wWp7gZ8eZWbyjTLYt1djc3DRvEyvvG0vMKTQAniqGpgUP0kdlRnVZmVVSa+e+T7ax/lAN/RJDee7iAlIjDCdNRujVSpLDDVw5LIV/rdgXoFBrj5jafrQ+yI65vMm6K+VxqQMa0K4bmfarrCqHG7U8OCmLO8b1wucXMWpPrQ3mQKVNPq+a8d2eCm4ek97m71Zrc7P+UA2fbzlKvyQLMwckIiAyvRWZEx2i5cvbRxITenoUpHaXL+CeAbB4Rxl/nprDSyv2895aSe26ZEcZ52RHs+j2kTg8Ph76bDtrD9SgEOCR87PbtefJ7+P2cqzOyQfrizFpVXx4wzAe/Gw7e8oaeWThdl67fOBvpmpoD40uL+/8dAiX188fPpby6QQBfn5g3Gm9b32y8QjljS5evmwAIDVpfrLpCANTwgNaKdceqGFlYQWzBp7a4licRc/864fx7LeF+Px+/nheH1IjjSgEgZQII2X1Tj46zho1b+1hbhqd0SXyKESnIifezIZDNXj9Ii/8WErIOeOYcu0UNLZSQuMzURjCCFVruWRwEjP6J6DFAzf/CD/8EwQl5M2S/uxrpTgffhuopeujyuqiqMKKze0jNy6EuZcP4rllhTy5eDd9YkJ49qJ+2Fxe/nPNYCoaXahbeeaPj1nQa5RcPCiR0b0j2VJcR/8kC2IbvvKKRme3ljJUWV1UWV2oFJLt+USkVKheQ3fmEvv8fr78pTRo+7Jd5b8JeVTe4ArKe2xN/PWgBx1haHp4QKg8wMjMiB7iqAc95NHvESqFQF6CmR1HW7KAwo0a9GolkSYtj07N4cq318vS7Sl949CplNw4Op2LByWhUQqEnkGDTavLyztNdakghYr++YsdLLh5BFEhWq4fmc60gni2Hqnnk40lsl3pwc+2sfyeMZ3KRugTG8LK+8ayubiW/IRQbn1/MzuPScfv/XXF/HtOf6bkx/2mtpaOoFUpOTcnlh8fiKCkxk5SuIFQvbrTpInT7WP9oeCVx20ldUFV3gBWt1eusAXJEvPnL3by7jWDiTBp8fr8qJQKvt5WGtAO5vOLvPHDAf7RFGr+12m5zHl9nUwAXTokucMAaL1axYiMSD65eQSIIp/cPJy/f72LWruHK4elcHZ2NGEGDeeepGzW4/OzvyIwgyTWrGX57mB7ZL3dzfjsmE5ngCgVApPyYgkzaPhwfTFpkUZuHJ1OVIgOr89Pjc0th4ibtCpCdGoOV9u54KWf5HD2oWnhvHLZgKBBb4PTwzfbSvnHN7uxuryc3zeOv5yGHB+Pz8/BKinLpqzeyayBicwenESYQcO7Px8KmOCnR5kCbFMghSvaXKdPadU6F0evbptAS4kwcse4XsxddQCP38/E3Fim9G372m50erC6vFidXkL1aiKMGpRKBTU2SanwS4l0XmwuruPqd9bL96SuwO7ysrWkjr99tYs6u4fLhibz6mUDuHHeJgQB7h7fu12LYK/oYAlJ/2QLBo0StVLNV7eP5MXv91Na5+CqEakMTDl128WJYHd5cXh8svKxwelhX3mjfE86mcyjpDYI1rx4c1CGEIDH6+fDDcVyNtriHWV8va2UJ2fkB5A5FY0uPt50hDvGnZ6iA51aiUohBFwTyeEGvD6RDzYUB+y7YncFf5sGCRY9L1zSn4pGF+EGDYIgsmjrMRIsOnITQttUwhRVWJn28k+yJemjDUd46dL+zHptDfvKrbi9p9YM+aviND9e7W4fH204EkDY3DImncNt2Mu2FNedNHkkWb8FTFoVwzMiePvqQYiI1Du8/GXRTioaXVw9PJX8xNAg0uRkuJIQnYoZBQlYmghaUYS/LT/K098ruG5kKndnxshqT0EQmlQ3SojKggtepOkf4KZV8N0T4LHDyHsgqg8gWY8ve3MdheXSouSrl/Xng/VHZNu4zy/i9fl5fvleth6pY3BKOCN6RWIJjkyUYTFosBg0ZMVKGWyVjS5izboAMmPWwERCu4lMrGx0MeeNtfLzfXBqGK9ePvCU1WVdgVKhYGh6eFDr4aBOhqXbXF4qrS5+3FdFr2gTmdGmk37G1zs8tDWcDTNoTtjg2oMeAPRLtHDRwEQWbC5BFGFSXixn94n+rT9WD84A9JBHv0NEmLS8NGcAN87byN5yK/GhOl65fIC88ts/ycLKe8ey/mAN6VFGUiIM8mp0Vyc+pwN+v0iVzYUoSqvxLm9L2LFSIXB+fhzjs6NbcnRUCkDg1vcDMzYaHN6g1eq2IIoiTrefcKOGKX3jKSxrlImjZrywfB8j0iNOax7DqcKkVWHSqoIsO36/SKPTg7aD3BuDRsX47JiADCGAIWltV9tb2yAASusdODw+dh2TwrwLksLITwwO59WpldD0s+TGh7LqvrHsLmsg0WIgKkR7wlVyhUKQz9Mos47XrxyE1ycSblCftC2mGQaNitmDk1i+u0WOu/FQLRf0i2PT4Vp5m1IhMDgtnJAuqtEsBg0T82IZmRmBVqmUG5z2VViZ/foaGhxeBAEempTNzAEJPL1kj0wcAaw7WMORWkfQgLGq0cWDrRRNX/5SSnasmRvHpGN3+bA1tYoZm0ipk0WNzc2FL/8kB5I/vaQQhSBZHEOOIwX2ljcyMCWMNa1sYgaNsksr6p2F2yuRb3a3lz1lDfzz273kJZh5dEpu0DUbZtRw85gMLhuaIoUva5SE6oPPuUanhw83HOHJb3bjFyHMoOajm4bTOyYEl9cvE0fNOFxtx+kJLiM4Eaptbq54a72sNPrn0r08PTOf5feMlrOl2rNLRIdouWNcL15ZWYTPL5ITZ+a2s3vJ13liuIG/XpCL2+c/ZUVHcwOcSim0m8lytM7Bc98WUljeyPn5cUzMi2XqSz+iUylpdHn59yUFnJMd3eXcCGzzeQAAIABJREFUq1CDhgcnZfHPbwvx+kXSI408OCkbkzb4O9U63Lyx+mDAtu1H61EI0vy49eS8rN6JKIqnJSTWpFPx4KQsnvhmtxzg/vTMvigVAmqlAo/PR3K4gatHpJIRZUQhSPbZGLOSGLOObSV1zHz1Z7kBrn+yhTevHBRw7VtdHp5fsY/Wj7myBif7K630jjFRkGQ5LdcbSBPZ0noHCzaVkGDRMzGvc9lvIIXbXzcyjVdWFsnbpvdP6FB12h2YMyRZVjyB9JvMGZpCZYMraN/pBQldfv1Gp4fC8kbeXH2QiKb7THyoDotBQ3mDk6n//pHGpmfnmqJqFt1+FhcPSgoIZr5saDJGXdeujxCdmgsKErC5vYzqFcHq/dI9N9yo4YrhqR3bhNWtxgvROXDhXBD9oGt5dm84VCMTRwBhRi2r97eMFe48J5P7FmyTiZnV+6u4ed4meTGpM4g0aVhw83Ce+XYP+ytsTO0Xz8WDE0+pMbYZfr/Igk0lAQtDGw7Vsv5gzWltfmwL5+XE8O3OMlYWSjkJU/rG0b+NBbq2sOlwLVe/s16+3sdnR/PMrH6oFAJun59QvbrTdrOKBifbjzYwPjtaHu+oFAKPTsk5I8ojenDmI8Kk5c9TcrinKdbDoFGecSrXHvw26CGPfqdIjTQy//phUh6HUggIzjQ0tS0lhXewLPQbwenxsflwLfct2Maxegfj+kTz9+l5pEUaOVhl4/nZBRyotPLs0kJC9Wr+fH4O+Ymh6NRKBiRb2NxK6dC3aXtHqLW5Wb67nAWbSsiIMnHHuF5t7icInPZV0e5GZaOLXaUN2F1eEsP0fN8kw2+uJRZFUQq+RkSnVjK1bxw7j9Xz2eajGDRK7p+YRWw7qq1wo4YoU6Dl7MKCBPZXWLn6nQ3ytiem53H1iBTe/VmyaBg1SuYMSWrmjtCplcRZ9MSdQlVyZ21jncWg1HCemJ7Hmz8exKCRWlp6x4RQa/cwf10x4UZNU038yb9v60lvtdXFg59uk5sLRRGeWryb8/PjqGoMDq2vsQZPdJrbk1rjuz0VzBqYyBNf72bRtmMIwCWDk7l3Qp+T/uzNtoXWWLCphJkDErlsWArz1h2Wv8fnW47yymUDuPm/m9lV2kCUScsLlxR0u/3T5vLyfWEFD326nUaXl9x4M89d3I8b523i5e/388CkrKD7wInaKgEpn6aJOAIpWP+hz7bz5pWDUCkE4kN1HKtvWSU361Un1Zqz9kB1gEUN4POtx5iYG0eooeNjZTFouGl0OpcOTcbjk4iw41fStWrlKU/Aqqwu/vltId/sKCUl3Mjzswsw61WIIDd5Vja6mD13jRxqv/OYVIH+6S0jOFbnICPKhNPjo8rqJq6LXpBQvZrLh6YwvSAel9ePXqNs+7r3uhD83jaDuY1aFQpBkG0wggBXDk/tNHEkNZi6ZcKx+RqusrrYX2GlpMbO8IwIIkxadGqJJJ09OIlJebGUN7pIaGpxE4E7x2WycMtRnrgwj2e/LeSXkjqGpobz5My+xFv01DvcPLl4j0wcgaSEOVoXTBy3/WHhnKxorh2Zftqqk/eUNXDRa2vk6+PNHw92Wnmn16i4YVQ6wzMiWLqznJGZkQxODet0pozL66Pe7kGl7FrWWKxZx5K7R/PW6gMgwPUj04kJ0WLWqfj79Dz+vUIKf73znEwyY7oeDLXrWAOzX18r/33R1mMs/cNo4kL1bCupl4mjZjz5zR5euKSAsX2iWFlYyTnZ0QxMCW+TFD0RzHqJZH5+Tn+qrW7sbh8JFl3X7Ufa4O99vLXpSI2drNgQOR4h2qwNUuxuP1qPy+vH5/NTbZeeY2EGTbvkhiAIJIYbeHJGX5xNysXuavbziSK7SxuCtu8tb/zVyaMIk5b/u7gAh9uHIHR+wl1ldfHE17sDiOLluyuosbl44pvdHK6yM2NAApcOTenUNbG5uI6/frmTp2b2ZfbgJEpqHQxKDSfB0mNX60Hn0Xzf6UEPWqOHPPodo6sqGavLg93tQ0Agwqj5TSxadQ4P17y7QV4ZXLGngqx1h3n/+qF8+csxau1u/tXUlHQEB5e+uY6V945Fq1Lw/CX9eWrxHjYeqmFgShiPTsnp8CHq9fn5ZFOJHNq47mAN3xdWsPDWEeTGmwPUR3efk0n474hRr2x0Muu1NRyulkLTo0O0vH7FQC5/ax0f3Tgcs07FLyV13PvJNkpq7ZyXE8vfpufy6NQc/nheHwQ6rpCNNGpZcMtwnvh6N0WVNqb0jWPOkCQmvbA6YL8nF+9hyd2jyE+wkBxhIDpEiyiKp6Wa1u72UmN1s/FwLelRRhLDDCdFkoQZNFwyOInzcmNRCC0h0beO7cXlw5IRRWmgq+omX7fPL3KwKtA24Rel5qSrR6Sy5aOt8vYQrYrcNqq1c+KDFV4zBiTwU1GV3BYjAvPXFzMhN4YxJyktbuuekhCmR6NSYDGoWXr3GL7bU45SITC2TzRRJi3zrhuCy+tHpRBk21d3osHp4a4Pt8oEzM5jDbyysojLhiazcMtRbm2lxOkK6h0ejhcuFlVa8fj8RJq0/HtOf655ZwONLi96tZIXZvcn7ARkT1tIizIGbesdbUKn6dxxMum6XivfGdQ73NhdPvyiyL4KK19vK6XR5aV3jImDVTb+/d0+au1urhqeykWDknB6fDJxBNL51+j0MPmF1fhFSa331Ix8imvsXDE8pcvtnCadCp1aQXmDi7krD1DrcHPdyDRSI4wSEdhYBj/9m3CllvvPvYK7F7SE756XE4NRo+Lz287iheV78fpF7jwns8O8sdZwenxsPVLHg59u41idkyl943h4cjaCALfP38zaA5LlV60U+PSWEfRNlJQEcoB7WOBCzSVDkpiYH8u172zgQNO1v2pfFbe9v5m3rh6MKIpy81dr2FyBxK1Jq+auczL5fk+FfK7GmLWM6RNFiC7upEiIzqDe4eG5pXsDro/D1Xb2VTSekDzy+qWA+TCjhlGZUYzK7FpNfbXNxVurD/Lp5hLiQvX8dVouWbEhaDoRwq9VK0mLNPKXC3IBZHJCq1ZyyeAkJuTGANIzoDPEhWSTdTXlDArMXx9oR2x0eVlTVM2MAYmEGYN/C5NOiUGrZGJeHBPzuofEiDBqO93e2VmMz47hH9/slsnMd346xDMz+3L1OxuotrnxeEVC9WrqW4X0R4VoEQRYuPUYzy2VFIO3jMlgxoCEDsmSzhD7XYVaqeDiQYksanoWNmPSCY653eWl3umhuNpOQphE/nbHvTbcqIHg236HEMW2Fd/lDS7WFFXj9Pj559K9ANw0JuOECqT8BDM2t487PthCjFlLpElLo9PLLWMzuvbBjoPD7UOjFLr9Od+DHvTg94Me8ugMQ53d3UTwgEHbtt3iZFBldfHUN3tY9MsxYkK1PDWjLwOSLeg7KSP3+vzUtlpdChh42arB1SAFMerDwdT+YLG0ziETR81YsKmEq0dIE5Tb5gda03x+kdX7Kvl0UwmHqu1cPiyZu8dnEmvWYj7Bsamxu5m39lDg+9c7qbN7+M81Q1i2u5w9pQ3MGJBIWqTxjM07agsr9lTIxBFI+R6Ld5SRFRtCtc2FXxS54q318rFesrMMs17FX6bmEtOJjCiFQgr8fO7ifri8fsw6NeUNTmrtgQ1PVpcXUZQIhke/2MGhKjsT82J5eHJ2t1okRVFk8+Farny7RdI9a2ACfzo/56RktEplcCW8pqla+OnFeyhsWrG8YljKKUu8jVoV5+bE8unmluY5i0GNRa9mTJ8oXrikgHlrDsvtUhFtEGKxZh33jM/kpe/34/GJDE0LZ3J+LI9/uTto3x/3V3WaPKpocLLpcC0+v8jgtHCiQ7RML4jn863SINysU/Gn87PllafYUB2XDk0JeI3TLYEvb3AGKXe2Hqnjgn7x5Mab0atPbhAbYdRg1qtkJRXAuTkxmHQqFAqBvomhrPjjGKxNLUJSxljXSaq0CCOT8mJZvKMMgMQwPTePzZCtJm6vH7VSOC3WqvZQbXXx92928/mWo4ii9L1fvmwAN7y3kcuGpnDx3DV4/SJje0cxKCWMr7cdIypEy/wbhnLfJ9s4Wudg1sBEbvjPRvl69PlF/vHNbp6fXcCbqw9y73l9ukwiV9vcTHrhB7m1cOGWo3x+21n0s3jgvzOhfAdKYNzYcJbcMoNl+23kJ1rITwglwqQlMkTL85cUgEiXJoF1djdXvrVezmb7bMtR4iw6JufHycQRgMcnfccThVRbDBoanV6ZOGrGliN1uLw+Ys06rh+Vxl0fthDHkSYNGdHBM85e0SaW3jOa99cVE2vWMb1/Qqfu4acEse1snuOvw9aotrpYsaeCn/ZXMTk/lsGpEV0m9z0+qdih2e5W3uDiotfWsOq+s4kN7fy11xYxpFIquqTScXp8bCmu5d5PWlTS903ow/eFFQH3DG3TOZ4aYaR/skXOgdOrJXXv6SL4ALBVSW1pKi3oO2eNagtRIVq+uG0kzy7dg93l45axGaREGFhy9yisLh8hOiXzbxjKh+uLWbKzHJvLywuzC7C7fNz7yS/y6/z1q11kRpsY1btrhGF3ID8hlKdn5vPqSqkw5v4JWcR3oLLx+vysOVDNjfM24fOLCIKkpJ7SNx6HxycpINXKXy3qwWJQc9WIVHmxEyAlwoDb68fpaRkzf7r5KLMHJ5/wc8Vb9Nx1TiavrNxPeYOL9CgTlw5JPumWteaSgs82l5AXH8rswUmdyhvtQQ968L+HHvLoDEK11cUDn25j+e4KBAFm9E/g4cnZpzw5c3l9vLH6AAuaJq9Hahxc9fZ6Vj9wdqfIozq7m6+3lfLv7yRF0F3nZDI5P04aPNsq4YvbYe8SaefITLjqKwhpO9A4xqwLyqXITwiVrBdKBZlRJrkRrBkRRi1lDS6qbW5eWLGf99cV881dowjWYgRCKQhY9BqOENiIo1FJDV42l5dIk5aSWvsZafHrCGX1zqBt1TY3Zp0ao0bJsTZIulV7K7G6vF2yOYTo1IQ0/VmjUjA8IyLg9xnVKxKVQuDadzfI2T0LtxxFr1bw5yk5Jzy/bC4vthPkrDR/t8cW7QpYCV+w6Sh3j+/d4STO6fFR7/AgilLAckdB8ZWNTmbPXSuH7u4t30etzcODk7LQa5TU2z3Y3VJmUWeyhewuLz5RJESn5sFJfVAopNaV9EgTT83Ml1U60woSGNM7CrVS0e6KrMWg4fpR6cwenIzPL6JvksKfmxPDwi2B4ZzjsjpPHE17+SdKm86lCKOGr+8cyWNTc7l9XCbVNhepEUYijRrJmmBzU9bgJMygIVSvwuX1Y3P5JAuPTnVK2SuiKFJn96BRBR+DWLMOtVIIsPgMSgmjtN7Jw5OzT3qlONyo4cMbh/PQp9s4UGnjvNxY7p+QhaHpnNWolESblZxqPGSEScs/LszngUlZOD0+IoxaokK01Nhc/LC3imW7yjmrVwQTcmM7da/3+0VqbG4E4eSJu61H6li4ueW8WbarnBEZEUzvH8/WI3V4/SJRIVpuG9eLS99cJ1/bmdEmnr2oL5e+sQ6VQgiyONbaPeg0StYdqMbm8qJRdY08WL2vSiaOQHpOvLqyiFcnhyOU75C3m1f+CfOWuWTdtBoMgSHhJzNZP1hlC2h1BCmzpi3VTL3D0yGJ0gyNSoFZpwr4PrFmHUqFRBSO6R3F21cPZt6awySF67l5TAZRbfyeBo2KXtEhPDY1t8vf62QRalBz1/hM1rzecq+PD9WRFRvS5v51djcPfbadpbvKAfhi6zFuGp3O3eN7txl63h7qHR6+2BqoHnF5/eyraCT2NLXmtYc6h4er3wlUSVsMai4fmswrK6UGovRII32b8mwiTVrevHIQ+yusVDS6GJQaRqTpNKmZ/T6oKoSFN0P5Dsg4B6a+AOb4k3o5nVpJTryZf1/SH59fDHimmnU+Suud/HftYXx+kf9eN6TpGaDmhSYbYGt8uvkow3tFdJtyt7MINWiYNTCJcVnRCIKkgu2IkK+xuXnw0+3ytSyKEvk1NC2CKS/+iMPjIzXCwHvXDiU54vSPD9VKBRcNTCTWrOXTzUfJig3hyuEpXPn2+oD94i06NCrpe9Xa3agUQptjEYtBw42j05kzJBlf0/jnZO3sbm+giv/bneV8ta2U928Y+qsGkvegBz04M9BDHp1BWL67XA62E0XpITylX/wpp9s3Or0s31URsM3rF9lfYe1UNsXeciuPfN4ycH944Q56x4RIDRLlO1uII4CqfbD+DRj7ECiDTy+zTsUT0/N4/MtduLx+UiMM/GVqrtw2dMvYDFbsqeBonYP4UB0XDkhAIQgBLTpVVnenBu8RTc1zc15fKwdrT8iNwaBRcuErP8uTZoCHJmVx3ci0bvPgn25MK0jgxe/2BxyHqX3jWL67ApNWjUKhCCLpcuLMJ2XvaUaMWce/Zhfw2soiNhyqYWhaODeNyaDa6goIfQZYtquiaeLQ/i2mstHJU4sLWbarjLRII0/N7EtmtKnN38DvF2XlW2u0XpE7HvUOD19sOcpTS/bg8PgYnx3DkzPy2x3sNDi9QdXbC7eUcNvZGdjdXh5btJOvt5eiEAQuHSIp4HyiiMvjR6tWEGGQyCC318eRGgfPr9hLg8PLTaPTyUsM5fELcrnvvD6olYqgOvXOqKfakvsPS4/gquEpzF9fjEIQuH5UGmmRRhZuOYrV6eWc7GiiQjRtBhgv3lEWcA1U29zMX1fMH87rQ5hRQy9asjH2lTcy87WfaXBI+VpzrxjIDf/ZyLF6JyqFwMPnZ3PRwMSTCm2utbv5fk8F768rJi5Ux73n9SEpTC/L4s16Na9dPpD7FmyjxuZmUEoYj5yfjU4dnP8DUrh4jd2NRqnArFe3O2BWKRXkxJl5++rBct18d9spmhFm1AT85laXl+eX7ZPr3L/eXsqqwkqentW3w3Ohzu7muz0V8ur6AxOzGJAcdsK69+NxPEEPUoZJuEEjW70u6BfPvDWHA67tfRVW7C4f7183hMQwA/kJoXKrJ0htgYVljYzKjDypY9mWisygVoJCHZyG7feCP/iecCJYnZJ9uzVhHd9GJluMWUdahJFIk4Yqa8v7XD0itd0ctnqHhyqri20ldQxMDuO5i/tx+/wtuLx+DBolL1xSIFuOLAYN47KiGZIWjkapQKOSWv68fhGzTh1wr/b6/FRZ3aw9UE2ITkXfxNDTXrWdF2/mmztH8v66YhLD9MwYkNjue9rdPpk4asa7Px/i2pFp+EQ/dpdPDofvCDqVgtRIA/uOy9fpaoZWd6CsPngBZvW+Kj66aRgmrZQDMiAlLKBIIMKk/XXCiG1V8J8LpMU7gH1LYdEdMPNN0J9842Jb9++KRhcTnv9BPhYLtxxlaVPLbX4bFuuCJMuvThw1Q6kQOn1diCIBmY4gjSdqbG65QfZQtZ2HF27jxTn9cXj8/Ly/ithQHVlxZpSCgMfn79bnRphRwwUFCYzLikarUmJ1e+mfHEZRpaRgNGlVMom8bFc5c1cVYdSqeGBiH9KjTCeV/dcZ1DncvLk6sLK9sLyRBoenhzzqQQ/+P0QPeXSGwOvz83MbA/ojNTYqGp0cqrITolMRY9a2qdDw+0X8otjmxFtaVQqhqDJwQJYU1rnVlC+Oqx1t3jYoNRwqgm0zlG8Hn6tN8sikUzO9fwLjsmJwNwWjtpbfxln0fHrLcFxeP+UNLrYfrcOkU/LAxD78a9k+JubFMiIjAn0nSZC8BDMr7xvLhkM1pIRLzXMVDc6ASTPAvLWHmTEggagQHdVWKYh6b1kjY7OiiQnRnpbMkVNBjFnL57eO4Lmle/H4/dw0OoN4i557zu1NmFGDyunh8am5/O3rXXh8Iolheh6flnfKwXexZh0PTcrC6vJi0qrQqpV4myTfred1vWJMHVpW7G4vz3xbKFu5fimpZ/bra1jeNCg9HqF6NZcOSeKl71vae5LDDYTqOyKnXDy6aKf892W7ysmLN3Pr2b3alG63dU7FmHUoFAIr9lTw1bZSQArnnLf2MOdkR/PS9/vZeKiWqBAtb101iNz4UKqsbs5/cbVMbK3aW8nHNw1jSFqErGrpLoQbNdw3MYtbz5aC4BUCzHp1DYdrJEvjk4uVLL5rFCkRwXaYalvwxLva6sbvFwMsnPV2N48u2ilbNS4dksxTi/fIYdJev8jfvtrFhNzYLpNHfr/Isl3l3L9gm7zth32VLLtnjGzNMWhUjO4dxeK7RuH3i2jVinZVauUNTua8vla2C43LiubZWX07nND9Fs0zNpc3qM79213lPOb2dVh/veNoPX/4uMUmctU761l+zxhMuq6F/56bE8ObPwY2lk3MjaVPbAhqpYJzs2PQa5Q0ODxB/9fq8jI+R2qqev3Kgfzj691sLq5jYEoY15yVyvx1h3lgUvZJ5Z4NSQsnwaKXSVytSsHt43ohaH0w+CZY/5q0oyDApKdBH9ml169odPK3L3exYk8FGVEmnpklEdZhBg33ntebfy3fR5hBzd8nJDA+04xSaeWL287ipe/3U1xj59IhKZzVK6JNi7PL42PR1qP8+YuWe87rlw9g1X1jsbp8mHWS9VF53P81aVW4PD5+OVLHnz7fQWm9g+kFCdwyNkM+N4/VOzn/hdVyIHNGlJEPbxx+Wi01Jp2anPhQ/j49r10Fh8vrw96UgaJRCbi9LQ8BpULA5xd56LPtrC2qoV9SKI9PywtqCz3+PR+ZnMOW4jqZsLtsaDIRp0vB0wGiQ3QoBALUrnkJZowaFTMGJKBUCGiUyhOG3h+PGpubPWUNrD1QzejMKDKiTEGLCSeE29pCHDWjaAV4A+/priblLYJEDHV23NQan24uCSDRPD6R//x8iMem5jAkLZxRmZFyi2v/ZAtT+v66AdUnC51ayZg+UawqbDmOWbEhHKsPXECqc3g4Vu9kxis/y8ehf5KF+yb24ab3NjE+J7rJpt99ZG7zeDNMpeGRydncMiaDKquL1EgjEUYN6w/WcMN7G+X9fy6q4vs/jiXxNCnoBYQ2FYS/FUnYgx704LdFD3l0hkClVDApL5Yvth5Dq1JwzVmpjMuKId6i4+0fD/L6DwfwizAqM5LnZxfIg0q/X6S80cm8NYepaHRyzVlppIQbA1aiTVoVD07MYltJPYer7SgVAneek9lmwGNbKEiy8P66wIlOv+bq0V7jg1eE+10KmvbTAg0aVZuTaFEUKaq0saaoil2lDXywvqXe9k/nZ/P1nWfx+ZZSPt1cQlmDk8uHpZxw1UOvVpEYpiKxFVHWHPrYLzGUK4enEmPWcbDKilIQqLW5uX/BNlbskZRaf/9mN29cMYhzsqNPeyZJo9OD1SlZndQKgUiTtt1QQoNGRX6ihRcv7Y9fJKjhKkSnZubARM7LjcHpkVbHumuicXy7k7mpsvqZJYX4muwuT0zP61BBYXV6WXbcSnWDw0u1zd0meaRVK7l2ZDoxZh1fbD1GVmwIt43r1eGAbVtJcEPZD/uquGpEapufzaRVccOoNLkGXK0UeOLCPCx6Nav3Vgbt/+O+KlmBUNno4qZ5m1h0+0h+2FsZpIh6Y/VB8hJC5fPe5vJQVu/im+2lpEQYGJ4RedK/j0nbYhn7YutRmTgCSRHw2qoDPH5BbtBkfsaABF5duV+2gykEuHJEatDE2OX1c6TVayaHG/h/7J13dFRl4v4/0/skk957QggthN6bWBBEEQEbKooFxd71p7vrfq279l5WLNgV1waKINJ7rwmQEEJ6n95/f9xkyGQmIYFE2d0853iOuUy9c8v7Pu9TFq0v8nuM1ysoftqbGLZGo1WwAYZp5OQlGdheXNe03UV+hdEv18Xl9iJCmJC2Vfftcnv4YH2RX87MyoOVHCw3Mirj7FsdlYqFOvdmNFfNt4Vak92v8huE/b50bzm3tdEi2RayonXcMzmL11cdweP1ct2oFAanhPlUWs/O7I/Z7uJoShirWhz7GrmE4Wlhvr9jQ1Q8fWl/jHYnEkR48PLohTkB9lCX20OVyc6u4/XolDISw1ToFFIMrUjASJ2SJbeOZNWhKhosTqb0iyVSJwepBMbfD7lXQOV+SBoG6kgIoqhrCyabk7//sJ/vm0jgPScamPP2RpbfNZYovVLI3RuUQBgNSJfdh+iIG1x24vtexuMXTMWBol3yvd7q5OmlB/22LfxsJ6vvn0BGVPvkXp3Vyay3Nvgmp++uLUStkHDbhEzAy+urDvs1eR2pMrO9uI7z+gS3h3cl2rrvVTbaeGv1UXYU1zMxO5JvbhnF7Lc2+KyMC8an88OuUr7fJezvXw9Ucrx2yymtLklhan66fQxVJjs6hRS9Svan1EPrmhraWqqk/3pR3w7lvNhdbt84I0Qp890vjTYnL/+az6INguLw5RWHufOcTG4el47Z7sLt8RKilvny0NqETA1SJbhaLIJF9gbRyWt8ncXBZ5uLeXXlYTxeuGFMKteNSu20dUkdhDTQKCSCNUyr4KU5AzHbXXi8XrRKaZeHeXcXQtQynpvZnxeW57OmoJqBSaE8cH42Nyza6ve4G0an8eyyQ34E2o7j9ZjtLpRyCUt2lOL1wv9d0q9blKvNqtX0pmuI1eEKuP863V5WHqpk7oiULn9/ECztD12Qzc0fn8wknZgdha4Diler00Wj1YXL7UUlb3vhpwc96MF/DnrIo7MIQ1PDuWlsGoNSDPx+qIqr3t2EWCzI5J+a0Z8Hvt7NmoJqCqvNPvKo2mTnwpfXUtukIvh6+wm+unkEg5LD/F473qDmq5tHYHG4UTTlinRUJTAhO4ohKQa2FAmTu2GpBkZnRGJ1uFFpY2DOZ7D8UXCYYdgtkDr2tL5/tcnOte9v5qU5A3m8hWIE4OWVBeQlGXht1WEAthTVsfN4PS/Ozu30wNKglnPPuVn0jQvhyZ8OcKzGwuQ+0ZzfNwarw+UjjkCYnD219AC5iaGdbrfrDGrNDl5Yns/iTcenoESSAAAgAElEQVTweIUb8/+bmkOEVt7u79Tev3W1Dcfh8mC0OdEopH7yaJ1SxpVDk5g+IA6Lw41WKSXiFAMEmURMWoTWRxiAMHlur+Y9TCPnymHJTBsQh1ImOaUFL5ikfkR62+ofvUrGrRMymDM0iYoGGykRGlweL5VGOzeMSeOX/RV+A8i8ZIOfVaOswYbD5Q46OA/XypG2IGV2lzRwxbubfJxrnzg9H8wbesYScHOQthajzYknSPpttE7B9wtH8/KvBbi8XhZOyCAxSDtViFrG1P6xvPm7IFvfWVLPmMwIvm6RmaOUiTuVSVJptPHIkj2sOFBJcriGRy/szedbjvv2Z0tbUK3Zwdurj/D+uiJkEjELJ2Ywa0higHXI7vJwsNwY8F75FUZGZXROodLdEI61dF97DsAVw5LazI1qsDhZvLk4aHtYRpCQ5VPBoJEzf2was4ck4gX0SpnfynLzhEWvkvHZ/OG8veYoYRoZCydmBhyjHbnOHK+1MO3Vdb42obwkA49emI1IJAq4fkfplMwanBj4Iupw4b+4AQH/ZHe6qbc6Mdqc6JQy9EppgGXW4nCz8qA/CdxgddJgdRKlVwqtdlIP5v1bKB76V77d30iiTswEg4xIex3K0CCfqQW8Xi8Wp7991+7ydMhifbTSFGCR+nF3GVcPT0GrkFAXRCVYG2TbH4Uak53rP9jqsyxuL66jsNrMlzeP5LtdJ5iUHU1CmIpRT6/0e96hCiO2VvuoNcRiEVF65Z8exqtTyrhkYAITs6Oxu9yo5R1bgKkzO/hsSzGvNalkbxmfzhXDkjCo5ZjtLj5qtRBXWmdl5/F6/vLdPmpMDmYPSWDe6LT2SR5VCEx/Df69AFx2UIfBjLf9ykryy408s+yQ7+9XVh5mYGIoE3tHd2o/XDQgnjd/P+o73vRKKVe2KE0I08iDflaz3UWD1UlJnYUEg6AS1nRnePhpIEqn5LGpOZjsLlRyCTKxmL9O78PdX+ziRL2VEenhDE0J44NWZA0INvdmYu3XA5U8PMXVbbbnlpCKxUFtnN1p7RSLRYzKiGD5XWNZebCS3rE6+sSFnFIx12h18u3OEzz50wFsTg95SQbeuCqv+wP/e9CDHnQresijswhhGjl3Tc7k1/2VJ5U+bnjz96O8fmUeyeFqjtVYKKo2s7ukgaGpYRyrMfsNIr1eeHXlEV65XBdgteqsrLbW7PCFGb96RR4Whxub001+hZFLXl/HjLx4rh+dRljWeRCfJ7y5OgwkpzdAsDk9lNRZ8Xq9ARXaNocnINB01aEqrE43ne0YMWjkzByUwKR//u7L8/hxdxlquYQ7JmUGPN5sd3Pq4f+Z4WB5Ix815Z+AoJgYkmJgem7caeXIdDVqTXYKKk0cqTJR0WDjiuHJfgOAztaJ61RSXp6Ty91f7mRzYR1iETxwQfYpV7LE4sDJZluI0il46IJsnl+ej93lYUxmBNeOSGnXThOqlhOqlqNXyrjpo21sL65DJILLhyTx4byhXPXeJiRiETeNTcft8VLcQpGTHK5GLpWQl2QgI0rL4abcDr1SyoLxGb6mrlqzg+d+PuQn1ttX2kh5g+2MyaMJ2VFo5BLf6r9IJNT6KmWCBcnp9mBQyxGLRajkUrJj9Pxz1gC80CapppBKmD8mDY8XvttZSkGFkScv6Y/N5eHnveUkh6t5dmZ/QjtoiTTZXTz100GWN+WwFVabue2THXx8wzB+2V/B6IwIYlsQUVsKazDZ3bwzdzAuj5dvd5ygsMqMIdn/ONAopMwclMDKFuSvSATj/oTmn1NBJZNw5fBkRqZHsCq/kuFp4WTH6Ns8120uN6/+dpjP5w9n6d5yX9PiwMRQwT58GugIAatXyeifqOfpGf0Qi0XolbJO58JZHC7+8Uu+Xw319uI6bC4P9nYyyzoKt8fLzuP1XNcU2q+Qinnl8oGM7xXld65LJSLSIzXsKjmZ0SQRi/yvOQ4LBxV9ueztk+H86ZEaPr8mglPRjyqZhMm9o/0I5dEZHbNYByNeUyM0KGViVHIpN4xJ4+d9J19XJZP8qce1xeH2y7oCIST7gfOzefCC3oCgTArXKPxyZTRyyWm3Pf0ZUMklnQr8BjhQ3uhH2jz38yFyE0MZlRGB14sfkS+XiLl8WBKXvbnBl8v46m9HCFHLuXxIYtv3VJkaek2B23cJi3YKLaj9j9DWyl4QstXG94rqVLNslE7B0jvGsOJABS6Pl3N6RyOTiiiuMaNqg1BzuDysOlTJwk934PEKC0MvzM7lgr6xp2Vn7U6o5P5E85CUML69dSQer2CbDVHJmDc6lYWf7vA9JlQtIzlM7bsOp0VqkEr+mLZMmVTMTePS+H53qW/snxOrZ2Di6bftdQQ6pQydUkZmdPDQ/GCoszh4rIWNd3txHS+vKODRqTmnZaHsQdeh1uzAZHPi9gpj1D/Dvt+D/1z0kEdnGaRicUDwJMDWolqyY3SU1dtIj9Iy660NpIRruD0I2aGUic/YYlVtsnPbJ9t9NcXXjUzh3D4xXPHuRt+k97XfjpCXZGBS72jQnmknUVM7jUpKQaWJ4WlhfhXJlw1OYG2Tr74ZSpkY8Wl+z2pjYMjzygOV3Dkpi/RIrV8+1DUjU6izOBBBt6mPthTWBmzbXdJAblIoce2FoPwBqDLaeG9tIcv2lpMUpubWiRm8uDyfe8/rdVo3nIoGG4s2FFFYbebW8Rn88zItUokIbSfUcB1BiFrO3BEpXDIwHqfbIwxiOzBudXk8fLq52KeK8nrhk83FzMiLZ/2DE/E03WxL6qy+YyU9UsubV+URoRUaXj6bP5x9pQ002lwMTQ0josUKndfrDVAZgDDgPlNEaBUsvXMsb/1+hEabkxvHppMcpuZgeSNP/niAWouDuSNSmNy0+lxjdlDTlKUgl4jbJAbCtQrumZzFDWNSkUvEhKrlPD2jH49Py0GEqFOWO4vdxe+tbIBWpxuRCP5960gSDGrfceVyezBo5CikYm7+eBsKqZgFEzL8iIiWGJEeziMX9ub9tYWoFVIentKbqG4OFj5dGNRyDMly8pJPHXArEgn2l7u+2MUT0/vi9niRSUSkR2q7NbC0xmTnmWUH+Wb7CTQKKQ9PyeaCvrGdyk5zujwBwbQAxbUW0iI6r5oK9hnv+Gyn73pud3m498tdLL97nB/BHaZR8NzMAcx+ewN1FicSsYjHp+b4tbM1eJX8Y3WF3+LFkSozRxu8RJyCPQpRy3lyRj/6xOn5Pb+aEelhXDcytUN5NmEaOfNGpfCvdUUARGoVPDo1B51ShtPtIdGg4pe7xvLGqiN4vV5un5TZfU1eHYBUIvJlGjUjRCWDFrfjMI2cf1zWn/kfbsPh9iARi3hyRr8Ok8xnE1rnwLWHn/aUBWz7cXcZozIiUMulTOkbw497ygFhweFIldlHHDXjh12lDEsNIydW3zZZK1cL/7WBoalhAblmI9KD53W1B7FYRLReyRXDkrE63CzdW8bDS/Zgc3pIClPz8fWBbWR1FgcPLdnjO488Xnh0yV5GpIX7FGXVRjsOtweZROy7b54NEAcJ3R6aGsZLc3L5elsJMSFKbhiTxg+7hEbBQxVGHjw/+w+1Y8XolSy7cwwHShtRK6SkRmjOyuDqI62C7wG2FtVRa7ITG6Lq9LH43wSrw43J7kQlk/zhmao1Jjt3fbGL1U3jsL7xet6/dmi3Zuj14L8LPeTRWQapRMyYzAi+2+VfV5ubZKDR5mTx/GG8t7YQp9tLQaWJGL2SBIOKkjoh5E8mEXHHpMwzks96vV5+3F3mR95UGu0s319Oa/fLT3vKmNDJlay2YFDLePXyPB5ZsofnZ+fy+6Eq9pY2cF5ODJP7RHO4Qmjx8XiFZrqYEOUp21uCocZkRyoJbCPLitGhUUj4dP4wPt50jP2ljUzqHY1KJuH8F1eTHqnlk/nDu+UCOyYrkhd+9a+9HZYW/qfnB9hdbt5bW+SzLBXVWNh9ooG3rh7kayTpDKqMdi55fZ0vbHnZ3nJenJ3L+F6RbDxay6FyI+f2iSY2RNklRJLD7WbJjhM+9dHwtDBevnxgu4SCzelh+7G6gO17TjT4qTwyo3V8ftNwnG4PMrHYj1iM0CkY10ZLYphGzq0TMliw+GR+QIJBRWIXhF3KJGKSwoQGQw9eFFIJ5Q1WLn5tnS+H6f6vdvPj7aP519pCn/VMp5DyzYKRZEbrcLo8vkB0WYtVYoVMQlTTamG9xeGbrKvlnVtJlkvF9IrR+TV+iUUQG6IMkN5LJWJK6qy81zQJsjjc/N+PB1iyYGTQ1zao5Vw3MoWLc+M6VNfc3XC4PNRZHLjcXpQy8Wmv7oWr5Tw7sz83fLCVuf/aTIhKyiMX5nSIeDpduD1evt15gi+2CqH2zTXqI9IjBItHBxUkIWo5Vw9PZnMLglwtl9ArWoetHcK0zuzA5nIjEYkwaGRBGwNBCLAvb/QvQGi0uYKSsemRGn6+cyyNNhdahZDdZna4MDtc6JUyvCIJLnfg8zoqkIrQKlgwIYO5I1PQyKUdVlmEquXcMSmTeaNTMdldhKnlRGgV1JodfLzxGD/sLiUtQstDU7KJ1ilQtlBK2JxuJGLRH6ro0Smk3DwuzWfNAnh8Wh8/K6lUImZoahir759ARaONKJ2QGaX4D1IcVBnt/LC7lH2ljcwZkkhmtK5dazXAsNRwPt5Y3GqbcN8IUcv42/S+jM2KZHV+NRf2iw1aA58SoWH5/gpiQ1SnPd4YlGxgWv84vt8tjCXP6R11xs29tRYH932120caFtcKbWSvXZHnl3Pm9nh9BQvNMNpdPpLsaJWJ+R9u40iViaQwNW9elUevGH1AmPzZAIfLw6J1haw/UsPYrEi8gEQkBNQVVJq4ZGA8UX/wpFssFhGlUxLV6+xcGGlGZrQuYJw9JMXA++uKmD827X/WvlZltPHCrwWszq+iX3wIj07N6VRe5Jli27E6H3EEsPdEI9/uPMENo1PPGhK3B2c3esijswTVJjsNVicysYhxWZFc0DeGpXvLEYvg0rwEMqO0ROsU/LCr1Nf6BPDYv/fy1c0j+D2/miqjjYsGxJ1xVoDL42Vrkb8SpqjGzHl9Ar3yI9Mjumz1QC6VMCw1jK9uGYnV4Wbe6BRkYjFapZQ6i4Oleyv4ZPMxxCIR80anMH1AXKcl5SC0XxVUmLhnci9e/DUfl8dLtN4/5HnhhExWF1Tx2m9HfAqUgkoT6w5XcfHAhC75vi2RFqHhvvOyeHXlEVweD5fmJZCbEPqnryY1WJ1816ptr94iBHvLTqNp43itxUccNePt1UdRSMXc0kSm/OOXQ7x99SAm50Sf8Y2syujgqRYhthuP1vLemkLuObdXmxM7jVzCBf1i/IKCAb/cHLfHi8PlOa3fRyQSMSojnC9uGsHHG4+RHqlhztCkLiUlW5I+24/V+wV4q+USrA63X2aR0e7ixRX5PD61D4vWF7H+SA0j0sKYNzot4HPVmOw8+PUelh8QFJLT+sfxl4tyOkyMhKrlPHVJP654ZyOlDTbkEjGPT8tBFyQPw+YMrAAHIax8YFJw4kQqEXd7jXlbMNlc1FkcHChrJD1Si9Xp5sp3N9JgddEnTs87cwcHrYU/FSQSMcPSwlj7wARK6qzEhigJUcm6vL2vJcx2F78eECyAMomIVy7Po7TeyqNL9tA3PoRrR6Z0+F4zNNXAk5f045vtJYRr5cwbncpLvxbwt+l9gj6+otHGwk93sLmwFoNaxjOX9md0RgTqIIsiCqnYL3AdhOtpMFuERCImSq8kRO3GbHPx6ooCPtpYjFgMN49L55oRKSycmMncf232PSc2RElWjL5D3xMEArd1HldHEKKW+03AbU43b/1+hLdWC8R9foWJbcV1/Hj7aJRyKY02J4fKjby/rpAYvaCGiGlqh+wq1JjsWJ1upGIxOuXJbCutUsb8MWlcNCCOg2VGcpNCCdPIAwisZktQZ/LQgqHaZOf3Q1XsKqnn4tx40qO0pyRxjDYnJrsLj0e45nW20azaaOfq9zb5ctS+2lbCC7MGMD03vt19PDI9nMm9o9lyrJZ5o1KZ0CuSCK0Ct8eLRCyETM8eksQlAxOQS8XUmR1cNjiBL5tI2rgQJdeMSGHB4m1cPSK5zfc5FcK1Cp64uA8PTcnG6/WiUUg7nQ/p9nipNTtwuNyIRCIqG60BGV57SxsDlLRKmZjLBiUwOSeaaL2SSqONn/dWoJSJqTYJ5RLN6u7iWgvzFm3lu4WjzkqVqNHm5Pd8ocRlV0kDb1yVx62fbPcdFysPVnLPuVncNDb9rLPknS5cbg8NVicKmdhPmdlZhKplPH/ZAB7/XmhrHZcVySV5CVz93iaSwzVndHz/p6LR6uThJXt8tv2SOiv5FUY+v2nEHzbe31faGLBt9/F6XE2K5h704FToIY/OAlQZbVz57ibyK4Sb6YX9YvnLtBweOD+bBquTzYU1LN1bxlXDk6lstcI6JiuSEJWM2UPaD/MEoaWhsWlyY1DLCVHJgmZeyCRipg2I87XSgHCxGZgkZPD8e6ewknVuTjTje3U+d8FsdyGXiP0muM1QyCREB/lMmwtr+WBDUdNfXt5YdZQxmZGdJspcHg9rC6pJidBwXp9opvaPFVaoRZDSss5cBD/sLvObkAA+hVdXI1Qt5/rRacwYmIDH60UiFqOSiwlRda81ocpo863Q210edEopEVqFj7SRS8TEhaoCCJ/4UJVfo19HoZAF/uZKmYSyVq//zLKD5CUbzvhmeqAs8Ca5qbBWOAalwfetSCRick4MB8uNfLKpGLVcwkNTevtWycrqrRhtLkobrIhF0Dc+tNMNNiEqOUNTwxiYFIpEJOpW+XZ0iP8+1CoEMrY1xmVGct9Xu32Wsp3H69lX1sjLcwb6TTpWHaryEUcA3+8uZeqA2E41PyWHq/n2tlFY7G6UMjF6pSwoMSCXiBmcbGDZ3nK/7blJ3ZvvcDpwuptyPj7b4VtpXTgxg5mDEnlvbSH7Sht5/Lt9PD9rwGmp6lQyKaoQKTHdGIzq935yCYOTDWw4UsOleQlsL67j7SYiY3VBNb8eqOCT+cM7dI6GaRSEa+Sc0zuaRpuTuz7bSbwh+DXEbHfx9E8HfUqlOouTWxZvZ+0DE4IeI2EaBa9eMZCHl+xh01GhEv7ZS/sHtRjXmR1sKaplR3EdmdE63muyieGGF38tYERaOHnJoWy8dzheuwm3x4vGEINBe+aTWotDINyD3feCodHq5Jvt/sR9ldFOjclBlE7JruP1XP3eSZLr252lLLtjTJcFTVc22rjxo23sPF6PXCLmrsmZXDE0yUdwNefD9eoEsXY6qDXbueXjbb7Cjg83HOPZmf25dGB8m22ktWYHL/+az4cbhQKKMRnhvDBnYKfuJzVme0AA/ysrDzMmK7Ld1wnXKnh2Zn/sLjd//X4/L/6aT4xeyTMz+zM42eDL12kmGgwaOfee24urhydjtAmNa49+u5dzcqLbDNDvKITfqHPPsTrcNNqceL1CWcRNH22jrMFGYpiKN68axKCkULYVn2wyHZMZEdDIZlDLuWFMKgsWb+dIlZnUCA2vX5mHQS2nvMFGQSs7U3mjrUvyz7oDaoWUvKRQ9pc1IhZBuEYRcFwsWlfEnCGJfosWFoerzYr7sxm1ZgefbznOv3eeIDVSw0Pn9ybBcHoWM51Sxvl9Y0iP0mJzethdUs+NH27F4nDj8pydv3d3w+p0+xZlmnGkyozF7ob2Szm7DOf1ieGlFf5Ohxl5Cf9ReXQ9+HPRQx79yXB7PHyy+biPOAIh1HD2kATGZkVRbbIzPTSeEJVQ3/r3S/oxqXc0aw/XcEG/GIakhAW0ygSDw+Vm3eEaFizejsPtQSEV887cwYxMDw/qqR+SEsad52Ty7ppCZBIR95zbC51Syt8u6ssD52fj9Qp1rZ1Zyaq3ONhRXM/Hm46RZFBz4zhhpfRU6hKPxxtUfbDyQCUj0zvXoiQVi7l2VArf7ypj8gurASGr4dP5w/1ujjKJmKuHJ7Nkx8nBu0Qs4sL+cZ16v85AKZMQqROsCramDBi13N2mXeNMUdZg5VC5kXWHa3h37VG8XmHV8/ObRvgsVKFqOX+7uC8z31jvsyldPTyZcK38tKyRMXolA5NC2dE0+BSL4L7zsnjyJ/+Ka7vLE2CRPB30DdK4NjYrIuhnN9md2J0eQlQywjSCjWT+mDRAsFSq5FKOVplY+OkO9pU20jtWx18u6sPSvaXMHJSITCzG4nSjkorbnNS0xh9xs04J1zAqI5x1hwWbmN3loU9cCFqF1C87aECigfu/3uP33NX51Vgcbt8ExOPxsuFoDa2x+Whtp8gjkUiQ3XOK7E2xWMTFufH8vK/cN3mcnhtHTlz3TlhPB3VmB499t8/vuH3r96M+qzHA9mN1WB3usyIEH4QFhbIGGx9tPIZeKWPO0ESidEqfDWruiGTWH6lhUu9o7v9ql99z8ytMGG2uDk3IZU3KqVC1jCU7TnDHOVlM6h0VNCfEbHexsdD/GHN7vJTWWdtsFIoLVfHSnIHYnW7kUnHQ+5LD5eGLrcd5aulBLh+ayOr86oDH/HaokmFxUrQbnoBdn4I2GqY+D4kjQHF6+UwNVie7S+r5YH0RcaEqbhqXTmwHFEJSiYjoEEVAXpROKaXB6uT1VUf8tteaHew+0cA5HSSPqox2CqtNeL2QFqn1UxjanG5eX3WEnceF67TD7eGZZYc4t08MIWo5bo+XGrMdp9uLQiLu1ibSRqvLd+4346VfC5jQK7JNheHRKhOLNpwsoFhzuIYl208wb3Rqh61RwcYl7f1m9RYHhdVmlu+vYEq/GL7YUsLSJtK7tMHGvEVbWHP/hKDjtWi9EhGwbF8R24/VcdngBKbnxnersjAYGq1O1hZUYbS7GJRsYP6HW6loFI6/47VWbl28nbfnDmbeoi2cqLcyJiOCRy/MCchsaSadipoCpQurzdz40Va+unkkUomY1AgNhdVm3+MjtQoUZ6lqRyWTsHBSJntONLCrpCFoMLZaIaE58Mtsd1FYbebV3w4jFYu4fWImSeHqU5YTdCe8Xi/VJjsOtxe5ROS3QNgSdpebf609yqtNdtSD5Ua2Fgpqx9MlpVVyKRq5lBmvr/bZFrUKKef37fh44b8JYpGIGL3Sb8FULhH/ocd/vEHFS3Nyee7nQzhcHm4al3ZWLsj14OxFD3n0J8Ph8rKvVWsJwIEyI2OzogIG5uFaBTMHJ3JJXjySTtiG6ixO7vlyl6+xzO7ycPcXO/np9uArlQaNnFvGCRWzIKwkNU90Q9Sdn/h4vV5WHarizs93+rb9sKeMHxee+qYkFosYmxkZsAo7MiOCGrMdmVjcqQDXULWcd9Yc9f3dYHXy1+/38dbVg/wmHRnRWt6/dgiv/nYYuVTMfef2IlQlw+v1dosv2Ov1crDcyHXvb6HKZCdULeOtqwaRl2zoUpKh3uJge3EdX2w9zq3jM/32RWmDjSd+2M/TM/oR1nTsZUZp+O3e8RyrMROhVRCmkXda/t6McK2Cd+YOZkdxPUU1Zib3jkYtlwTUN984Ng3DaRxnAe+nEYKd/+/HA5gcLs7NiWZuq8Y1r9dLSZ2Vp5ce5EiViWkDYrlsUCLPL8/ny20lKKVi7j43iwv7xXLjR9t8LWoHyozc/9VuHp7Sm1qzg+X7Klh5sJIR6eFcOijhT7ccNiNcq+DlOQMpa7DhcntIidBgc3r46Y4x7Cmp5/11RUzMjkKnlKKWS/yC5FUyid9kSywWMaVfLF9tK/F7j3ODWFq7ChE6BW9dPRiz3YVELEIjl/jZe84WeBHOrZZo3RA5NDXsrFqJPl5nZcpLa3yD+g82FPHznWN9KrtInZJ35g7C4nA32Yedfs/vjMQ9VC1nWFo4w9LC232cWi5hULLBz54tFkHsKex+ISoZBLkPeL1easwO7E43hdUmxCJhMjs5J5pvW1lyh6eFw56vYNv7wob6Y/DJLKHV6jTJo41Ha7jpo22+v3/YXcbyu8bi9Qotes02t9aWlzCNgr9f3I/Zb23w2YLmDk9Gp5QhERGg9gBQd3CCWmm0MevNDRyrtXDD6DSmySU0WJ2EqGSEa+RYHC62Bcl9y68wkhSmZndJAwsWb6Oi0U56pJZ3rxlMaheEn3cU3lOsLLRWDANsLKzhymFJQdVrwRCukZObGMLO4yfHZ/ecm0V4EJWpw+Xhm+0n+NsP+wGhKa+17dnp9lJUY2lTORilV3LXpCwsTjdahfRPyf8x2V0oZBJe/e0IaRFaH3HUjKIaC2a7i0cu7E2YWk6CQRU0t8bu8viIo2Ycr7Vid7pJDFPzxpV5zFu0hdIGG5E6BW9fPSjofu0srE43RptwjQpVBZ5Tp4tovZJ/XTsEq1PIYGuOlWjGw1N6+z7/iTorF7261hcW/vO+cn69exzJ4Z0/P+otDkrqrKw/Uk1ekoG0SG2nVc4ej5dDFUZu/Ggrx2utJIapePvqwfSK1gWQoQ0WJ19ta6V2NNmpNtnPSNEY3xT4//66IlQyCdeMTCHyLBkf/dEI0wj5hfMWbcHp9iISCcfPqZqGuxIhKhlT+8cxMj0CL16/+V0PetAR9JBHfzJUcgkz8uIDlDWTstsPNuwMcQSCpaLB6j/wrzY5Alo+WqJlQO6Zotbs8CMpoHnl09yhm9KYzAguzo3j37tKEQGzhyQiEsHQ/1vB+KxInpzRr8Phe60neCBMJlpP9PRKGROyo8hNCsXelL3y8ooCpg2IY0J2VKdv4qdClcnOgsXbfSvN9U12jZ9uH91hq0qj1YnNKdRVB5tge71efs+v4o7PdhKlU1BYHdiGkV9hpMpkx+YSVDgahZRovaTLwg0jtAom5/iTDYvnD+PLrcfZV9rIrMGJ5CaGdroSPBj0Khkz8hKYmB2FxytMuFoTjdUmO5e+sZ5Ko7DfD5Ybqbc4iQ1R0j8+hD0nGnjihwNM6h3tI//T03YAACAASURBVI6acazGQphGTkmtlce+EyppV+VXsf5INS+1snt1FDUmO7tLGthzooHJOdHEhapOme9xKoRrFXiB4hoLS/eW8+SPBzDaXYzOCOfVKwQ7h8vj4cHzs33fA+D+83uhV/nfJgYmhrJwYgbvrilELIIFEzLI6kB9b7XJzrEaM1aHh6wYLZFtrH4GQ5hG3uXnW1dDJZNwXt8Ylu45OanoFx9CWYNgdc1LCuWxaTlnjerI7nTzxqojfveAeouTVYcqmT0kybctTKMgVOXl0Qtz/EiQiwbEnbGtJhi0ShmPXNibohoze080olVI+b9L+hKi6vx7mewuthbV8uRPB7A43MwZkshzlw3gni92sWB8Buf1iebnfRWIRUKjZ/9YNfy2yP9FPG4o3w2hp7aGt0ad2eGz+jVDIRXTYHWyYLGQm6JXSnlu5gDGZEUEKE16x+j4/b7x5FeYiAtVEa6R+64F95zbi9X5VTjdwu+XGaXtcI32sr3lFNVYWDA+HYVMwiWvr8ft8RKpU/D5jcNJMKgZ1yuSPa0WtvrE6qkzO7j+gy3UNxGJR6pMLPx0Ox9cN7Rb6p51Sil5yaFsP3bSKrVwUma7uVIt8+macW5OTKeI23CtgnevGcKa/CoOlhu5aEAcSeHqoNesequDF1fk+/4uqrHQO1ZPca0/gXKqUFyZVEzIn6jAcbg93PKxoE5vsDmJ0Sv9wuhTIzSUN9h4cukBHp/ap00SXyIS+RW5gJAdJhGLEIlEZEXr+PdtowWloExMuFreYbVuW6hrGmO+v64ImUTEXZOzuGRg/GkvdLVGy2P77xf3Ze6IZPaXGRmXFUm0XoFYLMLj8bJofaFfW6PT7WXJjhPceU5Wm69ttrsw2lxYnW40CgkRGgVOt4evtpXw9x8P+B43b1QKd03OCriH1JjtWB1CNplWKUUmFtFgdSISgVQsYv6HW32/xfFaK/M/3MqSBSMDlHtSiYhovSKggOBM28CUMglpkVr+elEfhKxx4RzyNO2o/6XWNYlYxOBkA2vun0BxrcU3vusoqd2Vn6OnXa0Hp4se8uhPgsvjQYRAAg1LDefhKb15d83Rk/kqZxgw2RpKmYTsGJ2fV7t/QgjKIBk03QGJWBR0otFRWXa4VsHfpvflgQuycXu8fL+rlJs/2obb42XFwUoe//c+nrusf4cmZjF6JXqllEbbScvOlH6xbT7X7fEyb9FW9jfl56zKr+K2CeksnJjZZc0xdRYHDRZnwGCz1uygymhHLpEQdopq5tJ6K49+u4fNhXXkJobw1Iz+AQ1eLUm8apOdxDA1CqkYu8tDr2gdE7Ij6RsfwoYj1by04jDje0Xx0JTsLgmyrDLa+XlfOftLG7lscALpkVofkROlUzJ/dBpe6PI2HrlU3C5BWWN2+IijZny7o5RF84agUUh5fFoO//glH4vdRWyIv9w4UqcgRCXj+V8O+T3/91Z2r9awN7VItSbI6swOPtl0jPVHatlUWMPzy/N5YfYALuofd0aD62qTnesXbeGxaX146JuT1rS1h2t48/ejPHhBNkqZlIsHxjM6M4J9pY3kxOmJ0CpQyfzPUYNGzoIJGVw9PBmaKuRP9ZtVGe1c86/NvnMoUqfgu9tGtWlD+k+EXiXjiel9SQ3XsOpQFXlJodw2KROJSMT6ByeilEnOKgJMJIJgwiFxG3adUenh/HbPONYeriY7Vk96pKbLJmY4beC2g1KwmcaGqPjguqHYnG6kEjGhasG23VlUNtq4btEWn5XwH7/k89SMfgxMDGXB4u08fWk/Hpuag1gsQiOXopc4IaafQBa1RFi6739rzQ4OV5rYUVzH2KxI4kKVbWbTSSSB972rhifzxA/7fffiRpuL2z7dzpr7JwbcDxUyCTEhqqCLB2kRGlbeM57l+yuI1isZmhrW4clAcY0FsQgm50Qz4431vv1TZbTzyJK9vHFVHteOTKGwyszSvWWEqGT85aI+hGnkVJsdPuKoGXtPNLa7EHUmCNcqePvqwaw4UMGu4w1ckhdPZpS23cWF+FAVf5mWwz9/ycfmcjNrcOJpFTBEaBVcknfqggwR4HSd/P5fbDnOW1cPoqDCyNFqMzKJiAfOzz7jRYDuRmHVyUW0t34/wnOX9efBr/dwot5KcriaN68aRKROzje3jCJcI29z0q9XSfnnZQO4/bMdVDTaidIpeH7WABRSCSabE61S5jtWa0x2TjTYkIpFaBTS095HG4/W+KycVif89fv95CUZuu4a1QLhWgUjtApGtIpNEIkgNTIwuKa9677R5uTfO07w1x/243QL5S2fzh+OXinjheX5fo/9YMMx5o9N8xurVjbamP/hVsFSJxZx64QMhqaGsWDxdnRKKQ9dkM20/nG88ftJm2tJnTVoG2WYRhhnz2qhdpwzJBF9F6limo8Xt9tDeaOdDzcUYbK7uG5UCnGhqj/cpvln4WSRwH/P+KcH/1v43zhTzyJYHS5O1AvV0yqZhOtGpRITouS6USlcPDAOEaJ2b8qniwitgnevGcwjS/awo7iewSkG/n5xv6CZE92BULWch6ZkM/ONDb5B5sCkUCJ1csobrKhkp7ai6FUy9CoZhytNPLOs9WS9qsNZImEaOV/cNIJHvt3LsRozU/rFsnBiRtB2HhBWhfa3Cl7+cMMx5o5M6bQyq+UKkV4l9d0sNx2txexw0TtWx4GykwRfXIiSCqOd8kYbk3Pa9ojXmhwsWLzdl1Gx9nAN8xZt4dP5w/3yKFqSeB4vvLe2kFevGEhpvVCl/PX2EurMDmYPTSI7Rs+SHSewOd08O7NjxFxbqDb5kwefbC7m5Tm5TO0fh9HuIr/CyEcbjpEWqeHyoUl/aIWrJsiAJUqvYGdxPX//8QBahZQP5w1FJhXzxlV5XPf+FuosTkLVMl65fCAGlZQ1Bf75KVKxKOgkvMHqJL/cyKL1RcQbVFw3KsWX+2Vzuqm3OrA6PYzrFcl95/Xivq9289yyQ4zOiAw6MfR4vB26VhTXWqi3On0NNy2x/kg1JrsLpUziO8fSggyAW0Ilk7R5vgTD1qJav3Ooymhn0boi7juvV5cozM4WRGgV3HlOFtePTkWtkHZqH3UH6i0OHG4PYpEowEYpl0q4eXwG3+0q800YwzVyxmYFliBUGW00Wl0oZEKZQpdNyDweaCyBNf+EumMweB6kjgGVoUtULKsOVQVkp604UMEdkzLxiqB/fEir95HBhIfh+EaoOSLMBkfeLmQfIUz01hRU8fHGY2wpquOppQd58pK+zByUGNQio1fKeOD8Xmw4UuPbx/3jQwLUSE63l1qzvVOtZEqZhMQwNfNGp3b4OfUWB26Pl7kjkvlsSzF1FmfA/imoNOJweYjSK3lqRj8em5aDCDBoZMgkgq01RCXzUzL3idMj7Ub1QERTQ9nsIR17fKhazhXDkpnSLxYAjUJ6Whl9HYVOKeP60Sm+rJgqk53PtxTzyfxhOFxe5FL/trqWaLQ6qTU7KKg00itGT5hadsZKj9NFyybILUV1vPhrAc/PGkC8QYVCKiFCK+8QAedweYgPVbHouqE4XB7kUjEOl4dznv+d8/vGcP/52YRp5FQabVy/aCt7TjQgEsHlQ5K497xenSbZnW4PP+4pC9i+4mAFAxK7P8ulwepgS1EdWwprmdQ7mmcu7ceD3+xBLBIxfUAc09rJyjTZXTz23T6fWqmiUSBwX5g9IKDFzu3x+p2vdpebt1YfZVeJoBB0eby8tKKAj68fBggk0a2f7ODLm0ewePMxGq0u4kKUROuVbVr6spvUjgfLjcSFqojUKrqcgKsy2bngpdW+BdzPthxn6e1jyIrpmHKyBz3owZ+LHvLoD8aJeisXvbqO8/rEkBap5b01R4UAzVBVt9eUJhjUvHz5QGxODypZoH2nu9ErWsdv945n1aEqEgwqEgwqZr+1keI6C5Oyo3h6RvCGnNbQKqTIJCKfXB+gV4yuzUmo0+3x8/NKJWKyY/W8O3cwTrcHfRutcyAMtsUiEV/fMpJ1h6t57bfD2F0etAopIjo3WK5otHHzR9vYcbwehVTM/ef3YuagRCRi+GxLMSV1Vl6YncuDX+9mX2kjGVFanpjel2eXHaRvvL5d8sjudvuIo2YUVJqwufyzhELVch66oDeXvrEel8fLD7vLyIrWkZsYyjXvbyY1XMOeEw0s3VvOh/OGMuON9SzfX4HVeWYhvzUmRwAB99KKAsZlRbLhaC03f3zSDvPVthKWLBjlR5Z4PF48Xm+3EA06pZSrhiXx8aZiQLCV3D05ixd/FdooTHYXn205zsMXZJMaruHnO8dicbpRy4T6Z7fHy12Ts/zk5TeMSUWrDDymth+r47pFW3x/f7O9xJc7VlRjZtora33HdYJBxfOzcv32DQjWw4pGO59tKaa8wcbckSkkGdTttt/ZnR4qGm2kBcklGZoS1q0TKxCue61xvM6Cy+PlNAQlZzXkUnG32Hc6i7J6K3d/uYsNR2rIjtHx4uxcMlopNhIMKpbfPZYvth5Hr5QxPTc+IIuirMEqXKebVJGzByfy4AXZna4+DwpzFbwzAcxN5OvR32D66zDgcuikNTsYMqMDSdBeMTpGZ0a0fS0JSYDrloHDBFIFyLV45HrK660YbU5UMglzhiYxb3QqCz/ZwTPLDnFOTnSb9++0SC0r7x3HqkNVxIYo6RWjY0iKwa9xR9HNx4zV6eJQuZGnfjqIye7ihjGp/PvW0VgcbjRyCeYWOWcTs6N8CwzNZHJLGDQy3rtmMLcs3k6V0U5ahIZ/zhqAtAt+r67EqRSnXQmlTML1o9PonxDKD7vLGJoaxgV9Y075m1odbr7aXsLfvt9PRpSW2yZkkBOnR+9wE67543NIZBIRc4Yk8tmW4wCU1FlQySRoFdIOEwj1FgePfLuHn/dVcFH/OG4Ym8qTPx1g7eFqvF6BKBicYmB6bjwfbjjms0Z6vcKi0mWDEzpNHknFIoamhvnlpAEMSjJ06nU6g0aroBT/ensJiQYVfeND+W5XKW+tPsrDU7JZcstIDBo5v+yv4C/f72PmoAT6xYcE7Mdas4PWor2D5YKS72/T+/Dwkr2+7eOyIvwWJCx2d9BsssNVJmJDlD6Cd09JPTPzEpicE0OdxYFeKcVsdyMROwL2dXtqx67CioOVfsp/t8fLm6uP8PSMfsj/2wYEPejBfyF6yKM/EC63h8Ubi3n/uiEs31/B97tK6RcfgrVVWHB3IkQl589SSqrkUhLDpFw9IpmSOgujn/nN92+/Hqjkgw1FLJyYecqQQ71SylMz+vPIkj3YXR4idQqem9k/4CbYXMv8w+4yBqcYmNIv1m/1/VSTnxqTnYe+2cMv+4VMjEvzEvjnZQO47dMdQmBkJwY4VqebV1YUsKOJ4LG7PEKOTnY08aEqn9XltZUFPH1pfyx2F6UNNv7+4372lTby8JTe1FkceL3eoGoxiUhEpNa/mUevkgYdfGZFa/nt3vH8dqiSxDA1fWL1vLPmKF/fPJLDVSZCVDIkYhH5lUayY/Q+5cKp0GB1Ulpv5ff8KvonhJAdo/N91uBPF2F2uHntt8N+W0vqrBTXmonUKfB4vJQ32vhwwzFqzXauHZlKUri6S7NWQtVy7jmvF9eMTOFEvZWkMDXPL8/3y/tosDpRyMRIJYETEpkEZg5KYGR6BBsLa8hLCiU5TINW4T/pqrc4/KTjIOSOHShrRKuU8tKvBX6EaEmdlaPVJh44Xwhqb0aVyc5Fr671We0+33qcL28aweCUsDa/Y3qUhlCVnFX5VTx0QTYvrSjA4nAzJMXA7ZMyfQPSaqOdo9VmGq1O+iWEEKFVdElw6+ScaJ5eetDP2nLNiJR2G2gcLjcuj/d/Rsrelai3OHzEEQg5Xle/t5kf7xjtR3IoZRKSwzXcd1520NexOt28vKLAz077+dbjzB2Z3DXkUU3BSeKoGZvehKxzQROogOoscmL1jM+K9IUXp0ZomDsi5dQktDYKEHIHHS43u4vruPPznZTUWRmcbOCRC3uzpqCa2UMShfD4dhxbSpmEBIOaq4Yn+7Y9Mb0vtebtbC+uJ0Ir5/lZud1qaao2OvxUv3d9vov3rx1CXlIoi28YzoPf7Kaw2sz5fWO477zsdvM3ZBIJGdFaXr8yD4/HS5XJzt2f72J8r0gWtriWBEOz8ilM0zEFy38SDBo55/aJYUJ2VIdJn0ark2eWHiQxTMUzl/bn4W/2cKjCSLhGzsuXD2RwsqHLbdztocHiJCVCw5IFIzHb3Xjx8uGGYzwytXebz3G4PMgkImpMDqxON2KRYH31eqHB5uTH3WUBytxfD1RyTu9ojtda+OesASSFqREBS/eWs6+0kYGdJH1EIqHI4Zd95axtahW9ODcuaNtqV8Dr9bKpsJb5H271besdq+OJi/tywwdbeWXFYX65eyw3fLCVfaXCotm/d5by+hV5DEoxcKzGgkEtI1yrIEKrCCiqGJMZyRdbjpMWqeWTG4bx3rpCRqSFc/HAeL/rrk4pZWJ2VMDCYU6rvK2+8aFM7R/HpW+u53itsJCTHK7m9SvzgOBjyu5EsPNDLhH/110TetCD/1b0jMr/SIhgVEY4768rYllTU8Pukgb2lzby7rWDCf+DL+B/Jpqr2ltiTUE180alIpe2PylRK6RM6RfD6IzwpoBBacC+szndvL++iJdXCOqR73aVsmxvOa9ekXdK0sfiEFZEftlf4Qsy93jhy20lnNcnhtX3jcegkZ9yUm22uzDbXUglYsQi2BakAaag0kRKhIYbx6WxbF85y/ZVMG1APBuOVPP5VmH17+U5uXi8XuZ/sBWn28OtEzIYnhbutyIcppHz4pxc5i3agt3lQS4R84+ZA4I2ljWTeHNHpPi+7/TceK54Z6NvNWhgYijPzuzPIor4x2UDTtkc5nR7WLqnjAdb5OlcmhfPY1P7EKKWEaaR0zdez94TJ9VHd03ORCkVBx1INK9iV5nsXPjyGl/L05fbSvh2wagul6Ib1HJCVTJUcgmNVhcrWqgCAG4amxa0YrkZoWqhga69CnmJWBR0YqWSS/B6A5u5ABRSCZOyo5C1IFT3lDT4ZTR5vfDyigJeuzKvTXVYlE7Jt7eO4qONRajkEpbeMQaJWIRaLvENHKuNdq5dtNn3G+lVUn5cOCYgN6slqox2gViTitEqpG0SClF6BV/fMpJnfz6I1eHh5vFp9I4Nvq/cHi9l9Vbe+P0IlUY780al0Ccu5A9XSv4nw+Hy+IijZlSZ7FjsbuiEM8DmcHOoRU5eMwqrzSSHqTlcZebLrcfJjtFxft/YzgdwKlp9mNAkPP1mIZa2fcx1BuFaBc/PzqXB6sTh8hCukXe6Vr7O4uTa97dgsgvXxq3H6nhheT5jsyI5NycalUzS6aYcwfKa15TpJPKpX0124XOGqE59f+kMVh2qDMgk+njTMYamhpGbFMrHNwzD4/Wilkk6ZJky21xc9uYGv21Hq01cOzIl6DXO4nBxoMzI00uF4PL5Y9IY3yuyW/Jo/mx0Ri3k8nixuzxcNzKVZ5cd5FCFcK7VmB3M/3Arq+4d32WlJR1BYpiae7/axTPLDiITi3F6PHx8/bCg4eS1Zgebjtaw4WgNVw5LZsHibRypMqNXSnlsWg4qmYStx+q4bFBg0PzYzAh0Cil3Tsrkjs93srukAZlExI1j0xmXeXqkcYRWwcuX52FxuBCLhHtbVx5fVUYbRptg7xaLCMgjOlBmRCYW+fKBzHaXjzgCIYIgSq/g3BdW+xRBF/aL5a/T+/DJ/OHc++UuiqrNTOodxTUjU7hu0WYsdjdrHpjAK3MGomjVfAqCiv7KYUkUVpv4bpeQTfbY1N7sOl7nI6OmD4gjI0rD19tO+IgjEMo+fjtYxazB8V22jzqKcVmRfoudCqmYm8al9zR+9aAH/yHoIY/+QEjFYnrH6vlln78NZcfxeqwON2iElV6FRPxf3z4QbOI4LLXj9hm1XNquIqHR5uS9Vu1u64/UYHG42iSPHC43xbUWXvi1gEFJhqB1v7tP1HNOzqlryauMdp79+SA/7ysnPULLU5f248ohSTzaoslKJBL85SAExH5322hO1FtRyyQMSzVw26RMxIDR5mLyC7/7pM03frSNr272V5pIJWIGJRtYff8E6pvyePQqaYckwCJEvLe20E9GvON4PZVGOx/OGxbQthUMdRYHzyw76Lft6+0nuOfcXoSoZURoFSy6digrDlZyoKyRGXnxpIRr0KuETJA572z0eflzYvXEGwR53ObCWr96cK8XXllZwEtzBna51arKZGfG6+vpExfCh9cP5eONxzDbXdw0Lj2o/aWz0Cll3HdeL9YdrvZN5LKitaRFaNEopNw2IYOVByt9+yFMI2dkengAaRLMHiIRi09poowJUXL35CzcHm/Q42J/WaMfuddodfHqb4f520V9gq5+VzTauPztjRytNgMwpW8MT1zcN6hVQyWTMiAxlDeuHITb421XtVJtsnPhK2t9A+zl+yv44LohjOsV2EBptDmpaLSx9nA1feJCSI/UdOkqqtcrKCsqG+1olUKYa3stT2cLxGIRWdFa8itOZlypZJJOtU2BYFua2j+O7S3IfolYRG5iKKsLqliweIdv+yebi/no+mGnJJr93yAekkfDsbUYxz5OYfxFLN5jJml9GTMHJbSZfeZwebA4XOgU0lMGyZ9pU5/J7vIRR83YVFjLTePSidAK4fHtEcvBsKukgSvf3YS76Tpw37lZXNAvlud+PkRJnZXZQxK5sF9s0POkzuxALKbNkO5gCEYAJxnUyJv2Xad+MwiqEGjPtlZtcjDrrQ2+73vn5ztZdN0Qxgc5p/+XoJKLyUsykBWt48mfDvj9m8XhxmR30ZV7qNbsoMHqxOn2YFDLEYvwESIhaikROgWf3TicX/ZVUFhtZubgBBKCNMTZnG7+tfYor/52hEcv7M3j3+3lSJVwH2i0uXhkyV4+nT+cr7efwO5yc82IFD7edAy3x8v5faI5r08MTo+X99cVsbspr8fp9vLab4e5eGDb+UCnQne1cpbWW5n99gYf+fLx9UPxtA4Lo0mAKIJrR6b4GpGlYhHXjkph1uBEnvv5oF9W2I97yrhtYga5iaF8OG8ox2stbCys5YYPttBoFa451UZ7u8US4VoFT0zvx4MX9EYkEhbCGq1OJveJQSYWo1EIJFrrMhYQxjx/htonSqfgh9tHs3RPOSa7k4tz44nS/+8snv8nocpoZ01BFcfrrEzrH0tMiLJHDd6DHvLoj4ZUIkavkvm1lWjkgr1oyY4Slu4pZ2hqGBcPjO/0gK41HC43dRYnlUY74Ro5OqX0rKmJjtTJeeTC3vzj50PYXR5GpIdzw5hUn2XN6fZQZ3Zgd3lQyiSnFSIuWBP8LYHt3SirTQ6mvrIWm9NDeYON6blxAR768VmnHsqZ7S6e/fkgX24tAQQiZvZbG1l25xhWFVSx4mAlISoZf72oD6EtlEGROkXQlfvPthQEeOI/3niMzGit3wRCKZOglEk6HTbtdAt5OK1RbbQzKiOCGpMdt8eJTCJud9JvcwYqZ9wtPniETsHsIYGrkH3jQ1hx9zh+2F1GcriaUekRvmM/mIVRIRWUXM2wu9w0NJ1POqWs0xPkZjRaXVQa7VQeqmTviQYu7B9LcpiatAhNl5036ZEaVt47nl/2lRMbomJYaphPCZEZrePH28ewaF0RkTo5Vw1PDsifAciJ05MYpvINZCViEXdPzuyQYkAiFtPWXLuyxTGQmxjK6MwIwjVynG5PAHnkdHn419pCH3EE8NPecq4dldpuzkdH1EM7j9f7DbAB3lp9lNwkg5+1x+328NvBKm7/7CSBMXNQPI9emNNlK87H66xc+vp63wrpjDzh9c+m1rRgiNAqeGnOQK56dxM1ZgdKmZgXZg/otDVKIhZx8cA4qoxCxpbQxtMHhVTMC8sL/B57oMxItcneufuWJgIuWwSNJ9jREMHc93f5/unTzcVB66QrG228s+YoO4rrmZwTzcxBCd2aF6SVS32NlM3oExeCTiEhPbL91q9gqDbZefzf+/yujcPSwrn49XW+CeOeEw043R7mDk/2kWMNViebjtbwxqojKOUSHjivF1kxug4N5PvGh/jV3UfqFMwfm+anaOwMNAopF+fG8e3OUt+2hRMzCAmidAVYebDC7/sCLN5UzNDUsKCfv8pox+JwoZCK0Sj+xHGLuRpqC6H2CCSNAG0kyLpGFQdCu9WbV+Wxv6yRQckGNhXW+v5NLZd06QJJtcnOXZ/v9FnI0iM1PD8rl1lvbUAkgudmDmBS7ygidUqubGGxDIZGm5N/rStqeh0tz7dS4dibrGxXDkskWqdk4cRIbhmfjtfrRd3UqFZtsgdXY1eYyIwSFtWMNic2p5tQlfy0j9UzhcXu4h8/H/JT7by+6ggLJ2Zw6ycn7z2ZUUJ77AuzcslLMuDFy8j0cGYOSmDPiQY2Hq3hRF3gOKuy0UbvWD16pZQPNxzzC/5WdDC3S6uU+mUehmsVAdfEy4cl8dHGY76/RSKY2i8WabDKzW6GSCQiWq/k2lEpvm0NVgfVJiGaQS1vW8Xcgz8O1UY7V7yzkYJKYRHqpV/z+ermkeQld1+WWA/+M9BDHv3BMKjlPD4th7s+PzlIfvWKgby9+ijvrS0EBLvUyoOVHbJYtYf9ZUaueGcjFocbkQgem5rDZYMTuzQv5nQRopJz1bBkLhoQh9vjRdUUPgzgdLvZdqyeWz7eRp3FSXyoivevG0JWdMf9FqEqOXdPzuTx7/b7tk3tH4umFbFgsgmTVK1SxpqCKh8Bsu1Y3f9n77zDoyrzt/+Z3kt6rwRIQg29N0FBsIANFSwoiL23dVddd3Wbuz/b2tvaUAEbYAFBQKR3CL2FhPSe6e28f5zkJMMMIQlB2Xe5r8vrModpyZw58zz39y7MHZ3JjMFpfL65EKVCxh1jupARffqFWJRV0AAAIABJREFUo93tY2l+WdCxOqeXeqeXf13dF4dHzAWIaGMgZmqYqXG8RcviHcVc1jfpjJtZzDoVNw5LZ20Lm4tWJWdgRiQHShu4e9429pc1MCAtghem9yU5IvT1mLQqbhyWxuurmtVeA9Ij0LeByDFolGTGGLnngq4h/9Yv1UpyhI6iGnHhplLIuPeCbtKkv8rmZuHWIl5afgivP8BNw9K5bXSXDn1uDGoFMpmobqqwuXl/7TFyEkzcOCy93Y91KujUSlIjldw6MjPk34waJbkJZp6b1hM5slOSpTEm0QK2LL+M0noX0/olEdeOsP2mBi6TVhVkMRmWFY1GKef3k3PRquQs3llCgkVLrdOLXq0Mej1uv5+SutAQ7IPlDQzKOHX2UltgCnN9MmmVIZL9aoeXZ7/dE3RswZYTPDChO9ZO2N/Z3T7+8f2+oByxL7aeYPbIzHOePAJxM/PdfSOxu/3o1QosrRQDtIZIg4Z7Lsji5uHpyOViG2iV3RP2tnKZqEK0u30IAhg0CpQyOS6/H5X8FOSzMYYauYUXv94cdLioxsnhCnsQeVRlc3PLfzZLeWSbC2o4UmnnySm5Zy303axT8tK1eTz4+Q5sbh8pkTr+fmUv4szaDgX4BwQBmQx+d3EOfZIt1Lu8uL1+iThqwicbjnNJ70SJXN5XWs+cD5tVy1e8vo4VD44mLer0v3e0UcNbMwdQUufC7vaRGWM4o+GURafiD1NyubRvIhuPVjM+J46sWCOaUyhdU8J8Z6RHGcJ+/52odXL9W+s5VuVAIZdxzwVduWlYWruUVp0CexUsuhf2LRZ/livhxkWQNqxTnybWrMWiU5ERbeC2D7ewr7SBaKOal6bnBWXdnSl2n6gLyh46XGFnya4SJuTGsXhnCQ/N38Hqh8e2WVWgVspxePzsK61nUHqklCsGIvElIA4rshNNUqyAy+sXFc1rj3FRzziGdYkKsnbJZGLIvSAIFFY7+fOSPRwqtzGxZzy3jGh9MNFZEASBigY3649WgwADMyLwB4IHY2sPV/G7i3P4+s7hfLapkG5xRsZkx7KloJoogwYB8br57+v6sb2wlvd+OcZFPeKZ2DM+qDhEp1KQ3ajCN2pV/OGSXKrsbtYfqSbWpOGfV7ef8D8VUiN0fHzrYF5cfhAZcOfYLNKi9ETof3vFT7Xdw3Pf7mXh1iIEQbQ1/uuavmc8QD+PM8PRKrtEHIEY3/GPpft5fUa/X/96fB7nFH57FuF/DGqlnPE5cax6eAy7T9TRPd6MQaMIaVQ6ncXqdKi0uXl4/g7J9ywI8OySvUzqGX9OkEcgZr2EU4lU273M+XCztJg+Uevkrk+2Mm/2kDYvHtRKOZf1TaJvSgTL9pTRL81Kn2SrpEiwN9bDv7j8IHKZjMcmdg/JTbrrk2387YpeXDs4hVqHl1X7y/H4W0lGbYRSIScz2iCFY4O4qTJrVWHba06H4VnRZMeb2NeYPZJk1TGxRzzXvr2BcdlxZ0weVdncpEfp+edVffhk43Ei9CoemZiNSilj5rsbKKsXN8+bC2q4Z9523r5xQMh5qVMpmDNKzLFZsrOEfmkRXNHvzBUBMSYtX9w+jBX7yqmyu7mkTxKxJg0ur5+SWieFNU6e+7bZLvfG6iP0SbFKFc3tgUGj5J5xXXmxMSdLq5Lz3NRev3pzVltai2LbMB0+GX5/gMOVdjYeraZnkgWlXFQkJjTaEqKNan68fxS/HK7i4QU7pfst3VPG9/eNJNakJRAQqLS52VtSzzUDU7k8L5nHFu6kvMGNTCaeq/6AQLXdgy8QQKNUtPsa1i3ORPc4k5T/oVHKefDC7iHXLQEBm8sXcv+Ts106CpfXz9Eqe8jxE7XOU+Y1/Vrw+gPUOkQCJ0KvDktiKBVyMRy7DZx7vdOLze3D4fZJNlOZTIbd7eN4tYP31x4j2iiq4QQBogxqHpjQjds/3io9Ro9EMxadmscW7uSHRvJ8YFoEf7gkl6teX0vPJCv/vKoPaVH6EAWoDMJWvZ9MGDo8/qAgexAbCx+c0C0seVRtc+P2B6h1eHH7AiRZtSFKptNBp1YypnsMyx8cjdvnR6dStrmyPBwsOhWvXJfHM4v28Jfv9pIcoeMfV/Thoh7x/JBfKt0u1qyR1BZun58P1hYEPY4/IPBDfhlzRoUS0eEQTo1wJogyahiXHce47NPbuPukWMlLtUpZh3FmDbNGpAeTRwE/doeDv313kGNVosXGHxD4v2UHuKxP4hlvVvwBAY8v0HZlqqummTgCCPjg+8dhxkJRMdeJ0DQG139862DcvgBKuYxIQ/jPdUdxoCw0u6ygyi4Ng9y+AHZP6PU0HKw6NQ+M78aT3+Tz/tpjvD6jP/UuL1uP1xJv1vL0pT14deVhvt9dyg1D06W1VWG1g8kvrcHjD2D3+Jmal0RRjZMf8kux6tU8dGE31Ao5lTYPV76+Vsr2e3XlYWxuH49PyumwsritKG9wM+XlNVQ0Pne0Uc2nc4byfX6ZpD5sen8SrTq6xBp5afkBxj2/sjlaYFQm94/vRoRBzZpDImG3bE8p0/olcd/4rizaUUysWctTU3KJNDSv31RyGbNHZvLAhO54fH7iLVo6K8HCqFUxPCuaHolmZIDlHLJf5xfXicUDjVh9sJJvd5Ywc2ja+RDt3xDeMDmcHl8gxAlxHv97ODdYhP8xmLQqTFoVaVFibXZ5gwuNKlgWL5OJDVoNLi92t6gcMmlbz/lpCUEQKKgK9jj7AgLOMNaicw2uMFPYA2W2dm8Km0KMw4UrF9U4mPbaWilfZtWBCn5+ZGzQpjXBoqVvSgTVDg96tYLkSD0r9pVx7aDWN+2RBjV/vaIXV7+xnjqnF7kMHp2U3WqVemuIMWl47+aB5J+ox9OYVfDwgp34/QJVdg9Khbz9QbWNqLZ7eGTBTpbvK2dIZiQTcuMYkGYlM9rAiVqnRBw1YevxmrBfKCBO2i7rm8SFufGolfI2B75W2tzY3T7UCtGicDK5FmvWMn1QatCxgio7f/thX1gV1LeN09T2hi+adSpmDc/giv7JlNW7SI3Ud+rk97dGld3DmkOVlNa5eOob0TbTJcbAB7cMJsmqQ61UYNAqmbfxeND9qu1iI1yUQUNpnZNLXvmF6kblSY9EMy9O78vvv9rN7yfnEqFXs/lYNfd8uo2yejd9U6y8cm0eu07UsetEHZf2TSTJqmvVhhJt0vDRrYPZXlhLRYOb0d1jiA5DQJm1KmYODVa79Ug0h6gLOwqrTsXUvKSgHCi1Qk6P35g4qnV4+GLrCV5deQiZTMZ9F3Rlcu+EDlv1ah0e3lx9hNdWHUYQxOvNgrlDSYsycLC8gamvNl8n520s5Lt7RxJn1jI8K5pFd41g4dYisuNNXNQjns0F1RJxBLCpoIbVByoZkhnNqgMV3PTeRubPHRZyvRI3jt25+s110nN1iTGQ0fgd2QSlQoZcRtDitakd0usPIJeJagd/QOBIhY0qu4d/Lt3PpmOiPSbJqmPh7cOIt7SPQNIoFcSZO+e88voCvPDjQVY3qkAKq53c/P4mFt4+lDqnWJ29q6iO30/OlVQHCrmMlMjQ3JOkMHk07UFT3fg324vJSTAxslvMWZn2Rxs1vH2DqHxyevykRxuCzwF7FexeiNPQhfzi0O/J49UO0qMNIcfbiooGF59vLmRnUR1T85IYnBl1+uwyTyhxjLMGhLPXjns2BxXjsuP4y3f7aBnVc0FOHB81WpksOhVGjRKn10e904fPL6BTy8NmyKmVci7tm0jfVCvL95bj8fl55bp+lDe4qGgQVbu/HKpCLhPVhyCu61756ZBUDPH55kIu7hnPwIwIbhqejtPjp6zOJVraGtxBpRAgtpXdNTaLgCDQ4PLh9PowqJVEGzWdmhH61bYTEnEEYpzBd7tL+OOlPXju273EmDT86bKeRDSSPuL182jQY3yw7hi3jsxAp1Ywsms076w5SkCAOz7eysQe8bw4PY+UCF0QgeNw+/jb9/v4fHMziWJQK1jx0JhOu/YA52RI/ZaCUPvi+qNVTB+U0qbczvM4O8iKNZJg0VJS12y3vGts1n9F7uN5nF2cJ4/OAVh1ah6a0J0nW4QpXzMgBaVCxp+X7GXBliKUchlzR3fhpmHpbfICa1UKLuwRF5TZE2fWSF/k5zJ0agXRRjWVtmZrRK8kC6pO8mYLgsCH6wuCFlH+gMBX20/w8a2D2VtaT73TS15qBHfP2yZ9sU3IjeOBCd3a9BxZMUaW3T+KGocXc6Mf/UxyG0waJdsLa5i/pUgidG4cls6iHcXUOr08fUluu0NbQVRgLd8nNoutP1ItyaUX3zMCrUqBSaOkoUVYbGa0AcVpJkHhJoMur486pw+vP4BOpZAWyaV1Tma+s5GD5TbkMnFiN3d0l9MucBZsKeJwuZ0Lc+ND/m1IZlSbiSOv30+N3YvD429sZ1Fh0evDWgU7gjqnmNsll8l+cwl2pc1NjwQzzyxqtnodrrDzr6UH+NNlPdBrlCjk8rDnqUGtpN7p4fVVhyXiCCC/uB6728+CucOw6lWUN7i5+f1NkuJxe2Etv/tyF8Oyonl15WFeXXmY924ayNjs1rPDYkwaJpwmmF6rUjBnVBe6xBhZvLOEPikWZg5J77QNmEIhZ2peMja3j882FhJr1vLHS3sQaWzfwsnvD1DdqBIyapQd+py2RH5xPc8sbn4Pn/hqNzmJZvqldpQ88vLqysPSzxUNbp5ZtIfnr+rNKysOBV0nq+0eNh2rZkrvRMw6Fb2SLfRKbq7DPrkyGkTFQ3JjAP6xKgcub/jNd26iiWX3j+bLbUWkRhoYlx1LtElDjd2DSiHDqBU3t7NHZvLG6mbC8PUZ/TlcYeeTDQXEW7TcOCwdtULGH77ezVX9UyTiCETV2DtrjnLn2NNfYzoLVTY3RTVOyupd9E62opTLQqrLIw1qLDoVl/ZJ5GilnbvGZpHQguBSyuXcNCyDL7aekDbVOQmmM7KIBgICPx+sCMptyUu18vYNA84KiXFK5ZPPA5vehpXPYcqbxfiuN3C4otkqoZTLOlRY4PT4aXB5CQgCs97fLNmFfsgv47GJ2cwakRE2U0+CKV4MdK8/0Xxs4C2gi2r3azkXEG8WCby/fLcPp8fPLSPSiTao2VlUR5cYAy9ck4daKWfhlhM8u2QvTq+ffqlWXpvRP2yOYtNwrneyOJwLBAR8/gD3f7ado5UOZDJ4+KJmxaggiKqFJlTbPTy8YCcvX5eHUi5Dq1LQLzUCs04VVFvfhESr+Bq+3HaCp7/JxxcQiDFp+HT2ELrEnnmhRcvXdTJq7B5uG9WFcdmxyGUyolooD+Vh1kMt7Zu9k61cPziVTzcVEhAE1Co5CVZtiPLH5vaxYl9wy6vdI9r82ptj+d+Gsd1jeeHH4Ay9i3slnCeOfmM0tfTO23icgioHNwxN69TP2nn89+I8eXQOoMliNSgzkr3F9aRG6ekaa+THveV8tkmsa/cHBF5cfpBR3aLpbzj9gtGkVfHUJT3QqRX8tK+crnEmnpvak+hObCI6W4jSq3nvpkHc+clWjlc7yE0w88p1eZ3WotQU1ncy9CqxbWSkKQZBEHj3l6NBE5Fle8q4ZkBKmywrCoUYdNiWsMO2wKhVMWtEJv3TIll1oIL+aRH4AgIPz99BhEHNgxO6dWhTGk7L1aQssupUvHxdHnd9sg2b20eUQc3L1+ZJGzq7xwcC6DXKVq1JNpeXxbtK+OM3e3B6/fRINPP2jQOw6tW8tPyg5KkOCPD6qiNM65d82o2dRafiYLkNnVrB1LwkooxqxueItdlJ1rb9zf0BgZ1Fdcx6fzN1TpHke+uGAfRPi+gUu0BZvYtHFu5k9YEKMqON/N81fchOMKFWnN0FUaXNzaFyG3a3j15JFmkyG2FQB+VLNGH3iTocXr8UZPrYpGymvbpWmhDnpVipc4oEW3FdaOBnWb1LIrQbXL6Qhf/GY9XMGpEh/fz80v30TrZ0ygY10qDmyv7JTOoVj1ap6FSbR9Pj3z46i2sHpaKUy9ttwWtweVlzsJKnvsmnzull+sBU7h2f1eFrmSAIfLXtRMjxxTuKSY3QYff4MWmV7Xr8cGH5bp8fj19ApZDTL9XKuOw4HB4fX28vlhq6QMw3OlHjZGtBDUO6RDEhN45//3Q46LFGdYvmvcZwXbNWecoNu0GjIitWxcMXZQPiRH/xjmLeW3uMSINopU2P0jN3TBcuz0siv7iO7AQz5fUuZr3fnJe0YEsR39w1AplMRlFtaC7XsSo7P+0vZ1z3uFMGPLcVTflhWqUirB252u7mwc93SHkwOpWCL+4YxrjsGL7c1hw2/ezUntz8/iapHe+tn4/y4axBjOzWXFseb9Gy+J4RHCq3oVUqSI3US3lIHUG1wxMSdLzteC01Du+va9V11sC2DwDQ7J7H7OtuptIRxze7yokza/nrtF5tzn2xu700uHz4BXh95SF+yC/ljZkDgnJmAN5ec4Rp/ZNEW+epYIyDW5bC6n9C1QHocy10vxgUv96yORAQOk1VY9SqGJcdS58UK4IAEQYVNpePjb+7QBxumDScqHHyzKI90rV/6/FaXvjxAE9O6XFKu1ggIFDW4OKjdQVU2Dy8fG0/tCoFOpUiqKRFp1Zw59gsfsgvlZSDZQ2i0ujk9ZhBo+S2Uc0ksUYp59mpvZDLkVSzIBLdjy7cyVs3Dug0NcQ1A1N4Z81RSemukMu4fkgaaqVYdqOQy4KsVAa1giv7JwfZrh66sBvWRptlpEHNY5OyuWtcVuPtQ9XVIO4DusaaqLQ1Z0/KZKJF+P93pEXp+cOUHF5YdhBPY3blsC6daw09j44hzqzlnnFd8QtCu9X85/H/L86TR+cIBAQEQZw+aJUKvH6B5fvKQm7388FK+qe1bdoYY9Lwx0t78PjEbAREm0dnynvPFhQKOT2TzCy8fRi+QACVQt7pqo2r+6fw4boCaYqbZNVxca9mFYsvILD9eOgUfWdRLeNPo4g4W4g0qMlNNPP55kJe+PGAVI2bk2AKW6XeFhjUCvqnRQSRZLeN6kJEY7vJ0Mwolj84GqfHj16jIEqvprzexfbCWhbtKOa73aUMzojkxWvzTvke1Tq9PP7FLknBkF9cz9+/288TU3LYeVJ+CcCRCvtpw9Ev6ZPIG6uPcP9n2/n8tqEs3lHCje9uBERF1tw2hGZX2dzc+fE2qdmr3uXjzk+28u09I8+Y9Kt3eXny692s2i9uGg9X2Jjx9gZ+fGA0sR2QoNc7vZyodbJyfzm9k61kx5vCbvAqGtzMeHuDZL2MNKhZdPcIkqw69GolfVKsKOSyoOaj8bmxWFqojZKsOr68cxhrDlYS1xjm+tD8HTw3tSc3Dk1n+d7m6ahaIWd09+YNrkkT2kzVN8XKkYpmC4jPL+Dy+vH7A6etWW8LZDIZRs3ZsxeqlfLWN5mtoMrmCcoF+s+6Y6RH67lhaHqbbZ0tIasvoV+8kvknHc+KNTL7gy1sK6ylf1oEb8zs3+ZrZlqUAZNWSSAgYG8k/h6dlMO987bxzOU92XOinpJ6F72SLEzNS8KiU+LwiIHY7/9yTMoIA/hszhCem9qTfy07gMcf4NYRmagVcvKL6xsb3/oS0UbCZt3hKu6a16yKWXOwihUPjSbBosPSWHCwan856w5XB92v0uZh14k6/P4Aw7pE8eKPwTa3iT3ieXfNMQZlRHWYPBIEgYJqB48s2MnuE3UMyYzkuam9iD+pUru0zhUUJOz0+vnrd/v4w5QcNhfUUFjtJN6sRatSSMRRE/657AA9ksxBRGCsSdvhczH0dyCkAQ0IW0F+ViFXgCEG6orA6yT608k8M+huHn34dmQKdZubVp1eH9/tLmPXiVq8PoGjVTZmD4pBE4as1KoUyGjD58+SDBP/Aj4naK3ibv5XQL3Ty5EKGx9vOE5mjIEr+iV3yiBKdpICtmUGZHGtk4PlDXw6ZwhL95RKduDNx2qwe3ynJI8qbW4mv7RGUuzM31LIV3cMJyuMQiEj2sD3947ivV+OEmEQM9TCXacsOhW3j+nC9EGplNQ6yYwxEqFXcbTKHnLOHihvwOvrvDiGBIuWxXeP4OUV4nXtznFdsepUrD9Sxftrj5Fs1XHLyAzizVpkMhkWvZrfXZzNtH5JbDtey+huMaRE6INI8qaoitZg1at5dmpPrnlzPRUNbhRyGY9PysbUwbiD/yZY9WpmDknnkj6JIJxZa+55dD7kchnytlwvz+N/Bv//X5XOYTg8PuQyGQLw+eYinvt2r/Rv917QlekDUliyszToPkMy2yeZ9vgC7Cqu58N1x0iy6rltdCYJFu0pQ+iabDwC4pS0veHOnQWZTNbhHJ+2INYsWrN2FNahkMvolWQJej6VQs6lfZNY1ML2BzDhJJtURYObBpcXjUqBUa0840n26aBXKxiYEcmyPSKxmGDR8sylPTvcyBFl1PDGzP4s2VnCloIapuYl0TfVKgW1alQK4hqJKZ8/QEG1gz8v2UthtYOLesbzxsz+zP1oCz/tK+eqASlhn6OwxsnJ+5Etx2vwBwQuyo0PypSRy6Bn0umVXbEmDUvuHkH+iTpK6ly8+XOzjeXN1UcYmhl1WmuULyBQepLqotLmkaauZwKXx8/qA8HWlHqXj3qXj9h2Rub4/AG+zy/lkRYh1pf3TeTpS3uEKLS2FNRIxBGIEvy3Vx/hdxfnYNGpCAQCvHVDf37/5W4qbG4u7ZPIjCFp1Do9UkiyTq3gP78c41CFjRqHl6OVIvGjkMvpk2LljZn9eWPVEUxaJY9OzA5a/Jt1Sv59XT8emL+deqePzGgDj03K5p5526Xb3DgsjT8t3sN947tJTTO/FvwBgRqHBxlnN1+kCeGyHL7bXcq0vOT2XyvslfDZ9UyY8CJfplvZeEwkt0dmRZEcoZcC+rcU1LBsTxnXnpQTdioo5TIWzB0q1iQDO47XoJLLsHv8FFTaSY7Usa2olsU7i+mbYuWOMV1Ysa+MfqmRvLYyWGV003ubWPPoWMlyaFArRTvGg6MxNF4f22JFqHN4+WBdcEC00+tnS0ENU3qLBE1RjROzThVWyaRTKbhrXBaLdxTzwaxBPL/0AHa3j+mDUnD7AiK51IHUz8oGNwFBQABueGcjx6vFXMEV+yq499PtvD6jf5CtvNruDX0Mm5vj1Q6enJKLWadCJZeHDSr2B4SwytDOQqRBzV3juvLQ/Obm15wE01lvEvQ0rjGqbG4i9GqMWgumSX+H9y8Gvxfc9RhqD2JQe0Hf9obVeqeP33+1i+ev7EOs0kG3hu1YDyygMuMpxufE8mML0vvxSdlt/z1VWvG/XxEbjlYx+4PmEpVPNxUy/7ahnaZkbgmv38/qgxXc+fFWAoLIjz1xcQ5XD0jh882FDM+KbrVkZePR6iCrlyDAKz8d4oVr+oaE2Bs0SrrFm/jz1J7IWmkUhWZbXEaLrKsIvTrESj+2e2ynNi3q1EqyE8w8f1VfQECnVrJsTxmzP2hWN369vZgl946QiNxIg4ZhXTTtVssEAoI4MFYpUCvlpEcZWHLPCGwuH3q1AqNG1eGszP82nMmQ5jzO4zx+XfxvXJXOMTS4vBwoa+D1VUcwa5XcP6Eb/3eSfPy1lYdZev8oJvYUG1gUMhkzh6aRZNXx5Ne7SYnUc1mfxFYXE4IgsOZQJXe1yDRYsqv4lMqKBpeXn/ZV8NQ3u6l1erkoN54/T+35m2e1tBVOj7/NQc0ymYxYk5YJuaf++w1Ii+DBC7vx1uojqBsbn1JbhJaW1DmZ/uZ6KZj8+sGpPHRh9zZlUnUUJq2KqwekcHHPBFxePwaN4ozfn2ijhhuHpXPd4NRWZanVdg9TX10rKXUOrjjEHWO6MLlXIhuPVXNl/+SwpGRapD5E7TKsSxRmrYrrBqdSVOvky60niDKq+fPlPcPKz/0BgSq7u3FRpcSkVUq2wN9/tSvk9kv3lJ6WPFIr5HSLMwZN/DOiDWg74LP3BQLY3eL7oZTLUSrk5CSY2NpCvaZSyDrUdFjj8PK37/YFHftqezGPTMwOqaQPZ0EqrnPhCwiogAiDhjHdYll4xzDqHF4W7Shmwr9WY9Gp+HTOEFIi9WhVCu4Ym8Xkl36WlChdY430SbFi0am4qEc8g9IjUSpkIdNUnVrJqG7RLLt/tNhspFIgk4ufjQNlDVzYI56jlXa+zy+juM7F+zcPbJfFqs7ppcElWlOiDOp2haXWOjx8n1/KW6uPolcrePzibPokW89axTsQVkHXJ9nS5qlqfaNdUCaDGLzIi7cSvWAqr094CdukXGQy0BgsTHgluOZ+2/Eapg9MOW1TTZXNzSMLdrCiUSGXHKFj/tyheHwBxnSPwe0L8MqKQ5J6Jr+4noPlNm4cmia2V51EtLp9frx+ISiQWq9R0vonMRQqRfjhQUzjtU4ulzFreAa3/mczT12ay+oDFZLNJCPaQE6CGaNGQfc4M3K5aCMpqnWyNL+MFfvKyUuxSsHqPn8AvyCcsmYexDDbbYW1PPVNPjV2Dx/cMkgijpqw4Wg1NrePb3aIJFtqpJ6ucUbMOmVQAcT1g1PpHmdi8strqHV4kcng23tGkh6ll1rGAO65oGtIA2hnQiGXMSEnlvlzh/L55kJ6JJiZ3DvxrH/fHyi1ce2b62lw+5DL4PeTc7i6Xy+M92yHE1sgIl1U/Ojbl+fk9vpxeQMY1dCr7Gt0K58BIPrEFv525RfsHjKAvSU2xuXEEm/Wdkj592ugssHNyysOBR0rqHJQUO04K+RRjd3L777YJanzBAH+ufQA7908kLJ6J3eO7YLd5WNnUR0Oj4/cBHPQdVcVhrxVK1rXdSna0CgaDpEGFZ/MHsJD83dwpNLG+Nw4npicE3IN9/gC1Do9KGSyDg8Jmq7RNQ5PCEleYXOzv7ThjMiOarub73aXsmRnCX1TrNw0PF1SFsa2nTM9j/M4j/P41XGePPoNcKgGW5jwAAAgAElEQVTcxhWvrZN+nj4oFbcvOCfE4w9QZffQN8XKrY3BjmqFjHH/XIm3sS7+g3XH+OL24adU6NQ4PLzVIlgURGXFwXJb2EVIjcPLvZ9tk1Qi3+eXkhFj4IHx3cIuEM4VVNs9rD5QwZJdJfRvrIjvqGrJ42uuwDZolMwZlcn0gSmAjAi9SspUcXr8vPjjwaBGu483HGfGkLQg8sjWqErqTK+wUaPsEAlxOpzuNRbWOCXiqAlLdpVw97gsEsy6U25ULToV/74uj999uZtqu4cRWVE8MKEbOrUCnVrBk1NyefDCbsiQoVcraHD5KKt3YdQoiTKoUSjkHKmwce1b66m0ieG5f7y0J5f1TcSgUTIiK5qP1gc3hI3qGhP2tbREtEnDmzcM4L5Pt7O9sJZeSRZeasx0ag8qbW7mbTzOL4cqGdk1hmsGphBt1PD3K3tz/dsbKKt3o1HK+cu0Xh2UoAs4w4QMh2sfvCA7lmeX7A3a1M8anh5EVsjlMjy+ABNf/Fk6ZnP7eHbJXp6/qjdGrYqkCB3LHxzDuiOVWHVqep6kzGuNIFWHaaa6pE8CLy6385dv90ob5EPlNnz+tmsrahsX8U05GFEGNQtuH0pGdNsCHLcer+Gxhc1E44y3N7DiwTFnlTxKitBx47B0Plh3DEEQlR23jswMUstU2dzkF9ezr6SesdmxxFu0mLQqqmxunvw6n293l6BWyPl+di4ZCX2gZAeRX11HJIAuAtfsX0I+l1PzktpUcXyw3CYRRyCqed5Zc5RZw9KJM2vIiDYE2a5AVBo8PikbQYBx2TGs2Nf875N7J6BvhRjzBwL4A8Jp1Ud6jZK7xmXx075ySWXQLzWC1KhmtjTBouWdmwaw8Wg1i+4ewU/7yomzaBnVNVo6V5ty4BRyOeUNbinE95oBKUTo1RTXOnl3zVFK6lzMGpFO1zgT5jD2kmqHhxve3SgR4A0uHwa1QiJXQSTedhfX8VRj8cVtozK5e2wXvrlzBP9Yup+SWifTB6UyITcOk0bJ0vtGUWX3YNGpMOmUzJ87lK+2FXO4wsa1g1LJiGlWXNhcXhrcPpEcaRwYdEaFtUWvZmB6JP1TI34VS7tIVu6U3tOAAM9+u4+LeyVitCSLpFEHoVMrSYvSYxUa0G17t/kf3A1EfTyBkXduZnT3rmf6K3QK3F4/tU4vZfUuoo2axlIN8bzzBgIow70X7ZGh+TygbNsQKyDAGzMH4A8ILNpRzLxNx3F6/SRatLw4PQ9/QGDGOxvYWxJqhQbol2olyarjRGO+mEoh454LuqLv4HW12u7hUHkDG45WM7JrNOlRBklhq1Io6JVs4ePZgwkIQmOukirk/u+vPcZnm443Rjf0pEeiGW0Hrf1ymSzsNa2169zp4PT4efWnw7y9RmxpW3u4ilUHKvhg1qBfN2/sPM7jPM6jAzhPHv3KcHr8QU0xAJuOVjOpZzxLdjVb1MZ0j2FHYS1/bVQc/POqPny2uVAijkCs+D1cYQva1FXaRHWGUiFDo5SH3RidarO0t6Q+xF60+kAFt47IOGe/0JxeP2+uPiz585ftKePHvWW8OXNAu+X39U4vi3eW8Nfv9+L0+LmyfzIPX5RNTJjpksvrZ19pQ8jxIxU2chLM1Ng9rDpYwVdbT5CdYOLm4Rn/9Y0Z4bJKEixakiP0dG8lo8igUXJBThzfp0YQEECrkgfZrQwaJQaNErvbx6Idxfzh6914/QKRBjXzZg8mxqTl0YU7pfY9r1/gya93My5blKsPyojkyv7JLNwqBlZOzUticEbb7J3pUQbevWkAPr+AUiFrd5BxrcMjKjcaN9Drj1Szo7CWf1zVm8xoI4vvHoHd7UerUmDWKdF3INTcpFVx8/D0oCDifmnWsM2J0SYNX981nOeX7sfu9jF3dJewAe/FYYKE95c14PT6MWpVqBRy4i1apuZ1fDPXEkq5nB/yS6l1iCSHSiHjgpzYdi3A65zeoGtnld3D04v28NL0vNPaNp0eH59uLAw6FhBg+d4ybhmZ2Y7fpH2IbAyznzsqE29AQK8OVgpW2z08smCn1Hj43Hf7eH1GPybkxPHNjmKW7BJts25fgDkLj/HtjLdRfXoNVB8BYyxc9QF+bSR/u6IXL/x4EH9A4K6xWW0K9QeCWq2acKC0gQVbi8hNsGDWqUJsIlqVXGxNVMv5+5V9WLC5iF8OVzKmewyX903C5w9wqLwBfwCijGrp9y2tc/HxhgKOVtqZMTiNnATzKa17dQ4Pn208zge3DOJAmQ2rXoVcJmN3UR0JjblCGpWCtCiD1IzY2u8caVAzrV8yE3vGo1HIUSjklNe7mPJyc1bLkl0lfDBrEHmp1pAN6eZjNUHKyXkbj/P0pT144svdePwBDGoFT12Sy9s/N1d2v73mKDcPTyc92sDfr+iNxx/AqlNJpE+sWUuMSSOqj4AYk5bZozIRBCGIGKp3efl4fQHPLz2APyCQYNHy6ZwhpEV1vLr+ZPxaWYh+QZBssNKxgBDWttdexJg0fHjLYCpLi8AYLwZxe5qfS97JRQX+gECtw4NGJW9X5pogCOwuruP6tzfg8gaQyeCpKT24akAyBo0Ss1bFbaO7MPejLdJ6rFuckcSINqwf7JWw/1s4/BN0nwRZ43GqLCAIYQs1qmxunlmcz3e7S9GpFMwd3YXHJmazeGcJBo0Sq17NsvxSiTgC8Zr11uojPHFxDiqlHK1SzoLbh/LTvnKqbB4u69u6Ir41NLi8vLT8IO+vPQaICqhHLurOrBEZQeTPqdRxfn+AL7cV8VJjDltZvZvpb65j9cNjSbDqwt7ndLDoVDwysTvrX62SBja5CeYz+vw1uL18vCF44JVfXC8Wk5yja+3zOI/zOI8mnCePfmUo5GA9acH82srDLLpnBHmpEazcX8HwrCgm9Urg2jfXA5ASqaN3ioXPNxeGPF7LJV95g4sb390ofdHPGZnJIxOzuer1tRLp1CfFItUmn4yuYQIO+6dFnNXJ/JnC5vLyn7XB2Ribj9Vgd/vaTR6V1rv43ZfNyoR5GwvJiTczY0hayOLarFUypXdCUDW1Qi6jT4oVjy/AJxuP848f9gOw8kAFy/aU8dmcoWfUjvNbI8Kg5sr+SSzYIrY96RtVQ11jTadVpqka2+daQ4PLx9Pf5DMuO5ZEq47tx2t5aP5O3pzZPyRM1hcQaHB5ibdoiTRoJPUSnLrN5FQ4kxY/p9cfpLwAWLa3DKfHj0WnRiGXo1EJyOXB9b1ef4BahxdNY4NLa9CqFNwyIpPucWYW7yymX1oEV/ZLDmtp0aoU5CSY+cvUXvgFgVhTeHtGRrQBtUIepFC6MDfurGWcRRnUfDp7CB+uP8ZlfUVVTKKlfRuM8np3yLGjFXY8Pj/Q+utWKeRixeye4BKCzJizXztr1qlO+Xetd3ol4qgJf/1uH32Sraw6SfFzsNzG4iI9U2f9AD4XKNSgj8agUHJFv2TGZcchIBCpV7e5dW5EVjRyWXCg9OV5SczbeJyXVxzinRsG8MSUnCDF1j0XdCXaqMGqV6NSyJk9MoMZQ1LRqZXUODzM+XCLlPXUNdbIJ7OHAAJXvLZWUics3lnCv6/L4+JeCWEVNB5fgJJ6F9NeW0tmtAGb20dZvZtP5wwJuW17FDgtydudJ+pCarlfW3WYK/olMSRTzJFqQmZM8Ebx6+3FDO8SzapHxmBz+TBolDyzKJ8NR5vDu/0BQfq7GjRKTt5q1jg8rNhbzkfrC4g1a3h0YjapkfqQ967O4eVv3++Xfi6pc/HHRfm8cE3eb5ZJCCLxsO5IFeuPVDGxRwI9Es2ntWzr1Qom5IrEaBOijepOCwVOjdSjVaayb9Jn4Kol2ltM9He3QWI/0Fo65TlArG7/Zkcxn28uJCVCz6OTxPeuLVa4KpuHh+bvxOUVr72CAM9+u4eJPeOlQUrPRDPzZg9h2Z4yEixaRnRtPXcIAGctLHkI9nwJgEuu47h1JC+t2SGSyuOyyIg2SJ8Bvz/A/C1FfNs4tHR4/Pxr2QEWzB3K5XmJEolREsYKXVLnxBcIUFLt4okvd5FfXMcNQ9O5cVj6GbWe2d0+PlwfvJ57ecUhruif3CblUJ3Ly1ctWgxBHDbtOlHXYfIIxOvYiofG8OOeMpIidPRLjTgje6ffL2DSKoMUxTIZ56yVsiXqnF4anF5qnV5iTRpJHX4e53Ee/zs4d1mB/0+hViq4Y0wWi3eUYGuc5kYZ1RjUSm4ensE1A1PQqxR4AwILbx9Gca2TaruHl5cf5ObhGWw8Vi1No9Ki9NLmx+cP8OG6gqAJ0Zs/H2FqvyRWPDiGVQcqSLRq6Z1sPeWXXpRRw2OTsvnXUrEpp0+yhTvHZnVY7tsWVNrcbDxaza6iOi7ulUBqlL5d4c8C4iT8ZFtPR76ENxypCjm2bG8Z0/olSZJy6fEVcqb1S6K8wc2nm44TbdDwzGU9iNSrqXV4pMlZEw5X2Kl1ev+7ySO9micuzuW2UV0ob3CTFWsk0qAKa3ersXtw+wIo5BBlaFsujcvn5+PZQ1i5v5yD5TauHpiCUaNEIZcxpnsMi1uEl1t0yqDzpLUN+tlCncODPyCEtItplQpkMhnFtU7u/Hgr2wpriTdreXF6X/qmWLF7fHyy4ThfbismJVLHHybnkh6lR6GQU+/04vT6kSGqJZo2kpEGNZf2TWRCblyruV4Ot48dRbU89+0+HB4/s0dlMLFHfEiwtlWv5uNbB/PYF7soqXNySZ9EZo/KbDX35UygUMjJTjAzY0g6099cT53Ti1wGv7s4h+kDU0I+X4GAQKXNzf6yBkxaFckROlKj9OhUiqDP+sW94rHoTr9ZUSrk3DQsnUU7iimqEQmMwRkR9EruvA3lyah3eVHJZWEn/k0IF87u8PgJCAIju0azcn8wgZQZY6RBYcBkDP57KRXyDll1o42iWuPZJXtpcHu5eVg6/dIieHD+Dt6c2Z+fD1Vh1ir54o5hnKhxkptglvLGmqBQyDE2nqfrj1QFhYQfLLfxxdYixmXHSMRRE15bdZghXaLCkqD7yxq4aVgGq/ZXSK2SfZItQeG5TfA3nis/H6xErZQzJDOyTVkk+jDfazqVgoIqB2//fJSPbx0sbaCTI/Rc0S+JhVtF4jwlUsfIbtGiCsoiDjFMJ11/RmRFoTvFd6cgCCzfU8ZDLULwfzlUxfIHR4coVMPlmO0racDl9f9m5FGtw8Mfvt4tEQ8frT/OAxO6MmdUl1bXCwq5nLvGZSGXyVh1oJysWCOPTMwOb9PqACob3Nz03ib2lIglDLkJZv5z8zpi1D7Qt69s5FTwBQIs2FrEs0vEgpP84nrWHali2f2jpM+FIAhUNRKTUQZ1EMEZQAjJy/I2NlA2IcGiQ62UkzQ8HY1CjlopP/11zmOHvV+J/6+1UDrgYSa/sU0aHP6QX8oP942ia6NK2O7xhxDUAAfKbAxIb86bGtc9lj8p9gSp3m8clo7TG+CGdzZINuQXfjzIpmPV/Pu6fiHfN21FuAZAbzsKLLRKBV1iDOw6qcU1JVJ/inu0DTq1ktRIJbNGZJzR4zRBo5Jz3/iu/O7L3dKxK/q1X+Xr9Qfw+YVfrZmszuHhtVXNSn+LTsXC24eSdT6k6TzO438KZ5U8kslkE4EXAQXwtiAIfw1zm6uBpxF5gB2CIFx3Nl/TuYBEi5YfHxjNmkOVmLRK+qVapYV/k1xeoYA4s5ayehePLNxJrcNLUoSORXeN4MttRaRGGpjUK166n8vnZ1dRaO35hqNV3DQsgxlD0k77uiw6FTOHpHF53yQ8fj9ymRh6aHf7zor6qNru4b5Pt7PmkNhK9dqqw/zr6j5c1iexzZOMCL2aRydm89gXzZPxK/snIZfJqGgQc3Na27y1RO9ka8ixgemRaE/xxRxp0PDAhG7cOiIDuUxGlFFcJDo8fkwaJRUNwUqJcK1A7YUgCLh9ATRKeadkXrQXEQY1EQa1tAANh+JaJ/fM28bmghqSI3S8ND2Pnknm0+acaJRynv4mX1r4fb+7lHsuyGJMtxienJKLPyCglMu4dWQmGpWcgCDaB8NtViob3OwurqPK5mFYlyiiTWpUnWhbsLnECWmFzcOcUZlBAacPXNgNtULGfQt2SA1YpfUubn5/Ez8/MpaPNxTwr2WirP5whY2tx3/hx/tHI5PJePwL0cIUZVDz3NReDM+KxuX1U1LnosHlpUuMsdWJZ3mDm+vf3iApHh5buItYk4Zx2XFBt9OqxNa+z24bQkAQMGo6ZqlrD6rtbh5buFPK5wkI8Ny3e5ncOyGEPCqudXLJK2uoabS59Uuz8tbMAcyfO5QnvtxFUY2TS/skMvuk/KDWEGfW8uUdwympc6JRKog2qs+KRaDO6WVrQQ3vrDlKlFHN/eO7kRyhC6sGMmqUIaHt1w1ORatSMKprDBfmVrNsbxlqhZybh6dj1Cq545OtPHxRd7rGGdGpzuw9M2iUDM+K5sNbBhEQBCIMauocXu4dl8XhcjtvNbYYvrryMMkROt67aWCrCsL9Yay8e0rqmdgzPuS4RqlAfoprmAC8vOIgH986mN3F9Vj1KuLMWinkuiXK6l1MevFn6byKN2v55q7hp1U6doszkRVr5FC5+LdXKcQQ7ie+2kVBlUNShoBI3j4yMZu5o7vQ4PJh1avQt/jbG7UqHpuYTa9ECz/uLWNIZhRXD0w5pRKnxuHlo5NsKza3j/zi+hDyKDlSH0JQj8+NCyGrOgKHx4fd48OkUbVrSGR3+yXiqAmvrzrC9EGpQY8jCAJ1TlFhqVMraXB5uendjVzSJ5G/TOvNiVoHjyzYyXs3tS84/1RYuqdUIo5APPeWHajnusFtax5sC2rs3hALbJ3Ty7EqMdC63ull7eFK/q/xGn/f+K4My4qWhh06lYILc+P4bnfz3y/JqkOvCc6lC2eXbxUyGcjkIPghfSQLd9cFET4BQczJ/OOlPZHLZeg1CoZ3iWLd4eChWV5q8Doo2qTh6ztH8Pcf9mF3+7htdBd6JlqobfydW+KXQ1VB52l7oVOLf5ulLRSiop2vbeemXqPkoQu7s+5IFWWNStUr+ycRf45FBijl4gDoszlD2Hq8hqxYIy5voF1rxNI6J++sOcbxajszhqTRO8mC5QxUX21BndMrEUdNP//h63xeu759hGG13Y3HJ6CQy4gyqH812+x5nMd5dA7O2m5BJpMpgH8DE4AiYJNMJvtGEIQ9LW7TFXgcGC4IQo1MJmtvKct/JZSNeSJX9m990qCQy+iZZGHpfaNwePzo1Aoi9Cr+MKVHyG39AYELcmJDwk1HZp0+OLglDBoldU4vN7+3mcMVNlQKGY9MzOaaASmdPuVscHkl4qgJ/1x6gJFdo9u8cFIp5EzqlUDvFCurD1TQO9lCjFHD1W+sFf3uA1O5d3xWmxamqZF6bhmRwXu/HCUgwOCMSK4blIqylWYQrUoRsuiOMqp5YnIOt36wWVKJTewRj+kkAs7p8eENCGEDWsOhyuZm6Z4yVh2oYFx2LBdkx57R5tft9VPn8p5RIwmI1q36xo2bUi7jsS92srlRfVBU4+TGdzfy44OjQ0KUT4ansUK7JT5cV8DMIWnEmrX8/cpe7CyqZ/qb63F6/WiUcl6f0Z/hWVFBxFRlg5uZ7zYHfOpUCpbcM6JTLUo2t0/MmBEEnrg4hw9mDWJvST2jusWQaNHh9vmDLCwgKkpsbp+kXmhCvdPH8WoHy/eWSXXSlTYPcz/awuqHx/LIwp2sbVzgR+hVLLprBMmnmKSu2FfOSYNb5m0sZGhmVFgS9ddsUvT5BY5UBOedBATRrpjQQgDk8vp5+adDEnEEsLWglv2lDQzLiua9mwfiCwiYtKpTKjtOhRiTpsNh+m3FloIaZr2/Sfr5xz1lLH9wTFADGYhTXI1SzqvX92f+5kKOVNoZ2z2WIZmRyIC5H23h6gEpzB6VSSAgsHRPGSW1LjYerWbaq2tZ8eBoUqNO/xXu8PgoqXXx4foCIg0qrh6QSqwpWA3Y8vMfZdRw7aA07v60uaXT6fVzsNzGxmPVIedelc2Nr5HYnZqXFNIUdc3AFMxaFeNzYhmfG0dGtAGby0eiRXdKi0t2vJmiGifTXltLtzgTTo+ff1/fL6xC7YN1x4ICw0vrXSzbU8b1pxmYRJs0zJs9hPVHKjlSYWdk1xjeX3uMgioHEXoVKkXz36fa7uGeedvYdKwahVyG1y/wxox+9EmJwOb2YdIqidCrmDEkjWn9ktCpFK0OQNQKGTGm0N892hh6LEKn4pPZg3l04S4Kqx1M7pXAPeO6tvvcPxll9S7WHqokwarjl0OV9Ew00z89svma4HOBrQIOLQdzIiT2FXO22ogah4dV+yv4ZONxkq067pvQDaNGgUopD8l97IzBChA2h3BfaX2YW3YcaoWMWLMmJC+sKROwoMrO3I+2Ssdv/3gr39w5nN4pIilj0qp45rIeGLVKVu6rICfRxJ8u6yk1CXb8hRlhwK2w8Q3wOonQhm7II/Uq6XOvlMuZPiiVLQU1/LS/Ao1SVIUlnHSd0qoU5CaaeflaMTy7iSRwev0hStAkqw6vP8CqA+V0jTVh0anaNXi06tX8ZVovRnSN5pdDVUzIjWVcdmy7MqWSInQsvnsEFTYPRo0Ss1bZYSXU2YJZp2Js91ie/2E/JfUuth2v5dGJ2US3kUAtb3Bx2b9/kQiyH/LLeOW6PCafwgbcWag6yeYLUFBpb5c6rLjWyV2fbGXr8VqSI3S8fK04XOzM4d55nMd5nF2czVHzIOCQIAhHAGQy2afAZcCeFreZDfxbEIQaAEEQykMe5X8MDS4vSrlckqG2JSsGRKlxjEnLnFGZfLapEJNWyQMTuhHVztwfm9vHX7/bKy2MvH6BZ5fs5aIe8Z1OHp0czi0+X6BdpSJNUCvkdIkxkGjVMvb5VdJj/2fdMdKj9dwwNP20VrYIg5r7xnfl1pEZ+AMCerUyKDepzuHBGxCI0Kla3RjIZDKGZEax/rFxOLx+1Ao5erVCmkL7/AGKapz8348HqLJ5mDUig/5pEa3a9eqcXp5elM+iHaJ16/vdpVzRP5mnL8kNCXdtC6rtbt5cfYQFW4qINWn50+U96JFoabdFscbh4eP1Bfz7p8P4AgG+uH0YG44EkyYNbh82t4+4UzxGE8K9P+LrEY87PQHu/2y7tFh1+wLc99l2lt4/KoiY2ldaH2TfdHrFLIe/X9m709Q1Xn9ACs/885K9ROhVZEQbmNYvCYteRa1DoE+yNYhA0ijlqBVyEi26oJY+EHPQTiZ+AwIcKG/gWIuA2RqHl5dWHOSPl/UMu3nMiAm19XSJMXRq219HodcomZAbxxfbmskzq16F9aTz3usPhA30LqkT7TudoVA4W6h3enn75+CNsd3jZ3NBNVN6JwIiOXagrIG/fLuPBpeXP1/ekxuHpVPr8BBj0mDQKHF4/Cjlcv7SWJjQhEk94/EHBHwBge/zS5kzqstpX1NBlYMpL6+R7CD/WVvAt/eObDXA36pXce3AFCw6FSv3l0sKhi4tCFhBEDhcYeeuT7ayr7SBnkniBvOTWwfz1Df5eP0B7hjbhdwEM1a9mqcv6cFd87axvbCWWJOGF6b3xe31owlzHseYNHx+21BWHSintM7FJX0SiTWHvu8BBCmEvSVqHB58/sBps59iTBrG58RRkeymvMFNXqqVLQXVPDu1FxGG5vPS7vZJn+WAX+DSPonUOX2M+vtPUmD2f2YNol9qRAjBFQ6iUimHtYeqpMa24VlRUoNVS2hUCvqnRfLpHFElaFArz1gJXG338PrKQ/RMtjK9MVsRYEhmJK9e30/8jFUdgjfHgr9xw5jQB65fCMYYDBoFE3vG8f3uZoXInFGZ0iAkEBD4Ib9UysraCKzYX87S+0bxx0t7MOv9TRLJfd2g1LCKso7gin7JfLAuODPnyg7YgVqDRa/mqSm5TH11rfRdNKlnvETANmUCtsTnWwol8gjEcPQ/XtID24U+NKo2WNLaAq0ZRj8KOVPg2Bom90njjQ0VEsEQaVAzvW8kBALQOBCLNmr4v2v64vD4UchkmLTKU7aknbzOMOuUPDetJw/P34kvIKBViY2iD8/fybojVchl8ObMAYztHtOuTJwoo4aZQ9K4ekBKhyITZDJRtdVu5dZZRLXdg93tQwAMGgVRBg2xZi1PXpKLw+NHpZS3KyvqaIVdel+b8MaqIwzNjDqrgduJVh1GjVKK3ACY3DuxzQPQWoeHh+bvYOtxUZEtDRcfGE3saYaL5xIqGlzsKKrD4wswIE3MvzqvnjqP/yWcTfIoCWip7S0CBp90m24AMpnsF0Rr29OCIHx/8gPJZLI5wByA1NTOkx+fS6hzeNhcUMN7vxwj1qTh3vFdSbbq2vylW1Bl57GFu7hqQDL/uroPTq+f/BN1jM853ZY9GE6Pj10nQid1hdUOqdWms2DSKumdbGFnC7vdHWO6ENniS7SiwcW+0gaUchlZsaYQ1YDPH2BpfikPL9hJ72QLl/RJDCGlvttdyrS8pDZJek1albRI8vj8FFY72HS0ivRoI/9Yup+KBjfXDUphal5yq+GgDS4vb/18hOV7y8mMMfLYpGw0SgV6jZIah5cpL6+RvoDXHKrk3ZsGhFiLWsLh8QVl/gB8ubWIhy/s3m7yyBcI8NmmIkl+XGnzcO2bG1j18Jh2h0oerbDz/NID0s9bj9fSI9HC1uPNuScapRxjG0gbg0bJRT3i+CG/eUPy6MRsIhsnuv6AQPlJVsA6pzdk6lXrDN1M1jq8Yavt2wunx49MJi4As+NN0qS7xuFlZIROshFZ9Wr+fmVvbn5vE0cq7Zi1Sv55dV8i9CqeujSXaa+uxdG4abyqfzJWnYqceHMQ6QVi1srJ076iGiceXyAsedQrycLgjAg2HK1pvL+Om4ZltDlAua2odXik12/QKNuUU2bUKHn84hxkMhnL9pbSJdrIX6/oFfSAM9oAACAASURBVEJwm7Siffbng82qRI1SztAunZNZcjYhNvaFXhdaXtOqbB6ueK25xODyV9fy1g0DmJDb/PnXq5U8dUkuM1vUw1/UI579pQ3SedzUOtYanB4/m49V88GsQagUcrYer+HVlYdYd7iKy/OSwt6n3unlaKWd9UeqyI43ceeYLjw4fwe9k62kRDY/Z6XNzc3vb6SwWiT6dp+o57YPt/DJrUOYN2cIgiBuWBVyGXVOD098tUsqGChvcHPL+5tZ+fAY4k6xQYwxabiyfwoOjw+lXBbW9qqUi3a+zzcXSmSERilnRFYMn248zpQ+ia2qDmwuLz/kl/H0N/k0uH2MyIpi4e3DGsPAm5/v5GH+dYNTueX9TVJmld3j577PtvPlHcPavGlNjdKz4qEx7CqqI9qkISVC1+rGrzNVgm6fn5xEC6+vPBx0fP2RamocXiIVbvjxj83EEUDJDqg+DMYYrHo1z17ei8m9Ell7uJLJvRKChg81Dg8fnFRkUevwcqjCxqD0SFY9PFay6yRadJ1mt8mINvDKdXm8+KNoGbt/QjfSw+RknSkyYwz89NAY9pbUE2fWEG/RSZ/77vGhCtfs+NAmQL3m1EQNgNcXoNbpQSmXnzaIXIIhCjJGQcYoNHV1vHXDALYX1uIPCPRPi0CtbCaOmmDVq7F2YGmnUym5MDeeIY9GUW33EKFX89y3e1jXmB0ZEODxL3fx7T0j2632lMlkZzVr89dElc3NA5/vkPKlBmVE8Or1/Yk2ajBqVW0im09GuIwjg0bR7qxPp9ePzeVFq1K0aR0ZaVCzYO5Qfv/Vbo5XO7ikdwJzR2eGHQCEg9cfCFFk17vE4eJ/i+2kvMHFtFfXStmJkQY1S+4ecUaB7Oc6qmxujlTaKa1z0T8tguj/x955h0dVp1/8c6e3THonPSQkoffeRUTFrmBD14pdRFfdtZdVV3+u7q6uBXvFgqIiCEhTmvQQOgklCel1eru/P25yk2EmjaKwy3ken8fcKQl37tzv9z3vec8xaTq0oTiD/26cTPIo2F3s6OpNBXQHxgLdgFWCIPQURbHO70Wi+CbwJsDAgQOPvwI8BbGuqIabP9wo/7x4RzmLZ40JGHVoC0PTpcLq0/WH+bRpHv/lK/p0WS0UolMzNivaL05XpRBIPwkbsEiTljkzBrFgWylbiuu5pH8iPRND5UK3vMHBRf/+ldImxUFqpIG5tw7zM0Otsbnk7vyROgeZQUaT+nQLRaEQKKy0sKigjLQoEwNTO07LOFIveWl8cuMQpr21VvbAePL7nWhVSqYPTg7abaizOfnnz/vkKNYD1TYEAZ66oCfLdlegVCh4e8ZA/vzVNlmB8vaqIgakRLRZhAsIqJrGJZqhVioCiprOoN7m5rut/okkHp+PikYHKqWAUqHodFLdyr3+apn3Vh/glWl9uf2TTRyusWPSqvj7pb0x6TpeaMINks/PVUOS2VbcwMTcGBJCWxGogkSOtB5ty4wxoTtqERuUGhHQHbupVVf8WGB1ejhQbeX15fvRKBXcPi6TD28YzP8t3sOWw3WM7xHD9SPSMLVKDUqJNDL3lmHY3V40KgXhBjUalZKMaBPLZo+lsFJSC0Y2+UjdPzmbXWWN7DjSgFal4KFzcgJGHQGuGpLS5nUSZdLy2lUDqLa6cLq9xIXqO9y4N9jdWJweRFHEoFV12AGttjh56Ot82Zdiap8EHjs/t1Mdz+gQyVj+z5OzUSnbvs4Gp0XwyrS+vPNLEaF6NQ9OyemyivKPgEEjKT5/3lUhk2t5CWayWnmE/bq/yu97DJIXydD0CL8NfN+kMJbPHsv6ohpSowxUNDqZ9flWQIruHpbeMZlmd3mwu7zc/MEGbG4vE3NieevagUFNmG1ODx6fyKaDtVzXauzumy0lfH7zMAwapR8R4/T4ZOKoGXvKLbi8PhKO2kg73T7WF9X6HbO7vTQ63G0qoOrtbnaWNjDn1yKiTVpmjs0gIUwfUCB1Czfw3Z0jeW3ZPpQKBVcNTebNVftZkF9GeoyJ4RlRbZ6fWpub+77YKv/8y75q/rN8Pw9OyfF7nlGr8vNiEUBWDDWjuNaOrwt2L2qlglizjtjc318hoRAE9GplUH8aj1cEnwecQca9HC3HIk1azu+TwPl9EgKeplYq/JRbzQjVq2XS5HhNjIPBrFdzbq94eT90tFn1iYJGpSQuVBl0f3ZWbhwfrm0JL+kRF8LZeV1r4tVYnby/+iBfbSomzqzjyQvyyIwxdalg+2l3HX+et528BDMKQeCp73fw4ORsbh4T0fGLO4nmdLj4UD2Ha2x8v83fB6va4sQXTGJ+CqHR4cbmkkIqwgyaEzZC2Yy1hTV+xuTri2r5qaCMK4d07EPaFhLC9PRJCmXrYWkvpFQI/Hlyjy6N51U2Ovnnz3tZtruC3Hgzj5yX65cwaXG4qba62Hq4juw4M7FmKWGzR7yZt2YMxO3xYdZLXmm1Nhd2lxeFACadqs0xQ6VCoFdiqF9KsU6tOKUTnY/Gsl0VMnEEkqrsw7UHmT0p+79SfVRtcXLnp5tl6wStSsE3t48gJz6QED+D/x2czG9sMZDU6uduQGmQ56wVRdENFAmCsBuJTPqN/wE4XB4qLC4sdjdzfinye6zR6WFtYTVjs6M7tSBEmjR8evNQnv5+B/V2N9cOT2VERhS7yxr5eVc5ufFmeiaGBi3w3F4ftTaX7H1z27hMyhudLNx+hJgQHc9f0otQw8lJdYkO0TJjRBpX+XxYHB5cXh+NDjchOjVfbDgsE0cgkTBLdpQHLLo2l0QSVFqclDc6mDYoic83HEYUISc+hBtHpbOjtJ5pb62TVUn9ksN4+9qBbRa8Hp+Pt38pIj5Ux86yRj/zVIC5Gw5zTq/4oMWvZCbaohIK0aq4Y1ymn6lrWpSRv1/ah8vfWANI3YvWHhtHw6STkj7eaGVWePPo9KDkQkfQqaVEktbGoq9M68f6A7V8tHYLYXo1j5yfS168uUOz8cFp/hvRoior+yoaeeGS3igEAZ8I324pYUBKOMYgG4oqi5PDNTZsLi/dY0xEh2gZnRXD6KzAPlS9zc2TF+Tx0k97+O1ADf2Sw3j0vFzMR8U8Rxo1/HDXSF5dupdqi4sbRqUFNUPvCoprbZz/z19kdcMP+UdYMmsMj56Xh83lwaxTow6y6QyWricXjUcVzfGhej64YTB2lxe1UoFZLyXNfX3bcJ5dsJM6m5vrR6QyIrN90iDSpO20dL2iwcET3+/g550VZMQY+eu5uSSH60kIb7uwW7Gn0s/QdP7WUs7vHc9ZeYGmyMHQXHC0hzCDhql9EhjVPRqVUjgu4u/3RlKEgZ/vk0ifSJOG7LgQP6K6W3hghzIpwoDmKHVY6yJbFEUqLU7euGYAOrWS9Chjp5Iba2xunm01+rZ4RzmZMSZuapUa5POJlNTZeemn3YzOiuajo6KyD9fYKam1M+io77pGqSDKpKHK0qJOSQzTBx2R1KgU9E0Kk1UJIG1C2+t2bz1cx7XvrJd//j6/lMX3BqaRGbUq8hJCOa9PAusKa7jr083ySMfXm0oYmhbZ5qa+2Sy7NVYXVmNxePyUD+FNXiyXDujG5kN1xJp1JEcY/FKzBqdFnPDC82Qh3KAmzqzlyiHJPNfq+siINhFp0oAhBIbdCYdaRtowREB87069v1mv5i9TcrnotV9lgmpEZuTvYlwsCMLv5uXWYHdTY3VxoNpKVqzk8RMdouXd6wZTZWkZFwNJydwZ8sft9fHp+sO8slRSTxXX2rnk9TWSSq8Loz2F1TZEUVIENmN/pRWfT2zz+9DocOP2ioQb1F0m3fRqJdmxIewub1HPnt0z7ri9uU4mqi1OnvlhJ99uLcWoUfLgOT04t3dClxJ/O8KWw7UBxzYerGXaoODNx84gqqnxuuVQHYdqbEzIiemSusvi8PDkdwV816RmP1xjZ+eRRr6aOZzoEC1ur49luyu589MW37s7xmVy65h0TDq1X4OpyuJk1udbWLm3CpVC4KZRadw8OiOoWi7CqOX/Lu/Dte+sp7jWjlmn4uUr+p7Q832y0Xq9a0ZFowOfKKIIqpk4vXGk3iETRyA1jZ5dsJN/X9n/D0v7PIM/HieTPPoN6C4IQhpQAkwDjk5S+waYDrwnCEIU0hhbIf8DqLW6WFRQxhcbi7l6SLJsttgaaqWCf/28j3smdu9Q2qpXqxiUGsG71w/G6/MRZlDzU0E5t3/ScvOf0COGv1/Wx4/wqLG6mLvhMB+uOUioXs0j5+XQp1sYz13Si8fPz0UQBHn04GTB4/Wxr9LC/V9sY095I+OyY3j+kl5+7H4zSo46FqJVc83QVDkV6JFvtvPUBT25Y3wmXp+IUatCpRB4dsEuv3G2zYfqKG90tltkiz7JTyPYhjcxXErACQaVQiAhTC8b/k7uGcdXG4v9TF2LqqzsONJA36Qw9pQ3MuusrHb9eExaFbeOzmBij1jWFlYzPDOS9ChTu7L3tmDUqnhgcg/WH6ihvMHJ8IxI6u1uOXr4IDDtjbUsv38s3Togj3rEmblmaAofrzuIT4RJubHEh+q58u11fuf75tHpAbLkKouT695dL29uo01avr1jRIBqoRk7jjTw4qLdzBieyk2j0thXaeG15ft5+sKeaFptUFVKBSmRRp6+qBder++YZOGt4fH5KChpYHyPGJbvrkQEzu0dT43VhV6jPKGFSrD3yksI5bUrB+Dx+Qg3nLhkEovDzRPf7+CHpg3k9pIGbv1oI+9eNwjdUX5fzahsdJAZY+KLW4fx7ZZSmWhYW1jTafLI/2/wUO9wU1xjIynC4Gew2nzvOd2gbgpEmNo3UJEBkB0b4jdaGGXScPvYzHal/4IgEBOiazeC3tU05gLSfVGvUQYtXDYcqOG6YS0EfJXFyQX//pUaq4vchNCgCWjKIMR2hFHDa1f156YPNlJvd8s/B1OIhRk0PN80xrm/0oJZr+Lly/sGEL/NaLC7eWPl/qOOedh0qJZzesYHfY3b4+O91Qf8jvVPDmv3+5IRE6hUHZwagTHI3xVp0jIpL45JeXGIosgHfxrM/V9uJb+knuEZkTxzYa/Ojxf9wdColOQmhNItwkBmjImvNxWTE2/mioFJLfeg1JFw9TzJgNmcCCPvBWPnh0syoo0snz2WDQdriQ/TkRZplNfbZtWZTqU8bQsQq9PDx+sO8vzC3QAoBHjr2oH0Sw7j7s828/CUHjyzYCfri2ox61U8f0lvxnSP7nDNrre5+abJF04QJG9Iu9vLvgpLuz5lR+Oivol+yVhAm2ppl8fLgSobf1u4kxqLi+uGpzKuR0yXlCxRIVre+9MgXvxpD1sO1TG+RzQ3j87o9OfbYHfj8HgxaJRdMsg+Vnh9IvM2l8gefA0ODw/P286g1LYV4MeCKb3ieWuVf3P4on6Jx72OR5m0TMztmqKtGTa3hwXb/VVih2psTY1YLbVWF4/PL/B7/PUV+7lqaLLffsrr9TH3t8OsbBox9/hEXl9RyDm94tu8F6ZFGZl32/Cm0BMlYXp1wNrXfH/QKhUnPUGuqzi/dzz/WLJHVg8LAlw/4sRbA5wqqA9iA1FjdXXJJP0M/vtw0sgjURQ9giDcASxC8jN6RxTFAkEQngQ2iKI4v+mxSYIg7AC8wP2iKFa3/a7/HfB6fczfWsJj8yXv8CN1dl6Z1o8Ve6pkA8ZeiaEYNEreW32Am0anBy2ArU4pZrf1Bqy52KqyODlca+MfV/Rlb4WFz9YfYumuCqxOj/wcURRZtqtC7jyW1Nm5es56ls8eS1KE4Xfr9tdYXVz51jpqmrxdFhaUyck1n/3WYpulEODio8wv9RolM8emkx1r4of8MgakhDEhJ9avC1NtcQaV57vaiZRVKRTcMDKduRuKaXC4Gd8jhp93SX7uYQY1D0zOblM9ERuq56kLezL9zbU4PT6MWpXchfT//V4eODub9OZubwcIN2oYlBYRoABoF9YqQARDlJ9xR7dwPd/dMZJamxuTVsnsL7b5vczjE1lfVOMnYw4GKcI6m9vGZSCKkiz5zk82IdAyo6pWCkGJsS2H6vy6opUWJ3NWFfLgOTlBVTyDUiMoa3D4mQg/fWHPNq9TvVoJx9n1rLO52F5Sz/I9leQmmLltbCY1Vhdbi+u45cONmPUqHj0vl/7J4cdE5HUWJ0P5Z3N5WbbLP6OgzubG6fHhCbIxOFxj4+o56zhYbUOjVDBrUhY3j07nzZWFnNXFsQyQjKMXFZQx+8ut8rXz7yv7MSEn5r86eSWyabSwrMFBo8NDerSxS0lLDreXBodbHrNQKxXU2138sO0ILyzajd3l5dphqcwcmxFUcdc3KZxPfzvMNUNTiDRpOVRjk++9320t5bZxGWw8VCuTv5kxJpKD3AdUSgX9ksNYfO9oOXkpop3Y5SiThvf/NAibS0pKNOtUbSoblQohqKqyvTVpRGYUwzMi5S7pgJRwJnVAaIYb1Pzt4l489f0ObC4vg1LDuXNCx0lmgiCQGmXkzWul8Q2d+vQjQZqN2XslmumX1BOTVuVfxOnDIHM8JA0GpRpUgX6DtTYXgiAEHQ/TqpXEh+k5/6hmQJXFyatL97J4RzlZsSaemNqTlEhDl5UujQ43DQ4P5Q0OEsL0hDWN0PxeaHS4eamV359PhIfn5fPe9YMZnhHJv5btl0c1G+we7vxkM7/8eVyH64RWrWBkZiR/OTcHvUaJVqlgxd4qYrroG5Sod/HRlVm8uKoCr0/k7hFRpId4gj632uJi6r9/kRXW987dyr+u7Ceb/LcHn0/E5vaiVymID9Xz1NQ8bC4vITpVp71wimttPPLNdpmI/cu5uV0iyo4FVpeHpbsCM3o2HKyle6sx4+NFWpSRZy7sKaezzhybQV5CaMcvPIkQEEgI0/mNHasUgl9D9GjSwOsTpZHWVrC7vawtDCzZNh+qa1Pt3Wxo3haqLE7+9fM+Fm4vIzPGyJMX9CQ10njKjITFmHV8d+dIXlmyF4fbx50TMkmJOPG2HqcKuseYCDOo/YIpZgxP7ZLBO0h1mFcUfzdy+AxOLk7qoKkoiguABUcde7TV/4vArKb//mdQa3fz0dpD8s+l9Q5eX7GfBXePYsOBGvQaJSFaFbO/2IZZrw4qhKxoKqJ/aYrYffKCnn4eAi6Pj/ziBt4/dJB+yWHMmTGQOz7d7Gca3Ojw8OWmYr/39fpE1hZWnxQ/grZgcXrk4qUZX28u4Z6zuvPJTUN4delelAqB+yZlB8TIgiSFvWRAN87pFY9OpQgwGQ83aLh1TAYvLd7N0LRIqiwuCqssQZNtWiMhXMfiWaP5fP1hbhubwQNnZ9PgcJMaZSSyg8SnvHgzy2ePpajKSrcIPVUWl5/htValYEqv+A7Jma6g3u6iwe6h0uIkMVRLRMMO1AtmgeiD0Q9A2hjQh8ojMA0OKWJap1aQEW3wGykBSIns3N/W2mTc6xN56fK+lNTZ0akULN5RTrcIAyFBOvklQRK1Dtfa8fh8qAkkjyKMGt67fjBPfFdArc3NlYOTmNIr3m9T0ehwY3d7UXfFZLQNeL0+FuQf4eF52+VjZXUOBqSGy3HkZQ1w7TsS4Zp8Gs3tg2TunBlj8jOsVykETFoVqqNMVRvsbh6bv1326HJ5fTy/cBfzZg7HrFeRfQyb7Xq7m0e+3S6TFF6fyENf57PontGnVfLKsaAro4WtUWN18f7qA8z5pQiNSsH9Z2dzbs84SusdftfpW6sKyU0IYWJOLA9MzuaVJXtxenyMzIxiUl4sV7+9jkl5UkJUa9Ijv6Se34pq+OKWYSzdVUFqpJHxPWKICtEiiiLVVheiKBJu0KBSKlArlZ36rHw+kTX7q7nxgw3y531J/0QeOS83qLrBqFVx36Rslu2ulIn/7NiQdq+zSJOWf13ZH4vDg4hIiE7VYTJfiE7NRf0SGd8jBm9TYlRX0vy6uoE+lXCgysp1767nQLWNUL2aV6b1ZWh6ZAAB41EZUAiC3x251uriu22lvLmyEJ1ayYOTezA0PaJDlafV6eG5BbvkfceRegeXv7GGH+4a2aV0LJvTw7zNJTw2vwBRlNbT964fxJB2RhRPNFweMSCEoXmkJTMmhA+PGv/0NAU+xHVgdB+iU0uj/G+to6TOjiDADSPSuqyGMW1+m5H7F5PX/zpEQUnE1megrBec83yAA/zGQ7UBo/kfrT3IqMyodpUfNVYnC7eX8VNBOYPSIiTlWoi2S42UqkYnM95Zz/5KyWdz/tYjVFtd/PvK/l1SPrWH1qrMUL1aCi9RKxmSFsGa/f77nt6JJ5bYCTNouGJQEpPyYgGBUL36Dx9vjTJpeOGS3sx4p8X0/4HJPeR9nEGj5MK+iX71QXNDuzUMGhUTcmJl5VEzjrYz6CxsTg8v/bRb9m0ta5DuDwvuHtWu6vb3hE6tpEecmRcv64MoisetbD/VEWnSMv/2kfxjyR5K6uxcNSSZUVnRAfdZi8ONRqUMuLbdXi+7yiw88OVWDlTZmJQXy1/Pze2yif4ZnFo4vaqd/xKoFAKRJg17WzU9ft5VwU2j0hiaHsHVc9bLRdor0/r6FcE+n0hFo4MHv8qXo72X7a7kmjnr+HLmcKJMWmqsLu74ZJMch3kkv4zSOgcPndPDr4jXqRV0jzYFLJ7B4r5PJgwaFWqlvxl0ZowJlULB8Iwo8hLMNC+6ICmmqi0ufIiE6zWoVQoEQWhTCaRQCIzIjCQhrC9fbDzMwNRw/nZxzw5vXlqVkpRIIw+c06PL/6bmrmtzAkO4QcPntwzl9WX7MWiU3HNWVpfUBh2hwe7mjRWFvNaUnmPUKJl7TXfyfB4oL4C518CNS6HbQEpq7Vz2xho5+vymUWncNq47i3dWyF4hE3NiSI3s+nVwoMrKFW+uocriQiHA/Wf3YFJubNDPZnyPGJ76foffBvzaYaltqhGMWhWjukfx+c3D8IkioQZpE9iM8gYHj367nVV7q8iJN/P3S3sfV8eqxuaSz2cz4sP0zD/KbNwnwprCapKP4Xz9kYgwannh0t5Mf3MttTY3KoXAA5OzCTOoiThKCedwe/1UYiCNU3hFkRtHpvsVnG6vl4oGF/M2F6NWKrigbyLRIdqA0VeXxyebSjej1ubGe4obrJ4o2F0eqq0u1u6vJjnS0OQ3439PqLE68fhEIprImnWF1bIXCk546Ot8hqVHsnJPZcD7L8gvY3JeHJcPTGJYeiRen0hBaQO3frgRp8eHs0nlGmXSclZuDIt3SAvSx+sOcdnAJP48uQeiKCIIAhaHm3VFNTz34y7sbi83jUpnat+ETpMn1VYnT36/w2+U9atNJcw6K9sv6ak5/QcgKULPz7PHsnJPJVEmLX2Twjr0eYowaro86qhTK9GpldTZXNTZ3BystpEQpifKqOlSxPjphBqri1lzt3CgaZ9Rb3cz86NNLL9/rPxdbnS4Kay08sGaA3QLN3Dl4GRim5o3mw/X8ei3LWMtN36wgSX3jiazI/LI5WHBdv/U0IpGJ40OD9Fd4J8bHB6e/n6nfD05PT7u/3Ib824bccKLErvLi9PjxaxT+60lBo2SrFgTe8pbfLOmNHn87ClvpH9yuJ83nFopdEo9ZHG6eWHhLrm5Iorw9i9FXDW0iwbLWiMUbyC8eEPLsaRhgdGBELQwjzPr/ArBOpsLl9eHRqkgzKDB6vTw0k975GCQ5XsqWbW3kteuGtCl76Dd7ZWJo2b8uq86gMw6VtTZXHy7pZSXl+zB6xW5eUw6Vw9JIdyo4eohKawtrGZtYQ0qhcDNo9NJCOJJd7xQKRVdIkdPNgRBoF9yOCsfGMuhGhvxoXpCDS0j4yadmoem9CAt2sCSHRX0TwnnltHpAeuTQiFwXu948ovrmbelBL1ayX2TskjoZNDP0bA4PfyQ739/qLK4qLe5TxnyqBmnk8n38UCpEEiONPDMRb1webwBZHKt1cWy3RV8s7mE3AQzfxqRRkwr1WCN1c30N9fKATbfbilFq1Lw+Pl5J1WtfwYnF2c+uT8AYQYNj5yby8Wvr5a7qmOzo0mNMmLUKHnzmoHsOtJAn6QwIk0aPwPSkjo7ZfUOVhyVcnWg2obN6QWTVOg1E0fN2HJYkpG29lTRqJTMHJfBz7tb0gMm58WR9jsXwWadiqcu7Mkj32xnxrBUrhiUhF6jRGzaGYbqW25WFoeHdUXVPPPDThqdHq4bnsr0wcntblZEUWTjwVpu/WiTfOyrjcXMvWVYp0xnTwRCdGqGpEWSF29GoQg+xnU8aHR4/IgOq8vLX34q452BdxHx4y3SwU3vY4nqw99+3CUTRwBvrSpi2uBkfrhzJKX1DowaFeHHUITV2Vw8PC9f7r76RHhh0a42vV+iTBq+vm04zy/chc3p5ebR6WTFmtheUs++CgsDUsKJMGr8FmlBEIJ+ZvU2Fw98uZUVe6QO2MaDtVz19jrm3zHimDdtgiAE+FqVNTjIignh133+hGt6kJS/0wHdo00svGc0DXY3Bo1SMkEOcn5NOhVjsqP5YkNLJ1KrUtAt3BCgVCirdzLp5ZXyCO7rK/az8O7RAclEDrc3ID1vWHrk72awWmdz4fL4JKXnH9A93HGkkSveWCOTp6OzovnHFX2IMGqxuzwUlDbw5Pc7qLW5uGZoKpf0TwxISQTJwLxPkjQiYNQoGZMdjVIQ6J8cjkalRKtSsmJ3pV+qWHyoTlY9Rhg1PH9Jb+4cLxlj900KI0Sn4kCVlffXHMCgUXLFwCTeXlXE3iaD6cfmF9AtXM+EnM6NK4oE905wtRqPrLG6eHPlfj5YcxCjVsVfz81hXHYM0wcnd+p3HA9qrS7+vmg3n6yXCmGzXsXXM0eQGcQTqS00OtzYXd6A68nm8mB1ejFpVUEjtv8IeHw+trZSHIJUxFtbJVRuPVzP1XPWyT9/9tshvr9zJCE6NXM3HOZoLN5ZTmYrZZjV6abO5mZfpYW0SCNhBg0KQSAp3OBnrIFACwAAIABJREFUqqwQgkePtwenx+t37QCU1tnlPQMAbrukutUc235GFEVK6xy8snQP+yutXDogkcl5LV4uUSFa3r9+MC8u3sO2w3WM6xHDzaPS0aoVDEwJZ2JuLJWNTjYfriPcoObvl3Yu/dbu8rG7LNDIvbjGQppzD5Rtg7RRkv+Utp3rs+cl8MvLYGtaq3ShMOj6oE9Njzb6+bCZ9SruPStLbuQcqrZx/5db2XK4jsFpETx3SW/UCiHgOlhbWIPd5YEu7B00KgV6tVJeL0AirkRR5FC1lSP1DlIijYQb/ZtFnUVRlZXHWvn3vPTTHnomhDKuSVH52lUDsLu8KBXtJ4V1BR6vjxqbC4GT7xl6rNCplcSF6ttUwkWatNwyOoMrB6dg0CrbPPeRJi2PTc3l/snZCDQpu45xDVcqpPtDgb2lUSUIkufn6YxGh5sj9Q5W7K4kJ95MTnzIMSmP/0joNcqA+7TL4+PDtQf4v8VSQ2vl3ioW76jg85uHyvvIykanX/IxwNKdFcyelH2GPDqNceaT+4OQGWNi+f1j2XywjvgwKbml+WZi1ksJPUfD7vLwf4t3c3ZePAmher+xH61KgVYtFbpKhaTSab1ZN+tUQQ2e40P1zLttBFUWJzq1klC9+nc3qTVoVZzfO4EJ2bFUNDp44MttRJo03H92Nna3D6NWKY8SVFqcfqMPf1+0m27hei7omxjwvj6fSI3Nhcfr49Wl+/weK6yyUlpvP+nkkdfro9rqotHpwahREaJTnTDiqNrqpNriwuH2Bt2cHK6x4QlpRdzE5ODw+NjTauPejJJaOxlZ0UQdR3fH5fGxv9J/0yuKUlEYbERQr1HRu1sYr181AK9PRK0U+NuPu+ROpkKAOTMGMTY7ukM/DKfHFyCdPlLvwOr0dqmj3RoRBg2zz85mZivSsazezt8u7s3SXRVy0tI5PeNIjzq9VEfNULaR/HY0DBoV95+dTa3VxdJdFSSG6Xnxsj4BoxQ+n8i7vxb5FQJ1Njc/5Jdyw8h0v+cu2VHOUxfk8fYvRWw5XMeg1AhuGZMedMTxREIURQ7V2Hjw63wKSuoZnhHF41PzgsZunyzUWl0884O/6m7lnkqqLS4ijFpqrG6mvblWfvzZBTsJ06s5v098gNFpWpSBrFgTD53TgyFpEXyffwSfT2Rcjxi8Ph8alZIJOTG8e/0gPl13iLQoI9ePSPNTaEQYtZi0ahLC9Hi8PsoanEx5ZZVcoH+w+iAf3jiEy/+zRj42d0MxIzKjOuUzE6pTc9WQZP69rIXgzog2yb5GoiiydGe5bPBrc3m5+7MtLJk1+nfxEqq1uWTiCCSPmqe+L+DV6f2DjgtVWZz4fCIalaTCKK2z88R3BWw8WMvAlAgem5pLfKiesno7LyzczaZDtYzIjOLuid1PiQ66RqlgUGo4awtr5GMhWpVcpNXZXPxr2V6/15Q3ONl5pJERmVHkxJtZeNR1mNWKOHJ7fazcU8Vtn2yS1+rHz8/jikFJPHdJL6a/tVZWlsw6K6vLxaFBoyIl0iArtAEm5MRI16LHCXWHYMUL4LJIRt/ROaDr2kJQZXFy8eu/ymrcjQdrqbO5uXFUutzQiw9r8vhxN3n8NBXYo7KiqbU6ef3q/rKfW7hR3SkvtzC9mrPzYnltectaqlEq6G72wpsTwOcFQQFXzoXMiUGVRACY4uDWX2HPQvB5oMe5YAxO9kY1+bAV19pRCMh70VqrCxGR699rGStbtbeKmR9t5I2rB6BXK3F7WwpDhUCXlb5mvYpnLurJ/V9uw+sT0aoUvHhZb1bvr+K+Ji9GrUrBxzcOYWBq18ehFhWUBRz7dkspo7KiUCkU0n73BC7fdTYX87eW8vry/U12C1lM6BF72nmigaSY6sz4f2vrguNBpEnLc5f05oo31siq5HsmZp3WKh+vT2TFnkruaBVeNKVnHM9c3Ou0HnsGqLO7+GCN/3ju/koLDQ63XFtFGDWy8X8zMmNMf/jo5hkcH07fb+RpDq1aSXyonvjenZfIOj0+imvtvL/mAH89L4d7PtuC0+NDIcATU/NkM9FmE9A7P92M1yeiVAg8e3GvNufHo0O0f/j8qVGrot7u5rr3fmN4eiT3TcrilaV72V7SwLCMSG4Zk058qJ5Veyo5eqpl3qYSJuTE+HWMaqxOCiutfLzuIBNzYlEEuU8FSxU60dhbafEbC3rqwp5M7ZNw3IthtcXJPZ9vYVUTYfLFrcOIMGr8vKPO7xlFyIEvpR+isqDnJZh1as7pFcfeVmSaRqkgK7alg1lvd1Nnc1Fcayc92kiYXt3mKFlrhOhUTMyJ9TM5N2lVxHZwbTVvqkrr7DJxBJJy6fHvCvgycViH6iGFIJAaaaSoqkX+rm3qaB4rFAqBERlRLLxnFD/ml9EjPoRBqRFEmbR8NXM4tTZXk/GvOmCD5Wjq4hdWWok0SZ+LxemhZ2Lo7xYjfaIRE6Lj/y7vi8PtlU1ygxUKbm/g2FmwY/1SwvnT+xu4YmASY7Oj2VXWyKFqGz3izMf9t9rdHqotzSNhRjKiW5KeqiwurpmzXib/FhaUUe9w8/pVJ85joyN4fWKAEmdiTgxKhUBlo5OD1dYAP5UvNxXz6rS+DEwNZ8MBSSFwXu948hJCiTBqOa93PJNeXom1adP98bpDLJ41huQIA2EGDeOyYxiaFtHkVeR/Q7Q6PSzdWcFfv8nnnF7xCPirghqdHlbsqWRIeoR8z8mJD0EdJIUtGLRqJTeMTKdbuIH5W0rJSzRz06h0eYNpdXnk1L/W2FpcR4RBi9MrEeRRRu1J8bSpbAwMNDhUYw8IVfD6RPaWN3L3Z1vYXd7I0PQIXrysD498u51luyQ18MKCMsobHLx+dX9u/GCDPO55oPoQh2ttvDqt3+92nbWFMIOGFy/rw8yPNpFfUk98qI5/Tu9HWJMxv0IQAnzPQFKJKBUC0wclMX9LqdwsGJkZJavfQCId/vLNdr+1+m8/7uScXnHkJZhZMXscJfV2ok1aQvVdLzyjQ7R8dMMQHp9fQEFpA6Ozoph9dra0ltQdhv+MBE+Tunb3Arh5OST069LvqGhwysRRMz5ed4hLB3TzW48MWlXQDnp4F7yzWkOtUnDDyDTq7W6+3VJKfKiOZy7MJeyXRyXiCCRF1aKHIL4PmNpIwFMowBwPA4OrjY5GpEmLRqVg4fYynvhuHRanh6HpEbx8eV/5PAiCFFwRbtCgVgk8MLkHf/2mxWttxvDULhOBerWKs/NiGZY+jkqLk1izDp/Px7XvrJef4/T4ePDrfD67eWiX189+yeEBxwanhQe9vk8ECkob/EY67/18K9/dMZJe3U6eSbbV6aHR4aHGKiUIB0swO12QHWti2eyxlNbZiQ7REqJTn5bEWzNqrE45lKgZC7aX8fC5Oac9eSQgeWQ2Txs0Q9NqfxGiU/GXKTn87cddeH0i0SYtz17Udj16BqcHzpBHpxFC9WqmD05m1tytRBk1fHrTUGqsLrLjQgg3aGRJoUalZExWNL88MI7SOjsJYXrMp4BJX0ewODxUNjq5c0Imt360iR1HpE337vJGyhocPHVBXlBFVm6CWe74ub0+imvsvPjTLmptbi7p3w0RuHFkOvd8vkV+TU58CFEmDT/mH8Hl8TE0I5Jo04ktTGosLu7/Yhu1TSkFHp/Io99uZ1x2zHGTR3vKLXIRB/DCwl28d/0g/r5oN4WVVqb0iufWUSnobdOg76VS1LIpBg0wY1gq9TYP87YUE2/W8/SFPeUbeaPDzQdrDsgpMmqlwPvXD2ZYRmSH6h+9RsXsSdl4vCILC8pIiTTw/CW9CTd2buEPlogndT47RlSIln9c0Zer315Ho9ODWinw3MW9MBuO7zyb9dLG5WhCoz3CtdHuprTezrJdlWTEmDhUY2N/pQWFQuCVpXt5+9qBnZYse3w+aq1SotGpQDo1n4+2oFAI/GlkGp//dlgmH4waJVP7BI4uZseGcNWQZN5cWYhPFLlqSMoxdZaDoaCkwU+5Mz47mhcv70uEUYPd5ZGJo2as2V+N1enF4XZg1gUvBk8kwg1qZgxPlYuMh6fkoFMpuP693wC4a3x3Hpzcg+cWtmw606Ok0Z83rxmA1elFoRAwapTyd/ebLSUycQTS9+n91UX89dxc+bvbFglcb3dzz+eb8YngE0VUQe6DGqWAr4kNyIg2cuXgZJRdKMAijBquGCiZ3OvV/saaOpWSPklhso8fSImQ/ZMjuP699WwtrqdbuJ5/Tu9Hz0TzCU/jax4Zb33+LuybEKA6qrY6uWbOeiqb0jPXFtZw39ytTO4ZJ5NHCgEuHdANmyvQJ2zlnqoT5uVyvOgWbuC96wfh8vhQKgQiTS2+ZGa9mtlnZ7GmsBpv03coPcpIRtN4boxZx+e3SPsPlUKQfNJakSU+UVJztYbT48PtlZRwsaFK2T/pWJEUYeDlaX1xuKSRwObvrLjrBwSPw//Jq/8JF7wO6iD3UK8X7NWgUIOhhWgwaAOvsXBD50aQ3B4ftXZX0xiPpst7r0iTlr+em8PdE7ujEASi3OWw/RP/JznqIWicyrGjzubm/i9bklfXFtbwr2X7mD44iQX5Zbx8RV+2FtdRXu+g2uJics84BqaGs3p/Nf2SwkiJNB6TAsWoVWPUqokP01PZ6OBwnYOjuHNKau3y/acrGJgSztl5sSwqkPynhqVHdJjCeKzw+nx8ubE44PiC/CPtkkc1Vicer4jpGJTpdreHRQVlPPDlNjxNpv/vXjeI3ASzn+XD6QKNSkmsWXnS0/Z+L4gQ4O0IBCTXnQ6otblQCoK8B4w0avjrubnc9GHLNMi5veIxtVKPh+jUTBuUxLm94+UUxqhjJNbP4NTBGfLoNIIgCIzvEcOzF/Xkw7UHeemn3TxyXi4xIdqALoNRq8KoVcmGzacDjFrJc0VAkImjZvxUUMaj5+WSGWNiSs84eXQjI9rEjOGpqJUKPF4flY1Ozv3nKvlmvXp/NS9d3odGu5tvbx/Bj9uPkBFtYlT3aG79cANbmnwfwg1qfrhrFAkn8Hx5fD72VviPiLm9IlZX8LjcruBAtb/B5G8Havlg9QFevrwPIlKktVatBHOvgNdGmrQ8eE4Pbh2bjlIQ/MztrE4P/1jSMq7g9oo8+HU+X80c3il1WlSIlicuyOOBydlyQdJZmLQqMqKNfuaZ0wYntxvP3Rq5CSEsvW8M9XZ3U7dKhV79+97ivF6fJFH+tEWifNmAbqRHGxmWHsm/ft5Hca29U+el1ubim80lzPmlCJNWxcNTchiQEn7KS7jjQ3X8dO9o3lt9AI1KwbXDUgg3aKhocCAiGc2GNKm1bhubydVNRrCmpnvW8aLG6gowYv95dyU1VhcRRg1atTLAY6NbuJ5tJXXc/ekWHpiczeUDk46529lsLKsU2r7+lUoFU/skEKZXs2x3BT3iQvw67fd9sZUP/jSYbuF6imvtxJl13DWhu2zuHCwZWCEEFqjBjgXDwWqrXKwt2VHO2zMG8fWmEpnQDTOoOadnPANSwvnLlBxiQnTHNPKrUAhBx8BUSgVXD01m6a5ymXB5/Pw8Hvp6m+zNU1xrZ8Y761kya0yn0/hqbS5EHwEG8Ecjwqjhq5nDeWx+ASV1di7u341rhqUEFP02p1cmjpqxrqiG2ZOy5Z+vHJxMWYODykZnwHUWYdRQa3OhUkpksNcnUtekYOxMak+D3Y3D42332uoK2nuPrJgQlswaw/wtJSSG6RmTHeO3BmhVCowaJSW1dgwaFXa3R77f6tUKxmfH+EWh90w0n3A/M7NO7bc+NNjdqFRmAnJCDZEElR/baiD/S9jwtvScs5+FmBxQ6QjTa/z2GmqlwGPn53aYxldnczF3Q7E09ifCHeMzuXxgUpc77XqNqoXsteggMgOqm8Y+VVqY9inUFELBPEgfAyFxkq/RcWBfZaDX0rqiGv45vS8ju0fx12/yZYPwOb8W8cmNQxmWEXlC1KLNqGjySEkI1VHaypvx/N7xGI9h5D/SpOW5i3vz6HleREQMGtVJs2ZQKhT07RbKvM0lfsd7tpHg5vb62Fdh4cGvtnGg2sbZebE8cHaPLt1bG2weHp6XL693DrdkHv/ipX3oHhsYwnAi4POJVFmcFFZZCdWriTFrO0wg/l9FmF7D9SNS5YYsQG68+aSP559INNjdbDhYw2vL9qNTK3lgcjbdY03o1SpGZEax7uEJrNhdSUqTyvvoe51Jp/6vT6X7X8Ppc/WeASDJzaf0imd092iUSoFwvabL8lRRFKmySJHLOrXylJGEGjUqHp+ai0opBKSvNS9MYXo1j0/N47Hzc2l0egnTq4kK0WJxeth6uJbCSmsAy//1pmIGp0bg9fl48JwcAD5ed1AmjkBKefpo7UFmT8o+YeojvUbJuOwYfmzlDRFuUMs+H8eDkZlRKBWC3BUGGJ8T2ynPojqbizX7q/l43SG6heu5Y3wmCaF6FAoBh9vn954AZfUOxE7pfyQYj5EEiA7R8vGNQ3lt+T4KShs4r3c8F/RN7JSnCiDHhsf8gR2rGpubp37Y4Xfsy03FfD1zOK6m67mz5OHawmqe+K7lvWa8u56f7xtLWtO5rbG68PpEIgzqUyoVSqdWkhpl5NHzchEEKUFlQf4RnvphB40OD+f2iuOx8/OINGmDmjAeL4KNhIFkXAySgvO5S3ox+4utuL0ierWSR8/L5Z1fi3B5fTz9w07Oyj02j4qSWjuz5m5hXVENeQlmXpnWl/QoU9B7SphBw9S+iZyVG8vT3+8MeHzpznK+mjmcykYnsWZth6ObF/ZN4LVl+2hsMqfUq5VcOyylQ8UgQEaMiWcv6kmUScvq/dXMWVXIvNtGsCD/CIIAE3JimTV3K9tL6nn24l7kJpz4EYzoEB3vXz8Yq9ODSqlAIQisL6rxe06EUdOpND6bUzIcf37hLpweHzPHZjAiM7LNTrxaqaBHvJk3rhmA2ysSpnSidpaBVw1as2xMrNcoMWiUfmtM9xgTIXoVKoWAxycypVc8N7y/gcpGJ7MmZfHsAikVTCHAg+f04B9L9lJrc/Kv6f1ZkH+ELzYWkxim56EpOSRHGNpUtpQ3OPjLvHyW766ke6yJly7rS1asCdVJ+u4btCrStCrunpgV8JjN6eGrjSU8/p2knFMpBN65bhAjmtalUIOG5y7pzWvL9rFybxUDUsKYNbE7kb5qqHFK59MYfcL/5k2HakmLHkZKeCrUHpAO6kJh2B2gPOr7LIqw+0f48f6WY3MmwV2bIbQb4UYNT1/Ui1vGZHCoxkb/lHAiDB3fE3aVNfLsgpbv87MLdtErMZRhGVHH/g8zxcCMH2DNv6B8O4x/BDZ9AJveb3nORW9KJtnKY99fZAYJfhiaFkG3cAM2l88vWU4U4cWfdvP2jIEndPxGr1by90W7+eeV/Xlt+T72llsYlx3NbeMyj7m5EG7UEP472RJO6Z3AV5tL2Na0vxyWHsGQ9OCK2hqriyveWEODQ7pnz91QjEohcO9ZWZTVOwkzqDHrVAEJV63h9Hi5oG8i43vEYHV6+GJDMWsKqxEEKeDjZJBHJXV2Lvj3r7JNwqjuUfzjir6nnQn07wGNSsHVQ1JIizLy7ZZSeieGMm1w0ml1rnaXN/Kn91pSG9e+Vs2K+8eiENx8uv4QjU4P1w5LJc6s7ZTFxRmc/jjzKf/BsLu8TWRJ5zaA5Q0ObvlwI1sO16FVKXjonBwuHpDYaXWG0+1la3Ed932xlZJau6RkurjXKWHiGWbUcG7veBxuH/dOzOKFRbsBadP95AV5GDVK3vqliJV7KhmZGcXlg5LkUZ5aq4uH523nvrMCN7rhBg1hBrVflHqt1RXwvGqrCx8iiqOk4E6PFwFJTtsViCI8el4uVw5J5tWle7G7vbx4aR8iT0DXK9Kk4bObh/LMDztpsLu5fkQqwzIiO3ydzyeyZGc5s7/YRohWxUX9Eimps1NjdREfqsOsV5McYfAb6zm/z7F1/I4FcaE6Hp6Sg90tRSOfiikl7UEkkLhornUtTg9RJk3QDfrRaN4EHv0+y3dXEGdOYmdZI09/v4N6u5sZw1I5v09Cp4wtf080EybVFpdf0tf8rUfoHhvCzDEZx134VjY62HlEUvf1iA8hJkQnj4S1Jt7izDrim8ZkdGolZ+XGsuqBcdRYXbi9Iq8t3+9nHlxUZSWli6mTNVYnd366SU66LCht4No56/m2g8Q/vUZFXmJg5z4vMbRdM/Pm7m+NzUWIVo1Jp2TRvaP5alMxHq/IZQO7EWvueIPq8ng5Uufgk/WHKKm1c07PeG4anU6kUUNGtJH5W4/wxopCeQwxNSpA13HCEGnSypvqGquTXomhbC2uR6dW8M5l6WQpionIfwO6TwRzN9CHBX2f8kYn18xZR++kMJIj9DQ63NRaXR2OcYQZNNBwBD6cBke2gDaE2qt+olydSGm9QyYE7/5sCzaXlyiThlen9yMlwsAvfx5PRaNDVhR99tthZo7J4Ktbh3Ooxka/5DDeWlXEooIyzu0Vz7zNJfytyQujoLSBdUU1LL53dFDyu8Hh5tFvt7Nkp6Tk2XmkkSvfXstP9wR//slGg8PjR5B4fCJ//mob8+8YKauTokO0/PmcHtw+zoNRcKL/+SHY9J70gvi+cNVcMHUura+zWFxQzprCat6+dB7mqs0o3DaU6WMINQcGauCog80f+B/zuqD4NwjtBkhkZYRR4+fn1BEWbj/C3RO6MyIzCkGA1fuq+DG/7PjII5D8iyY8Knk5ORv9iSOAxX+F9LEQcuznNMyg5oVLe/PkdzuwOD0MSYvgrgndCdGp/ZPsmuD1iUGPHw/CDRq6heu5/eNNTBucxDl5cfRJCj1txpiiQ7S8c90gGh0eBEEKq2lLrVZlccrEUTMWFZQzJjuGWz7cCMBNo9K4Y1x3QtsgLrVqJeEGNX+Zl0+oXs1dE7ozMTeG/JJ6UqOM5HWS6Pd4fTQ43OjV7adC2l1e/rFkr5+/5qq9VRRVW08rQuT3RLhRw3m9E5jQIwaNUnFKNfs6gtPj5b1fDwQcd3h8XPzaanm/++Gagyy8ZxSZMceYUHMGpxXOkEd/EOptLvJLGvhw7QGSI4z8aWQq8W1EZjbD7vLyypI9bDksFSdOj4/HvytgbHZ0p8mjOruba+asl8cRluysIGzhbp6YmnfsIyOWSqgtAqcFYnOlDeExmlGH6jWE6mH6kGTOzoujqMpKdlwIRq2SP3+Vz8Km5IzV+6vZdKiOFy/rTZhBw/bSeg5W2wjVq+mZaJZHH4waJXdP7E6kUeO3gE/tk8irS/fJBZEgwPXDU/1MFG0uDwerbfxnxX60KgUzx2aSGKbrFIlU0eDgL9/ks3RnBWlRJl68rDcpEQYijmNxtTk9NDjcVFpcRJu09Opm5p3rBuHziYR3Un1Sa3PxbtNC8MJlvfl8/WHZZyQ+VMfXM4fz6U1DeHbBLnYeaWBiTiw3j0n/XUelmkdzTkeEaNVcNTiZOa0W27wEMxFGDWv2V/sVV+1Bo1KQHRfCz63GPgCyYk3UWF1c/p+WiPdH5xdgNqi5MEji4KmArU33q9ZYtquCq4emHFfHuqLBwcWvr6a4Vkqd7Bau5+uZw4kx67iwXyLhBg1zNxwmM9rEXRMy8SGRTRFGLQaN5C0RbtDwwqLdfok8CgG6t7EBcnt92FxejBplAPHl8ogycdSM0noH9k543JyVG8en6w+TXyJ1q/smhTI+uw0j3CYcrLFx2X9Wy2aVN49O57axGdw5vnuHv681amxurnhzjezF88n6Q5j1amadlcWwjCj+sXSvfJ88t1c8ab9TsmCEUcvLV/RlxrvruWt4NAP3vIhm+1zpwSWPwQWvQe/LAxUlQH5xHZ/dPJRNh2qJMmlJjTLy/MLdTO2TwND0iLbNjN12WPmCRBwBtRNe5OlfLXy19RdAGtX64c6RLJs9FrvLi0GjJMKoQaVUoNeoiAvVYXV6mD44mffXHOD1FfuZ80sRU/vGU2938dFaKZlmVFYUb60s8vvV9XY3B6ptQckgh9vL8t2VfsfqbG4anR7av0o6Rp3NJQdvRBi1nSLsXR6fn6E6SI2to4kE+V5+4LcW4gik87vhPRh9HygC15YqixOby4tGqSBE13kl64juUXy8/hDj/7OT3PgYNCoFt5rUTI4Nsp4otRCeCofW+h9vIo5kWCslo2qNSVagtYerhqTw5qpCpr8lve9F/RK5ZXR6B6/qJFRa6T97beBjzsAU1a4iRKfmgj4JjMmKxuuTVJnNTYmUSANJEXoO17Sk/N45PrPDMb6uItyo4dmLenGg2srBahuD0yKI7GDs9FRDlEnbKY/CMENgElV6tJGS2pZz/NaqIq4ZmhKUPBJFkWW7KuSUyiqLi3s/38Lie8dw28cbef9Pgzv199ZYnHyxsZjvtx2hR3wI907MatPCweXxUlxrCzheWuuAlE79uv9ZnI6qHKVCoFu4/7XQPyWcX/ZW+TVKPT6R/6wo5NmLep3y/rpncPw4/a7k/wKIosgv+6q4vVV047dbSvj+rpHtKoBsLg8bDrZsGrQqBXdP6I6ISHGtrWkj2/6CVVbvCDAmXrGnEqvTc2wEgaUCPr4UjjQpC4xRcPOKwA1YFxFu0BBu0JARY2r6u+0s2uEfubpkZzl2t5cwWoq92V9u48VLe9Pg8GB3eRnVPYroEG1AoRdj1vL9XSN5dele3F4ft4/LJCnCv6N+uMbOua+ukr1Avt1Sys/3jSUxvH2Sz+KQRpcW75AK//2VFq6Zs56f7xtzrKcDl8fLqn1VzJq7hXCDhlqrm1en92V0VnSnVWsAKqVkdtctXC8pWVoZ1B6pd/D68v389bwcnr+0F3aXF7NeLZuRn0HH0GuU3D4+k7RoEz/kH6FPt1CuH5GGWavixlHpnV5U1UoFM4alsiD/iBxHPTormp4JoSzZWRGQxPX5b4cZnx3T7qiV2+tcY4goAAAgAElEQVSTTGzFYx8tPBb0iA9U1QxMjQiqZnN6vCiEzikx528tlYkjkDxxvtt2hBtGphFu0HBhv0Qm5sTgcPv4cfsRXl++H5VSwX2TshibHUNoUyLNzDEZHK6xsXhnOREGDc9c1JOwIEbrlY1O3l9zgN+KahiXHcNlA7v5dVqVCgLiw806FdpOfObRIVreu34QtTY3giCN57bXxW2wu3niuwK/lJM3VxZy5eDkLnurHKyyBpg4/7hdOo9xoTq+vHUYdTY3WrWSEJ3Kj/CzNhHaZfUO4kP1mPXtG746PV7sLi8hnVQVpkUZ+XrmCMI95aiWzPV/cMljUlR5EKVFVmwIF722WvYbSosy8tzFvbjizbV8cMNgRndvY2TKZZWUJwAqLfUxg/nq6xaFjdPj44GvtjFnxiBio4Kv1UatirsnZjIgJYxFBeWMyIxkSHokF/37V/k5BrWSGLNWTitrRngb6gKVQiArNkQmF0Hy4DleRWh5g4NZc7fw675q4sw6XrysNwNTIzok7/UaJRnRJr+/f0JOTNuvO7It8FjpRvA44ah/w5E6O9e+s569FRZUCoHZZ2czfXByUK+sozE0PZKL+iXyzZYSdpY1cGG/RAantaHI1Rhg7MOwbwlYm8Inuk+C8DTp/z0uaURs/p3SCFzuVJj4JJjaH7crqrL6qUa/3FjMxJwYwgxqnB7fifHc0ZggoT+Ubmo5NvAG0B5/11+rVqJze3F5RT9flugQHV/dOpyvNhVTZXExbVDScZuet4VmBeKAlBMToHCqIkSr4oGzs3lh0W5EUfr+/3lyD95bfYDEMD0lddL6VmV1+Snnm9Hg8PDtllK/Yz4RVu6t5D9XD+zUdWZ3e3lt+X7e/kUis/NL6llbWM3XM4cHVcyam4J71rUaKdaqFAxMDUy1O4PTHyqFgutGpPL1phLZ7y8pXB90j6YUjlk3cAanGc6QR38Aam0u3lhZ6HesolGKlm+PPDJpVYzqHi3PnT9/SW9+2VfF+JdWIIpS/OhrVw5o12wvOkSLQsAvySI3wXzsSo+SjS3EEUibsNX/hLOeBlXXPENcHh91Nildy6hR+Tn2C4KAVqXwK3K0KskXAyDKpOGeid3518/7mPHub4zPjuHvl/VuswDTqZVkxYbw90v7yCaKreHx+pjzS5HfeXJ6fHy3rZRbx2S0+++wubys2OPfJbY4PdRYXcc8YlBrc1NQWs8HfxrCgSoraVFGlu2uoFdiaJfeM1Sv4S9Tcnh8foFf4d2MfZUWHB4fZp0ak7Zzn58oilRbXYgip5z/zh+BCKOWKwcnM7VPArpWqVIWp5sGhxuzrnPJhx6vjycvyENAuvarLE48Pl8AyQlScdzeezY43CzaXsYzC3ZidXq4bEASsydlHZcSrrOINWvl76bHJ9I/OYwbR6ahUSmoaHRgdXoxqBVUWly8taoQg0bFrWPSSQjTtZuq1byxbo3WHdEGu5vCKgtH6h080io6+e7PtvDDnSMJbTIxjQrR8uJlfbC7pfHUZiVJa9RYXdz56SZ5tG1dUQ07yxp4+sKecrpQlEnLP6f349p31lNnc2PQKHllWj/COumd1HpkqyM4PT6KqqwBxysaHaR2URkUbBwkI9qIVi2dg+gQXUARYXN6sLo8rN5fzay5W/H6pIS2/1w9gDHZwQnt8gaJnC4oree8XvGc3zehw2aHIAiSUq82yGiMO7D7DZJK5z8rC/2MqouqrBRVW8mODeHjtQfplxQWPBVKa4bMs6AsH1R6GhyB3lkVjdL3sD1EGLVM7ZvI5J7xaFQK6m1uPrpxCAu3l9EnKYzBqREBBNeUXnFtfv4RRi0vXdaH6W+tpdrqQqNU8MxFPTEfh+mq1enhmR928Ou+akDyR7nh/Q2seGAccR3sB6JDtHxww2Ce+WEH24rrGZsVzd0Ts9omrzPGBx7reSlo/K9Vm8vDC4t2s7dC2uN4fCLP/biLc3rGdYo8ijBqeGKqFNgA0j6iXe+y0CS4dbWknNaFgjEGjE1kk70G3j9PIhQBtnwCKh1MekYintrA0Ws/wPLdlSwqKGfe5hJGZETyyvR+x56e6fNKTborP4Pf3oWS9ZB7EWRPaffv6gzcXi/7K6w88d0OyhscXDawG1cMSpZJiBjz/7N33uFR1ekX/9zpLZNMeq8QCKGG3ougiAgIKqioiIpdRF111y2WXVfdta5rWbFiR8GKiID03lvoBNJ7Mr3P74+bTJjMJCQ00R/neXx85sskuVPuvd/3vOc9R8XUvqmcqLawuaCG/plRCHBaCWtnG41jvJsLalDIpPRMiWiTyvfXhF4tZ/qANCb2TMJkdxOhkVNvddEtKZzx3RNxe7089d0+kltQAanlUnISwlh/tDpgvUdyBBkxbbsPmGwuvthaGLBWWGPDZHcTE4KLFASB4Z1i+OfkbnywrgCDVsGfx+WcFTuGi7gwEa9X8cPsIewvNaGWS8mI1uLx+YhcovCPLyqkEu4YntWuZvZF/HZxkTz6FSARBDQhZoqbJ5EYbS5qrU4Kqi10iA0jQi3nzuFZHKsyc7jCjEouCYgF3XSslvlbi5g1NKPFAl6vkvHUxK489d0+nB4vKZFqnp7Q9fRNs+sLQ695XUDbf2e9zcWi3aX8c1E+FqeHiT0SefyKHP9mWq+SM2d0tt8jAmiYxRe/whEaBbcNzWBa3xTRBFchbVMh1tJst8frC5mG0JbNukImoXO8PsDsVdoQZ3y68OEjQq1gyhvrAJHdf3JCbjtsrJvQIVbHq9f1wuJw89zi/QEG2df0SW7zCCSAye5i47Eanm8wpr1jWCbDOsbw+ZZC0qO1DOsYc8Fv4M4FJJKmOFOfz0dhrY03Vhymd1ok3ZL06FVyYvWqFtUXDpeHV5YdYv7WIjQKKR6vD4fby6vX9WJwVhQjsmP8qrHYMCX3jOzQKgFcYXQERDB/sukEneLDmD4grVUFSBMx6CNSozgtYjBCo+C2IZlM65uC29twbmqVFNZYue7tDXi9Pp67ujs3v7vJT9Z+vb2YZQ8NbzX9cFrfVN5fV+CX/AsCXNcv1f/vG4/VsHx/OTZncKH/w+5Sck9KwNGr5a1eA21Od4AnEsD3u0r507gcf+EkCAJdEvQseWAYloaRpgjNuVHuhavlXNEtgddXHPGvqeSSdvs0gehzcsewTH9DI0an5K/jc1u8DtRYnLz+y2FG5cTy+MI9/uuH2+vjka92sXj20CBCu8rs4Ia5GzncQApsLqilqNbGg5d1alsCl0ILyf2gqCmRjn53gCpY1ebx+jCFIH2sDg9qhWioL22pPSpTwIC7xRSr/G+JV3uJ1ikCFF7X9klucwR2I6EbrpHTXRNB9+Qm7xytUsovfxjB/lKj39uqNaVAZoyWHx8YitnuRqOQnVLldSpYHG7WHwn8TjvcXiqMduLb0JBIilDz/JTu2FwedEp568b3+gSY8g78/BeRjOk3CzpcEvQ0q8PjNxo+GQXVbfcgazyX3R4vlWYHn20+gUQQuKJ7ArE6ZeA1TCIRlWuhfILqC5uIo0Yc+BGGP9oqSXNJ51g+3ngiYC0vzcAH6woAWHukmu93lnLzoLaZ2fthroA9C0S1Uc/rIaEH9f3n4HC50amUaNqgJK21OrE43Hi8PnRKWdAeqdriCiA0n1t8AJlUwsxB6UilEuptLl5ccoCPTnp9r07rxbhu8efMuL2tKDPaueLV1dRaxXM/2aBmwd2DLgg/z5ZQZXLgcHuRSwWyYrRsOlbD9Hc2+u+DY3Ji+fLOgS36GSpkEmYNy+KXA5X+ZsKknontaiBIBIEYnRKjLdB7qbX9hEGj4No+KYzpEodcKrT5engRv00IgkBsmCrgXPJ6fSy6fyjf7CjG5HAzJS+JwhobdTYX6VGasz7OehEXFi6SR78CIjQKHhvbmSlvrvdvvLslhQeMQ1kdbuZvLeTphhQeiQBvTu/NqM6xvHRtLzxeH/O3BhM3mwtquHlQGpoWbuQ6lZzJvZIYnROHw+1Bo5CdWXHf8TKQ/gk8J23W+81qdwes0mTnjwt2+x8v2F5Ml0Q9tzRsWtQKKVP7pjAsO4btJ2rplWogIVwVsHnWKduulmkNtRYnC7cXM6FHIl9sLvSnF8XplYzOObUZZYRGwbOTu3Hd2xsoNzpQSCU8OTH3jKIqvV54YckB/2OfD/7904E2HU9zqORSEiPUWJ1uPr29P09/n0+9zcVNA9NIj9Ly4boCxnaNb5OiqbTezm0fNKUw/GnhHl6Z1pOf95Wzv8xE5/gwPrqt/+l3WX8HqDI7mPXhZv45uTvPLz7Aw/PFEZEXru1B7zRDyE2al6Z0sJOTnWxON1E6JS9O7UGVWSwEkgxqYk7x/m46Vh209tPeMq7qldQiaWKyu9h4tMafWDVrWCbjuye0eywKQKcKVBKa7OLYVVGtjekD0vhqa3GAys/m8vDT3jJuGZzR4u9MNqiZf8dAXl56CIAHRnckqYFsqrM6eWvlEXQqGb1Sg+X0bTURbYRUIglKgNQqpDQv/WRSScB5U1Zvw+r0YLK7qbc56ZIYflbOBYVMwq1DMrC5PHyzo4Rkg5q/T+ra4thTa4jQKLhnZAduGpSO2e7GoJUT3crGb+3hKuauOcaY3DjMjsCCo8biDJmGZra7/cRRIz7dXMjtwzPbRh5po2Hax7DjYyjcBLmTocMokAeTi1qljDuHZ7Esv8kvTKeUkZcawVsrj/DqtJ7YnB6sTg9ROkVwAa+LgQmvwthniZYqWHBXKs8tPkBBtYVJPZOY0jv5rHg6KGRS4vXSNhE10PDdClNxtvxIVXIp3ZL1LN/fpJSRSoRTXktORmMEs8frw+p0o5ZLQxMiqnBRHZMxVHysDAd58OsOU8kY1TkmYBxOKhGCPMhqLU7cXi8RagXyFj6LCpODy15a5b9/v7rsEIsfGNYqIR0ATYhxt5hOcIqWTc9UAzMGpfPxxuP4fDCtXwphKhl7S4z+52wqqOa6fiktJuVaHG7KjHYW7SolLUrD5Zly5J9dCyUNVge7Psc77t98Yh7Ku+uLGNkphj9c1qlVY/5qs4O/fL2HRQ3pr7mJet67pW9AQXio3BSg2AP4amsRk3slEaVTYnG4+XhTIDH29A/7GJgVGfS3ay1OjlVZWHukioGZUWTF6M5ZqIPX6+PD9cf9xBGIY8wr9ldybd8Uqs0OKkwOvF4fcXpVq+r884Xj1RZu+2ALhyrMROsUfHr7AJ7+YV/AffDn/AoeH9+lVTVHfLiKL+4YiNHmQiETPcLac4+O0il4amJXbnp3k78euWlAGtpTpKBKJcIFua+rsTiot7nx+nynHP++iNOHRCIQH65i1rBM9pUamfTaWuobzN8n9EjkqYm5p7VXvIjfBi6SR78SsuPD+OWh4SzNryAlUkOv1IiAC7HR7ua5H5vIAq8PHl+4hx9mN/kiDc+OCVDiAIzrGn/KzbhGKWtTl6pN0MXC3RvBaRbl1DIVhEo2OQW2FAQbQC7Lr+DaPino1eKNM0KjIEKjICeEh8rZxLYTtTz1/T4GZkYx77b+bDhSTZROwfDstqto0qO0fH/fECwODyq5FLlUwGR3YXW4MWgVpyXttDgDN3XGhjSP04VGIaNfRhQfzOxLvc3NC0sO8MyifLw+eGvVUb6+J/TM+8n4aU9Z0NrP+8rplxHJ/jIT+8tMFNfazmiT4fJ4qDQ5+W5nCSq5lLFd44nRKUPGn18I8Hp9VJgcLNxeTL3NyTW9U7hrRAfeXHnULy8vM9qZ+f5mVj0yMiR5pJZLuWtEBxbtKfMra8KUMoZni/a4kVpluzo7XZOCyZI+6YaQCshGlNXbue3DJmLwz1/vISVS7T+GM4Hd5WF/mWjwKpLYwcehO8U1SquU0Sc9kv/ekAcQMNYikYjqztWHqrh3ZAeW7NX7i7cBrUQntwSdSsbdIzrwyrJD/rXHLu/c6uaouNbGHR9tYU+xkUitgieu7MKnm04wvX9aQBFVbXbg8fkwtFIIh0KUTskjYztz1/AspBLhjDbJoZRXNRYn9VYnVqeHWL2SmDAVTreHxQ3nfHGtjdxEfUBR3DfdEFJpFYpsidDIEYLot1agi4VB9zf45LTenOgcH8aCuwfxv1VHMWgU3Dokgyqzna/uHsTW4zXM/mwn6VEaXprak9xEfXAIgiocVOFIgFQtPH91d+wuDxHq389Yrl4t56mJXTlevYkjlRbUcilPT2q/CrnK7GDBtiI2HqthdE4cl+XGh1ZQSaWnTFdTyqXcMSyLsno7i/aUEaNT8s/J3fyjnw6XhwPlJp74di8VJgfX9E7mxoHpIf/e55tP+IkjEO+XX20t4r5L2mEoP/RhWPMi+LzisY/8E0haf38MGjl3j8jipoFp+BD9re76eGvAc8Z1S2iROALILzUy9X/r8XhFv6shd6YTWbI94DmSNS+RN2YIz5kcfLGlCJPDzfNTurc4QpZfavQTRyAm/H2xuZC7RnTwq09jQ+xvkg1q//nr9vpozg0bbaFUfm7eXXuM/yw/7F+7e0QW94zscE689jw+H5Ume9B6ldlBldnBLe9t9vuFZcVo+XTWgF9VkVRjcTLn853+8cwqs5ODFSbqrcHvpb0ZmRcKUgmU1NlYebCS4Z1iyE0Mb7OvliAI9EqNYNUjI9ldVE9GtIbYMBXhv8HCv8rs4J6Pt7LxmFhPdE3S896Mfr959bvXK6b4quSSC850u9ri5P5Pd/iJIxD9KP9wWaeL5NHvGBfWt/D/ETQKGalRMmYOCd1Zd3mC00yqLY6AG3dChJpnrurKc4sPYHd5uL5/KqNy4tonhT5TOK2w7lUxNtbng5QBMHVeu39Nt+Tg4rZvhiFACl9jcbCloJal+eWM6hxLv4zIsy6NdHm8LNxeDMD6o9Vc8+Y6eqUamNwrqV3eQhKJ0OAVInp93P3xNjYeqyFKq+D5q7szMDOqTQSe2e7C4hS9WPqkGQIM0wdmRbWta98CfD4fZoebsno7Ly09xM/7yv3/VlxnY2dRPaNzWn/N2fHBbfDUSA1HKpvk/iePxbUXZruLaouTy19Z7VfgvLrsEItmD71go3urzA6ueHU11Q2z4O+sOcbiB4bxxLd7A57ncHupMjlafB0Z0Vp+uG8oc9ccJVwl59ahGcScZupMbJiS6QNS+WTjCbw+yEs1cH2/tFZHDX7aWx609vnmQgZkRp3xKFaYSs7onDjeX1fAkr3lvH9LX77ZUewnSBPCVQzPbt2YthGhvFD0KjmPjO3MVa+v5d5PtvPXK7sQG6YkUqsgXCMnqp3XDZ1Sxi2D0xnbNZ7dxfX0TjUQHaZsUYFitLl4/Ovd/tTHGouTP3y5i09uH4ClgUC2Od3sKTbyxHd7qTY7ua5/CjcOCF0ItwS1XBpwDai3OvHCKVPsaixO6m0uXB4vkVpFELlbbXbw56/38GNDsRmvV/HV3YNIDFcxIDOSH3aX8sqyQ7w8tSdvrjzC9hN1DMiM5E/juhApmKD4uKhGjcwAXSxahZTr+6VyvMZCr1QDpXU2ruiW0H6fDIm0TarWMJWcvFQDL13bE6lEQCKBhHAlT3+/j882i6PeBdVWbnxnE8seGk6cvtn32WEWR5YEATTR59Vg/nwi2aDh81kDsbo8KGUS9GoZannbX2etxcmDn+9g1SHRcHpZfgW7i+t5fFzOab9f0WFKnpncjb+M74LQLAGu1urimjfX+0M/Xlp6CI1CxszB6UGkXvNgEAC7+9SFuB+KMNBEwq0/g9sufp+tdZDUOvFcYXIw/tU1fnPZGJ2Sz+8YwDVvrcPi8DBjUDqDsqJD/qzZ4abe6sLscPPlnYN4b20BP+wuxe0LsaeTygOCE5bsLefJCZ4WyaOTSd5G7Cqqx+n2+vdZMWEqJvRI5NudogmzXi3j0bGd+WTjcaJ0SgZ3iA5IswW4vn9qkOLb5HDzv2a+nnNXH+Pmgenn5DySSyXcMjiDBduL/XtkuVRgcu9kVh+qDDCaP1Jp4evtxcwa1rp35bmE2+tle2Fgw3TpPjGB9PmfmprGKZHqgGukzeVBJgkMlDDbXbyy9BAfrBeTHOeuOcbtQzN5YHTHNr/XjemjSW1V5V2gWHe4yk8cAewpNrJodyk3D0r/9Q7qDFFrcbJ4bxnztxSRHqVhzphskg3qc1Lnebw+qs0O9peZ0KvlpBjUp2xKeX0+6m3OoPVQ19+L+P3g97cb+p1ArRCN8PJLm+JXR+fEBRQK4Wo5V/dOYXSXOAQgXO5FIXED55HtrToIW99vely4AbbNg8EPiJ3GNiIpQs09I7N4a+VR3F4fAzIjuWlAuv8maba7eOnnQ8xriDr+YksR1/VLCfAcORuQSQR6pkTw/a5SAFweH5uO1TDrFFG7Vocbq9ODTiULUJKYHW6eWZTvT6aotji5Y95W1jw68pTkUY3FybM/5rNgWzGpkWrevrkvc1cdZVNBLQMzI7n/ko6nxeyb7C4Kqqx8vb2Yq/KSWLy3DLcnmOBpC+nTO81A/wyD/4adFaNjTJc43n5rPSBufpobPNtdHqrMDtYeriLZoKFTfFhIZVKNxcGKA5VsO14bMLpVbXHy094ybhqY3p6X3Sp8Ph+VJgf5ZaIhYGa09rSl7asOVfmJIxC/QwfLTHRLCvcXWSB+1yI0CsqN9pDeOFqljC6Jep6b0h0BzshT4oddpUTrlMy/cxA+n4+CagubC6q5skfLKsFOccGx1F0S9MgkZ668UMml3DuyA/U2Jz/sKuPjDcdZNHsoqw9VoVFIGdIx+ow7wx1idSx/aATL9pcjkwikR53+ZwrtUz7aXR62NlNTOtxecRRREI+hxuriurc3+AvAl34+RKRGwQ3909qtqrM43OwrNfLCkgM43T7uG9WBPumGkNfGarODh77Y6ffMyorR8untAwLI8RM1Vj9xBKJS7tVlh3hiQi7juiWwbH8FKw5UMmveVp64sgt/vTKXcLUMnasOPpgI5Q1EaUQa3LqE8LB4HhjTkeX5FaLfVKKeLonh51w9GNB8cDj5bmdpwL+bHW6MNlcggWuphKVPwq7PRbXTFS9B+uAgc+ezjRqLk5I6G+VGO7mJeiK1imBF1DnAmZwTZoc74JoGMH9LIbMvaXvh2hxWh5tqs3iNT43S0Dct0n+M+0rrg4qSr3cUMzkvKajIub5/Gu+tLfA/XymTMK1vKm2GLga6XQ27v4SyPZB3IyT2En2SWsHJqUQAlWYHi/eUsezBETjdXsJUof2hrE43P+wq4Y8LduP1icf70tSeVJkd7KsRiEkfglCwxv9848BHeW9H03hfaqSmVR3fyM6xQUr1iT0TA46l0XD8/ks6Umt1Ehum5NGvdvn93oZlRzP3pj7M23CcHYV1XN41gXHd4oNej88nNuJOhsvrxXdaLo1tQ3qUlq/uGsRryw+jkkmYPbojkRo5h8rNQc89UG7C4/UiPQv3stOBXCIhL9XA1pOagcv3V/DY2M7E6VV8ta2I7Lgw7hyeSUyYCqPNxb5SI++tLSAxQsXtQzOJ16uQSATMDneABxXA++uOcevQjN8l4d0aQhOkdXi9vgtWqd4a3F4vX20r4u8/iPYl207UsupQJYtmDz0nyrmSOhtXvraGugYFXO80A2/d2LvVyYEItYLpA9L89gEA6VGaNgUcXMRvF/+/riy/IUTrlLw3ox//WnKAHSfqGJ4dzd0jOgRJyhUyCbEamWjuuPxFsFWL0v7YLiHNRM86mkmpAZFActtAGlx8toQIjYK7RmRx44A0PF5x039yB97s8PBps1n7L7YUMfuS7LNKHgmCwMSeSXy3s4SdDcadozrH0islosWfKa238e8lB9lxoo4RnWK4c3iWXyZrdbjZ0CwJw+31UVJvJz685S6P1+tj0e5SvmiI/D1aZeWq/67l23uH8OClon/M6aqOth6vZcZ7mxnaMZqf9paxeE8Zf7y8MysOVvi7djE6ZauvuRHROiWv39CbWqsLt9eLQaOgwuRgQo9EMmN0XNM7OUgyfKDcxNVvrPP7x/RLN/DG9N5Bm/89xUY2HqsJkskDOFxt72rUWpzsKann533lDO4QTd90Q5BirbTezoTX1viNcTvFiV5NZ0vubHV6eHpSV2a+v5kjlRY0Cil/uaILb6w8wjfbi3lyYi6XdokP8AVqxJmmV3i9PvaXm5i/pSjgBn/n8MxWyaNeaQYGZkayvqFwyIrRcW3flDZFrLcF0WFKnp7UlT+Ny0FAIDpMeVqGzy1BJZeSEqlhxqCWfZPOFZRyCXlpEaw82FRYK2USIrUKf7z6jhO1AcoBgIXbixnfPbHN3iA+n5gwVGNxMvWt9X6/jFve38zXdw+mZ2rwOby3pN5PHIHYif9o43Huv6Sjnxg8UROcZHa00ozD5SFKp+SlqT2xOtwIgoBOeVKi1f7lTcQRQN1x2DYPx6A5fLThBK82jP2tPlTFsvwKPp014LRGWo02F3aXB6kADrcPh8eLSi4hXC1Ho5Bhsrs4UWPl882FZERrGd89AaVcQk6CPkC9KZcKgfcPtxM2zYXtDerZ+iL4dCrM3nlOyaMai5PHvtrFkgb1p0ou4eu7B9P5HI9ony48Xh8Hy0043N6g9FalLNgLrM1w2bHW1/D6ihK+2VWJw+2la5Ke92/pR7ROGdKvKD1KG3L0Ny5MyZI5w3hvbQECMGNwOnH6dn7XdHEw8B5xJF/StvttjSW4C19tcZyy0WO0ufnrN3v976XD7eXv3+/jr1fm8q/lhxgy411kJ9ZC6U68XSZR7Ixm2UIxBEEll/Cvq7u3ei7F61W8Oq0Xz/6Yj83lYebgjJAKKINWgUGroNbqYMa7m/37IIBVB6uoMjl5YHQ2NqcHnVIWsijXKKVM7JnkV3EDjO+ecEYG76eCTiUjL9XAq9f1bAilEf/WhJ6JAcECANN6JyM1lYqfqTpSNMo/jzBoFbx0bU9u+3AzB8vNxOiU/Of6Xhi0cibnJXAIzoYAACAASURBVDEmNw6lTOJvKG05XsPM95tGyL/dUcKPDzQRCL5mmySvj1NZc/0uMb57YlCS9dW9k3+TxBFArcUVZL5fZXZSXGs76+SR3eXh1WWH/MQRiLXC4Qpzq9cVhUzCTQPTSQhX8fWOEnLiw5g1LOs3Pyp4Ea3jInl0ASM+XMXTE3JDKloCYKmAt4aCo0GltP8HuGUxpA089weZOSJ4rcvE09pon67htcPloc7mosLkIEqrIEwlOyNCKSZMybsz+mJ2uJEIAlqlrMVRkiqzg5nvb/YrxI5UmimutfGvq7vj8fnw4SMv1RDQxZcInNIk1ebyBBi+gujZsGx/Bbe2MOrYFtRYnLzSQCBUGB2kRmo4XGFm9aEqPrq1P9/tLCFaJ444tfXi3zxiPE6v4rmruyMVBNxeHxVGO6X1dqK0CpRyCc/8kB9gPLypoJYyoz2IPFp5sJLl+RW8dkMvFmwr8hfaGoWUK7ontOnYbE43b68+6t88frj+OFPykvjblbn+gtft8fLummMBiUoHyk1sKajh8m5t+zsnY2jHaCK1TRGmw7PFx3fO28qDYzoRHaYgQi1nT7GRjxqUdA/N38nqRyJDkkcgGkBLBDHBrd7qxN5QtEVpT+39JJEIXN8vlflbigLWJ/Vq3ZssWqfktRvyqLe6cHl8ROmCx5vOFGfL5P5CQ7hawTNXdef2D7ewr9SIQSPn2cndiA1T+YmhUERZVqyu1ZSb5iiutfHSskNEaRU0FwrO21BA1+TuQUqxgyE68fmlJlxuLzKF+Nw+aZHIJEIAuTUlL5lwtRyr002lycHc1Ufplx7JwKxoCmutJEWoCa85EkwcVB+m3ubiw/UFAcuHKsyY7e42f6fqrE7K6u0cKDeRGaNDKoj10Z0fbaWwxoZSJgYTTOiRyPYTddz0blMy24frjzP/joE8f3V3ps/dSEm9HZVcwj8nd0OvPumccxjhwKLAP+zzQtluiGiHaqUF2Jwe7C4PerU8gIStNDn8xBGA3eXl6R/28foNeRdkklG1xcFN727i+n6pTOubyicnNXYeHJNN+Okki5rK8K1+geiizTyRNopZt97I5A8OsqfYSEmd6JsXF6ZiSl4SX20TSYlonYJHx3YKqbBQyqWkRWn56/guAGdWQLaROAK4rl8K76095j93pBKB6/unnfLnnB5vkKqq1GgnI1rDx7f0Qla3D/YuAAQkG98gefTzrH10FJUmB/HhKiLU8lZHWfRqOVd0i2dgViQ+n9iwa8343esliNwGcPt8yKUS5OqWf1avkvOX8Tn0z4jklwOVDM+O5rLc+NNP9W0Hmt9PkiLUvDujL//+6QAuj5f7RmaSXb0MPpwFagNc/R6kDgL5+S12U6M0fHL7ADFtTSIQpW1KMz056bLO6uTNlYGESLXFyb4SI7GdVGiUMqbkJTP/pOTlqX2S0SnPvWrxQkNalIZXpvXkhSUH8Xh93DMy65x7pJ5LyCQCkVqFP0mvEWezYd4Ip8dLSb0taL00xFpzRGoVXJ2XzPDsWJQyAcPFpLXfPS6SRxc42mRufXRlE3HUiLUvQ3w3ULZR/eO0gN0o/l+pA01M28bO9Ikw4TVY+lfR/6jPTMi+nDNycg4BnUrKjQPS+HxLIYkRakrrbEzOS0arlLKnpJ7pczdhc3mQCPDUxK5M7pV0RqbgzQmRlmBzegJGCwG2Hq/B5HDzhy93crDMzNwZfThebWVfqRGdUsbfJ3UlXN36sankUgZmRfLLgUACKS+EkqA9EMC/wTxQbiJap2RAZiTvryvgxz2lXNUziduHZrRqllhhtLOjsA5BEOiREh6yA9JYsB6qMHHtm+v9qUyf3t4fk90d9PzmqU0AIzrF8M6aY3y2qZCPb+/Pgm3FqOVSbh2S0WZiy2h3886aYwFrC7YX8/BlnZrII6+P4rpQN81AA866BvNgQRBHyvQNKUPlRjufby7E4nAzfUAa8Xoli+4fyvwthdTbXNw8KJ1r31pPab2dez7ZBoiKh89mNZG7Pp8YR51sCBzxM9ld7Cis4z/LDyOXCjw4phM7C2t5+od8EsPV/Pua7vRKDZ3YdjKyYnS8Ob03/1l+CIkg8PCl2W3yN4jSKtvtD9QWVJsdWJ0eZFLB/162BLfHS20DefZbSk5JMqiZd2s/7C4xitmglSM/6ZqaHqXhb+O78GxDml1CuIoHRme3Hnl+EmxONy/+fJATNVZyQniPpUVpQ0bSj+wcyz8W5Qco+q7pnRxgxBmplfPZrAE89f0+aixOpg9I47LceARBoLjWxuWvrGZsbjw+YMS/f8Hl8RGvV7Jq5mQUq54n4Jf3nYkgSNCr5AFdTWi7qs5od/HaL4eZu1o8lwUB3rghj11F9RTWiOeuw+3l8YV7GNYhmpeXHgz4+WNVFtFvKcXA1/cOxub0oJRJCdc0efwY7S7wyNEl9EBStivwAKI6nPIY7S4PRrsLlVwa8vtcUmfj5aUHOVxhZmLPJK7skehvStRag9UqFUYHLveFKR+wOT1Umhy8vuIwz07uzvBOMewtqWdMl3hSDOr2e6JZquCz6xCKxeujpmQ76XXHeGDoAzz1c5FfaWrQKvjz+C7cN6ojRruL+HBVq8mAcIak0WkgIULFd/cN4bXlYpPm3lEdSQg/tUpALZeSEa0NKBSHZccQp1cR4amBeZPE/VkDwjxOwq78D4kRbd8TSKWSU4ZgNCJSq+D+UR2546Mms+/0KE2bfXEitUqm9k1hUq8klDLJ+fXiPAlhKjmjOsfSIzkcn8dJ1OonELbMFf/RVgtf3AT3bgZ5/Hk/trYQ51KJgCbE/b0xZEKvkvPYuM4My47hlwMVXNI5joFZkWeU7ns6qLM6G/bgAvoWRjPPNfRqOeO7JzIoKwoQiNT8tgMODFoFf72yC9e8sd7vgXtpl7h2+SK2FXqVnBsHpLH2cNOkhFImoX9GiNTJZqi1Olm8p4wP1xcQqVXw+BVd6BCjPS9j1xfx6+AiefR7gCpE7LQqErNHirnehtPtQ6OUtnyjclrw5X+H8O194HGKEbU3fwtxXU/9t9UR0GMadLxUfKwMa5OhaXuhU8q5a0QW1/VLZVdRHd2SwzFoFNhdXh76Yqc/Xtbrg6e+28fonLizlyjXCuRSCQqpJMDc/NYhmTz93T7/RXj2p9uZMzqbnqkRqORSwtXyUxb7UonA5Lxk1h6uYuXBKqQSgZmD00k/w7Eeg1bBQ5dmM/2djfh8MOeLHTw/pTtPT+yK2+sjRqdslTgqN4rjXeVG0dMhIVzF1/cMDmn6XGd1cqDUyNybRfLs3TXHeGvlUWYMTueRL5uKs2idgozo4NeVmxjObUMz+GBdAWuPVPHIpZ24NDcOfbNOvN3lwexwo1XIgjYsLW1XT65tVXIpMwalB6jD5FKBMV2akoGqzQ4eX7iHxXvLkAgwrW8qD1+WjdPt4/JXVlPfkDjzwfoCFs8eRlaszp/qU2G0U2Fq8sAA0QfJe9JBCAIhP9ujlRZufKdJQbHh6Ho+ub0/YSoZxXU2ZrzXcmLbydCr5VyWG0ffdIPfhPbXQoXJzh0fbmV7YR0SAW4elM79ozr6FTlGmwuH20O4WoHF6WbBtiLeW1uAXiXnz+Nz6JEc8ZvxcghFdlmdbopqbcxbL260lj003O+F0h6pt93lpaDawvbCOh4Z25kOsToON6T3JIarmNo3JWTBFhumZO5NfXj2x/1YnR5uHZJB34xAE2C1Qkyye/+Wvni8PiI0YkKky+Nl7upjeLw+ruuXyiNf7uTKHomoZFKW76/gfzvs3H3Td0iWPyUaDA99GKI7E6VU8JfxXZg1b4v/3JvUMxFtG7vjlmYksM8HT363j6cnBt6jPF4f9haMOgVBQCIRQpLd9VYnb685xkcbjvPjLXNIKNwo+vkJEtG/T9t6wmCV2cGbK4+wZG85HWN1/PXKLqIHTcP7X2myc/Ub6yhpIKS3naij2uLk3pEdUMgkZEZrCVfL/dcREI2IDaej4DmHqDY7WH2oiuw4HTqlDLPDzUPzd5JsUDMwM4rECFWbfPgaxy1tTg9KuZRwnw9VA3HUCNn+rxl50+O8Ha4i/aT7g0GjOKUh/K8JtVxGToKef1/TE/C1OR0pJkzJhzP78bdv97C7yMiQDtE8Nq4h0bG8OoA4AuDIL+CygCqYOD4bEASBgVlRLLh7EJ9sPEFWjI4peUntukYJgtAuJeW5RJROCaZaaCSOGuEwio3PCxRhKjmPjO3E2iNVfsV25/gwMqObGsNRWiVX9kjkim4Jv8qIVpXZwWNf7WZpfjlKmYQ5Y7KZ1jeFCI2CGosDi0MMfdG0ouI/W5A2hNX8XtA5PowVfxjBjsI6kiLUpESqz9l7OCAzilem9eTdNccwaBU8NrYz0acIafH5fKzYX8EfF+z2r13137WseHgECb9xA/aLaBmnvKsJgiD3+XyuZmvRPp+vqqWfuYjzjOQ+Yme0uiEWVa6hfuTf+XBDEa8sPYTb66NTXBgfzOxHfLMOWJXZgcpWg66ROAKwVsPCu+DGhaCNxukWO/8erw+VXBJceErlENZ6BO+ZwuHysDS/nD8t3ONfe2piLpd3jQ/y5xDl3+1IVTkDhKlkPDK2k9/QTiLAJTmxvL6yKaK2oNrK7M93sHj20HZ5ukTrlLw8tRc2l6h2CVPKzko3qUdyOItnD2X+liIyY7T0SjW0eUO4YFuRnzgCUZ3z7c4Sbh8abChutrv5YksRG45V0yVBz5MTc3l+8X4GZkbx1o29+XjDcVIiNdw9sgMxIYrsSK2COaOzuX1IJj5Ap5QGvf5Kk4PXfznMmsNV9E4zMGdMdgCRpVPKmDEoPWAOfkL34KI1J0HPuzP68MaKI6jlUh5pdtNcml/B4r0iueT1wSebTnB5t3hqG1KrGuHy+Hh71RGentQVm8uLSi5FrZAyNjeeH3Y3mfVmxehwNBCeYUoZT07MJaIZKeb2ePlwQ0HAmsfrY3l+Bf3SI1maX4HD7aW03tam5DnhAlDuuDxe5q0/zvbCOkB8L99bW8BVvZIIV8s5XmPlie/2cqzSwrhu8Uztk8K/fzrYQA7bmD53I788POK8kkdOt6gcOlud86OVFia8tgavTxyp2Fti5J9XdWvxHGw0cz9aZUGnlJEQriJKpyRcLWdyXjLbTtTx4Bc7eOaqblidHvQqGR3jwkL+Po/Hy/FqK9/uLOb2YZlEaRV0TdS3WIw3v9YLAqgaRtsiNHJevyGPr7YVY3W6eeHaHvy4u5SamL5EXz8ffD6cinDqbU7kPhcDMiNZ/tAI1h2uolN8GJkx2jYb/rs83iDvsxqLk9hmHjYquYQIjZw5Y7IDSNfMaC2phpabGrVWF681xIpf/3khz4+dR0eDBL1Wg0Slb9U/0Opw8++fDvDZ5kJA9IvaU1LPd/cN8RNVNRaXnzhqxGebTjB9QCqxYeLn+c09g3nup/0U19qY2ieFcd0SLoiueaPZbK3FyQOf72D1oSou7xrPP67qyp8X7sHkcONwe5k5JKPNKsXjNVZufGcjhTU2NAopz03uyiW970Sz9c2mJ6kNqBVyFt49+Dfpn9Fe5YXX6yM+XMUr03phc3oCE/7UBpDIwHuSQje+K0ibvS+WaijdCcdWQofRENdFbAaeJvRqMbWwR3L4r2YufVYhlUNKPyhsujagiTwnDc+zicyYpvCHhHA1eQ1pn83xaxBHbo+XzzcXsjRfHLt1uL08++N+RnSKwev1cd+n21l7RGykjugUwwvX9PjV9yG/JShlUhIj1CH93s42IjQKJvRIZGjHGGRSIUBBW212sOFoDasPVXJplzh6phqI1Cqot7kCxpZB/A5sPVHL+Ivk0e8WLe7ABUEYCcwDlIIgbAdm+Xy+goZ/XgLknfvDu4g2QRcLt/wIhRvBWgsdRlPtVPLCkibp/oFyEy/+fIAnJ3T1b2qqzQ5ufX8zb483oPM0k81X7AOvB4vDxbL8Sh5fuBuTw03PlAjenJ7XqtnzuUCdzcU/GgiaRvxz0X7GdInjkpxYft7XNN6VFKH2S3rPNbRKGdf2SWFMlzgKqi10jA1DIZWQmxjO+iNN8k8xWav9xI9Bq8BwNg8Y0KnkdIqX8+cGL4j2oLmCBqC0zobZ7gogdmotTuZ8sYPNDYlTe0uMzP5sO/+6ugdKmYTLcuMZlBWFQipB2UpnsrWI7Hqri0e+2skv+0Xz30MVZvJLjbw7o69/c6JRyrhjeBb9MyJZvLeMoR1jGNQhKshHRK+WM6pzHHmpBqSSQBNdl8fL2sPBXPnGozX0zQj8dJQyCdf1T+OzzYUs2lNG9+RwbhucwZMTcokPV/HL/gq6Jul57PIcNAop6x4bhVQiYAjhPyERBFJCFLzRYUq2nahteA7nJHXjXMHm9AQkzDRiT3E98eEqrn5jnT+p7s2VR7E43FzTJ5kPG2KIvT5Yc7jqrBprt4Qai5O1h6tYvKeMgVlRXN41/ow3vVanm9d+OYxcKuHZKd1Ry6UcqjBRbnKglEtDeoKU1NmZ+N8mM/d+6QZeny4moFzRLQGzw83HG4/z0s8HeXpSLh1iw1rs9ldbndzy3mYqzQ6+2SGSmd2Tw3l/Rj8iT9FhBHEc9bYhmSzcVoxWKeOhL3ZwXb9UUiM1HKuycF3/VAzeeijfT01ELnNXHeCbHaUkRqh4emJXsmJ13DDg1P4vzaFRysiO0wX4NV3dW/RgGpEdw8pDlSQb1Pz76h5oFTJ6pUTw4+yhfL65kMwYLZd3jW81VazM2ETsHKuycM1HR0iP0jD/zkHEqFr/zM0Otz+dsxHlRgcmu5vYBlFIKCIhSqfwjxVKJQLhGhl/G98Fp9uLRiE9rfvF2YTJ7uJ4tZV56wtIjtQwJS+ZiobGQaNK850ZfYjWKdGpZG0mjuqsTh79cpd/3NDq9PDg/F2snv1QAHnku/x5YuISkJ5nM+PzDZ/PR7nRwbwNBZTU2bl5YDqZMdrA+54yHK58FX6YA24HhCeLjzUn3X/sRljxT9j8tvh47csw9CHxvzM0e/9dEEcgEmmT54qjaqU7wJAOV797RgRbKBhtLixONwICWqX0tD1qXB6vSNj/iuEPp4LF6WH1ocqg9R0n6ogOU/qJI4AVBypZd6SaK3skns9D/M2hzupsCCMQvbDOJykoCEKQssloc/H09/v4ekcJAJ9tLuSOYZnMvqQjSpmEZIPav9dvROJ5rhEv4vyitfbt88BlPp9vryAIVwM/C4Jwo8/n20DL0yAX8WtBFws5V/ofHs0vD3rKrqJ6rE63fyNrsrvZWVRPnSeeWE2UqDhqRIfRIFNRb3PzwOfb/WasOwrreGZRPs9M7o7uPHb/vT4fFmegmsjm8uDzwT+u6kaYcj+rDlXSIzmCJyfmYnd5OVxuIlyjOOddS71ajl4tDyhon7mqKze9u4nCGhsquYR/TOp23gitcwGP14fd5eHWwRl8uL6Axik9qUTgstx4NhytZnSXJs8Ap8cbdDMpNzpIilD7C/AzNf2zuTysOBC4aTlRY8Xl8VJtdhCuliOTiglXo3LiGJVzanVcKCWEXCphTJc4vt1ZErA+NDuajrE6DBo5tQ1eLjcNTOPrHcW8t7YAgPVHqll9sIp5t/bjD5d14s7hmagVMv+5E9FKw1MiEbiubyqfbSr0F7dZMVr6phl4ZlE+SpmEJybktuoXdKFBp5QxNjeedUcCEwj7Z0RRbXb6iaNGLNpdxt+v6uonj0BUbZ1rWB1uXv/lMHMbRqV+2F3K8v0VvHhtjzarZUJBQEAqwJwx2aw+VMmCBuPfF5Yc5JVpPbmiWwKyk9QmDpeH11ccDjBz31RQy8EyE9EdlBi0Cm4bksGUvGRkEuGUKW02pycgRhygoMqC0+Nhy/Eaimps9M2IJEqraJGAig9XsfyhEaw/UsWjl3fmqe/2sbfESM/kcK7KzkL6/jhcKYN5X6Hn9dXiOVNcZ2PKG+v45eERxLZBJdcc0TolH87sz+srDrO7qJ5Lc+O4qlcSEgH+ObkbPkSyNU6vRBAElHIpOQlynpiQ26bfnx6lRSmT0Cs1gqwYHfmlJvpmGNoUNyyRCCRGqAKILUEgwKdEr5IxOS/J/3nLJAJPXJnrvxZWmux8ta2YF5ccxOnx0ikujLk39yEl8tdTROwuruf6tzf6H3+y8QQvT+vJ1Lc2ACKBtPFYDYvbGRvtdHvZU1wfsOby+DB6lcTfuxnK8yGhB4Im8lcnjmotTipNDkrqbXSODyNSqzjrPh6VZgdXvraGyobGzMLtxcy7tR9DO8Y0PUmphdxJkDVKTLKVa8U938lwmmHru4Fr61+Dvref06TA9qDO6uRolYWl+8rpk26gR3LE+VehGNJg+lfgcYBEDtqYNnl01lmd2F0eBCF0s6cR1WYHf/8+n693FiMRBG7on8oDozu2a1TcZHdR0DDqH61TcMvgDOL0qrOSdFprceLyepFLJG1O9WwNWoWUoR1j2NCQytqInqkR1FtdPH91d77ZUey3cdh2vPb/NXlkc7qpMDn4bmcJsWEqRnSOCbh+lhntzPl8B+uPVJNsUPPStT3pnhzeapP1XMPicPNNs/3v++sKmDlE/F7OGd2JXw5U+j0Nh3aMJi3qwlbzXcSZobXqX+Hz+fYC+Hy+LwVByAcWCILwGP8vQyB/W8iJDwuK0B3VOTag0Gy8Xz65rJxXp3xJ1M/3Q8U+fB3GIIx/GdThFJfVBKX4bD1eh9XhPqfkkdPtodYqxjGr5VJUMinDsqNZdVL09aCsKNRyKQatgqcndcXSYLr8zKJ8P0OeGqnhizsGnFellNnu4rNNJ/jLFV38qTPfbi9maMdo9L9BMr7K7OCrrUWsP1rN6Jw4fnl4BM8s2o/L4+WmASJZ4vL4uCQnzj/aIxUEMqO1HD3J/FOrkKJTyc5a1LtEgHB1kwlvdpyO56Z0518/HWB/mYlx3eKZ1jf1rGxOB2VFceOAVD7bXIhUInDLoAyKa21kRGn5cfYwFm4vxuxwcX2/NC55cUXAz+4rNWJxuInSKdvt/xAXruK7+wZzoMyEXCohK0aHIMDKh0eilEnQq9tvTGlxuDHZxQQ1taIVL7RzAIlEYHyPBA5WmPhicxFapZQ/X5FDTJhSNCxuhiSD2n9eA4zqFEPH2HNPHpkdbuZtOB6wtnx/BVanp1XC71RQK6Tcf0lHrE4Pz/64P+Df/v5DPoOyogL8GpweL4U1wX4chbVNazKp5JQEeYXJztrD1XRN1KNXyzDamt7Tf13Tg0e/2s3KgyIRK5cKfHnnIHqkhDbilUslRIcp6RgfxqwPt/rHhhVyKY78xShrjlI35Cm+XVYX8HMWp4eCautpkUcgklZ/GpeDzekhTCULINka4fH6qDbZcXm8KGVSonSKNo0bGjRylj44nKX55Ww/UcfUvsmM6BTbahpVI6J1Sp6d3J3r3t7gT8u6b1SHAOVIhEbBn6/owszBGZyottIjNYJIbdO92OxwB3wfDpSbeP6n/Tw1oespCzyLw43F6UaC0ObXeyrUW538Z9nhgLXSejuVJjGhs/Ezv3dkh3aTqSqFlIFZUSw9KU1UVFopQZ8N0dlnfPxnA3VWJ88syvenWCllEubfOZDuyWcWWtEc+SVGP3HUiP/+cphuSeGB761EJm7aBGnD/5t9zj6fmAwYsNbssakcjq0SiaaOl4oElPT8NB+cbi9fbi3yj/gDTOyZyFMTu7aJpD2r0Ea36+mVJgcPf7mTlQcqCVPK+NuELlyWGx+yAbb6UBULd4gkscfn48P1xxmTE8fQ7Jig57aEg+Umpryx3v94/tYifnpgWJvG01vDiWoLc77YybYTtfRKMfDy1B6knoGKt9biRC4VmNo3hZ2Fdfzc6Hk0Ohu708NjC3YjlQjcMSyTvFQD/1l+uM1Jub9XHKu2MuE/a/xJhqmRGr66axAxYUpMdhdPfLPXP7VQVGvjpnc3seIPI4j7Nb3DWrilNC4nG9QseWAYRyrNhGsUxOnPTdDKRVw4aK36dwmCEO/z+coAGhRIlwDfA1nn5egu4rQRoVHwvxv78KeFu6m2OLmyewIzh2QgP2kzrFfLeXxcZ95YeZQbv/cyZ9Bb9E8PR6fTIajFDVKSQY1UIuA5iUHqlx55Tj1HnG4PG4/VcM/H2zDa3cSGKfnotv68cE1P5q4+ytojVQzMjGLWsCz/xrpxvGlHYZ2fOAJRifLGiiP8aVzOeWPurU4Pn24u5K1VgSlfNw5MP+3C6ddCrcXJg1/s8JN2Kw5Uck3vZK7tk8KWghqe+G4fx6osvHFDXkDREh2m5NXrenHjOxuptbpQy6W8PK3XWRnFcHu81Fic+IB3burDtf9bj8cLj47tzP2fbfePQ+wtMVJpcvLo2M5nnPzh8fqI16uZd2t/PF4fi/eU8fD8nXx37xByk8K5a0QWdVYnZrubT28fwNFKC8/+uJ9KswNBIGSh21bEhKmCDCCjTpM/MdpcfLzxOC/+fBCXx0dOQhjvzeh7XsnVSK2SP16ew/2jOoIgGuDKpRJ8wKxhmfyvwZ9KLZfyj6u6kRShZtHsoahkEiI0inNuuAmAIKpDTi7pBOHsSG7TorQh42/NdndQVyZMJeeGAWmsOtREmsulAoM7ROP1+qi2OLC5xOQwg0YeUhVRYbJz1X/XUVxnY3ROLM9P6c5jC3ZTZ3XRIUZLUoTaTxyBqAJ5+vt9vH1zn1aNidVyaYDfnF4lQ2oWx7eU5iJSI3tRUB1IfMWEBf++aouDklob5UYHXZPCidIFptKdDJVc2iIB6/Z42V1cz50fbaXc6CA9SsPcm/vSoQ1ko93t4V8/HfCrC7/dWcL0/qk8Nq5zUPR3KOQm6ln1yEiOV1uI16sI1yiCRhAjteJ3t2tScMBFQVUwQbin2IjV6W6VPKoyO3h20X6+21VCYoSa56Z0o3tyxJmbFAsCoSaVDBoFj13eiVUHq5jUM4nOCWFtIthOpHfscAAAIABJREFUhl4l5++TumJx7GT9UbG7/vLUnr/6mF5z1NtcAfHnDreXv32zl3dm9DmrgQOh9iUKqSRwVMVphcNL4Zt7RIPnmE5w/XxRReP/IS10vRp2z29ay5shhpiASBzNvQTqRW8uR95t1A99Aq/Ejdcn3uM0Cuk5UwLV2Zy8svRQwNo3O0p4dGzn808etQMOt4f/rTrCygaVs8nh5uH5u+iXHhlEHrm93iA1NIij1m0lj8wOF//95UjAWp3VxeaCGsZ3P33FTpXZwW0fbvErJLedqOW2D7fwye0D2t1AqrM6WXOoivfWFRCplfPwpZ14amIuT0zIRSoRqLM6GfvKar9P3R++3MXHt/UnOULdpuvx7xVmh4uXfj7gJ45ArFH2ltQzolMsNqeHdUcCLRJsLg+1FucZE4dnAq1CxuReSXzVoJwFmDkkgzCVWAdKJAKxetVvrr65iNNHawzAY0Ac4I8g8vl8RYIgDAfuPdcHdhFnBq1SxshOMfxw/xB8PrGz1+hJY3W6OV5t5a2VR1ArpHx6+wB2FNYSnxCOT6dBctKNPFwt5z/X9eKPC3ZTb3PRJ83Ao+M6t5s8qjI7OFhmoqjOxqCsKKJbUWHUWl1+4ghEn525q44yZ0w2Nw9K56ZB6USoZWhDbOqPVJiZ3j+V8T0SkUoEdhXVsf5INXaX97yRRwqZhJx4PRuPNcl4pRLhjMZdfi1YXZ4AtReIsvqZgzP436qj+IDr+6XQPzMy6Gc7x4fx0wPDsDjdaBQywtXykBHOVocbo92Nx+dD06Akawn1VheL9pTy4pKDuLxeZg3LZM0jo9hfbiLFoPYTR434amsRd4/IOmPyyAcs2VfGv5YcCFhvPA+qzY6AmfA+aQZen57HtP9tYFrflDanSp1r1FicPLe46TXkl5p48eeDPDkht82pQGcDobyswtVy7h6RxfX9Uqkw2UmL0voJkfNCGJ0EvUrO/Zd05J8nqUGu7ZN8Vkjzxij3bknh7D5pfGf6gDTCQlzT+mdE8sI1PXh37THCVDL+OC6HGJ2SI1Vmbn5nEyX1dvQqGf+5vhcDMqKCrnPrj1Tj9HiZM7oj2fFhWJ0evrlnMDUWJ0a7K8DvpxG1Vhd2pwer1E2p0c5nmwqJ1imY1CuJ2DBxNEwtlxKlVfhHDTcdq8E+8iq06/+Nfvtb/HXCAqYUGf2G8jcOSA0io2osDv4wfxfL94sqFLVcytf3DKJTfMsG1c1RbXZQbrRTb3OhkEmI16soNzooqLZyz8fb+Pj2/qcsjqxOD9/tCpTlf7a5kHsv6dgm8kgplxInl572Br9jrC6oSTO4QxQRrRTVdpeHN1Yc4cttIsFxrMrC9LmbWPXIiDMmg8PVYkG4/sg6v/I4PUpDdoMR+7hup1fEur2i8Xl8uJo3puf9ar4ebUGjOi9CIydSo+B4jZVyoz3gMzobyIrRkRWj5UilqNKVSgQevqxT4DiyvQ6+mikmGAJUHoDvHxD9etQNvkfqCBj7rGg5cHgpdB4P6UNA2VCsH13hJ45MQ//KIuVYPAdrOFxh5oP1x/F4fXRPDmfuTX3OWRHoDvHeNTfCv9BgsrsD4ssbsb/MFKTakUkkjO4Sy9c7igPWh3dqu+pIIgioQhCyZ0oIO1yegNFagIPlZn9wR3uw/kg193663f94zaFqPrm9P8W1NkZ3ieXZH/cHfa5rD1fx4JjsM2qknU+Y7C7MDjcerw+tQnZWRvx8PnC6g7/wjYpVhazBL/Vo0/dNLj09v9SzCb1azp/G5XBZbjxFtTYGZonJmudzz3gRFxZa/OR9Pt/SFtbrgX+csyO6iLMGqVQSMrKysMbKFa+u9m8KF24vZtlDI0gK4YyvVcoYnRNLnznDcLeUtnYKVJsd3PPxNj+ZcqqxCLvL4yeOAHqnGRjXPYHLX11NndWFViHl9el5DMyMCuq0D8iMpKjWyoz3NmF3eRnRKYa/XZnrZ8jPByI0Cv45uRs3zN1Iab0dpUzC05PO7zGcLUgEgooapUxChFbOmkdHAaFT0EBU25xqE1pvdfHJpuO89PMhnB4vAzIj+c91vVqMWi2otgREgj6/+AA5CXpGdoqlpC5YzRETpkRyFsY4aixOZo/O5s55W3E2GD5d0S2e4jobaoWUQ+XmAMXbluO1bCmoYcmcYURqRJ+MCpP4XWhu1n0+cazKErS2o7AOi9NzQWwEIjQKIjSKgGjucwGjzYXL4yVCowg5RqmSS5naN4V+GZH8cqCCvumR5CaGhzS0bg31VhdOjwepRAi4bkbplLw7ow/zNhxnx4k6ruiewJgu8SFJzgiNgsl5SYzoFINMIhCuUVBtdjD70x3+BC+j3c3dH21j+cOh5e3/u7E3r684wgfrj9MrNYK8VAPP/rifjcdq+HzWAGJ0ygAvpCl5Saw9Ukmn+HAm/Xet//x/Z80xvr9vCLF6FQatgjduyOO2eVsw2txIJQI2ZQy+25YjLH+ajAPv8PN9f6DE7MWgFdPhmhPo5UaHnzgCscv6jx/yef7q7uhUsiDixmhz4XB70CnFcc0qs4P7PtnG+ga/jWidgrdv6sMt72+mzuriQLkJt+fU1amAWLR5Tqp4pBLhvJk76lUy3rghj8e/3kO12cHonDjuG9kRbSt+Zia7259w1Ainx0tBtfWsKAmz48L4ec5wFm4vIsmgYXRO7Gn7B3o8XkqNdt5dcwyj3c2tQzJIjdSclYaK2+M9JwVpXLiSV6b2xKBViJ5HcWEcr7EGpWKeKWLClHw2ayBrDlVSUm/jim6JQSmC2GqbiKNGFG8VzbNPgkNhwNLhKjzpVyKVid56/qN1GMX/K7RUZ03i2Q+P8Mq0XgEJtruK6nl79VH+cFnndivKToUwlZyZQ9IDVDXDs2MueC9InVJGv4xI9pUaA9az48JCPn9QVhQ39E/l84YR95lDMshpBxmuUch4YEw2S/Mr/HuN1EgN3ZODFYvNYXd5qLe5sDrdaBUyIrUK/7khl0qCrvMxOmXANEJbUG91BXgQgnjd3l1cz3c7S+ibEUmXRD0LtwcSaJ3jw34zxFGtxclrvxzmvbXH8PrEBs5/r89rNXShLQhTyblvVIcApW+0TkGvhlooQqPg2SnduPGdTZyosaKWS3l2Srd27zvOBaJ0SvqkR2J2VPCvnw7QO83AtX1SfpNJmBdx5vj1q4X/Y++8w6Ms0y7+m94nvfdGEgid0DsoIjZsKDYUCyL2vk3XXVfXvrquZe0dRbGCNOlNwNCTECCBhPQ+vX9/vMkkw0xCEgjgt5zr8rqcl2mZeed9nvvc5z7nHE4rHE43724o9vExsjrcLNldwW3j/ePWAeRSCZH6ni/wVc1WHxWOw+XhH0vyeeuGoQE3jyqZhEidwpvsdcuYFP783V6vt43J7uLuz/NYcf8Eoo57X0abi5fbSaPXFNYwKOEYd01KR3wafd5TwjV8v2AsJpsTVUuK0vGFocvlps5kx+4UVFGnu/vqcLmpbrbx1Q6hG3nV0AQi9Qpk7RZ4nULK3DEpvL2+Ler+wfMzCVXLe6zk8ng81BntgIe645QwWw7X896GYh44LzPgpmbZvkq/Y9/mHWNcejgauZRbxiTzXotZtUQs4m+X5RDWhRSpzuB0ufnv+sM4XR6+nj+a4hojepWMOqOduR9uY2p2FJnR/hvJnaVN3DwmBaPNyTNL8lm+r4qMKC1/vaQfyWGaM9Jp7xOl9fNCm5QVGZDYbDTbsThciEUidAop6tNokN9bcLhcHK4x8fef8qkx2LhuRCIX9o/B4nCxvqiW+BAV2TF6wrUKgtVyBifKGZzYs7zD8kYLj369m02HBK+hl64eREp42/ceoVNyz+QMrA4hlrszrxqRSOQzTuJye/yKGZPdhcXu30XOTQ5l3ic72F0mqJxW5VdT3WzjLxf15aq3NvP0knw+vGU4728s5mi9mQv7xxCkklFQ2czyfdU+xHG1wcaOow2MTA2jxmAjTKdg+X3jsbvcKKWCalAkCYcr30fi8RCpCiLSX5ToRcNxBumtr7EyvxqD1cHsEUkEqWR4PB5KGyw8+f1e8isMTMqK5MHz+nCo2ugljgBqjXY+3XqUiwfE8vGWI2RF65BJTvw70yikzB6e6ONzddu4FPSnifDXq+VMyYok564xACilYkJPoJZSysRkRes4ctxoYGzQqVGNaBRS0iK1PDQt66Sfq8ZoZ/or6zG0+Jd981sZP9w9ln6xJy6IO0Kt0caK/VVsOVzHjP4xDEsOPaUKRZlYzJoDNd4iWC4Rs/COkd0utruCCJ2CmUPiO76DOhSkSnC2UwkmjQFZG0nocAnj/vM+2YHZ7kKnkPL+zbkMbkkQJXM6rHwCghLYX2kiNljFwWqj30v9drQRk92J/BSblatkEuaOTWVAfDA/7a5gZGoo0/pFnxJFR09gtjtRSCUn9GBUyiTMn5jG/opmfi2uRykT8/j07A7TKYWx7CzvWHZP1s6kMDWrHpzA0r0VhGkUjOsTfkJTertTSIVd8FkeFoeLELWMj24ZQU6c3pug9drswdz64XaMLZ6lr80eTGg3CVyZRORPbgJJoWouGxSHGLhsUBxfbS/1Kp0GJwYzOq17PlNnEkfrzby7oc12YmtxPZ/9epT5k9KQnmTyYFa0jh/vHssHm4qJ0iu5fmSSDwHT6oFksTuFBFal9Kxo7Fkcwvjmm2uFWuCXgmpW7q/inZuGnX7T+3M44zjzZ+Q5nFaIxAQ0uu5NVYzR5l/QNFsdHcq/w7QKPrxlOAs+y+NQjZHYYKXfOFKzxYnd6fZ77O6yRr9jGw/WcvPoZIJ60OU0WB2YbC5EgFbZcWz88RCJREToFB2y8i6Xm73lzdz20XaqDTZig5S8OyeXrGhdp0WkzenCaHWiU8pOujNYbbBx/strvSl2b687zIr7JxAX0rYh1Spl3DkxjQv7R7PjaCOjUgW5ak+JI4vdyc7SRh79eg8hahlXDUvwu8/W4gaMdichx21eLXZnQL+QoYkhSCVigtRi7p6cwTXDEzlSZ6JfbBDBatlJG8hKxCKSwzS8tOIAWdE6DtUYWV1YQ31L4bu1uJ65Y1N4cfkBn8ddNCAGl9vD88sKWbhNIOgqm63MemsLS+4d26G6qjcRrJbz5vVD+ePivdSZbEzvH8NtY1P9xglrjTYeWbSLXwpqUEjF3DUpnRtHJXVJKeDxeDDZnChlkrOu01hndHDZ65uwtEj1//zdPkQiEasLqlhVIHQDhyQF898bTm5D1GCy89g3u0kMVTMxM4L8CgNzP9zGV/NG+XzvUokYbQ8+I5lEzLCkELYfaUs0DFHLULcbj2ww2dlxpIH4EJWXOGrFnmNNRAcpuXdKBqsKqpBLRFw/MgmjzSmod9YLKT+B4HZ7ePyb3fy8V1C9jEwN5d+zh6CWSagz2jHbnWgVgr/Pia6W6ZFaPwPvSwfFsvZADSv2VzFjQCxBKhm1Rhuz/7uFsgZhHfhs61FCVDJSwv39M8obLQxPCSU1XMMLVw0EERTXGLG7PIRqAqdv6pQy7j8vg2n9otl0qJYJfSLoE6U7rZt2iURMbAD1b0fQKWX8aUZf9pU3U9ZgQSyC+6f2OaPKxo6wprDaSxyBQF6/ueYQz181sEfjOA0mOw9+ucvbwf9uZzkLJqWxYHLGyfs9taDJ6vBRT9hdbv76w37em5N72sdoUYbA7IWw+A4wVELCCLjwBVC2rYcNJgf3fJGHuWU9N9ic3P15Ht/dNUZQAGujYN5G2PIGWXFhlNSWB1xPz8uOQtdLjYJQjZxp/aKZnBXp06Q6nag3CWrHpXsrGZoUwlVDT6yeiNQrefP6IVgdbiRikdAM7OQ80yplAdXYXYVCKiEhVM3t47tuL9tgtnPvFzu9a1uDWTgfvrxjFBE6BVKJmCGJwax6cIJXmRSslnV7jVYrpNw/tQ+rC6q9EwKte7AfdpfTN1ZPVrSOz24bSZ3RjkQseKX9ngiGQHXEtpJ6rPZktMqTO2+1Shk5cUE8e/kAxCKRXxOxtXaAs+vzMlqdfLjJV3GW16JaDztD7+kczhy6vEKIRCKNx+Pxn3k4h98VpGIxt4xN4cvtZRhbNnNRegWTsyJP8MieIzlc7SeXvXlMSodmrBKxiOwYPQtvH4nL48Hj8TAwPohd7QqguGBVwE3igPggRCIYkhiCViFle0k9Y9LDe+RVUm+y8fSSAhb/VtbyuSVzRzuT7pNBncnuJY4Aypus3PHxDm/qQiBUG6z8d91hNh+uY0xaOLeOS+2xZNTj8fDV9lIvcQSC78dnvx7h4eM6zSEaOSEaOYMSQ3C43DSY7VQbrGjkXSfTWtFkcXDje7/icHloMEkDJmdN6BMekOAsbbCgkkmYlBnJ6kJh1CW3ZaTx+PcarVditDk51mAhSCUjXKvosdJHJBLSRL7NO0ZKhIbtJQ1e4giEJBalTMLfLu3HyyuLsDpc3DwmmbHp4ZhsTpbsrvB5vhqjjSaLk4jAqvdehUYhZXJWJD/dMxYQ0r/8TD9dbhZuK+WXFjLF5nTz0ooDTM2OPCF5VG+ys2xfJUv3VDAkKYTrRiSdVbLmfeVN3s11K77aXsrFA2O95NFvRxo51mg5qc2u0+3m/ql9+HJ7KYvzjjE8OZTnrhyItd1rN1sc1Jls7Cptom+Mnki9ostjPCEaOa9cM4gFn+Wxs7SRpDA1/752iLeLbHW4eH9TCa+uKuKjW4YTrG5LJQTBx0UuFbNgUjrXDk/gwS93sbEl4UUqFvHmDUP54tejLJiczqqCNvVRhE5BZrTex+9iy+F6jtaZKG2w8PBXu7G73ASrZXx664gTKkvCNHK+u2ssz/1cQHmjhRkDYokJUrJwWynXjUjE0rJGmWwuL3HUivc3lfDzfeORS8Te8Q4QvKkyInWkR2gxWp08sLCNZEgJ1/DF7SMDehOFahSMzVAwNuP30yFPCFWzeP5oTDYXCpkYrUIaMAHqTCNQoa2USeip+NJkd/qMfgC8u6GEG0cnnzLyyNCO0GxFjcGGy+3ftOp1yJSQNA5uXwceF0gVoPYt2ewut89vHISEPK/PkEQGoSlw/t8Js7l48PxM1h2o5unLcnhpxQGaLA5mDo7jqmHxvU76nyniyGJ38p/Vh3inRVWyKr+a1QXVvHXD0BPaMZxKk/TegNXh8u7pW1Fca8LdbhRXLpX4qfV7goQQFSsemMDuskY0CikmmzANUG+yc9Wbm1nz0ETiQ9WnNcn1VGJ4ij8dcl52FOpT2ExwuD0YrQ7UckmvBhCdSmgUEr/9k1gEu0obKawykJscQoRWcVLE6Tn8PnDCM1YkEo0G3gG0QKJIJBoI3OHxeOb39ps7h95BtF7pjSVWyiSMzwjv1QIvQqvguwVjeH31QY7Wm5k9PJFRaWEnLObbzxe/ft0Q7l+4k20lDeTE6fnXrMGEBSBxlDIxy+8fz/oDtTSY7Tw8LROtXILD7SGAV3OnWF1Qw9ctaSt2l5s31x5mUmYkI1JPnme3O91e4qgVR+vNOFyBN6YNZjv3fbGTTS0F3t5jzRRUGfjXrEHd9o1oMNs5UGnwKWRb0Zl5pcHqYFV+NX/7cT8Gq5OrhsXz4Pl9urWpOlRjwtHiQWKwOdl8uI4/zcjmXyuLMNqdXNAvmutGJvltLj0eDx9vLuHbvHIevzCLe6ak4/GA2+Px26A0Wxy8v7GYV1YV4fEI59/CO0aSGtHzlI8ovZLPbx/Jou2lzB2XwoaDtdhdbuQSMXPGCIk3cqmEN64bQmKomhCNHKVMQp3RRkKo2mfESCzitBpoN5rtmGwubE4XeqWMcJ2iUy8qs93FxoO1fsfzjjaSFKZBLhUjk4gx2ZzUm+zsKmskLUJLlE7Bv1cf9I4NriuqZU1hDe+eRbLmQNL/6CClDxkIAllxMnC6PDz1w37ySoUO5t5jgjrkqUv7AcLvf+neCh79us2/68Hz+3DLmBTvRtLicFLdbOOnPRXEBqkYk+57nY4PUfPenFzsThcSsZjwdjHtzVYH77SMmn669Qh/vqgvj329G4fLg0wi4rkrBhCiliGTihG5HehVUi8J43R7+M/qQ/xpRjal9RY+u3UEP+2pIFQjZ1ZuAj/truDeKRk4XB5+2l1OSZ0ZrVLGI4u2ekmcRrOD+xfuPGGSj0QiJiVcw7NX9CfvSCMfbC4hJy6Iv1zcjx92lfP97nJuUMvRKCRIxSIfw91InQKNXMJX80bxzNJ8miwOrh+RRFywihmvbSAtQsPdkzN8SIbiWhMfbz7CfVMzzjpVXE8hpDGe6XfROUalhRETpKSixaNLKRMzf1J6wHTAriCQj51ULMIvrvAkEBWk8Gt6zcqN77Kyy91yrp6y8WSJBHRRHf6zQiohOUztk3CYE6dHcZxC2ewWI5GImD0ikUaLA4kIJmdFIhaL0CgkXTKI/73CYHX6jKYCbCtpwGRzEdoNmz2TzYnB6sRid6JRSgnTKE44/tbbUMklROuVPgEIQ5NCTrl3FQjX7Si9ktHp4fxp8V4fhZ7T7WHtgRquG5nUyTOc3YgJUvKPmTk8+3MBFruLK4fGc9HAmFP2W64xWHlt1UHWFdUwOCGERy7IJKYbqtMzgWC1jMemZ/HQV7u9x64cGk9hpYG5H273HvvPdUOY1jcKyf+T9fUcAqMrdOfLwDTgewCPx7NLJBKN79V3dQ69CqlETHSQMGt7OiASiYgNVvGXi/pid7l71BmND1Hz9o3DcLjcSI8zn20Plxtu/XC71wfizbWH+Oy2kYTqFJ3KjI+H3en2qlvaY8PB2lNCHilkEp/NNEBahKbDjpwQ4emb+LG2sAaLw0Vg2/HAcLs9LNtXyd9+2M+nt47go81HvDJ3lUzC7OGJHT62xmDjvoU7vbc/3XqUjEgtN4xK7tLGqcFkJzFUzdyxKSzcVorR5uSVlUU8cXFflj8wHhEi1HJJQHPAVs8Xg83pY/D55MX9GJbsa6rSZHH4+F7VGG08+cM+Xrt2cI9HOpwuN9/mHeP55Qe4ZGAsX9w+kq3FdUzPiWFx3jEeXrSL7Gg9mVFaqpqt3o1AmFbBs1f055q3t3g/5wfO6xNQWXUqUWu0Ud1sRaOQ8vrqg3y5XSBBU8M1fHbbSKI78UXRyCVMzIzwO98yo3WU1JlYXVDNrNwEiqqMXP/uVq9/0k93j+XTrUd9HrOztBHzWSRrjgtRMiU7klX51UjEIib0CeePF2Zz3TtbvfcJ18pJizg5w26Xx+MljlqxMr/KSx41mu08/VO+z7+/tuogVw1N8JJHB6uMzPzPJi9hkh6p5YvbfcmYzsZnpC1eP8v2VaFXyvjyjlGIRSKi9EqBLHIY4Oguon77kBei+9AwfhbXLyyhpM6MwSokl93zRR4hajnT+kVx9bB4dAop2TF63lp7CJlUzN8uy2Fx3jFEtCXGtKKo2ujT9TbZnIhFIhRSMbUmGyabS/CDU0oJUgkR9v3jgsiM0nHLB9u8j/tqexk/LBjLY9OzeHpJPh6PYNr//JUDcXs8PPdzARMzI9EqpKwqqCZCp+C5KwZgd7lpMvt7KhVUNmPvJZPlcwiMSL2S7+4aw+pCYdTlwpxov4ZVjcGGwepAKZOgVUg7NYlVyyVcMjCW73e1hRTcPSXjlCaaRmgVfD1/NM//XEBxnYmZg+OYOTj+hMW43emistnGBxuL8QA3j04hOkjRY6KsqwjXyvng5uHcv3Anu8oayU0WUhpbiXubw8XRBjOvrDiAye5i/sQ0smP0Z6VSrdcgEkiW9tcqUUsoSFdhsjn5flc5f/luLw6Xh3CtnM9vG0lGBwbapwvhGgUfzx3OfQt3sq+8mZGpobx49aAOFf6nAjKx2DcVsAUJoepee83TAb1KxpVDE5iaLZC1gdJhewqjTWjCHq03c7TeTEmdmYKqZj6ee+JU0DMJmUTMeX2jWXZfMOuLahgQH0RCiJpJL67xud9ff9gnKJDOgC3DOZw+dOnX4PF4So/zDTm5tuw5/E9CIZP02CsH6NIiWFxr8jEQdbg8vLP+MC9dPahbryWXipmYGcGPx40cjUk/NSMNoRo5783J5Y6Pd3C03kxahIa3bhjmt6F2utw0tEjRhyaFsKOdx4lWIe12kliD2c5Hm45gsrt4ZWURn906gh92VyAVi7hhZFJAI8RWbCup9zu2bF8VM4fEE9TBRt/l9lBntNHYkm61fF8VJquT9+fkcvMH2wjVyDmvbxQxXUgHuiY3kU+2HKHWKBSEMUFKLuwf7Xe/9p3iVhysMmJzuKGDl3E43TRa7EjF4oBjiU0Wh/dc+H5XOSv2V/HHGdn8+5ciFv0mdN32HmtmV1kjr88e4vPYrGgdqx+aSHmjhQidAr1S1qsb9hqDjTnv/0q1wcY/rxjgJY4ADteaeHPtIR6fntXhb1EiEXPFkHh2ljaxdG8FSqmEeRNSyStt5LcjDWTF6Jn/yW/cODrZx3i7stmKViHF5mwr2Lu7Me9thGoUPH/lABrNDqQSMesO1PBLQTUfzx3BF78exWR3Mm9C+kkrMaVisd84lV4lw2x3UdVsxePBb8TA7nJ7R2KarQ6eX1boo7Q5WG3kULWxSxvMYJWc+6b04akf9wPw1Y4yrA4Xf7ssRyiw3W7YvwS+vRMADaDJ/5J/X7KQi94/wM1jUkgOV7Px0ckYrE5CNDLCNAryK5p9iLa1hTUsuXcceqXUT6Uxvk8ECqkYo9VJUbWB/6w5hEomYf6kNN7fUMzC7WXIJIKp/cUDYgnXKbhpVJLPSBwI3mwFVQauGZ7ABTnRVDfbiA1REaKW8WtxPRsP1XlH7kAg2i8fEsfGg7Xcf14fJvaJYE079dEVQ+NP6fjB6YLRKpyzp2os63QjUq9kVm7g5sSxRguz3trsHU2cOzaFuyend0gGBavlPHFxXy4dFMv2kgam9o0iLUJzSlUWIpGIxFA1z14xAKvDRbBKJnTTjTVgbQKpHOQ6UPsa6lc1C16CVoc8BHrwAAAgAElEQVTwW/5s61FWPDCBxF4uqEUiEcnhGt6dk4vT7UYmEfvsmWqMNi56dYOXOFlTWMPi+aN7HAjwe0SIWs6j0zJ5vF0DatawhG4RAwargz9/u9d7ba412nlk0W7ePRNeWO0gFovIiNLxwc3Dcbk9yKUdN1lPFeRSMXdMSGXJ3gpqWpT0Q5NC6Bvb9XS5sxVy6YnTgruLOqONxXnH2HiwjtyUUG4dl8odH28nv8IQMOzibEOQSkaQSuYNiDlaZ/Je51rRZHH4CUDrTTb2HmtmQ1EtE7MiyI7WnzGj/HM4NejKFbO0ZXTNIxKJ5MA9QP4JHnMO53BSaE0ic7jcKKQSwtqNZHSGQCbaVofbpwPeVUzKimTmkDi+yzsmRK6OSekwnrW7kIhFZEXr+PrO0ThcbuRSsV9R2GCys3jnMT7aVEKwWs7D0zL55rcyvm4hK/44I5vgbkZ4yiRiQjTCY9YcqGFbST0TMiN4fHo28SfY3PaN8d8QDE4M7lTRVVxr5Jq3t1BrtCMRi7hnSgYhGjmLdpSx/P7xQnxsu0K90Wyn3mSntN5Mn2gdwSqZ17Q2Sq9gyT3j2FZSj0QsYkhSSMAxpLhgFWq5xKv0AZjWL7rDTna9yc5Hm0tYtKOMKL2Sv17Sjz5RWp9OsVouoU+Ujj3HBN8ti8NFaoSGv/6wz+e5DlQZ/RQNrT4DgXxWegNrC6vZV95MTpye4lr/NJ1W35/OiNwwrYI/zchmzuhkXG4PP+4u57NVRYiAOaOTeXnFAR670Ncba9GOMh6/0FfWPHt44inp2NUZbawrqmHzISFZaUB8cI83H6EaBXanhxmvrqeuZVxNt/wAS+4dR5T+1CgE9EopD57fh2eWFniPPXheJi+tOMD6olqW3juO6Tkx/LSnjZzOTQ7xnutut8dPySOXiNHIpdQZbajlUr/0Rp/7SsVcPiSOwYnBrNhfxdCkEAYlBLcV4+Za2PCy74PqDhEva+LtG4YyPCUUrUKG2y0Q3UqZBKfLzfsbi30e4nR7WL6vkjsnpvPpbSN48MtdFFYaGJcRztMz+xOkkrPnWBOXv7HJOxK7bF8ln982ku93VWBxuPjT4r1M7BOBRiFFLpMEVF/KJSK0ChlahYz4kLbrlCTAmiARi6hosrJ0byVrD9Sw9N5x3PnJdgxWFzePTWFUJ8rRepMdk82JSCR0m3uza99VNJntbCtp4KPNJcQGq1gwOZ3YINUZSWs8FXC43DSY7NSb7QSpZKikYp7/ucDH0+rdDcVck5vQqZIoTKtgSnYUU7I7HuU6FfBRHRgq4MNLoLYlHGHALJj2DGjazqkvth31KahsTjef/3qURy84+dS6rqAjAmNlfpXfNeXdDcW8cJX+d0tIdhcyiZgLB8QyODGE9UW1DEwIIj1S12HzKxAMVqcPqQ9woMqAswPLgdOJGoOV/64rZsfRBqZkRTIrN6HXR8ZjgpT8dM9YimtMaBRSYoKUZ82YemdoMNmpMdg42mCmb4zeu871FhrNdh77Zg8r9gtBE6sLq7l4QAy3T0jj+53HkElE1BhsBKtkvZLo2BtQK6T0jdH72DLMHp6Irt3oq8Hq4OUVRd5x0bfXH2b+xDQWTEr/f5Hg+7+Krnxz84B/AXFAGbAcuKs339Q5/G/D4XKzp6yJeZ/soNpgIzVcwzs3DevQs6bBZCe/opkluyu4dXwqoRq5j4fJgknpPVJ6hGkU/PXifjzaYiCt60baWlfQlqrgD4/Hw+rCap76QVAOUGfmpvd+ZdWDEzi/XxSZUcJi110ll14l448z+jLz9Y3YnG5MdhfNFifqTgrRVsSHCCNn728sxu0RzMnnjEnusNvbaLbzh8V7vUohvVKKweLgmuEJvL+xBKnY9+9vtjh4a+0h3miJApVJRHwydwQjUsOw2F0YbQ7UCgkzBsR2+j5D1DK+uH0kj3+zh9IGMzP6x3DX5PSAG4NWc+hXWsbcyhosXPnmJtY+PMnHWFIll/LA+X3YWlznLXIUUjGhGjlVzW1qC7FIiNnuCHaniwazgyN1ZqL0CoJUslM6agFwsEbINThUbWJQQghiET4KoUsGxgaUmh8PsUjEde9s8XpUgVCYGG1OJGIRmuPUG4WVBp64uC8rHxjPpoN15MQFkRymbvH3shKilvfIKLXRbOfxb/awMr+KaL2Sn3ZXcOu4VO6cmBbwOzW0JDl29rn+vLfCSxyB4L/18eYjPDb91BR4aoWUa4Yncl7fKPaVNxMTpGTF/iqveu2NNQd58pK+giqtsIbc5BBuHZfiLfyC1XLumpTO1uJfAWGU8P2bh7NsfyWr8qvJidNz/9Q+nfokBKvlDE6UB1YWiESC6e5x0GvUnJ8aTZPZzvJ9lXy0+QgxQUrumZJBTJAy4LhjpE6JRCyiT5SOD2/Jxen2oJQK46d2p5v3Nhz28VKzOd2sPSD8zeuKanG6PTRbnUQHgV4p46HzM9l0qM5r0p0WoSE9MjBpnxGl8/F5EYvg5jHJ/PNngbQL1cixO928NnsoUrEInVJKsFqOweqgziisG1kxOkI1CpwuN/d8nudVMZ2XHcWzV/T3KYRcbg92l7tbI9AnA4/Hw7qiWu5up8Zatq+SZfePP2F099mKA1UGrn17C81WJ2IRfHnHKAqrDH73O1pvPm2jQG63B2NLQmSH6iWnHTa/3kYcAexeCLm3+pBHga5xsrOA6AukQgnXnnmvntONVvVEVoBmWFcff3xC5MTMyC7toXqCGoONlflVFFUZuGJoPImh6oD72Tqjjds+2sHOlnHpHUcaOFht5KlL+/WqgbFIJCJSp/xdXY8azXZeXF7IJy1j9jKJiM9uHUluSugJHtlzmO0uL3HUip/2VPD9hFSmZEXy6KLdlNSbuXRQLDeNSv5dEHDhWgUf3JzLuxuK2V3WxPScaC4aGOvT2DLZnHz2q6+dwbsbirlpdPI58uh3jBN+cx6Ppxa47jS8l3M4B6At5vq6EYmkhGvYW97Mo1/v5s3rh/pdUG1OFwu3lfJsS7Gwr6KZT+aO4Nu8Y1QbrdwyJoXU8J77l+hVsk69F3oLzVYnX+0o8znmdHvYXtLAFUPjT+q508I1rHloItuPNBAbrCQ5TNOlhSpEI+feqRncOjYFp9uDWi7p9HF2p5uilqIgLUKIzf5gUwl3f57H+IwIP2mr0ebkzXWHvbcdLg9/WLyXj+fm8u9fDrKuqJZBCcH84cJsYoNVOJxuDDYnGoXEJ2peLpUwID6Yj24R5NtahbTDRarR4uC7ncd8jlkdbgorDX5KobhgFYvnj6bJ4kQqFlFQ2cwj07J4eNEuLzlz58Q0tMqOL6sFlQZmvbXFm1hx54RU5k1M71bn80S4dFAsb649hMXh4rudx3h51iBeXnGABrOD2cMTmTEgtkuqBZ1SiOR9blkhIPAND03L5Mvtpdw6NgURcN/UDNYW1pARpWP28ASkEjHpkTrSI3UYrQ7WH6zl2aUFWB0ubhuXyhVD47ut5mhVgnx95+gW0k1Jca2RZqsDsUiEwepALZciEsGhaiPPLSvEbHcyb0Iaw5JDA3625gAS8eNTRE4WrUXKoRrBG6q9GqGkzoxCKuHOiWlcPyoJj8eDweok72gDccEqwjRyBiUEs3j+aD7YVMLFA2JYtL2UL1uuCfsrmtlxpJGFt4/0CRboMjQRMOUJ+OyqNpf8+FzEWiF183jCYvn+KpbfP57rRyaxcFuplxBOClMzMSvCe7/jC1SxOHDRqlNKvUmPOoXUR0GZEaVl1QMT+HF3OTHBqoCBDvUmm0AQquR8OW8Uq/KrKWswMzU7iq93lHGgyohCKua1awez4LM8LzkxPSeapy/LYfn+Kh77ps2s/ImL+5IZpfMZf1uRX8UVJXFckCOkOdYYbCzaUUbe0QYuHhjL2PTwXpfeN5gdvLuh2O9YYaXhzBVrLoeQ3NUD1BltPLJotzfi2+0RDN2n50STX9FGIElbEldb0WxxYLA6qTfbidIpCNH0jIgOhHqTnR93lbN0byWDEoK4eWxK4M/WYYHKPf7Hq/MhYbj35tXDEnh3fTGGlrFUnULKrE68BE8XRqWGkRKuobhWaC7oVVJuG5d6xpLPfq8I0QgeRw99tYtD1SYmZ0XyxMV9e4WgqTXauP6drd7r13sbS3jvpmFMDqC2M9tdXuKoFd/tKufR6Vnn0q+Og9Hm9BJHIOw1//L93l71HRKLRMgkIhwuD2KRkFxqc7oI0Si48F/rabII9hSvrjqI0+Xh3qkZPvvaVrQ2IG1OoYkRppGfFhVqk8WBweqg0ewgUqcgTCNHIhFG+x46PxOzw4VOIfV7Lx7wm/xwuU9hssE5nBF0WOWIRKLX6CS7wuPx3NMr7+gc/mfRGgPv8nh46epBvLzyAJ/9epRRqeE8Pj074OhZk8XB66sPem/nlTZy1ZubWPvwRIJ6qHQ4G6CQCilEm48zLU4MO3nfBIVMQkywiot7kO6gV8q6pFoBQe4/tW8UX20v45ELsoTNVosqJr/CQIPZzhMX9/OquawOl1/aW2WThfJGK5/9WgoIyqCiKiMf3JzLh5tL2HiwjpGpodw+PtXPoK8rhJhSKiYxVE1BpW/nuyND6QidEo/HyoWvrqfWaOfGUUksmjeagkoDQ5OCidIr/bqCTpebepMdg82J2wPn94viu52C0esbaw9zw6hkglQyDFYHRpsTm8ONRiHtse9OfIiK9+fk8tovRewua+TC/tF8cftIxCIRepWsy9JsjULKdSMTmZYTTVGVgaxoPRVNFu6ZnEGoVs6E59cwOSuSaTnRHGuwcON7v7Lk3nHex5c3Wbnzk9+8t//+Uz7JYRqm9u3emIlMKmb28ESu/e8WLwFz46gkJmdF8uKKQtYW1jAwIZh7Jqdzzxd53nNsW8l2Pr9tJKPS/MeULhkUy6u/FHmfTyoWMWd0coebsEaznTqTncM1JrKidShlYsI0ii5t2nJig/zO6xtHJXlJaRHw8ooiPmqRdetVUr6+czQZkToGJ4bQLzaIRrOd+Z/6egEdqjFisjsJp4eb3YSRMH8r7PsWIjIhaQxowmkw2/3G05osDvaXN5MTq+fTW0ewr7wZvUpG/7igTkkMqVjMLWNSWLSjzLs5TghVMTotjGd/LqBPlJYXrhpIsKbtN6OWS0kOl7Jgcobf89mcLvLLm/nL9/uobrZxdW4Cc0Ync21LcX6kzsS3Lb+taf2i+XlvpY+qZeneSh69IIu/H2dW/s+fC1g0b7Tf6+040sAFOTEtXf3t3uJs+f4q7p6czl2TAisauwKny02TRTCI7kjRKhWL0Acgo8+IybGpBgqXwuE1kH0ppIz1i4s/EVxuD4dqfEdpf9xdwbqHJ1FndPDNb2VE6pX8/bJ+hKiFv9FgdfDR5hJeXHEAj0cgYxbeMZK+sUEn/SdZ7E5eXVXEB5tKANh8uI51RbV8dMtw//VDqYecK4S/vxUiEaSM87lblE7B8gfG8/3OcjzApQNjezXNtquI0Cn48o5R7DnWhMnmZHhK6Flt0Hu2QiYR0y82iE/mjsDl9qCSS3rt91jZZPVT5b244gADE4L9zk+pROSXSKlXCk2VQPB4PNSZ7Hg8HkLU8v+pAIFA/kLVzTZvQmJvQKcUyNojdWZuHZdCab2ZjCgt5Y0W79rYim/zjjFndDKRet+1xeZwsaW4jrs/z6PZ4iQ+RMWHNw8nLbLnScJdQZNFSG997Reh1tKrpCyaN9pr4yGTignqQLGpkUu5dGCsd10GuHZ44mlNHD6HU4/OlEfbO/m3c/gfgsnmpLLZyje/lREfomZqduQpd9JvMNv5ansZ720o5pnL+/P3n/Z7i8Bvdx6j0WznuSsHdO392l3YnO7fLXEEoJRJWDApnVX5Vd6xqMmZESelojrd0CikPDItC4fTTZhG7v0+W/FtXjkPTcv0Fk46pYz4EJWP98Vlg+NYurfS53GFVQaqDTbebBlv23OsiX3lzbx41UDcHiFNpavGlVqljD9cmM32Iw3Um+wopGKuH5FIRCebaofL7VVefLT5CAu3lRIfomZS1vCAo1IFlQZueHcrDWYHKpmEv13WD48Hb1KQweqkyWLng01H+NfKA7g9QoH9+W0jffxdugqdUsaA+CD+MbM/biBSq+iZOgUIUskJUslJaxkZTW45/xrNdoYmhvDz3kp+bvl+MiK1PoX08RJtgEW/lTEkKZgglRyJWES9yUbe0UY2HaxjcnYkfWP8jRQ9bnh5ZZGPcidcq+CpH/NZ0uIZVFBpYE9ZE/dMyeDeL9oSAT/YVMKgAL5ckToFy+4bz3/XH8budHP7+FRigwNf0wxWB+9tLObVVcLGSSyCl2cNIlgtY2B88AnHDsO0cr5fMIbnlhXSYHJwy9hkctslBDaaHV7iCKDZ4uSv3+/j9euGEKSSI5eKvSOuxxrbfhtiESdnEKzUgTITJj7qc1gqFhGk9i+GdEopV7+1meI6M32itLjcHv51zWCi9ErMdieNZgcHq40khakJUcu95Fh0kJLl943HZHciQjg/lTIxmx6djFgs6lYBW2+0c/VbW7xG5K+uKkKnkHLLmGQkEjFxwSpWPjiBnUcbSIvQ+nhOtcLhcvuZlVsd7oBjJ62qI1OArv77G0u4YVRSj8ijeqONL7aV8sPuctIitDx6QRbxISo/Xz+9SsZj07PZWrzR61czODGY+JDTHOtsrofv74HCJcLtvV/DqLth0h9A3vVrlFou4fy+UXy/q83rS6+UIZGIeGx6FndNSvM7JwxWp5c4AmHE9PFv9vDenNyTHu0w2Jx8ftxIxb7yZkyBEiJFIsiaAY2lsP0dUAa3+B1F+txNIhETE6TijglpJ/XeegMROgWTsyJPfMdzOCFOx1hRd6w6dQop8yam8e9f2pqpD0/LpNki7DvaE1wGq4Mth+t5dmkBNqeL28encsnA2BOuZTUGG0v3VJBf2czVwxJIjdD0OMH2TCJYLfNLO75yaHyvThloFFLmTUgjv6KZa97egs3pRi4R8+1d/k2LuBAVLo+HBrPdR6ndaHEw/5PfvKrdsgYL9y7M46NbhveqObrB6vASRyDsUf707V7evmHoCc8ZvUrGny/qy4TMCNYW1jK1bySj08LQKs6p4X7P6JA88ng8H7a/LRKJ9MJhj/9w+jn8v0ZhlYEr39jkHc15K0zNV/NGn9Ju2pZDdfxjidAN1iikfkTD2qKagDK4IJWMuyale8fWAKZkRf6/mKWNDVbx491jKW8UItdDNfIzmubRE0ToFPx9Zg5NZoef906kXoEIkc99v7h9JP/8uYCCCgMX5ERz/cgkrnpzs89zKqRirE7fztGmQ3Uca7Rw5ZubGZkayr+vHeJHmNQYrKwprKGswcIlg2KJ1ivRKKQkhqr5+d5xGFuixMubLFidLix2p9fA2Pf1JWREaimqFjroNqcbqVgUkKysNdi494s8b2KexeHiie/28d6cXL7fVU64Vk6YVkajycHLK9q8NErrLTy7tIBnr+jf7UW21mhj7ofb2FUqmHtnRun45NYRp/T3GqyW88o1g/j7T/vZfKiOgfHB/PXSfj5FX6DElYwILf9aWURmtJ7z+kbywvJCFm4TRrHe3VjMXZMEI8X2n7tIDBVNFp/nGZESyisrD/gc21/R7JfaFxusRBpAHSSXSkgK0/DExf2AwD4lrTDanLy++pD3ttsDzywp4K+X9mPL4XouyPFP/Dv+tTKj9bwyaxBOt8dvbK82QDrg0XqLj/l/mEbO0zNzuOWDbd7f0PyJ6Wh74TqnU8p47IIsNh2s8yEsdEopxS3eQjUGGzKJmJX5VUToFDRbHJQ2mPnP6kNsP9LAI9MyuXFUMlqllEaznad+3M+SvRUopGLunZLBtcMTe5Rks7+i2SfBDoTmwuVD4gjTKpBKxETrlV7S59JBsfxSUO1zf4VMzKTMCFYXtiWwjUwNRaOQ8vC0TN5ccwixWMR9UzNIixDI0kC+MCqZhJ4MC1gdLt5ad5i3WkZ08ysMbCup54e7xwZUcaVFavjloYlsOlhLbLCKzChd9wg3k40jdWYKKw2MSA0jXCvvvlLCYW4jjlqx7W0YvaBb5JFWKRQSUrGYlQVVZETqePby/oRpBO+dQCbwRpvTr4gurjOdktEHEUJx05oUBQJH1KFHkToMxj8k+ByJRKAOF2Yzf8doNNsxWJ2Y7E5CNXIitIouhZOcQ+8jJlhJeqSWg9Vtar17p2QE3AdqlTJuHZvChf1j2Hq4jr6xetYW1vCHxev4at4on4ZFRZOV2z5q0wf85bt9JIaqmZjZMbFYa7Rx43tbveOln/9ayqvXDOKiLo7Bn240WxxUNlvZUFRLTlwQ6ZFa7+cWoVPy1bxRvLCskKJqI3dMSCU3OZTyRgsauZQgddcV2t2B3eXmz9/t9a6rdpebzYfruGFkktdQWi2X8OgFWSz4LA+xCP4xsz+p4RokEjFmu8tLHLVi77FmPwP3U43W/Wt7FNeaAgYUBUKYVsHMwfFcMjAWye/8enkOAk648xSJRMOA9wGdcFPUCNzi8Xh29PabOwcB9SY720rqWJVfzZTsKHKTQ08bidBkcfDi8kKfor+kzsyhGmNbMWqohAM/g6UJcmaCNiqgGWtHMNudfP2br7+PQir2SQaJ1isJtD4ppBJm5SYwMCGIH3dXMCIllDHp4WdFSs6pQIROecpVXqcbWoUMjwfmT0r3dsUkYhFPX5ZD2HHncXyImmcuF6KR9UoZEhE8eUk/bv9oO063B5EI/jyjL0v3+KqRlDKxt5jYcrieT7ce4a5J6V4pdq3BxjVvb/WOTLz2SxFfzRvF0KRQxGIRaoWUb3eWewlMmUTE+3NyGZ0W7rcxCtcpePemYdz/5S7yjjYwJDGEl2YNCljQuTwePyLUZHchEYu4fXwKN41KobjGjEYh5dkr+vPk9/u8Cpv95c1Y7K5uk0drD9Swq7SJvjF6Lh8Sh1ouYefRBs7r1znJ0V1E6ZU8M7M/ZrsLpUzi17UbEBfkU6RnReuYlBXJrLc343B5GJU2ga+2+/7u31lfzA0jk3zIoyCljJmD47xKMxBIuDCNbzS8TCJC0U6JE6aRn9DToyvqRLvT7Veo1hpt6JUy3lhzkDHpYV0qxju6T2KoGq1C6qOGuXRQLMHtOrpisYjhKaGsf2QS+ysMpIRrekYCdBEpLb5oWw7XEaVX0idax7bieiJ0Cv4xMwexSIRKJkEuE3PRaxuoMdiICVLy/JUDeXF5IS+tOMDlQ+JQySUszjvmTZWzOtz88+dCxveJ6JFRfFyAUdvUcE2HG/0B8UHcNSmdhduOopZLuXtyOodrTDx35QDe3VDMhoO1jEwJ444JwtjrreNSuHpYPB4guEX1BYJh+cUDY/lhV5v0/tHpmT1aZ5otDr/1rqrZRr3JjscjjHYpZWJvJ1khlRAXrOKqYQndfq1Gs51/LClgUYtXlkgEb10/lKnZUd0s+ETCg9uzOOKeEZcROiVPXZbDY7aslvTPzj/DYJWMELXMp4C5MCemU+K0wSwoQ0/0/YSo5fzlor4+/l43jEjqPBhDqgBd7ya8nS40mO28uKzNODhSp2DRnaNJPEHy6jmcGjhcbpotjg7TM8O1Cj6/bQQ/7a7gQJWRa3ITSA7XdEjuBavlbD1cz6IdZZQsM3mJhv+sPsRrs3XevcTyff6q4C+3lzIqLSygzw4Ia157XzKAf606yOj08LNu/NHhcrNifyUPtkt+vXpYPH+8MJuglmtCfIiap2f2x+FycbjGzLSX19FsdaKSSfjPdUMYkx52SpJX28Pt9lDeaPU59uzSAn55cCK3jE2hutlKkErGsz8XsONIg/C+39rMsvvGE6lXopFLCFbLaGx3LcxNDun1KYsonQK9Uur1qgOY0T8GXTeVWueIo/8/6Mrq/x4w3+PxrAcQiURjEcikrs0QncNJwWB18MKyAq/ny5fby7h+RCKPnTYTPE/ADp+jtftrqIT/ToLmlk31mn/AnRshLL3LryCXismO0bMyX+gQf5t3jIemZfLMknzcHiGi+oWrBnYoywzRyBmVFs6otPDu/WkngUazHZPdhcPlRquQ9mjxrDHY2HyolhqjjWl9o4nQKzpcuDuDsSVdKugsJsx0LV2xmYPiKK4zkR2jJ0QlC1jAaBVSn8JgZGoo6x+dxNE6M3EhKrRyKUuOG2VbMCnDOwYGsLW4npvHuNCrhMXqcK3Jx2vD7YEXlh3gzRuE0SCj1clz7dRrDpeHx77Zw+L5YwIqdhLDNLxz4zAcbjcycccFkFwqZkRKKFuL673HovQKEkLUzMpN5MJX24wSp+dE89SlOTyySNjwnNcvqkcy6sIKA1cMiWPGgFj+s/ogBquTm0YnUd1s7ZHaoxUWuwuD1eFDFGmVsg6vQ2FaBS9ePUjwcrI6KWu0cM8Xed70NpPNBSKI0Stptjgw2QXPq3qTYITd+l4VMgm3j09FLZfy/a5yUsLV9InS8vfLcpj36Q5vPfvAeZnEBCn58o5RmO1O+sboO1Vb1RltuDweglSyTn93GoXUR2kGMGNADBsO1pIYpvYhrNo/t9nuQiYRnzClMUQj5+s7R/HE9/soa7Bw6aBYbh6T7BfXq5ZLUculxPVglLG7kEsFX7SZQ9rM+Ycmh/Dvawfz9JJ8dpc18d6cXO5buNOr2qhosvL44t08Pj2b+Z/+ht3pxmJ3su5Ajd/zby9poF8XPGuMVodgbi4SUhSj9EquHBrHoh2CyX2ETsHDF2R1+PmuKaihqtnK0zP7Y7G7WJwnRCK/eu1gHjgvk9vHp6JRSFFIJVgdLqQSUUCyPlgt58mL+3JNbgK7yxqZlBlJTLCqRz4hErGIKL3SO/raCqlYzHkvraXZ6iQ3OYR/zx7iZ9rfXZjtLi9xBAL389SP+xmcGNI9JaJcA4Ouh7yP246Ne0gY3eoBjr/Gd4YwrYKv5o3ij4v3crjGxPn9otUkmjMAACAASURBVLj/vD4B1cVGq4NdZU281KLifOC8PgyMD+rwGiWViJmYGcHqByfwa0k92TF6EkLUZyQk40yg1mDzMQ6uNtj459IC/nll9xWv59A91BmFz375vkr6xXacnhmhUzJnTEqXn1cqEbGvvNnnmEYhQdKOcMqM9k8x7BerR9pJcS8KoLM8WwVqDSaBNG+PL7eXcd/UPgS1Wz41Cik1Bif3fJHnJUYsDhf3Lsxjxf0TfBJ3TwW0CimXDIz1SR8L1ypQyiRE6BToFBKmvLTOxwOpweyg3mQnUq8kRCPnw5uHs+Dz3yittzAwPoiXZw3q9WZ5qEbuvQYfqTMzY0AMCyann7bU0XM4+9CV1dvQShwBeDyeDSKR6Nzo2mmCyeZk4XHd+c+3lbJgcsZpIY+CVHLumZzBlsNbvcdigpRktS4+xevbiCMApxXWvQgXvQKyrm1OpWIxN4xMYsmeSg7VGPns16M8PTOHdQ9PotpoIzZIRbBadtZEytab7DyzNN+rmugTpeXjuSO6tdGvbLIy+79bONySfPLPpYX8ePdY+gRY1DuCzeGipM7E88sKabY6uX2cIL0N5FdyNiBYLSdYLe+2uV9r0dx+JOmiATGMTgtjf0Uz6ZFalu2r5NN2m+Cp2VE+BaXT7S+vdbjctB62OV1+0t+KJiuejjMDupS0JAJeuGogTRYH20rqWbKngqcv649KLuGP3+7x2SQs3VvJDaOSCNfKmZQZyW3jUntEJl42OBarw83Vb232/k1/WLwXmUTM2PTwTuPdO0Ktwca/VhWxMr+KPlFa/npJDomh6hOqF0I1ckTA7rImn+4+CKkhP909jqIqA+E6BSW1Zg5UGfhu5zF+La7n3TnDvIRxqEbBnRPTmD08EYVMjE4pJJmtf2QSByoNpERoCNUoCFLJTkiQ2Zwu9pc38+fv9lLdbOOqYfHMHZvaoZozXKvgo7nDeWVlEXvKmhidHsbU7CgeW7Sbz24f6dedrGq2cuuH29lzrAm5RMwD5/fh2uGJHSbqySRiMqP1vHn9UOxON8FqeYdeRrUGGxaHC7lUjF4lRSU7ubE1s92J0epEIhad0MMjUqck70gju8uEcUiNXEK1wXfkrrTeQphGTlqEBrVCikomYWxGOOuKan3uNzQp5ITvrc5o45klBXy78xh6lYy/XNSXKdmR/GlGX+6enIHR5iRCp+jUn2xCZgRP/bTfh0B54/ohqFuUbaFSBU1mOztKGvh4yxFSwjXcOCo5oGF+mFbBmHQFY9JPrkkRplXw1KX9uPbtrd4RvOtHJlJUbfCmAG4raeClFYU8eXE/HxVendHGkXozVU1WBiUGE6aRd9odDzRW0GxxdHpdCwhVMEx9EvrNhCMbIGMahPcBWe+rYiViEemROt68YSgOpxudUhZQpQFQ2mDhunfa9irXvbOVn+8dR1ZMx2uiTilDp5SREtG7prNnI9p7qLXiUI0Rq8PNWSYm+X8Fk83Jc8sKWbhNaArvKxfSM7+4feRJj5cPiA8mOUxNScuIsUIq5t6pGT7XkcGJwYxOC2NTSyBLRqSWq4cldLrHDtPKyYnTs/dYGzH14Hl9/NTjZwVEYLI7GZcRztTsKCwOF9/mHQvYCHe6PT4+myB4+ti6OJLVHagVUh48vw96lZRl+4S91B9n9CVcK3yGLjckh6nZ1bLGguBt2JrgK5OIGRAfxDd3jsHldiOXSAjV9v7nL23Zo7xx/RDsLg/OdqPjrYEwTrcHuVR81qnQzqF30Fna2pCW//1VJBK9BXyOkL42C1jT+2/tHAT48/2nm0LpHx/Ej3eP5ZMtR4gPEeTz3u6s03/zgdMKdO/CG6lXsvCOkTSa7cgkYvRKGSEaOfFnoXz6aL3JZ9zmQJWRdzcU8/D5mX5qgUBoMNnZWlznJY5AmH1+aUUhL149qHPJfDvUmuxc8u82I9Vfi+v5eO5wxmVEdPo4u9NFvcnBrrJGovRKEkJUhGrk1BrtlDWY0SqkhGnlvWrAd7LQq2ToVTKSwzU0WxyEaeTolVLMdheXDYrj0kGxPhuhjEgdsUFKytsZJN49Jd1LAKnlUtLCNQxLCWVav2icLjdH6kwn1VmpM9p44rt9/NgysnNBvyivmqDOaPPbsIBQ7C27b3ynCUwnQlKYhq9/K/Mjw37cXYHB6uCSQXHdWuBNNifPLC3wjtpUNFmZ9fbmDj1ajodUIiImSMnI1FC2HBYUWKNSQlHKpFzxxiZvwXz54DhuG5fKpa9vxO5yY7G7oZ0/vEwi9vGx0ihkaBSybpuK15vszGpnuvz66kNoFTJuG5/SYec1JkjFkxf3o8Fsw+HyUG2w8eWdo/yIC4vDxaurithzrImcOD13TUonVC2n2eJAK5cg6USpcqIxrmMNZm56fxsHq40oZWKeujRHGN8JkMbVFdQabTy/rJCfdleQEKri2csHkB2j65SMKGswe/+/2eogLljlU4CmRWhwe/CJPL5sUBy/FtezMr8ahVTM/Ilp/obP5gZwOTDLgjA5PCikYn7YXc6ilnOu3mTnvoU7WfPQRJLDNV0eeYvUKXl/Ti5P/5SP2e7ilrHJjEpts0L2eDysL6plQTtic3HeMb5fMCagAslkc2KwOrA7hZSlnhZ6/WKDWPvIRPaXNxOqkVPeaKWgwsDHc0dw20fbMdqc/FrcgNHW5rtWZ7Rx38KdrG8h4pQyMd/eNYasaH9vsVZolVL6RGk5UNWmmrtuRFKXEzN9oAmH9CnCf2cAXemuf9Gi0PY5tq2UJy/p1xtv6axErdGG0+VBJjkxIZwZrfOzCLhoQAzB/yPKqzMFs93Jt3nHfI4dqjFitjuhi+mZDqcbt8eD4rg9SoROUOptOlRHvcnOeX2j/NapcK2Cf88eTKPZgdPtIVQtP2GoRrhWwQdzhvNLYTX5Fc1cPjiepDD1WemPpVPIeO+mXA7WGPmloJoJGRG8PGtgwIQvhVTCoIRgn0CEhFAVzRY7H22qZlpONJG6U+cDFqZVcP95fZg7NgXlcUbmUomIR6dnMe/jHTRbnYhEgt2D09W2l2sNzzjdaDTb+XjLEV5ffQiX20N2jI735+RS2mBh/ie/UWO00SdKyzs35p6SVOhzOLvR2a7zxeNuP9Hu/3vXnescvNAqJMwekchHm9vSeK4fmYRWefrkgjqljJw4Ib3JT2mQPhWUQWBtYcpFYhh7P8i6r24I1yp+F6x1YaW/8G7PsSYsDleXyKPKJitGq9PvuNnuwt2NeI0NRTV+3ZH3NpQwODGk05GA4loTl76+0eutMyMnmsdnZDPzP5u8IyiTMiN44aqBpyVR5GShV8m4cmgCU7Oj8CAoIo5X5UXoFCy+awwLtx3lSL2ZG0cmk9IuuS5Cp+CTW0fw6daj3LcwD4VEwoPn9+nW93E8thbXe4kjgJ/3VTE9J4ZLB8cRpJJxxdB4nm4XGa6SSciO0Z/0Z65RSEkP0EWPDVZSVG30UyN4PB5MdhdKmTggeWKyO1m6t8LnWFWzDaPVSWQXhHI6pYwInZybRiVz9+QMLA4XqeEa/rh4r5c4Avgm7xizchMQi0GOuNeUhgUVBj/T5R92lXP1sHjvZ19ntOEBQtVy7zVPJZegajEHTgoLnHpotjnJO9pIdrRgBPzG2sMs21tJiFrOG9cPYWBCcJf9CexON00WOyBCLhHx5A/7vcapVoebx77ezdj08B6RR1aHi9d/OejtfOdXGLjm7S2seXiij1Tf4XJRa7CzrqiGELWc6f1j+GjLEY7UmXljzSGev2oAf/hmDyV1ZtIitLx5/RDiQ1RewsPicPHpliOMSA3jjglpuN0e8kob2jrATjuupjIaDGYcQUm8/HM+Gw7WMSA+mAWT00mL0Ph4hv12tMGb+NcVaJVSJvSJICcuCI9HGH1rP2pWb7LzxtpDPo+paLJypM7sRx41Wxx8ub2Uf/5cgMPlITVcw8dzh/dojFApkyCXiPlqRxkbi2ox2JykhmsYESPm+zkZvL61HqVc4TM6VNFk9RJHIJwDzyzJ57Vrh3Q4ZhWuVfDx3BG8t6GYPceauGhALBfkRPeKGezZgORw/+8i+X+kkHG7PRysMXLXp79RVG2kX6ye12cP6fT3EqqR882do3lhRSF7y5q5Ymgcs4cn/k/Ftp8ZCImCfumZXfjcnS43FU1W3l53mGarg1vHpZISrvHZ80XolFw6KK7T5wnVKAI2CGsNNo7Um3C4PKRFaH2IinCdgqt74L12POpNdvKONrAqv5pJWREMTQw9pQoalVyCxeFi7/+xd97hUVUJG//d6T3JpPcGIYQSIJTQu1hAsaAiiF2wrmVd3dX93KLurq5r79gVFTuLqCBioSO9tyQECOllMr3d74+bXDLMJISm6PI+jw/mZia5M7lz7jnvectBG9cPy+G91eWsK2/gltFdMGhUIeOf1ajhuSv68fsPN7KqVLr33H9ud+79eDNbK2w8u2QP828bdlRFc73DS63dg83lI8NqIM6kbVeZrVUpiTeHj8FqlYKVe+uYfdUAXF4/UXo13++qaVdpeSrhC4Q2Vlc3e+TGWZDmDE9/uweDWilnT47MS6DZ42PLwSbizVpiDOqTnht1BqcHOmpbG/1znsgZRIZJp+aOcXmSL39nDaO7xdMnPeYX8aNHHAiNiTBrGax6EVyNMPhmiMn62c/t58TA7Niw7NBJvTsO8GyLeqeX7smWsOC7WSNzjykAN5LqIzlK135TDNIC6KEvtofUnseatTyzeE9I48ySnTWU1jp+FeQRSNlCR7u5J1p03DamKwFRjEiSbDrYxLNLWm+Ofu77ZDO9UqOISj2+Sc3KkrqwYytK6rigbyoqpYKL+6URCIrMXbOfxCgdD04swGo8OZ/rLgkmnriskDmryllT1kCCWctl/dO556ONqJWHr496h5dF2yr5cnMlRZkxXD4wI2xXSyEIpMcY2FnV3OYYx6TKSosxolerqGh0kRatQ61SUtEUrryqd3oxalRcNywb81FIkWBQJCCKRyVjvP4ATS4/Ow7ZSInWkRzBkpQTb0SrVtLs9rGuvJFHv9qBLxDkltFdGNUtoV3LWQg8dqKUItcOzaQoy8qyPXX0To3ihmHZ/OvrnVz/1k98fceITtlbG51ePlp7gOeW7EEhCLx+zQA2HQitig+KUGlzk3IcNkSby8fCbaGhqS5fgAMNrpDz21/v4rynl+LySSRfbryJd64bxN0fbsTp9eP3B3n/xmKZDHJ4A9jcftRKBSqlgma3j9lLS8MaYs7tmUysSYvTaWfVfj8HXWYWfbud71vykSqaJAvznePzuHXOYVVQQXL7Kpv2IAhCu5sSCoUQ8TqOZBdtahk7W1FS6+DhBdt59OLeIWR1g9OLLyDVMHekkHJ6A3zVkt02Js/Ko6P0xP14F9gO8HCPy1D0vxZNm0VDo9Mb9jNq7d7D+YPtINGi4/dndcPlC2DWqU5LpcDJwnm9k3lzeZls2cmKNXBe7+Rf+Kx+HtQ5PFz7xhpZ0bq1wsbMt9fy7g2D2r3+bS4/jS4fNwzLISfeiNWgQdPyeQgEgtQ5vNjcfkxaJSat+rhVjmcQilijhocm9+S6Nw+3Z85syV87GmrtXs556ke5YGHexgo+v2UovdOOL3+sLWqaPUybvVJWKqZE6fj0lqEnnL3WFnaPn6cX7+aN5WUAzFldzhUD0/njud1PWgGEw+Nn3sYKrhiYwRWzV8n3p6+2VrLorpFktWz+VDe72VNlx6hT8eRlfUCA7Yds3PfJJnnTorrZw9I9tVzUJv/vSNQ7PNz78SYWbZNyW2MMaj6/ZdgxK3AsOjVXDMrg9vc3sPlAE1ajmn9PKfxZlYC1dg8Lt1ayYm8dZ/dMYnBuHHq1gm1H5GgBbDrQyOQWkvLqIVnEGjVMemYpQVHaxJ1zQzGF6Sd+XZ7B6YdO3QkEQTgP6AHII4goin87VSd1BqGwGjWMyU9kTP5p2PChVEJ0Ooz/G4hBUP725c5xJg0vTS/ib/O30eT0Ma04g7N7JoeRa3V2D25fEJVSCGHguyaa+OPHm3jj6gF8tO4gjU4vVxZn0i3JTHWzG50qvLkqEnqlRtEjxSKHI0bp1dw8KjdMxtwWvkCQuiOCWuNMWlbsDSc69jc46d+m3vW3AEEQUAkCDU4vdrcfXyCIRafGolcxb0NF2OMXba+iS4Kpw/e0PZzdIylEMTg4N5ZZI3NZX95AlF6NSavi+mHZXNwvDY1SOCmB525fgD3Vdv711Q6c3gDXD8/mL+f3oNnt559fbuexKYXEtuw2urx+nv12N68tKwPgu101LNlZzSsz+oeQhnEmLf+6pBeXv7xSJh1/f1a3Ti8kWsPlAdly5AsEuaQojccX7pIfZ9GryE+y8MHMwcSbNO1OpANBkSqbmzeXl1Hv8HLN0GwyYg0Rydt6h4fyOifbDtnonmzhiW92c9mAdC4fkM77LaqbeLOWP5ydj0mrYndVM1e/vlomhn/3/gY+uLGYQW2sTmHwOqFuN3z3T1QEGXH2K1z40mp5V9msVfHWdQO56rXVuH2B9n9OG2yrsIUQFQs2H2JIbhyftrE6aJQKUqKOnTgCSfnSJcEYlnmS0IY4dHkDPLV4t0wcgWSt2FNtZ/aMInwBEatRg83t58Xv9/LCd5KCx6JT8eGsIXRLMiMgYNKpwsijVmVDo1fB9XP3MOf6QTzw+ZaQx+yutpPWQowpFQKzRuZEzCLqDNw+SdVp0IReIzEGDfeek89lL62QF3G9UqNIjg7/PZHyYbYctOH0BWTyqLzeye8/lFoYizJj+PeUwnZtlSqlgFIhEBRF/jYukbh3hoNXWrTpfngE1GoYcjsopXPummgmSq8OyUmbMTizU3YutUoRpooNBII0uHxolIqw+43XH6TZ7UOvVkYMpj5tYK+GYABUGjDEkmDW8eGsIZTVOkCArFjjL2Lx+CXg8QXDrNA7q5rbrdOutrm58Pnl8nWdGWvgw1mDSWi51+2tcXDZyytocPpQKgT+b2IBF/VLPWUNj/9LaNueubXCRnacdJ12Zt73/a7qkGZOUYQXv9/L45f2OeEA46V7akIsrhVNbt5bXc7tY7oeYztj+3C4/byzcl/IsQ9+OsDtY/NO2rWlUSoYmRfPfzdWhOQc+QIiH/60n3sm5FNlczP5uWUcaoky6Jpg4v0bi/l0/cGwhtyjEfQHGlwycQRSyPXji3byj4t6hd1zjoakKD0vTS/C4w+iECSb28+V99rg9HLPhxvlhtz/bjrEjSNyuGZoFhlWQ9im+dj8RHa1bCqeX5jCpW3uow5vgLs/3Mj7Nxb/KhwlZ3BsOOpVLQjCi4ABGA3MBi4BVp/i8zqDXxlqnX5EUSTGqOywseG3ALNOzbjuifTNiEFExKJTh9kADjY4ueGttWw7ZCNKr+bxKYUM7RKLXqMi3qTloQt78e7KcnLjjQzNzcBq0vLo1zv5dns13ZKkQOKj+cnjzFrevHYgJTV2bG4/vVOjjqoUijZomDYog/s/O7xQ23SgkSn901jRRimjVgoMzOpgwdwJOD1+eZJj0Ye/R52Fxx+gyeVDKRw9w6EzqLN7+PNnW+TGti4JJj6cWczA7BjK651UNLqoc0gEW06ckccX7eSy/hmkW/UdSnBr7R72Vttx+4N0TzKTn2zm7vF5vPD9XjKtBu49O5/zn1uKzSW9J1cNzuSW0V1OqAHtSNQ0e7jw+WVyo9nafQ28e/1AsuOMPD21HzHGwzasZrc/JGQcYF15I05vgCP/8gXJFr6/ZzQHG10ktExyOzPRq7N7uP+zzXy1pQq9Wsn4ggQenNSDWJOWaYMyUSkEPl53kHSrngfOLSAjRt9hLhBI7/O5T/8oq/Y+WneAz24eGrbDVdvs4S/zDmdOaZQKXp5RxGNf7+T5af24ZXQXmj1+4kwaORPii82HONKpOGd1Of0yo1Er2/nb2yqkxslgADKK+WFrWQjR0Ozx89HaA0zum9rpyX3b5kCA91bvZ+7MwdQ5PPywq5ZEi5bHLikkSn/4Fm5z+ahu9rCqtI6eKVFkWA1yplet3YPd40ejVGDUqIgyqPnr+T2Z8tIKapo9KAT43bi8kMVLIBgMISpa0ejyYtFrQn5vK3EEYHP7+fPnW3j5yiKsBrUUcN0mU2hK/zSMLRPq3bUuAkERm9tHglkbEsCtU0sZVz/+YTQqpYBJqzrmxYXXL6mpnvl2Dw6Pn5tG5dI1wRxCfPZIsbD47lEs3FpJVpyRooyYiJPdrFgDaqUgf7YARnWLl8+ptllSfrRaC1eW1DPz7bW8de3AiOOWWati1sgcPl57EE1jiUwcydj4HvSdDqYEQCJxP791KP9ZuIuKRhfTBmUwKj/huBZ1DQ4v8zZWMGdVOfFmLX+e2J2ceCNqpZI6u4c3lpexaFsVBckWfj+h23Gp20427B4fbp9E9msEEWq2wUfXQO1uSB8EF78K0elSiPr/CGHUFhqVglijRr53AaTF6FEpI18fH687GDJO7atzsnBrJdOLs6h3ePjDx5toaBljA0GRv83fxlk9Es+QR8eBQFCk3uEBBNk6a9RKLZzHanuNREYYNSpOxqy7vD6cIN9X5yQgiih+9rTV44daJbUo7ooQMRFj0BAMisxZVS4TRyBtVqwpq+emkbnM33RIJp0sehUj8xI6/H0Vje6wY/vrnXh8QY5nT7AzZSynAk5PQCaOWvHm8jKmDcpg3sYKHr24N49+vZMGh5fzeidzxaAMSltypXzBYFjOZlmtA/EEoh/O4PRFZyjRIaIo9hYEYZMoin8VBOFx4JNTfWJn8OuAw+Nn7b4GHlmwHYfXz3VDs7mgb+opq44MBkVcvgB6tfKk7YQcDxSK9kPrbC4ff/psC9sOSYqgJpePm99dxw/3jkavkWwDyVF67hjXFX9QJBgM8qdPt/BZi/Kl0ubm8pdX8t/bIoe2tsWx5kQpFQLn9k5Go1Lw3upyUqP13D2hGxadmr9M6sFbK8qINmj488TuxLZ40L3+AI1OH3aPH6NWRbRefVQlTr3Dy/NL9vD2yn1M6JHIbWO6smxPLbEmLcU5sRHfu0anF5cvgEIQsOjV6NVK6h0eXl1ayoc/HSDerOVvF/SkR4oljIiyuXy4W1qojhamu7vaLhNHAHuq7fy0r4ERXeMRRciOkxQZP+yqRa9R8fIPpby1Yh/f3j2q3UVUTbOHK15ZKde5x5u0zLttKNOLMxnSJRaTVsVf5m2TiSOAN1fs4+ohWR2e67Fi8Y6qkMUtwFsr9vHkZX0j+uaNWhUe/+HFhiAQcZdLo1KSaFEes3x9ZUk9y/fW8eRlfUiwaHH7gjQ6vcSatFiNGm4YnsOUonQ0akWHIb4Ojx+Hx49Oo2Tl3roQu6cownNL9vDEZYfD5hudXipt7pDMKW8gyNOLd3Nh31QaHD56pYVXxedEyAfJiDGwqqSeHilR4ZO6YAA2vCP9C6DS0+QO36W0e/zcMa5rp5sQizJjZGUUSGNIWa2dpy/vi8cXRFBArEEjE22+QJBF2yq5+8NN8nOuGZrFnePzcHr8TJu9mr01dgQBZgzO4o6xXcmwGvji9mHYXH6MWmUYOWPSqZk1Ipfv2kwmTVoVBckW6h1euZ2uIYKdal+dA68/iNIgTeIX3zWS5XtrKUixkB1nlN+HzDgpm+vdleU8cF537v5wI76AiCDA3Wd1o7TGzvCjTNw7Qk2zZPFozYZbtL2KebcOo1fq4b+9QaMiO07FzJG58rF6h6QaVSoOj0VRejWvXT2Aez/aRKXNzYSeSdw2pqtMCHr8QZk4asXWClu7rT0mnVoKiC9MwRI8EP6A6AxQHR4nlQqBrFgj/7yoF95AkCi9+rgsaMGgyILNh3hw3lZAUqdMfm45S34/CrNO5F9f7WBuSyHEjspm1u9vZO7Mwb8YISOKUhvSI19uZ0+VXaqJHmBB9faF4Gi5Nvevgk9ugMvngOG3pZbtLKxGDS9OL+KGt3+i0ekjzqThhWlFxEXItRFFkQP1zrDj+1vIA39AZO8R13IgKEpZjeHD5hl0AJvLx+IdVfxn0S6CQbhldBfO7ZXU6dD/I1GcYyUtRi+rzPRqJbeM7nJc6ugjMal3Mk99s4u2HMCVxZmdzunrDIw6JdOLM2XbGsCl/dMihlmfCGIMGq4cnMnctQeobyFU481aJhWmEBBFyiNc/7ur7IzoGs+XvxvOG8tKseiln3G0sa8wPSoseH5K//TO2d1PIygEwtRFaqUCtVLBmrJ6yuudPHJhT0xaNeX1DrQqBf2zrCy4fTj+oEiiRUuV7fAG0PiCxN9svt7/OjpDHrVS0U5BEFKAOiD71J3SGfxi8LnB5wRtlGRH6wSqbW6uamPz+Mt/t5EcpWdCz6STfnp1dg9fbDrEd7tqGNE1nkmFyfKOboPDizcgyTyPRricarh9Adbvawg55g0EaXR4SWqz+FYpFaiUUN3s48s2ZAZIBJJURX3yzy/GoOGSojTGdU9Eo1LIC+4rizOY2DsZpUKQF8mBoMjG/U1c+8Yamj1+DBolL11ZRHGOtX0lBrB8by2zl5aSHKVj2qBMJj6zVL6xZscZwxYjtXaPLJfVq5XcM6EblxSl8dHagzy3RFI1VDd7mPrySr6/Z1RI3XxFo4v7P93M6tJ6CtOj+dfFvUnvoKVvR2Wod3t8QSKNTh+jH/9ePnbt0CyuGZrFdW/+BEjhtN/vqmHqwIyIP3NlSZ1MHAHU2D28sayMmSNz+NdXO5k6MCPiZKXO4SW7nXK8WrsHrz+IqqVGvTPS5Ug2ptRoPaoIz40xavjjOfnc89FhwmHqgIwwu1ij00tNs4c9NXZ6pUQRY5RazjqDVaV1PD6lD68vK5VrgdNi9Hw0awixJjV1di8b9jcSb9aSFWuMqNCoaXbzyIIdfLujmnHdExiTH04maNUKFG0W0ocaXVTawncDa+we4kwaEqMiTwaH5MZRmBYlV+VmxxkZiMKO+gAAIABJREFU0z2BS19awYOTejB1YMbhv4OrESo2gKZNOPn+lZw9KorHvj8kW/wEAa4fnsPG8gZe+G4vVw9p32bXitH5CSFVyiPy4umfZW13wdHg9IbY3EDaMbxheA4vfLeXvTXStZmfZGbzgUYqbW5ijBoSzLoOQ8+7J5t585oBvLOqnCi9mqkDM/jb/G3cOS6PGEMMtXav3HRoa1MCMLFXsqxiaq1Cz00ID3G3GnU8NLkHDQ4fUXo1828bRr3Dh16jZMHmQ4zrfvzEEcDCbZUhE3pRhFd+LOGxi3u3u9iqtrm59b31rC6tR69Wct85+VzYNxWLXs3Q3Dg+v3UooiiFsrYl29Qt9uSGNsRmvFkb8bPXimiDRvqbOpOgcKqkNgKphGLCP6R/j4BBq+JEIqAbXd4QYhKkvKttFU0Upkfz2fpQ1VtpreOYWqBONmrtXi55cbm8KHnym91c270LFkfoDjnlKyAQTmT+r0ClVNAnI5qFd4zA7Qug0yhDwmxNLUoXkOzb04ozeHf1YeWpIMAlRVKui0GrZGz3BHlDCyRb/K9tMXw6YF+dkzs/2Ch//adPN5MTb6S4Iyt0B4g36/jk5iEs3V2LzeXjrB5JctX7iSLJomPuzMH8e+FOvP4gt47pQpcI4/aJwKRVc/vYrgzvGse326sZ2U26t51sRVvrJu2XvxvO8j21KASBwbnSxqUgCFxZnBliA1cIMLEwGYNWRV6imb9P7omA0KlNaqtBCp7/+xfbqGn2SlEWPZJ+0Q3u44FRq+Lifml8tPbwZsbtY7sSa9Tw6lX9efSrnTz8xXaGdYnj9nFd5flIgkUnqbmuL+b+zzazs7KZUd3iue+ck5djdQanFzpDHs0XBCEaeAxYh9S0NvuUntUZ/PywVcCP/4HKjdD9Aii8XKrmPQq+21UTZvOYu3Y/w/Pijtnr2+HpuXz89b9bmbdRUhJ8u6OaVaV1/PPiXri8ARZvrybBoqPB4aUwPZrMWMMvxnjr1Er6Z8Xw7Y7Dk1utStGuFFUhCKTFGOQFHki7zCfqX+8IgiCEnY/yiCp0kAi7295bT3OL/czpDXD7e+v5+o4RJFgin58vEJSDYM/rncybK8pCFnCltQ42H2ySSQBfIMhbK8pkuazLF+Bv87cxtnsCn28IrbP1BoJsPWSTyaN6h5db56xjXbkUJrx8bx3XvLGmQ5/1iK7xIbsrl/ZP40+fhuatvLG8jIm9U0KyBawdSInbyp9bcbDRRW2zh7vG5/HZ+oOML0gM2W0za1UhSia724eItNjeX+9k1jtr2VphI8mi45mpfSlMjzpqc0W/jJiQHKw4k4brh+fgD4q43b4jFrsKzuqRRGF6NMv21NI7LUpShbRZINjdPl5dWsoz30pB4oIAL00vYmx+wlHtZQAX9U1lX71TJkFAygeYvbSEa4ZkMf6JH+TGtUHZMTw/rSiEQLK7ffztv9v47ybpc//xuoNMG5QZsvOqUSq4fUzXEGXVipJ6ClIsxJk01LbJ+JpSlEb/TGvE3XgAo07Fwxf2wh8MUu/woRTgzg824AuIvL1iH2f3TDp8XdXugncvgmsXwtrXoekA+FzEr32cL297hOe+L8HpDTBzRC4LNh+SrV0frj3AJzcNoW9GTLvvW2uVssMjvTdqpcCmA024/QGKMmLkCbAMEfmxrQiKUjPP1oom0q16HrukkNJaB81uPzq1MqxNJRJUSgULt1WRG2/E4Qlww1s/Ue/wMrpbIxlWAxc8t4yceCMvXdmfJ77Zxb46BxN7JXPz6C6dGn8NGiWDsmN5+IvtzN90iCn90+iZGsW9H23iD2d3I950YhsB0RGUXjEGdbuTercvwPPf7WV1aT0GjRKvP8iD87YyIi8ei17dojiNfE4xRg1PXd6XmW+vxeULYNAoefryPsQexYLgDwRBF41qwiMw/C5w1IE1GwztsMonCI1KQWq0ns0Hm0KOJ1h0iIgkWLQh2TkKQXrOL4VGpzdkNxugwafCojGFWv0SCkD4397lVisPF0fUO7w8/91eXl1aSlAUmTYok9vHdpEbtjKsBt67oZgnv9mFQiFwz1l5pMVIzzVp1fzpvO6IwDfbqshNMPGvi3t3eA88g8j47xEWZICP1h5gYJb1uMmFBLOuwwDn44VBq6J/lpUXpxdJ7ZSn6O9tNWoY2z2Rsd1PbY6rQiGgVEibQvsbnDS5fbI6vUuiidevHsCzS/agUSm456xuIcpq5THEb2jVSnqkRvHi9CL8AZEYg7pT86PTDRa9mj+dk88FhSmsLqtnTH4C2XFSmUhSlJ6/T+6J0+vHpFWHKdmb3X4+Wrufcd0TuXpINhv3N7JuXwNnFST+Kt+LM+gYR13di6L495b//VgQhPmAThTFpo6ecwa/Mtir4e3JULNT+nr/amjaD2P/DzQd1yJH2pXolmjuVOXoscDpDTB/U2hd+FdbK/m/iQXUO7ws21vL0t21dE+2kBMv2Y4sOvUvIrW36NU8NLkXs95Zy6YDTcQaNTx+aWG7u3ZxJi2PXdKbK2ZLgcSCAH84u/1AYl9Asv6IEDFv6WQiEBTDFBwNTl9Y1XlbqFvCCisaXVgNmjArB0g2pFbYPX6W7g4P7K5t9pAbb5SJkFakxxwmXDz+gEwctWJPtb3DYOJ4s5aXr+zPw19sw+7xk2E10OQMzXYJihBsw4rmxpvo18Fif0KPRB79akeI5/v8whRmvbOOa4dlc+3QbIKiiEoh8MXmQ6RbDfz1/B4kmLU4PH52V9t58ptdBIMit43pyqaDjfLrrrS5ufaNNSy+e6RM2DW5vAgIYQGbrTlYZXUOnJ4A+UlmfIEgf/p0M3V2D9cNz6FPehRRLZk1rbvJeYmR5Sd2j5/n2+TZiCI88NkWCm4ewvtr9qMUBC4dkE6iWRux3jk33sTa8oaw43uq7SzfWycTRwCrShsor3eGkEdOb4BF20Nbwf7w8SbmzhzMj7trqHN4mdQ7hQRL6Oe8f1YM//f5Vl66sj+vLytlf72TSYUpTO6b2qHNs9nt44a3fuLfUwq584MNIZk/cWZNKNmyYY5kV/v8Frh4NtTuAaUaTc5osk1mHp7ciyCwcm9tSCaQKMKzS/bw1OV9OmzNlKqUw4Nt40wa5t82PCQ82qhVcemANN5ZKSkJkiw6zuuVhFmn5uyeSfROi+ZPn2ympFYKAn3ym10suH14xBpvnz+IJxDEpFVh0CjpnRbFvR9vDnnM0C5xPL5wF4ea3BxqclPZ5GbqwAzOKkgkwaLr9JhU5/By4fPLZZL2oS+28+eJ3Xn/xkFEGzQn3Aw2rEsc6Va9bMex6FTcMCynXdLM4fFTb/fw7vWD8AeCGLUqtlbY2FvdTHYHlecgjXuDcqx8d88o7B4/phaLb3sTZ48/wMEGF68uLZXUacNySInORROXd0Kv+WgwadXce04+y0tqZRvtuO4JpETriNZreOTCXlzzxho58+OW0V063SR6KhApsHvuVjt3X/Iaio+vA08zmJOkz6Dp1BBuv0ZsP2QLGbvfWF7G4FwrE3pI7XMmnZrBubF0Ty4iEBCxe/18tbWKvEQzKVF6Esw6Hr6wJ/ef2x2VUohY604wCM5aQAR9rBzufgaH0TM1vCGyd2rUaa1KOV5L3emGBoeXTQdszHp7rTxnvWF4DreN6YJFr2Z0fgJ9MqJRCMhzohPBb+F9s5q0DM+LZ3he+FhqbKNebIUoiviDIh5/gBe+Lwn5XoJZS/8s6/9kBt1vHe2O9IIgjBFF8VtBEC6K8D1EUTyTe/Rbgdd+mDhqxbq3YNhdRyWPCpItjMiL54eWiuXMWANXDcmKuJA8EQiCNDlvq2BRt+wM/HvhLpbslJoOVpXWc+uc9bx/YzG3vbeOF6YV/SLhcynRet64egDuFttRjFHT4S5/jxQpkLii0SW1bujUEReWTU4vX2yulGXF1w7L5uohWadsR1CtUoQoWUDKhdF1oICxuXwUpkfT5PKRl2hmTH4CS3fXysSKRa9iYPbhXAqTVsWwLrGsO4JkiDFquGdCPqtK6+Wd50v7p5Fg1uH0+rG5fHj8wbCgXYtO1eF7bdapGZufQJ/0aERE9ColU/qnhYRH90ixEGfS8tfze5AWo6d3WnSHN8AEs5ZPbx7CY1/vxO0PcsXADHZUNlNS6+CBz7aw/L7RpEQbuGdCN64bno1WpcBq1GJ3+9jf4OLiF5bLi7Uf99Ty9rWDQvzjzR4/Dq8fu9vH5oM2nlq8C4UgcPdZeeQnWUJu6G1zsKpsbiY8ebjW94fdtbxxzQBGdeucHcgbEEPaSkDa0T7Q4OLZFjXSq0tLWXjniIh5UGa9FC7/8BfbQ3IULu2fzo+7a8IeX+8ItZ0oFQI5cSY5PwykEEaFAJcNiGwhBEi3GhjeNY5b313HxMIUzumZxNAucUed3AkICEiWwd5pUfy4uxaQlIP3n1cQSgAn9ZL+rdkBr50N8fkw5s9glnZTtWoloigSb9YxoUcSi7dXyZ8BjTLUZtcRFm6rDAm2rbV7eW91OXeM6yqTK0atirvG55GXYMZq0hBn0vJTWT07KpuZ3CeVFSW1MnEEEin37JLdPDy5V4h961Cji5d/KKG0zsG0QRkMyLIyviCRrQdtvL9mPzqNgj9MyMdq0IR8XvfWOHjoi+3kxJuwewKdDi3eU20PUfcBzF1zgAv6pB4XcSSKIjXNHlaX1hMUoTjXymtXDWBNWT0uX4DinFgMEbK/WmHSqbhpdBeuem21PKacX5jCuO7dOvX7ta3ZYJ147KFGN1e8sooZgzMpyoxha0UTerWCxONs0DsWZMTo+ebOkeytsWM1aog3a2VyoH9mDD/+YTQ7Km1kxRqxGjW/qPXApFVx7dAsuRVSo1Qwpmc6ipR8uHUN+FygNoDxDHHUFt/uqA47tnBrFeO7h9ppzDo1i7dXMfOdtbIa9+ohWdw1XgrQb5fgdjfB3iXw7d8g4JPmiwWTwdD+Jsv/IoZ0iWNQdgyrSqXxsldqFOf0Sv6Fz+rkwuUL4PIGsOhU7c79A4EgdU4viNKm1cnIaDoayuud/OvLHSGbnbOXlnDN0Cx54+1U5bP+WhEMitQ5vIiImDSqDts2a5o9fLzuANsqbFxclMqHswbzwepy5m+WbPvSvf1MYPZvER1tE4wEvgUmRfieyJnQ7N8OlNrwlDRDLJ0pVzDrVDwyuSe1Di9uX4DkKN1JD75r/T23jM7lP4t2y8dmjcoBQaoubYtKmxtfIMjKknqc3gAxHfNfpwzWYwiy1qqVJKqPHki8v8HFnz49rAJ4evFuCpLNnN3z1ExG4kxaXpxexN0fbuSnsnoK06J54rI+Yfa2VvgCQb7eWhmSo3PdsGzm3z6MZxbvIdak4cYROSHqD7VSwYzBWWw+2CRnHv1+Qh6xJi0WnYr5tw3D6Q2gFARZhrxiTx2z3l1LcU4sfzm/B3fN3YDbF0SrUvDvKYXEGNTUNnvYXmmjweFjYHYMsSatTCodGXh+1/g8MmONLNpWSX6ShYv6pTLjtdX0So3i/MKeRyUgHd4AiRYdj19ayPxNh3hzeRnr9x9WRLXOXbRqJcltFocOr9TE1ZagEUWYv6mC4V3jZe+5QaPEoFFRXu9k6isr5ceufHEFC+8c2W4uwU9l9WGL81d+LKFfRkynaoENGiX5SWZ2tGktmVSYIpPFIKmTPl1/gFtGd434M+LNWubcUMzDX2zH7vFzxaAMdCoF+UmhO7JmrYqeqaEZL7EmLY9e0pupL6+k2eNHIcAD5xVg0qlxef00e/wICMS2aZEDaUI4a2Qu0wZltlS0Kzu1K2g1avi/SQXc8+Em/nFxL64akoVGoSA3wYQ/GKS62U2ssSV/qvskWPcmHGrJs1AbIH2g/LPqHV6+3lrJwq1V9Ey1cP3wbGa9vRab28fvxnbttK23pjk8x6W62Y0oSsP24XPXyuqjW+ccbjebNiiDi/ulIQhwcb80zi9MQaUUKKt14A+KcpJNTbOHyc8vkwnL73bW8Nglvbm4Xxr3nZvPrWO6gADRLTu05/RKYvfiPfLv0SgVxBjUTHp2KQlmLZ/cPCTkWm+F0+NHq1agVCgiZnUkR+vatUmJoogvEGzXvlnd7GHiM0upaSF+4kwaZl81gA/W7EcQBB5ZsIO7xndl1ojciIogf0Dkhe/2hJDR8zZWMGtkLqkneU380dr9PD+tH88u2cNjC3eSYTXw0OSeRBs0p3xhpWyxN0VqejRopQXD6dCwBtJC8/axXZlWnMnBBhd5iSbps6xWgvq3tQjvCHa3j2aPH7vbT5ReTaxR06EdZGiXWF5dWhpybERefJjipd7h4cF5W0Omf2+uKOPGETkd3yMay+HDqw5/Pf8OsOZAzshjeVm/ecSZtLwwvYgml5+gKBKtV5+U1tjTBYcaXTzz7W62Vtg4p1cyl/ZPC1Op2dw+luyo5h8LduD0+blmiLTpeao3dgOiyCFbaIOcKBKieD6Dw3B6/KzZV88Dn22httnLxUWp3DkuL+L1WtvsYdrsleyqkpwF8zZW8OfzujOqWwJXDMrkljnrOL8wBdOZzKPfJNqdvYqi+KAgCArgS1EU5/6M53QGPzc0RhgwE1a/KH0tCHDuY53KXKixexn3xPeIoqQScHoDfHzTYIoyT27jiUGjYsbgLEZ1S2BVST0Dsq1kWg0ERJGsWGPIrrpWpWjJ8xA6FTL8a8LiIyw8IA3aY/ITjpqHc7xItxp46coifIEgKoWiQ5VTg9PLwwtCg3tfX1bK+YUp5CeZmVacASKs39/AwQYXA7KsxJo0xJm1PHFZn7C2NQClIPDkot18tvEgSkHg6qFZFKZF4QuI/Li7FrNOxZzrizFolMQYNVj0UnjvjNdWy4oVo0bJ/NuHt2s9iTZouKhfCmcVJFBe7+LuuRupsrl54rLCDic4Lq+fzQebuP/TLVQ1u7m4bxpTB2bwSJv3YEhuLF5/kDq7J+wmvP2QLeL7mRytlxfAMQY1T0/tS7RezZPf7Ap5XFCEj9cd4N6z89t9XUcixqDpMMS3LeJMWt64ZiDPfrubjQeaGNc9gQk9krjkxRUhj+uojdWgUVGcE8sb1wygyubhqcW7eWTBdv55UW/+fkFP5m08SIJFx+/P6hYxH6ZbkpnFd4+kzuEl2qDGrFXh8QV4evEePly7n1iThr9f0JMBWdYQBVYkifXRoFQIDOsSx7zbhrGypI7uSWYONbk55+kfsLn8JFq0vH71QApSLFKF+rSPwVknjZkGq6x+cHj8/GfRTtlGtmRnNT+VNfDSlUXEm7XtksS+QJAGh5eAKKJVKbEaNUzum8pzS/bIqiVBkBpwItkebG4/T36zO+TYe6vLuWlULn+d1AOb28+tc9bh8QeZXpyBxx+kdZ6/v94Zli0z+8dSRucnEGfShpFdVw3OoskpEYdJUTrumdCN15eVEQiKHGpyM/uHEu47pzvqFiKoocVe/Nn6g/RKi+aKgekkWnSc2yuJBZuljDSTVsX953WP2LxX2+xh3sYKftpXz6TeKRTnxIZ9Nj9bf1D+3ICk0lq0rYoEi45F26Sxc+2+Rtz+IMYIC2+3L8DeGkfY8Yoml/Q3P4nolxHDG8vLZIXIvjonN7z1E9/fM5rEMw01IWgNFs+NP7nhvb8WNLt9vL9mP/9YICk4ow1q5t44mLyk9tPu+6RHM3VgBh+sKUcELihMYViX8BxLkfDGRFGUxqIOsfWz8GMb3oHMoWfsa0dAsiD/dgijVtQ0e5g2e5U8/954oIlDjW7uOyc/JBPnUKOb372/Qf76qcW76ZJgYlJhyik9P4tOxXm9knlv9eGCgOQo3c8W/F7T7GbxjmrKap1c1C+VlCh9u3EUpwManF6ueX2NrBJ/Z2U5SRYds0bmhinKGpxemThqxevLy3hxepH03OsGEWPUnNLs1jP45dDhVSyKYlAQhFuBM+TRbxn6aBh1L/SbLlkw0gZKyqNOBMZ9t6NabhVqxcs/lPLkZVERq8FPBK0TyN5p0SHHH5tSyIxXV+HwBlAqBP50bnfeXVXOrJG5p/VAfTzokx4ddqwoM+akVqlGQmelvaIYmmcEEsGhUgpcUpSGQhC47f31sh1Io1Tw8U2D6ZUWLf19I/zMb3dW82lLcLZfFJn9YynPTu1LdpyR0loHCzZXsmBzJcvuHSMvyn8qawixOjm8AZ76Zhf/uKh32HXp9gVYu6+Bu+ZuoMrmYVC2lTevHShlvhxFRdfo9DFt9ip8Aelu+/ryMqIMaj69eSivLyulW5KFXqlRXPLicobmxvH3yaEqpmiDhsE5sSEB0AlmLZf1T0elEJg1MkdSdBjVqJVKMiK0yKV1oBDolmQOsR0aNEruGp/XoRT5SCRF6bh/YgEurx+zTs2hJjf+4OHPvEmrksM7Pb4AvmAwotXBatTwyILtfL1VIgru/XgTxTlWZo3MpTgntl2iR32ESsIfCPLOynLeXFEGgLPexbVvrOG7e0bT6PKhUQrEGrXHnSlh0qkx6dRkxxmpsrm5+fnlcpNYlU0KkH/jmgFSo58pPmLOit3jZ+6a0Pr1FSV1JEXpSIsxUGf3sGF/I9sP2RiRF0+iWYtSKbBiTx33fLSJOoeX/pkxPHtFX0xaJW9eO5A3l5fhD4pML85kTVkDaTGGcGWACN4jquGDokTA9kqL4sLnl8vHX11aRmFaDOf3kSbwkcZrs06Fsh37WKxJy33n5HPL6FwO2dz8dd7WkPyxvbUOPIEgapUCrz/IO6v28fhCifz8Zns1X205xDvXDeKhyb343diu1Nq9dEkwRSQQ6x1ebp6zltUt1o8Fmyu5fWxXbh6VG5KvVOcIV2k1u30hE9jzeiWHWdecXj9VNg+b9jdyXu/kEJuuRqmgR/LJJY4A8pLMLN1TG3LM7QtS0+w5qgL1ZKLB4eFQk5v15Y0UpFjIjjOedtkdkpXCQzAoNSt25vwaWtTQSoVAtEHzi4Z+nyjsbr9MHIF037nvk828elX/djc3rEYtfzw3n9+N7YKIROJHWjSbtSou658hj6cg5VYelXhP6hnhWOEZ4uh/AA6PnwMNLnyBYMjGLcCHa/dzy5jckPvJdzvDLZTzNlYwrnsC+pNYrHMk4s06bhyRg1mnZsmOarommLjv3O4nrZ2uI9Q2e5j6yio58/OlH/by7nWDGBKBwD1dsKXCxhEpBXy1tZKpAzNQKQQanD4ONDjJTTBFtN1rVQp2VNp44LMtfDRrCLlnAvZ/s+jMp3aRIAi/Bz4A5FFCFMX6U3ZWZ/Dzw2CV/mvN8egkIqkm4kyak6L48QeDuL0BDBoVCoVAo9NLeb2zRXkUQ6bViCDAwq2VvHHtQJSCQJxJw94aO/0yY0iP0f+iQZ+nAj1To5jYO1kOD++fGcPgnFhq7Z52W4COBn8gSL3TiyiCTqUg6gQWDqaWqs+2VdD9MmJIMGuJN+vYUWmTiSOQ2tMe+mI7L11ZFHFB4PUH+W5neDbOpoNN5MZL5BFIGUU6zeHFwZHZOSAtLCXSI3Th2OTyce0ba+Q8rVWl9TyyYDtXDMwgwaIjJVrXbubHjspmmThqxVdbKrm0fzpxJg1Ldlbzjy+3S1a0zYe479z8kMl+htXI68tKefzSQg60hPoO7RIbEobcFhf1k2xJrRk4WbEGxvdoP2ElziQFaG8/ZKPO7mVQjvW4Jk56tVJegCdZtCy6cyTvrS5HpRC4bEAGsUYN5fVOnvt2D1XNbq4blk3vtKiQEEpBEBjbPZGP1x1u0FtZUs9NI3OPSSFkc/v5cktoeH5QhPXlDbyzch8VjW5emVFEokVHU0suVpypcxk8R8LtC4RU0APsrbFTa/dg1Crl3WSHR7IktF4nggA6tSIka0EhSM2KDU4v//f5Vr7YfPg1vDS9iML0aGa+s1a+nn7a18DDX2znvnPy+eMnmzmvVzIKhcDDX2ynosnF+X2S8QeCITuCJp2KKwZlhLT6jciLQ6EQ5Fy4tliw5RATeiaiVSlJMGtDsjlUCoE/ntu9Q+WdXqNEr1Hi9gXYeCC0R2PqwAx5/G10eXl92eFzUisFMqxGfIEgSVF6rEYNHaUKOTx+mThqxas/ljC9OCOEPJo6MIPXlpbKKi2lQuCyAenc9t56dGrJHjs6Pz4sT6mkxsEFzy0D4JUZ/Zk5IofPN1QQb9by1wt6nBJ7hVGjoiDZzNI9h8sCFALE/gwLm1bU2j2U1zn5ZnsVGbEGbC4fn64/yNSBGb9YW+mR8PgCbDzQyB3vb6Ciyc3gnFieuKyQpA6yoaptbm59bz2rS+ux6FT87YKejOue+KvdTGpy+8IWdXtr7EdVB1l06ogqvrbQa1T8blxX0q16vtpSSe+0KGaOzO2wWACAzGHSf/uWSl8n9oTelx7tpZzBbwC7q5q58IXlfHrTkLDEiziTFsURmRdH2tEBCtOiTnqxzpGI0qsxaVXcNDKHq4dkYdGpfjYb1f4GZ0hZjChK+ayvpVjaJb9rmj2s3VdPo8vHyLx44kwa1Eol9Q4Pbl8QpUIg5hQS4ZGU+QXJFpQKgVeXlfJ0i01drRT4+o4RDMq2sqr0MBUwc2Qun62vwO0L8vCC7bw4rd8JrSfO4PRFZ+6k17b8e0ubYyKQc/JP5wx+beifFUNuvFGW+lt0KmaNzD3hwa222cOc1eWsKatnfEEi5/VK5t1V+0Iyj24b04UZgzN56YcSXvqhBI1SgV6jJDvOyFOX9zntdk9PBmJNWh44rzvXD88hEBQpq3Uw47XVFOfE8s+Leh3zjdHp8bOypI57P95MrcPDqG7x/Ovi3iS0EFENLeHIWyqaGJBlJcGs7TAHwahVcc+EbnRLMrNwWxVFmTFcNThLXrg3u/xhz2lwevEHIvueNCoFY/ITwpr2RneLx+sLEm/W0i8jmgcn9SC2jSx8ULYVo0aJo423/frhORFJoFq7JySIHWBlSR3n90nhyid/4IXp/ZhQkITHH6TZLbVuXKcuAAAgAElEQVRvRRnUaFVK0q3hC5i8RBNqhcDcnw7QcESL25Gv02rUcP2wbBzeAGnRegwaVYcL1USLjs9uGcLOSjtKhUCXBONRScM4k5bhXU9emKxGpSTdauAPbaxyVTY3E5/+USZavttZw+tXD2B0fmgwd3GOlakD05n70wEEYHpxJr3SwieWHUGvUdItyRxGVqRG6ylItrCmrIEqm4d/fbWT79sE+c+dOfiYFR16jZJ4szbECtU7LYodlc2kRuvx+ALsq3fyxKJdODx+bhrVhZ6pFlSCwC2ju/CPL3fIz7u0fzoKQcDh9ocQRyDJ+B++sGcYEbmypB4R6f194XupOWlMt3hevaqIdfsaWb6nlomFKeQmmLDo1Bg0Km4f25XC9Ci+2lJFcY6VMfkJ3Pj2T1w3NDvs9RVnx8oT+FiTlqcu78e2QzbKau2Mzk8gupPy/jiTlvdvKOaRBdtp9vi5blg2g9qE4gtIqrd6B6TF6Hn68r4s3lHN3+dv55KiNPqkR3d43UdSkUXKBUqyaJl/2zCe+Va6T9wypisZMXrev7EYASJWDNvdPv6zaJecOzbz7Z+Y3CeVt64bSKxRc8rySWKMGh6+sBfTZq/iQIMLrUrBg5N6YO6gge9kQhRF1pc3cMNba+Vjg7KtTC/OxObynTbkUaPLx1WvrcHV0qC5oqSOB+dt5d9TCiOO5y5vgP8s2sXqlkWNze3nzrkbWPqH0b9a8shqaLFjt7l/ji9IPGZbbrs/36jhmiFZXFKUhl6jRNsZC7wpHi59C1wNIAZBH3Om7e5/AM1uH09+sxtRhGV767h8QLpsC1MI8PcLeoRtKucnmUM2PXumWrhsQMbPUuGuVAjEGLX83DHuwQhe/qAohpHArahp9nDpSyvkDVGDRsmC24dj0CiZ+fZa1u9vxKxV8fCFvRjbPeGkffbbIsGs5Ybh2cxeWoooSuU4d47Lw+0PyAUpAL6AyF1zN/Li9CI27G9ga4WNQdmxrCytk9W01TYP3nbm9Wfw68dRrz5RFMNnnGdwBi2IN+t4/8bBbDrQiN3jZ1B2LPEnuHNa7/Byy5x1MqP94+5aijJjeG7J3pDHvfR9CVMHZsi2HG8giNcVZFdV82kz8T0VcHgCTG7ZJW/F4u3VOL1+auxePll3gESLlrN6JMkkUHtocvu48e218k79kh01PLloF3+e2AN/MMgL3+/l5R8O12/+6+JeXNg3rUNyMNakZcbgLC7ul4ZGJYTIWzPjDMQaNSH2khmDOw5OHNktnin90/hknZR5dP3wbPJb7GA3j5bk0UcuImJNWubfPpwnv9lFvcPL9cNz6NvG8lfT7GFlSR376pxM7puCSiHI7wFIjSilLYToP7/cQWFaNG+tKOP1ZWWolQpuH9ulRV2kDWkCSo3W84ez87EY1Fw9NIsn2pCd3ZPNmCMsXqIMGqLC3WjtIt6sOyaVmcPjxx8InpIdoGBQpNHlZe2+hjCFzss/lNAvMybEKmHRqZk5Ipcp/dPxB0S2HGzC5vYfUx6EXq3kxhG5/FTWQEmtA0GAqQOk/B6by09OnBGb2ycTRyDlyby+rJS7z+oWZvFstSx9ueUQGVaDNIa1kJ2xRi3vXT+IGrsHhUJAq1KgV6t48pudTOiRSI3dw6Rnlsrk4w+7a/nkpiGkxugRgbeuHcjafQ0UpFiwe/x4/IGIk8fqZjcJZm3YddgnIwqPL8hfz+/Bg/O2Mr04k7N7JvHQF9vRqpTMGJzJKz+WMKUoXSbqrEYNF/ZN45yeybh8AS55YTl7axwoFAKT+6Ty+caDiCIM6xLLxMJkWYXT4PDy4Lwt7K6yE2vS8NjXu3j0kt6c2yv5qEpSg1bFgGwrr17dn2BQIkbaPsdq1PLHc/K5Zc56/m9iAX/8ZDM7q6QQ9i82H+IvkwqYXpwZlqvgbiEMTFplyOID4Pdn5YXZafUaFfnJFv49pQ8gypaIMFLd5wGlGhQKRAgJrPcFRD5ce4CzeiSRl9h+pszJQIbVwKc3D8Xp9aNTKTHrVZ0OUj9R1Dm8PPpVaMvqqtJ67hqf97P8/s6i0emViaNWLN9Th8sbiEge2T2+kN1wkHb9S+scpMYcw0B7GsFq1DD3xsHc+/EmSmocnNUjiXvPzj+pC0ilsnN2wBAYY6X/zuBXDZfPT4PDx9aKJjKtRuIt2najCgQkBe34gkRijWqKc9KYVJhCtc1D/6wYrEeUV4A0H3tock/+eE53AsEgRq3qNxUaHgkZViMZVgPl9U752O/Gdm03M3RdeYNMHIEU6v3Mt7spzo6Vy1eaPX7u+GA9S+8dc0rIo2iDhtvGdOXaYdlSHqJGRbxZS2mtI2zesqPShkIBI7rG0z/LyqUvraCkTV7g1IHpxBjOhGX/VtGpq08QhJ5AASCvWERRfOtUndQZ/LoQb9Yytntnyok7B6fXHzb5c3kDYRJtXzCIIMCTl/VhxmurOdTkxqxV8dTUvkT/hgcto1YZtsgc3jWWqmYvk59bJi+EXvy+hE9vHtIh0bCvzhnyc0Cqird7fPiDIrN/LAn53iMLdjC6W0LElp5WiKJIg9OL0+vnzWX7qHF4uG5YNrlxRuKMWj6/dShPLd7N/nonlw/IYGRefIeL01ijlv+bWMDd47shCFJGQ2tmT3tKK7VSQXackX9e1Bt/MBiyyKi1e7j69dVyrsmhJhf/nlLI/Z9uxuENkBtv4o5xedw6Zx0gLWCb3T5e/F56Lzz+II8s2EH/TCv9MmP43bg8rh+eI1XV6lXy+z2jOIvsWCOfbaigd1oU0wZlyhMmURSpsXuwOX0YtCpMWlWn2s+OBV6/pIr599c7aXT6uG54NoOyY09aWKQ/EGRrhY2H5m9jxpCssO9H6VVhwdz1Ti9TXlpBTbOH/CQzVxZnUtHgQt+JpsG20KoEKVhZLwVob65oJN6kxeH1k2DRhkzYWrGz0o7XHwwjj7ZV2Lj0pRXy5KhXahSzr+qP3ePnYIOL7Dgj/91YwZzV+9GrlTxyYU8eOK8Aq1HLfzeWhanWZi8t4a/n9+DLzYeY/WMJXRPNfLT2AN5AkC9uH4ZCEMhLNIWETV41OAuFIPC3C3ryjxb1TkGyhdvHdGVLRRNr9zUwd9ZgRFHkwueXyzaBb7ZX8f6NxTz61c4w9Y5OraTZ7ZfP7+65G7lzXB4zBg8h1iTVr7edyDo8fr7eKoVKt+ZY/OurHRTnWDtNVrYlAesdXg42uNhd3Uz/zBiKc2L55s4RuHxBmThqxcs/lHBe72T59zi9fvbVOXl+yR6UCknF9ZdJBUwpSmPD/kbG5CeSbtW3m/XWbt6esx72r4SNH0BKP+gzFbMpgdvGdOGH3TXy+xpv1lJ4jIq444EgtLY+/vwLKVEEtz+8dUilVJxWCp0ovQa1UghR5fVKi2p3A8OkVTEgKyZkISYIkBX7C9WungSolAryky28fs0A/AERo1aFLxBkb42d0loH3ZMtxOjVx5RldwanFi5fAAFO+41MURTZUN7Ila+ulueCVw/J4s7xXUNs560w6dT85YICFmyq5LVlZcQYNNwxrisj8+KI6WATSMosPWUv47jQ4PRSWuPgx901FOfE0jXR3GEhzLEg3qzlo1mD+XT9QUpq7EwrzuxwDGp2+cKONbl8VNtDSyyCIhxocJ5wG6Y/EKTB6UNEJEqvltWGFr06bC5q0ipDcjkBLuiTilGjotbu4e4PN/Loxb155cdSKhpdXNAnhYv6pYZtBp3BbwdHvdMIgvAgMAqJPFoAnAMsBc6QR2eAKIpUN3uYv6mCJpefi/ulkmjRndANU6kQUAiEMN3ryxuZ2DuZeRsP7zyf3SMJg0ZJolnH57cOxe0NoFUriW4zEP4WYdKp+cukAh787zYCQZFog5r7zyvg7/O3heygH2hwsfmgjTH57S/80mL0YZ71PunR6DUqGp3esN0GpzfcdnYkyuudNLl8zHhtNY0ttq15Gyr4cNZgBmRZSYsx8PcLeuLxBYnqJMln1qnbzR3qCNIiMvRaqGh0hQTivruqnHiTloV3jcDlDVBe7+TejzdR0eQG4Lph2Sxrk0vSisU7qmRlTSRCJsao4fw+qYztnohWrUCBgMPjR69WcqDRxZQXl8vtVjNH5HDTqNyTarWsc3iZ9MxSOdB+VWl9RCvZ8aLe4eWaN9ZQ7/By29iuFCRb5JBynVrB3RO6YdSq8PoD0iRFFOVA4GFd4pg1MpdHv95BaY2DcQWJ/H5CNxLMkscfpKaS73fWUNXsYWLvZBLMWllJ8uXmSkbkxaNSCmzY34RWqUSpFMiNN7JwWxVn90jiP4t2hVzXl/ZPC9uta3R6efTrnSHX+dk9k3j5hxK55lqjVPDctH5sO9TMhv2N/OnTLXx3zyiAiOHO8SYd0XoNz17Rj1vnrGPF3jpy4428MqM/VoMGlVLBO9cN4u2V+9hy0MbkvimM6BpPVbOblSV1vHhlEWqlgoONLv7x5Q6m9E/nw7UH0KqV2N3+kNfk8QdZsrOaXmlRRMq1jjGomTUihwc+34rHH+SfX+0gP8nMO9cPCpsk+4MiWbEGCtOjOdDgYu2+BlzeAEcTnjs9fhpdPnZWNZMVa8RqVEv5Dl/vZM5qqW1OEGD2jP6M7pbAvgjEnmRBO/wCKhpdTHxmqTyefbH5EN/cNZKR3RIY2e04r1+/FzZ+gKt+P83dpqG1lRI17za44Fnyk2L44vbhvLW8jKQoHZcPyDiujKxfE6wGSQX4wGdb5GO58SZSW+yzpwssOhX/ubQP9368Cac3QGasgX9c1KvdsVKvUXH3Wd3YW+Ng7b4GTFoVfz2/x8/WsHQq0UrONrt9vLq0lGdarCQKAV67egAjusYfd1HAGZwcOD1+yuqcPLdkN2qlglvGdCE9xnDakkh1di8PfLY1ZBPxjeVl3Dgih0ixYqIo8lNZA//86rAl+6rX1vDdPaMiWsOcXj82lx+3L4BRqyLOpAnLnPsl4PIGeHN5GV9vrWRwTizvrionOUrHbWO6nLRcpASLjpkjcwkGxaN+Lod2jQuLWpg5IpdvjmhYVgiQdoIKyianlwVbKnl84U68/iA3DM9henFmuw4AyWEi2dJ3VjYzviCRG4bnYNSqWLy9ijVlDdw6Zz0X9UtlULaVyiYXAr/83/gMTh06M0O4BCgE1ouieI0gCInA7FN7Wmfwa0FNs4eJz/w/e+cdHlWdfvHPnd7TeyGdECBA6L2IBcQKiL33iuvqT9dd267r6trW3rGLvYsoCCpNmrTQQ0IL6W16u/f3x00uGSaEJITiLud58sfcTGZuZm55v+c97zmLFE+QlxaW8N1to8iJ77rc36LXcMXITGXxBnI07X1TejOoRzQLt1YzJjeOM/olKZ2RQ41n/TfBotdwdlEqEwsScHgC2Ixa9BpVm75BgaCIJEnUOLy4fEEMGjU2kwajVj71I4xa/n5WH/7+zUa8AZGeCVbumdQLS/Oif3BGFCvKZKNatUrg8en9CIoSe+vdGHXqsAVok9uvqC0aDvD7eWFBCc9eYMVi0GLQqo9ZMXVgGhXA/M1VXDysB19tLGdoZgwnFySQE29hQn48I3Ni+bkNs+EhGdEhjxtcPpzeIEFJwqxXKx5MZr2GWoccM/7rthquG5PFG4tKQ2LRX/5lB+cPSe9W8mhbpZ0Hz+yDSadm3qZKvlm3jzcWlzIoI6pLRFyDy4cvICI0G9P7giLDsqLZUe3kzk/W8sT0/lQ2yUlso3Nls0e3L8DWSgfvLCvjyzXlfHjtcCJNWm45KYdr3lqpjLp9/rtson3PpHzibWqq7R6mv7SU/CQbMwalUdnkQZIgI1Y+bkfmxOINiFzyxkrl2hNv1fPFTSO5YlQmRq2at68cwsPfbsLhDXDlqEyGZYWPV4iShPeAkZiR2TGc3SqVzBcUeXzuFq4clcma3Q24/UGFRB2aFR3i+RZh1HLtmCy0GhVp0SZmXT4EnyiiEQRiW5ER8TYDt52UiycgKqbSQVGiuLyRi14rV573l8n5SjqdyxfAZgy/ZdsMWib1iW3z2NGoVUzpl0x6jJlPVu2hd7KNc4tS2zTDNerU3Du5Fwu3VjOlMInbJ+axpaKJqDa6zy0IihLLy+q46q2VCtHzp5PzmD4oVSGOQCanH/i6mMLUSCKMWkbnxoYY5991Wk+FiJMkibeX7gwbJftk1R7uOKU9W+1DwNNATco4ntnn5sfv6smJK+TBiSeT4fdiMWsoSLLxz3P6IgiELW48/iBVTV6+Xb+PeKueMXlxf3hySa1WMaUwibRoIx+u2E2vJBvTB6ayq87JG4tKGZcfR36irds68V2FSa/hlIIEhmSOwxsQMenUhzRzTrAZePXSgYrJbKTpv6uh5PQGeH7Bfg8SUYJ7P9/AFzeN/MMfl3907G1wM+XZX5WGxHfrK5h3x9g2k1KPB4iSRLXdE7bd4w9XJYJc433YKhAF5HvkyrJ6zuwfyjY5PAG+WlvOA18V4wuKJEcYeO+aYW0aMx9tNHn8xFh0XD82mzkbKkiJNDKpbyJuv4ilm5cTHSF0Yy16vrttNC8sKKHB7ePaMVnkJVhJjzGxamc9K3fWYzNqeOScvkQatfgCQUDokr/srjo393y2Xnn8xI9byU+ycXLBwSdIUqNMPDatELdPJMKoVd63f1ok4/LiWLqjlhcWytYil4/ICEs0PYH/LnSEPHJLkiQKghAQBMEGVHHCLPvIIRgAZxVs/QF0ZsgcA9buGwnrbizaXhNiJusLirywoIRHzu3bpqFpR2A1aLl5fA5n9ktm7Z4GhmXFkGAzEGHUcvGwHkwblIpBo/6f7rBZmkedaDVZcetJufx8wOhF/7RISmucXPL6cvY2uDFoVTw2tZCJvRIw6TVYDVqmFqUysVcC/qCIsVVhHm3W88JFA3lnWRkryuq585SeLNhSxR0frSUgSgzLiubZC4pCilVPIMi+Rg99UyM5ECad6rj4znrEmEmJNCqJZQA3jssm1qpn2sBUbnpvNdEWPSkRBtz+ICadmlN6J/LDxkoWbKlGEOCcASkhCSK1Di/3f1nMN81GyAPSI3n1kkHEWvU0uv3c+/l6vm8eCTq5IIFtrVI4WrCvwd1tRZWc/gVvLCrF7vFz8fAe/OnkPHZUO9Go9hcbtQ4vK8rq+K20jkl9EslNsLbpdVDR6OZPH61lSUkt2XEW3rh8EHvr3cRZDZyUn4BJr+aqt1Ywrmccj00tJMKko87pY+GWKr5dv4+eCVZmXzucd5ft5D8z+uMPiGEeSQu2VHHLhBzigY3ldsb1jKdnopU/fbSGBrefcXnxPDq1L/E2A5lxZt5YXBpy7amye/l6bTnXjc0GYHRuHO9dbUOUJKLMupD/uwXRZj03jMvh+ndl02C1SggbQwOoaPIoi+gYs05RMLV4vm0sb8LpCzCwR1TIwja6Hf83jVqFpZWsO9aq54NrhvH+8l1srrBz3qA0suPMPPmjHG//Q3ElH183nC/XlNPYLHFPjTIyuW9Su8bWkSYdY/LiGJ4dg0YltNn19QdFvt9Qwf1fFSvbRufE8Ph5/dG2U5zWOb3c89n6EKLnP/O3cW5RSthzG5yyRD7arOepGf1Zs7uBTfuaOKUgkeRIg3JtEAShTSLscEeRXej49zIXH66Wybh9jR5mVDj57uahtNj8Huz6VFrj5MznFimjUxkxJj6+fsQffqEeadIxNi+eYVkxBIIij/+wVUnFe+XXHVw/NotbJ+QevXEoZw2IAVDr5PTXZui1ahI6WU90xkftjwZvQAxTBVfZPUiH0gnaK2HHAvDaoedksMTL3l8n0C0QRYk3F5eFfDe+oMjnq/dw28Tjy0usBVaDlqkDU0PSMFOjjG36M0JzYEaUKcxaIiUqnHGxe/z87csNyv2hvNHDXz5bz4sXFx3zQButSiAowm2z1yjb5hZX8PF1w7v1fXwBEY1KOGTtq1Wr6BFj5qGzehOUJEX9aTVoeeXSgXibiXCTTs2eejcv/VKCViVw/dgckiMNnVpv/bipImzbl2v2Mq5n3EFHwQF0ajWSVk5bE0V56mT+5ioGZkQxc2IuT83bRpXdww3jsru8/juBPwY6UhGsFAQhEngVWAU4gOVHdK/+l9G0F14aKd/cASJS4eoFeA0xOLwBLHrNcXVSBg+sYICAKB5y1OFQiDLriDLr6JcWSkKoVMJxJak/npCXaGXOraN5a2kZCTZ59EKvUXHje+sUosTjF7nj47X8etcEZUHQErfdFuKsem6ZkIvHF2R3vVuRyYOcBPXO0jJuOSkXrVqFKEpIouzfkhFrpkeMiZ218oiKXqNi5sS8Dn13LQoXSytvo87AFxBpcPmQALNOHSZBjrPq+ezGEbz3207KalxcNCyd/ERr8+8MvHjJQNy+IGqVgFW/P9r1yRn9cXkDCIKAWa8O8QPYWN6kEEcgj1l+unoP14zOwuULKMQRwOqd9YzPj2dHK2WdXqMiK87S6f/1YKhxeLnyzRVKEfvY91sw6zTsqnXSNyUCo05NwwGR8bMWl3H3aflcMSojpEvf5PZz7+cbWFIij+6NyYvl3WW7eLWVH9bUohTunpTP6Nw4Ikw6PP4gry/aoZjcz99UxeLtNVw5KpOfNlZw/YRcVCoQW/E02XEWpZvlF0XO7JfM1Jf2+/ss2FLFiwtL+L9J+Zh0Ghqc4R4BrckkoEOmnCOyY/jwumG8u3QnPWJMpEebSLQZqGja342dUpjE4u015MRb+M/5/YlpVfjGWfWM7dk9KUPxNlk23+j2yz5vosT8P42juLyR5EgjiZF6frh9DMtKajHq1AxIj+ywH1F7RWGDy88z87eFbPt1ey3+Noi01pCk8M88KEr4gxLZcRZKqveTpBcMTVdiw2Mteib2SmDiQbzyLhiSxjtLy5S0wjirnimFye3uy6HgEA18V1wTsq3a4aXRK9Het+f0Bnjyxy0hnjsuXxCnN0BJtYMGl48B6VHEmnXdkh7U4PKxrcrB12vLGZAeyZjcuCNuLqvXqKl3+nl76U5lW2FqBOPy4tlW5cBm1BJp1IaNNYiiRI3Ti9MbxKhVYzN07ZqNKELNVvj0KqjcAOnD4NxXITL9cP+1/0qYdZoQxSPA2f1T2r+/2ivgtZOgcY/8eN79cP1iiD6RidNdEIS2Se5jTZS0B6NOzc3jc4iz6JVGzx2n9lTuK9V2L3OLKyipdjB9YBpp0UZmTsxlwZYqJfhkbF5ciJ9PrcNLQJSodfrC1gibKprabNAcbfiCIu//tjNk2556NxVNHpI66CcUCIo0uv3otSosB6RkNrp9bK6w8+7SnWTEmrl4WI8O+Tq2tb5rTYSXVDmY9Myvyuf6xZpy5v1pLGmdULb1a6O5O7BHVJhHZWtUNXl4fXEpxc2j9iOzYzn92UXUNR8DLy4sYc5to7H8D5ihn0A75JEgCM8B70uSdGPzppcEQfgesEmStO6o7N3/GoJ+WPr8fuIIIOijyqvi5Z+3sLSkluHZMVw/NqtTaUvdAUmS2uxYj86LI9KkVUaU1CqBG8flHLfz3f/NsOjlpKGHz+6rdDmqmjyKD00L/EEJu8dPYkTHF51ao4oNxeHdit9K67jKFyTCqGJPvZtzXlhMrdNHRoyJFy8qYkN5ExWNHs7sl0yCtf0CShQlSmud/PXzDWyrsjOxVwJ3nJLXqWO90eXn63XlPDpnMy5/kHP6p3DP5Pywm1mCzcDMk/IISlLYojrGrIc2BEBRJt1BE0gOjI0HWL2rAV9QREAIMXz9am05b14xmEBQ5Is15SRHGnj47L7dmkyxZHttWGd63qZK+qdF8tbSMm6ZkIvLFwyLjH9uwXbOHZhCvHX/+esJBJX4VYBTChK5fFZo/+Dz3/dy+8l5pDQXXU0eP2+26mQCbK10UJgaSUqkke1VDn6cOZaHvi7m5201RJm0/PX0Xtiau539UyP5eWt1iL8PyGbuN3kDGLRqLhiSzqwlZUoRpVYJXDC0c4vNRpcPX1BiQFoUA9Iim/3WBD6+fjj/mrOZrZV2JvdN4qLm1715Qs4hR2YOFw0uP7d/tJZfmtPicuMtfHDtsJD3PWtAuLLnSOBQTQCTTk5B+2LN/lG7nHgLVr2G968ZyksLS9hQ3siUwmTO6JfU4ftCgtXA9zPHsGhbDRqVwPDsmA6pfNz+ADV2H0tKaugRYyY33qKc+2qVQFq0KeR6qBLApG//vJNHG0MXO49P78dN769WvNNsBg1f3zKKHodhyuz1B3F4A3y7bh/3NSvA3l66k5HZMTx7YdERHx+TkJR46ViLjgfO6M11765SyMGz+iVz/5mhMdylNU4ueHUZVXYvOrWKh87uzRmFyZ1PAnJWw7vnys0zgF3L4JMr4IKPTqR5tYFYq553rxrKk/O2smFvIycXJHDZ8AxlBLZN7Fi4nzgC8Dlh8X9g0mOgOX7JjT8SBEHgomE9eG/5LqUmTrDpmdQn8RjvWfuIsei5dkwWMwanYdSqFQK4xu7l/FeWKU2AWYvLeOuKwYzOjWPOzNHsrHFhNWqIt+qJNusRRYmSage3fPA7myvsfHXzSEw6Na5WPj5j8+LaP06PEnQaNcY27kc6jQqXN3BIErzO6ePTVXv4/Pe99IgxcfekfNKiTErtvWR7LTe8t1p5/mer9x72WKkoSsxaUhpCyHkDIp//vpdbT8rt8Ov0T4vktD4JfL9BbmoOyojijH7JB/WianD5WFJSS7/USByeAN+t30etw6cQRyA3VN5espN7T+/Vxf/uBP5IaO/s2AY8IQhCEvAh8IEkSWvaef4JHC4kCTwNIZvqRz/EzM+3saRElohu3NfEloomnrvw6Mg+65xelu6oY8HmKibkxzMsKzqEBY+z6Jlz62jeW76LJrefS4f3CE0BkCTwNIHWeKJAOUpoLY816NSMyI5h3qb9nj0WvaZL5qFF6eF2iBPy47Ho1Di9Af49d7PSiSqrdXH6s4v49PrhLNhcxWyeXO8AACAASURBVPvLd/HVTSMxtrNQq3F6Of/lZVQ3p0vMXrEbbyDIP87u2+HFSKXdE2IA+8nqPRQk27hsREZYoptKJaDqJlO/CfnxPP5DaOz1Wf2TMWjVWA0S14zOUubBvQGRtbsbuOOUntw0Pge1Sgght+weP3ZPgEa3n5hmBV57qpG2kB0fvojNiDFT0eShtNrJVaMy2yQGREkKYww0KhUFSTYlLvZAg3WQ/0Ql7B+JEgCTThNi/vjQWb15fO5mvl0vk5BmnZpPbxzB35rVhGa9CluzmivGoqOoR/jxVpQeiblZJZcUYeDr5uQ+kGNwkw5BiPoCIvUuH4IgR9M/8PVGyhvcnDsghUuG91CubWnRJh6d1hePT8TWar7/aKC4vEkhjgC2VTl4a0kZt03MRaNSEQiKVDu8zN1QgVatYmJBAnEW/WGNhEYYtdw0PoeHvtmobBuRHRNy3jV5/Hj8QQQExfTUYtDy1ykFJEUYmL+5ir6pkfz55DzF3+nuyflKpHp7iYoHQqUSSLAZmDowtVP/x8ZyOzNeXqqYv47KieWZC/oTbdYTY9Hzr6l9Of+VZcpiZubEvIOOZ7TAapA/m1+aPZqyYs3UOX0hpvtNngDP/bSdv5/dp0uNE7vHz/cbKogy6ULUnQCLS2pxegNHnDwy6zSc3T+Fz3/fyzkDUpl1wFjol2vLuXZslrIf9U4fd326jqrm5/iCIvd+voFxeXGdJ4/8rv3EUQv2rISgt+3nH0U0uf14AyKRRq08wumoBp9DHvfSWcAY3sU/GkiKNPLQmb1xNZ9fh7xG+cJHpfE5wi/mJ3BYSLAZmDtzDIu3y8T3sKyYdtNpO4Mau5c5G/ZRXN7EtIGp5CZYu80IXqNWhTXZ9jS4Q9SjAE/+uJW+qRHEWw1hXqO1Th+Xz1qhKN2fmb+NFy4q4sGvN7Kz1smE/HjundwLs15Dtd3D77sacPmCDMuKIc7SPcpNkK9NVXYvVXYP+YlWREmuW1qnikWrnNw9IZWL3mlUGm1F6ZHsrnPz7bp9XDM666AG0r6AyLvLynjyR7n22LivieWldcyZOZp4q4Fah1ep91qwt8HNzlrnYZFHgkCYwglQmm4dRYxFz7/OLeRvpwcRmz06Dzbm6w0EKal28OqvO6hq8nJ6YRI3j8/ll23hPqDeQLB5dPbY21OcwJHFQY84SZL+A/xHEIQewPnALEEQDMAHwGxJkrYepX3834FGByNugfUfKTd0d+JAlnweOk6waHstbn+QsJLF5wJPI0gB0JrAdHgdO7vHz2Pfb2F2szneJ6v2cOHQdP4yKV8Z5VGrBJIijfz5lJ7hiQLOWtj8NWz4DJIKYfhNYE06rH06gc7BZtDyj7P74vGvYdH2WnrEmHh6Rv8u+YfEWfX885w+/GvOZpy+IGcUJjFtYCpqtQrRHyAzzkyUSauMmkgSbKl0sLXSTkWjh0a3v90iyu4JKMRRC77fUMk9zcVGR7DigDl8kFPRpg9K7ZJJdEeRGmXk39MKeWzuFjy+IFeMyiA7zkxxeSNJNiM3jsvm1D4JLN9Rz7CsaNKiTW1Goto9fj5euZt/fLsJUQKrXsPsa4fRO6VzseHZcRZOKUjgh41yZyk92sTUohQufO03bhiXjUWvQQJOyo9n/ub9RcC1Y7LC9inarOPx6f24+PXf2Nfo4det1Vw4NJ03l5Qpz5nSN1khdUBWad0zOZ8/fbQWkAnLrFgzd36yX73m9AX553ebePaCorACWBAEYsyy+uGROZvwBkT6pkTwp1N6KolrJr2GguQInprRX358iJFIu8fPvE2V3P9lMbOuGMJlbyzH4ZV9l56atw2VSuD6sdkKUWfRa2lLZBQUJWodXvxBEZ1G3e3pMVsPiLEH2Fxhx+cX0ehVVDR5OO3pX5V9f/LHrXx32+g2JfEefxC7J4BRq2o3QUanUXFuUQoFyTa++H0vgzKiGNczXiEKqu0e7vuymLnFFaRGmfj3tEL6pUVi0Moeabef3JOrRmVh0qlDOrZ6jfqoGRXXO308/O3GkNQg2ZPPpxTG+YlWFvx5HOUNbmItemzGjqU49k628dXNI5m1uIz+aREExPCxiyq7l0BQhC6QR41uP3d9uo6XLx7Y5u+PxvLeZpTVf2Pz4jBq1bywMDxhck+9m97J8rXIHxTZWhF6rAZFiUZ3gMTOXa7k5pLeBt5WKtnoLFDJx5LbF6DJE8DrDyq+fAeec/UuHxWNHjbta6IoPYoYi+6wrvlBUaKs1slDXxdTVuvizH7JXD4slZgPZ8Be2SONostg4v2HXWt1bH9E1Af4thl1GuV6eEjkTYIf799PIgkCjLgVtCdGTLoT6mbi+9yizhHfh0Ktw8tls5YrpPXsFbt58rx+nNU/pVPEfGcgtUEstnct8viDIV6S8zZVUef08e5VQ9BqVHJgi1FLtd3DtJeWKrYGNoOG724bfdgpYiArgh78qpgv15bz5Hn9WLK9lreWlqESBG4en8OMIWlEGTSw7iMKa3Yx/7qr+GFrI1lROvpmJHLth5tYt6eRcT3jGZIZ3eZ7NLp9fLRyT8i2Wqd8/Ym3yv59bZG5h9uEEgSBS4f34P3fdiqekXEWPZP6dn5dFWnSEdmBj7ve6ePCV39TRg3fXFKGSadm+qBUXvmlVGnEaNUCV47KDLtGncB/Jw5515EkaSfwKPCoIAgDgDeA+zkw//oEugdRWXDtz7DoadCZUdsSMel2hMg+zTo1qgMXK+5GWPM+zH8AAh5IHw7T3zoss22nN8hHK0NTFT5csZtbJ+S2uRAJIY78Hlj6HCx6Un5c+jNs+xEu+1o2aTwBBbUOL/VOHyLyQr27x2ISIww8d2ER3oCIWhCI6eJiN8KoZdrANCb2SkBCHlkxatXsrXfzzrIynN4g718zTDHf/WjlbvITrZTVulAJYDlEd8SsU6NWCSGS3IxYEypB6FDUKcg+HQdiWGbMQT2dugs2o5ZzBqQwNi8OuyfAa4t2cPoziwiIEhcNTee0Ponkxlu5enRku5+9wxvg4e82K50wuzfAXZ+u4+0rh3RqjjzGoufRqYXcM9lPo9tPk9vPnz9Zx9i8OC4Yko5GrSLKpOOxaYUs3FLNsh21nF6YRL/UyDaVE5mxZr68eSSuZm8TtUpgWFY0c4srGZMXy5hmr6MWaNQqJvZK4Ifbx/DL1mqK0qJw+QNhr7uvwXNQXx2bUcuMwWlM6pOIXxQxatVtfgYd9UBrcPn500dribPo2dfoVsiXFny+ei/nD05rd0wyEBTZUN7Ide+sorLJS48YE69dNojcw0iXPBDj8+N5+LtNIYKAaQNTMek1iKLE20t2hux7rdPHnPX7uHxkqHdJtd3L8wu289PmKvqk2Lh3ci9S2inOI006hmXFhKXSuX0BnvxxK3M2yMTfrjoXl76xnF/uGq8cKzqNKiRN7lighbg4EC3JeCCPKiTY1B3ynmgNi0FLYWokj00rRCXIRJFBq8LTapztypEZXY54LqtxIknwzbp9XD4yg3/P3a9iHJYVfdTGPGIses4ekII/GGRfoztkHFenVtG3FYlt0qkZ2zOOb9btH3216jVdG781RsH0WfDRZTK5YYqBabPAHIfLF+DHjZXc/el63P4g6dEm3rlqSMiIoN3j5+WfS3jp5/0+bM+cP4BJfRM7rdpsQa3Dy9QXlyjjR8/+tJ2A38fM+H7oW8ij1W9B0aXtkkc1di+eQBCtWkWUSYuuk2RqTbPKMMKkpSDJRqPbT3KkkWizFq26E69liYcbFsOi/4DPDiNvk+vNbkK13YvTG0CvVWHWacKaECdweDhQ7Qiysmd07pFLfkyLNpEVa2ZHzX5vrdsn5h1UpaLXqEJsLABqHD50GnXIPi7ZXqsQRyArN1/9ZQd/nVLQ5fO1BXVOH1+uLVd8LF/8eb8C6F/fb6aoRyRDUk1Q+gvmzd+Quf4drksZCCVVOBrPJMo0HoBF26sPSh5pVCrirXr21LtDtrd4+kWZdNx9Wj4zXlmq1HK9k23KVEatw4vHH0SjVhFh1GDQdvz6Hm/V88PtY/lpcyUatYqxeXHEH8F775YKe5hH1fxNVZwzIIXvZ47hzcWleAMiV43KDJ06OYH/ahzyiBUEQQuchqw+Ogn4GXjwCO/X/y70ZkjqB2e/CIKKCEmOT7631SjOX6cUhKfruKph7t37H+9aCouegokPgLbrklmVICg+CPLjDgoSPY2w8o3QbdWbZT+nPyh5JIpSmx45h4Mah5er31rBmt1ykV6QZOOtK4ccshgIBkWqHT6+37APlSBwSu9E4qz6g3agumvEUadRhaiH9jW6Oe3pX7A3L2Znr9jFe1cPpcnt57MbR/LkD1uQJIm/nt7rkOMhFr2G/zstn0fmyAtns07NI+f05cMVu2hyB7h0eAaJNr2sdBIlap1evAERnUZFjFn+31OjTNwwNotXfy0lIEoMz47hgqHpbSZtdTc0ahWCABe99luI2fL7y3cxbWAqy3bUkBxpZGlJLSOyY8mOt4SNoji9wTCDydIaZ5vG9IdCi+m81x+kwe3n3auGYNSFjizGWPRMHZjKuUUp7ZJaKpUgS9RbcSSn9UnilILEg5J6LcqqvAQrxXsbQaXBqtcoxwrAeYPS2lXBtWfm3llsr3IgSbLCrS2CNjXKeEiVTJ3Tx43vrqaySVbI7ax1ccO7q5l9gCfR4SDBauCNywbzz+824fIFuWp0ZkgR2xYJ17q5APJi+sGvi5WF/a46F5v22fnouuGdXmjYvQEWbK4O2eYNiOxtcHeahDmSiDLruHJkRsi9MsGmJyWq+wralmt/jFnHN7eM4okfttLg8nP16Ez6tzHW21FkxpoRBPh6XTlDMvvwwkVF/LK1moE9opiQH3/ER9YOhFat5sz+KTi8AWav2E2sRc8DZxSE7IfFoOW+KQV4/EEWbKkmM9bMk+f1I8rcBdJAo4ceo+GWlbKCWmcGUywIAnZPQEn4BPlYvvtTObHJqtfgCYj4AkFe+WVHyEs+9E0xw7KiuzwyVNHkCVkEA3yxroorTp9E/O+tapvKYkgd1OZr7KpzccWsFZRUO7AZNTw5vT8jc2I6rBaqc3q58b1VjMiOZXe9i5vf/x2Q740fXT9cUYF1CGotRGXIHkeS2K2Ko70Nbi58dRk7mxtFN4zL5prRWceFUXStw4vDG0BAwGLQHPVzqbvQVgUgHFCfdzdiLXpmXzeM79btY3u1g/MHp9Mj5uANiCizlucvLOKGd1fR5JFHbZ+7cACxB6SO1rt8YX9b6/R1y//S4sPTNyWCpSXh6sk56ysYktkbep4Om7+R1yolPwHgnvAEW5bLasqR2bEHfY8os44HzuzN9JeWKsTKuUUpRLSqZXon25h/xzi+W7+PHjEmhmbGEGvRU9nk4dq3V7J2TyMmnZr7phRwemFSh1WSGrWKxAgDFw7t0e7zHB6/YhtgM2rD/J2q7V427G3EFxQZkBZJnFVWcza5/Ti8AYKihFknJ+sdiIJkK/saPSzbUcNtE3Mx6zVHpcY+geMH7RlmnwxcAJyOnK42G7hWkiTnwf7mBLoRzYSPATijXzKjcmPZXGEnP1GO0g5z5K/aGP4au5bIXbwukkcWvZqLh6bzZqsElkuG9cDckflaQQBDRJiHE+o/5o27ssnDB8t3saPaySXDe5DXTbPmP2+pVogjkGen56zfx6UjMtrfH7uX057+RZGuPjlvK9/fNhqTTqN0NI5GkTR3Q0UIGeAPSny8ag9qQeDVX0q445Se/N+kfDm17BDGtBaDlguGpDGlMIlap49ok5b7vypW/Jo+WL6LH24fS4JNz+YKO1e/tYLyRg+JNgOvXjqIgmQbUWYdN43P4bIRGQRFMOpURzWyOShKYYWRJMnE2Pq9Tcz8UB7jemreNq4fm8UtE3JDRvJsBg0xZp3iHQVwSkECJn3XCZSOxFx3dezqUGowpzdAg0v2Rok0aXntskG8+HMJ+xo8TBuUyrSiVDTdSMa2h+x4Oc3O7Q+yvcrBOQNkfxeQP/e7J/U6aLdckiSa3H78QYlHpxVi0Kp5fsF2Fm6pZnuVA3+w+9JjLAYN43rG0Tc1AkmSC/KWwkylErhiRCazl+9WFtMGrYqz+ocaaLv9QUUp1ILSGmezCqdz54NBo6Yg2RpCiAqCTHIdKfgCIg1uHxqV0OHzV60SOL0wiUiTjtkrdpEZY+b6cdlhvhzdAZ1GTU68lcen9yMQlEIWDV1BhEnH0zP687cvNvDXLzZw7oAUHjizQPEAOxaINuu4dkw2MwanoVY1308c1bDhB9i9DPpOJz6hL0+e1x9PIIhKEA6PQNXqQRs+ftHg8oWMIoLctPD4RT5YXsqKsjpO653AK5cO4qb3ViuLuUZ3eBpjZxDWoANSIo1onaGeVGSMbPPvG1w+/vr5es4ZkMLwbFmZtGFvA3ZPRIfJI6c3yIqyev4yqRfnvLhk/3ZfkHs+W8+sywd3PtlI0z2KoIAoolGpcHoDPPb9ZkVJIkrw/IISphalHnPyqMbh5dp3VrJ6p1yHjsqJ5enz+x/x0IMjAYNWTf+0SNbs3l9TXzM6C6069B5c5/QSFCV0GnW31KjxVkOYqvVg0KrVDM6I4sc/jcXtD2LSqok2hyvdTy5I5JE5m0MULdeMyeqWEeeMGBMFyVZ6JdnITbCwcGt1iHfbkKzmRkzeqTD4alk9qNbjHXkni2ot1DrruG5MFnkJ7auJeyZY+fnOcWzaZycp0kCC1RASqGLSa8jUa7hpfI6yzeUN8NjcLYqi0+ULcs/n6xmZE9uttgp1Ti//mrOZT1fvRadWccuEHC4cmq6cj9V2D1NfXMquOvmcjTHr+ObWUeg1Kp74YSvvL9+FJMm+h0+d15/Lhqfz1tJdpEYZ+ec5fYg06WjyBBiQHsU7S3dyzZgsjqIt5AkcB2jvDvYX4H3gz5IkhRuJnMBRQ0sHv70kFzG+D2HnbvYE0Hd9nMJi0HLrxFzG5cfz89ZqxuXF0Tc1smMSelMsnPYv+PDC/YaM/S6UDSb/YKi2ezn3hSXKLPdXa8t5+ZKBnNr78BM0DkxCA9hQ3njQdLsWvL98l0IcgTyS89nvewkERV5YWEJBUgT/nlZIZqz5sIx0D4W2lE5qQSAoSfyyqZpbJuR2qvNrNcgeJLEWHXd/tj7E6LvJE+CnzZWcXJDAde+upLxRXsxWNHm45u2VfH3LSOKsBiwGbZfHRw4XapXAuUUpfLB8/7hnzwQrapXAO61IWIA3FpVxxcjMEPIoxqLnw+uGcc9n69lW5WBifgL/Nyn/kMTb8Yrfd9UTZzWwr9FDcXkTu+pczaOPOsbkxh7UkPJIIMqk5eGz+/CPbzfx92828sR5/bhhXDYVjR5So4wH9SOocXjZuLeJ7dV2Hv5uM0FRwqLX8NyFA6hz+nD7gui6mQAT2lmIJ0ca+H7maF79pRSdRsVVozIRBIkFW6rIibMQadIiIJAUYQiR1WvVAvouVHhWg4aHzurDjeM8ePyyUeiwrBhsxiMzSlXn9PHusjJmL99NnFXPA2f2pleSrUNG1JEmHacXJjEmLxadRnXE/ZY64sUWFCVqHF6WlNSiUwsMzowOI7Qseg2T+iQxLCsGUZKavUGOfaNFp1HtH+N01sKnV0LpL/Lj1W/Dqf/CNvgqbMYjRyRGmnQYtWrc/v3qugfO7M2tH6xmeVk9AD9truLS4T24eFgPXl9UCsC5RamdN+5uBZtRy2UjMnir2dvNpFPz0FkFRO1YISujDBFw6iNgbltJ7QuIXDAknR83VfLEj1uQJDipVzwnF3S8bhAE0KpUOLzBMF/rXXWuLilSDxf1Lh9rdjXw5ZpyBvaIZEKveDa1UcfsrHORFXds673vN1QoxBHIHmhLt1dzRq4RDDZZjfUHgUaAuyflU1zeSFmNi/H58VTb9xP6oihRWuPk9o/WUFzexPCsaB6b1u+ojxK1jAa3hzirju9uHc0zP23D6Q1ww7hssmO7nlTZGkatmkfOKeTlX0ooLm/k1UsH8sKCEn7YWMmkPokMyWgmj8wxMPFBGHMnAKLayjC/il9752AxaA65ztFr1SRGGEmM6Pjn6/QFWFUWupyWJPlcTos+fL8n+fUkftxYpXgyucUgj83dwsicWIU8WrClWiGOQFZ9fbWmnH5pkbz32y5l+5KSWj5etYfbJ+ZxzZhsBOCKN1ewtVL2TeudbOPvZ/WhyR0gznrCyeZ/Ce0ZZo8/mjtyAl1Hg8vHthoV+ac9i3XhX8HbhJR7GsKwG2U5+GEg2qxnXM94xvXs5KiZSgWZo+GW1VD6KyQUyPP1pq5L+48VymqdISaAAM8v2M7gjKjDVrVcODSd7DgLapXAnPX7WLi1mvMGpR1SCeL2hY+uNLn9lNa48PhFVu+q56LXflMIlSOFk3ol8NS8bYpU2KBVMX1QGle9tUIx1O0aBLRtEFNatQpfUGJ3Xej3UdHkCZvLBprH23xISNgM2sPYn45Br1EzfVAayRFGft5aTX6ilakDU2l0+8NMdgOiGGZIKUoSQVFi+qA0Ioxaed+PQhqOJEnUOOT3MujUyuz+4aDG4eUf327iH2f34fS+SbyzbCe769w89eNW4q16xveM64Y97zisBi1TB6YwsSABty/Ipn1NePxBPl21h3V7G5nUJ5GrRmWGdPLrnD5mzv6d20/uySNzNiuLNYc3wMPfbuIvk3uRHmPqfPf/MGDUaciJt/KPs/sQlETmbqjktg/3B6E+Nq2QMwqTeHRqIZfPWo4/KO/znafmd6m7WVrj5LJZy9ld5ybCqOU/5/enKD3qiBjQB0WJL9fsVVJsyhs9zHh5GT/fOY6kTiyCOrJvvkCQBpcfd7MJc7RJd0RUcJVNHiY/86syApUUYeDLm0aGkeo6jeq4GgMMg8+xnzhqwa//hj7nHpa34oEIBkVqnT7Kal1Em3VEmbS8e9UQbvtwDXvq3YzIjiEz1qwQRy34cMVuPr9xBGt2N3ByQTzTByRh3rMYbIlgjgNT2/4lB0OkScftE3O5fEQG1XbZ3yzarIXYa5AGXoaAIDfDDuI7ZNSpECWJz1bvT5Gbv6mKib2quWBIeof2waTTMCo3FrVKINqsC4nGntw36ZCj4N0NX0Bk9vJdPPq97Mn1xZq9NLr9nFyQoCwoATQqgZ6HUG4caYiiFKLSacG6XTWcsXsWxOZDvxmdPi6OFcwGDfM2VbJ2dwOJNgP//HYjz1xQpNSgNU4vl7z+m9JUW7S9lpkfruHliwce1SZNR6DTqMmOt/Cvcwub07667zje0+Dm7BcWK2TrN+v28ePtY3jwzN4YdepQNZzeIv8AxuafI4VquwdRguHZMZS18ntSCZDRTcQZgCcgMn9TZdj2xdtr6JcWqezLgZCA33eFny9rdtczY3AqqVEm3lhUGnKeF5c3sXZPA3mJx/ZcP4Gjj6N75zmBI4K9DW6mzypmWv9eXDN1PkatgEPUkWeMPeQX7A+IuPxBLHpN9yc26K3yT3T3mTIeC2jVKorSo5g5MRe9VoVGpeK3HTWHnbBk9/gpaY7hDkoSV4zI4PaT8zp0I7lkWAbvLN2Fr3lcRq9RcWrvRC5+7TflORVNnjAvlO5GjcPLG5cPZsn2GjyBION7xvPCwhIMGjUPntE7ZAyo2i7vj16jwmbQhqQyHQh/UOSWCblMHZiKwxvkyR+3UNnoZUxeHCpBICPGFHIDTok0hqkqnN4Ay0vruP+rYhpcPs4fks71Y7OO6Bibzagl0Wag0e3nypGZ5CVa+GbdPkZkx3BW/2Q+/71cee6Z/ZLDzJ7rnT6mv7Q0RFW2sCCBx8/r1y2ETlvw+oOs29PInz9Zy+46F6cUJPLQ2b0Pe9xHkiQc3gCv/VrKn0/tiVGnZv6mKrLizNw8PgdLF0fx3L6gPBXbBSLQoJXNKX2BICadmtW76rl4eA/UgsC8TZU8v2A7d56Wr/gDuHwBFm2v5ZaTRIWEacGOGic9E63HzCRSq1FR1+QL8fgBeOjrjYzNi6MoPZJf75pAWa2T5EgjkSZtp4v0OoePmR+uUcjaRrefm95bzU9/HndEDHEb3X5llLAFvqDI+r2NnSKPDgV/MMiqnfVc985+b443rxhM35SIbk3OE0WJt5fuDPHO2dfoYd6mykN6Vvwh0I2fVQvK6lyc8/xi5Rp4Vr9k7j+jgM9vHIkoSeg1KlzN14DWvLpRJxvqv37ZICzO3Wiey9ufLDboSjjpPtmYuxOQE4l0ZDbfk53eAKUNQd5ZupsYi57zB+tJsKnaPGasBl2byuIl22uYNjC1Q96J0WYd/55WyNYKO29eMZhH5mxmR7WDSX2SuHlCTseT1roJDW5fiCk5yEbiP985jlqHjy/W7CXBZuCf5/TtmvdVN0KlEjhnQAqfrApNxTo91wTfz4dVb0JcHuScdGx2sJOIMOq4eXwOjW4/1XYvadHNZGYz3L6gQhy1YHlpnVIjHo/o7iATf1Dk9UWlIdcFb0BkbnEl14w5duuQHdUObpu9hrIaJx9cO4zddS4Wba8lslkNHdmNKl69WsXInFglabcFrX0TpxQm8/S8bSE1zdi8uDbH70dkx6AWBBpdvjaTYPfUu7pdeX0Cxz9OkEf/BWhhiz9ZU8Una+Qxn5E5Mbx0cRLWdk7qqiYPry8qZe2eBib1SeKMfsl/WDPBI4ke0Sb+MjmfG95bTbXdi16j4u9n9+nSCEhr7Kl3c+07q5TH936xgY+vH96hOfXEiObRlV93oFYJXDkykzcWlyoGeSCrgI600uanzVW8sKCEETkxnFGYjEqAm8bnkBRhCEmA2F3n4qLXfmNXnXyjuW9KL84ekNLmeJnd4+fL3/fy4Dcb8QclkiMMvH75YOIsemKajRdfuXQQ1769krJaF+nRJl6+ZCAxB5BCdU4fV761QikkXvllBykRBi4ennHEom0BkiON3DA+G69fRKuS42E1ahU5cRaGbTK4NwAAIABJREFUZ8eyYHMV43rGc3JBfNgCvMkTCCGOAH7dVoPHF8Rm0OIPiARE6bCKLofXj90TwBcQMes0BCWJS974TUmO+r64AqtRw4Nn9G6X4DsUokw6LhuRwcPfbqJvagRnFiYxJjcWq15LWrSRCFM7JF4wCK4q2LNKXvDF5uHURlFW6+T5BdvRa9TcND6HtOi2Ta6bPH68zaR4ywLL5Q1Q5/KxsqyezFgzcVY9Ly4sYe2eRuUcyow1Y3f7FfKoJdXS4wsSb9VT1co74aT8eFaW1TEhP/6IjUm6/QEaXQE8/iAmvVoxhm+B2EzQtUaL2WVLjHdiRNdJwIAksq5V4hbIfisuXwBvs3LHHxQxaNXKmF2tw0t9s09NrEUfMn7X4PJR2eRh8z47/dIiw+LUDVoVWbHmsPdM7UbTa4B6p58b31utnGt1Th83vb+az24Y2a3JRSJSiFpEef82DGOPe+gskDUBdvy0f9uY/+tW5Ybd4+cf324MuQZ+ubacmybkhHiQqAQ/5w9O54Pl+0cs7jq1J1EmHTpvHXx+9X7iCOTwjpEzO00eHYgd1Q7Oen6xkqD07rKdfHfr6IOOZo/Pj+f5BSUh207r07kEuBiLnuE58jH54kVF+AIi1jYMcI8GBAQ0B9w7vQGRoChx3xkF3HFKTwBiu5jo2t0oSLbxwBkFPL+wBLUgcPuYRDLrfoXG5rHytR9A5pjjenytpQlj0KgVMrMtCwuDVo1Zpw6pAXvEmFAfB9/D0YIgyP6FB6I7vJ+6ihq7l2veXklJtWwXfMWbK7jr1J78/ey+GLQqYi26zqUmHgIqlcCUwiQWb6/hh42VaFQCV4zMCBkhjbfq+fKmUTw9byvegKjUUh5fkHsn9+LZn7bhDYhMLUplTF4c26rsPPj1Jm4/OY/ZK0ITuMfmxfP0vK1cOSrzD+kldgJdwwny6HiEoxrKV0PdDtnUzZIgz9gfBAN7hBdE4/LiMbVTXNQ6vFw+a4XSGVu2o45UU5DxmQZU7jpZ5m2MOuyxt/8GSMDD325STPe8AZF7P1/PmLy4DseEt4Uv15SHbftwxW4Gpkcd0qfIoFWTFWfh72f1AWSvnekD0/jy93Ls3gA6tYpHpxYeMV+SFozOjeXpedtYuKWahVvkRKYnpvejf7M8FuRxuvu/2qDMWPuCIn/7qpgJvRLaXHQ7PAHu+6pYKdDLGz08/O1Gnr+wSClIc+MtfHz9CPxBEa1a1WaxunJnXZhPxNfr9nHWgJR2jTydXnmxbjNqu5ysdyCRBRBt0XPeoDTO6pccbnjfDIteg1YthHSEeiVZ0WlUlDe4ef3XHexpcHPpsAz6pEZ0uihqdPt4a8lO/jN/G0FRon9aBPdN6R0SOQ6wcEs1jlMCnSaP6pw+qu0eKpu89Ey0cm5RCok2A5+u2oMoSlw8rEfHJPSNu+CtKZBYCD4nqA3sOelVznh2kXJcfLtuH/PvGBvmFbC7zsWDXxdTXN7EuJ5x/OnkPOKsBtbuaeDi15cro2dnFCYxbWAaa/c0EhQlXv11Bx9fPzxkcWTWqZlalMLT87bx7IUDeHzuFrZU2hmTK7/uzA/XMDw7FssRmDZyeQP8sLGS//t0Hd6ASLxVz3vXDCU3fv8i2qBVMywrmmU79vsoDM2MPuyFZY3DiyhKCAIMzohiRasRIZtRg0mr4YfiSu75bD0Ob4D8RCuvXz4YvUbFde+sYtVO+fm58Rbev2YocVYDDo+f1xaV8txP29Go5JSgp2b0Z3LfJOU8M+k03HFKTxaX1CrX27P7J3fKV6Ij8AZE6g9I0tpd5w4bLT1caFQqrhyZwSerdivHrU6t4sx+Ke3/4fEIcwxMfQVKFsKe5dD7XIjL79aFtzcgsveA+GuQfQdbk0c2o5Y7T83jnAEprNvTwMicWJIjm33L3EGwh99b8TSGb+sEnN4Azy7YTmuboRqHjxVldZxemNzm3+TEWbjz1J48v2A7QVHi4qHpDG8nxelQONYG1JEmLbefnMdfW6kdJ/aKx6TTKD/HE6JMOi4e1oPTC5PAVUfUgnvQbP5i/xNSBoJK3me7Rx5hPWzj925EndPHgi1VfPH7XgqSbFw5KvOgo62RJi1PzejPrbN/x+MXsRk1PHP+AKXhdqxR6/Dy67YaFpfUMLlPEv3SIru9Wa1RqbhyVCafrNqjENBJEQbGHeUR+dbwBoIKcQTytezOT9bx8fXD6RFtapM4kiSJRrcfg1bdpQZwjEXPY9MKecAXRCXIdWXrWtuo01CQbOOpGf0RJUlp4Fj0WqYNSuXUPon4AiJGrQoEOP/V35Ak2F5l55/n9OXNJaWoBIFbT8olwqhl9a56Gn7w87cpvY66GvIEjg1OfMvHG5w18OHFcpoJwNy/wGVfQ8Yo6pw+nM1dZrN+f+RoUoSBv0zuxVM/bsUTCDK5TxLnFqWgbmfh6/QFQyTVVwxJYIhnEar/3A5iUCarLv4c0oYcEWn6HwmBoMimilD5uT8o4fAEwNb11+2ZEG4mmZ9o7ZTBdWuPjoJkK/PvGEuTJ4BFL0eyH+4i0u7x0+Dys7fBTY9oExEmbUiBmBVrYebEXF5cWEJAlJg2MJXx+aE3ao8/yIa9oZ+fJEGV3dPmyI8c2Rq6bdM+e4inkSAIh1QItF5kt6B3sq3dz2RvvZt/z93M1koHk/smcsGQ9G7xs/E1x0lbDNqDEkcgL8wfnVrIPZ+tVwiDx6YV4guKnPX8YmVBPbe4khcvKmJS3/B0ovZQ5/Tx5I9bAYiz6vE0+70cOAJSkGRVihavP0iD268890D1S+vXvu/LDUo8vFGr5vMbR3BGv2TG94xDp1Ef1JQ6BH43nu2/UHnuN3yxsZEYo8CUPgm8sbAs5LjwBUW+WruXm8bnKtuq7R5F4QbwwfLd1Dv9PHBmAQ98tTHEYPbrdfu4fGQmapWgbJdECZc/yNzlu0iOMNA7OYI/n9KT30rrWLOrgYfO6oMoSczZUEGd08fA9Kgj5jvS5A1w1yfrlLGDKruXP3+0ljdaJSxFmXQ8c8EAnp2/naU7ahmWGc2tJ+V22eOiweWjzunjzo/XsnZPIzMGp/HE9H7c/MHvrNvTSGqUkWcvGIAoScz8cI3yuW2usPPm4lIKUyMV4ghgW5WDz1bv5doxWTi8Ab5ZW86rlw7EZtCiUavYUe2gwekjrtWCKDXKyLe3jqK6yYvZoCHSqO32RbNBqyI1yhhiKN472XZE5Pdp0Sa+vGkkzy8sQa9RcfOEHOJtx8fitNMwx0HhdPnnCCDSpGXqwFQe+W7z/rfUqcmJD79XRpv1DMnUh4xjALKRdb8LYdGT+7dZ4uUm3GFAEGhTxdGeijXSpOOqUZlMH5iKBFj1msNScx5raNUqzihMok9KBN9v2MeA9CgG9Yg67jx1WkOjbjZ9V2nB16oOSS6CPlNBEKiye7jvi2Lmb64kM9bM49P70SvJ2q4ixBcQ8QZkdeuRUFn5AyLvLdvJE83361+31TBvUyWzrx3eZu2j16gpSo/i+5ljsLv9RBh12IxHZt86iwaXj799uYHv1ssJoB+v3MNN47O5eXxut4+uJdkM/HD7WH7ZVo1Bo2JYdswRSdzsKLRqFXFWfUjiW7xVj0ogLEW33ukjIIqsLKvnjcWlZMaaue2kPJIjDZ3+HmWVWvvPaWuMPcqkC0mNW7i5ipHZsUSZtLyxqIwhmVG8ftlgtlQ08cbiMnbVufjr6QX8tLkSuydwgjz6H8GJb/l4g6NiP3EEIInw433UzPiaOz4p5uetsrpjaGY0z19URKxFT6RJxyXDe3D2gGSQJAxazSH9KDQqIWTBeEVRFNZ375KJI5C7/V9cD1fOlQuvLsAfFHF5A5j1mqMWx30kYNCpGZsXx9zi/TPENqOmTXlsZzA6L47C1AhlRCM33sJZ/dvuYHYEWrWaeJua+MMgtFrD5Qvw2eq93P9VMSAfM69eOogxubEKMRll1nHdmGzZAFQCs14dpiayGDSM7RnHxyv3ew/oNSqSDqImiLPqw9J1xubFddqvJTnSyIVD0nm/ebQhO87MDeNyDkreVNs9zHhlqbKg3LiviVqHj7tOyz+sAqe8wc1LP5ews9bF+UPSGJ4Vc9DFsEmn4bQ+iYzMjpWjbvVqYs16lu2oDSk+AF7+ZQdDs2IO2r2rsXvZXu2g0e2nf1oksRY9ZTUurHoNj0zti16jpqrJg04t8MCUAv7x3Sb8QYnUKCN/P6sPNqMWbyDI4pJabv3gdxzeAAk2PW9fOZSebRgk1jl9CnEEclz8g99s5KWLirAYtNQ6vTS5A1j0aix6LZaDnT9igLK4CZzxynpFgbWtUd3mAiXygEQqly8YkiIC8MPGCv42pVebo0IefxBNM3mUE29Br1Uz/vGFyvsOSI/khYuKeGNRKTEWPW8uKWNfo4e+KRGclB/PjeNzjthoqNMbCPOr2FxhJ3iAnC7eauAvp/fC2Xyt7Qph3ODysby0jrnFFZw/JJ1HphbiDYis2lnP7OW7eO3SQQQlCY1KIMasZ0N5Y1jSU53Tx5aKcI+XTfvsBEWJgCjx9Iz+3PnJOrZVySNFE3vFMyo3VIkhCALxVsMRLfhjzHpmXTGYZ+dv57QsLakROlKSko6I8blZr6FvaiRPntcPlSAc8VHiPzI0KhXTB6YhSfDRit0kRhi4/4yCzikUtAYYfpPcANvwCUTnwCl/73Id0wKTTsOtJ+Xy48ZKAs3HfqLNQFEbyu/W6Kp64HhFhElHf5MuRF38h4A5Dqa+Bj67XOcabGCOw+H18/C3m/i+WCY2tlY6uPDV35h/x9iDpoZVNnl4Y3EpG8ubOLNfMif1Suh2FU2928fbByS0llQ7aXL72ySPGl0+Hp6zic9bGbTfeWpPrhqVecyPP5cvqBBHLXh9USmXDs9ot7byB0XqnT4czfc2m0FzSHJCrVaRGGHgvEFp3bLvh4sYs47nLxzA1W+vpMkdIMKo5dGphaRHm5QU3Ua3n99Ka3n55x2YdWquHp1FcqSRj1buYeGWar65ddQxI8B6JloZnh1Dld3L0+f3R69R8exP25Q0N4DbZv/OpzeM+EOv806gczhBHh1v8HvDt0VlsKy0QSGOAH4rrWPexkrOb07tMPrqMNrL5RtjTA5ICe0qhix6DRcPTeedZfLCWocXAgc48NeXyuTVIeDxB2l0+5vJAw0Wg4Yau5d3f9vJkpJaRufGcsGQ9ONGCtxZ2AxaHjqrD/6gyMIt1WTHWXjyvP6H3W2LteiZdflgahw+REkizqo/rj6jJneAf363SXkcECXu/mwd39wyKiTBzahTt1sAmHQa7jy1Jw0uH/M3VZEcaeSJ6f0OOnIVZdLy3tVDuePjteysdTKxVwL3TM7vNHkUbdZx12k9uXlCjuzvo9e0q1Zq8gRClAgAn67eww3jsrtMHlXZPZzzwmIqm+Tz+uet1fxral+mD0w7aMe6Lfl/W+9v0qkP6mdQ4/By2azlFJfLi3mbUcM3t4wmP8nK38/uw8cr9yjXE71GxZyZo/m1TxLeQBCTTkNss9S9weXnlvdXKz4KlU1ebpv9O+9ePTTsWG2LnKlslBNGdlQ7OP+VZdQ6fahVAvdOzue8QWltji26BCP/Wbw1ZHTvk1V7+ObWUXywfLd8rUFeuJ1cEKom0GvUYWN/yZFGjFo1Fw5N5+l525TtqVFGIo1agqJ87j09oz+PzNkU8re/72qgssnD36b04rp3V1Pn9JERY+KBMwuoavKQEmnE7Qt2e/cUZJVChFGr/L8gj4ka2vB4MmrVhySNHF4/Lq9sNBxt0ikEsCRJ/Ly1mv/7dB0fXDOM//t0nZKoMrlvIlOaR3Jak73xVgM6tSqE3NKqVZxemMxzB3i8zBicikatwqLX8NaSnQpxBDBvUxVXjHQelEg+UlCpBHIjNTw9woPq+5ngqoGBV8CgK8AUc0Tes7tHehpcPnwB2W/qSJiXHytEm3VcPSqTqUWp6DQCEcYu3GfNsbLHUdFlMpmk7540oIwYE/P+NJaPV+0mzqJnct+kY6pqOIFOwhwj/7SCyxtkwZaqkG0ObwCnN0B5g/v/2Tvv8Kjq9It/7vSeSe89gUAoAULvCAKiYEEFBQsqWFm7rrrF1d/q6rrW1bWhawUrothRVKr00Ht6Qnoyvf/+uMkkwyQhgQTQzXmePA/z5c5kZjJz7/s973nPocrsIEQtRyWXEG1QU2VycOVrGznUeB775WAVi8/J5JaJ6a36750sJIKAXiWj0hy4J2hLvWtxelh+XNjAiz8e4tIhCa2SR3VWJ4U1VlbtrWBQkpH+8SHdlhraWpUiIDZtKk12QltJuvT5fOwpbWD+ko002NwoZRKenZPDhN5RZ5wM6wykUgmDkox8d8d40btKLkUjD2yG7SqpZ+Fbzf6n649Us2zhSL7ZXU6FyUF5vf2MnGcqTQ7mvrrBH06jkUs5b0BswF4UxHFjm9PT45n7P4Qe8uhsgzERQhKbDf0AhlzLtl3B8/pbCmu5fGgigqUKPpgPhevF/9BFwfU/iI/VBgxqOXdO6c1luYnsLTcRapSBMQnqmg0oSZ8MsvZPWHVWJx9sLvYbr12YE8+9U3tx78d5/HSgChATH3aV1PPE7AEnVwieBYg2qHjikgE4PT4cbi8GlaxLItTDdcpuu2CL8esOv1y+s3JSl8cbMCoG4ujM8SNlHUGUXsVTl+Zgd3kQBKFdQ02FTMqgJCMfLhqJF5+4OWrDkLjW4sTidONrVD3pVXJMdhcahQyVXNqmdLfS5OCb3WUcrLBw6ZAEksM1rW6+owyqTo0RHo/iGpufOGrCkjVHmdwnulNEYWKYhn7xBv/4n0wicO/U3tTbXNhcbqQSAYkg+D9Lu0rq/cQRiETgv388xEMz+pAWqQ24+IseXrv4z7zBQebKNqcnwIATRPWLt5UPQXKYBoNaRoOt2ez2sqGJeH0+7v9kJ9WNxsEer49HV+5lev/YVskjn4+g1A+L00NprY1v7xjHmoNVyGUSRqSFBRVUepWMB8/ry8Nf7MbnE4mxf146kFCtgqtGphCpU7J8ewlpkTquHpkiKqvum4ik8f0zH2dWDmBxeBiWGsbnt42huMZKtcVJSa0Nq8vDH5ZtJ8ag5PbJvUgwqtsdFe4sQrUK3rl+OHcs287hSjPjMiP58wXZlNXbcHm8nTpvVJsdPPblPpZvLyFMq+DRC/sxOiMcrVJOrdXJkjVHmZYdy+c7SgOieL/cWc5FgxJQyQNfV4haxitXDeGeD/OoNDsYlhrG7ZN7oVVKefWqITzx9X7cXh83TUinT6wohZRLJf4NV0scOGZidMbJ+8CcNKxVSP57Pngb/+Y/PCL6/A25FiRndwe1qMbKHz/JY0dRPcNSw3j0wn5dmkZ3piFrHPU4JUhloOtarxO1QkZKhIx7pmZ16eP24MxBLpXQO1of4OvWZNA/64W1fvLmmlEp3DQhHavTHXQee3t9PvNGJBGl7zpSI1yr4KHz+3Jdi9CPGf1j21bsQpDHo7uNYs3p9vL5jlL+9Nlu/9oFA+N4ZFZ2t/hqaRQyZuXEBfh8Xj82lQ82F/HBpiKuH5vGRYPjA8alqsxOFi/d5q8nHG4vd32wgx/unvCbIo9AnAqINkhpbXDW5nTz33X5AWsuj491h6sZmGDE4/URrlWyp6wBg0qGXiXH6/VhcboRBAGtQtptXmhHKs1+4kgpkzC5bzSr91fQJ9bAsYbmGlIQ8NeODpcHH+IETA9+v+j5655t0EXBdd/Cxleg+gAMuQZiB3CexMvra48GHHphTry4AT+2q5k4AjBXwJqnYdpj7Rpeh2oVhGoV9E8wiledqz6Dz/8A5TvFVJVpfwd1+9Lkklob+VUWXr0qF5lUYP3hakwOt584asK3e47xsNPDaW4wdxnMDjcr8sp45Is9+Hxip/+9G4YzKOnU0lu6C1aHm62FtTy4fBcVDQ4uGRLPHZN7dWrDqZZLyYzSBSgFzsmKOmkfJYNa3uEOuSAIRDRuHlweL6V1Nr7cWYZSJuHc7Bii9EpqLE7u/SiPVfvEruHQ5FAeu6Q//1l9mDCdkgWjU1tNmqoyObji1Q3+1/Xfdfm8dlUuQ1PDWDA6hSVr8wGRoHn0wn6npAZrTZGiV8k7nYASoVPy5rXD2FZYR0mtlTGZkbz682GWbS5Go5DyzOU5rN5fwaW5iWTHGQJSwZpQ0eBAEERC6HhUmx1BUfRAY8KXwk/8gBj5Km+l+xmuVbD85tE89tVeimpsXJqbwEWDEnB7vEHFttcnqppaU5xolTJum5TJqn0V/mI4XKsgM1pPlEHFJUMS2nyftEoZlwyJZ0rfKMobHMQ3qosEQSBMq2D6gBjsbg/5VVbmvLqeBpubV6/KZUrfaHw+H9ePTeO297cFvKaMKB1yqYS9pQ1c/9ZmRqaFc/6AWB5sYRq7am8F3905vk0z05OBXCqhf3wISxeOwOn28v2eY8x+aR0VJgfDU0P595VDOvTZdHm8vLOhgI+2ijLzCpODRe9s4ed7JqJVypFJJBjUcuKMqgDCsQmldVYM6sCyV62QMSYjgpWLxzTGpzd3Uif3iWZQUig+n4+wFv5YWqWMiwfHBXT5BQHG9TpDZqYlm5uJoybkLYXsi7o0QayjMNldmO1u7G4vunZUklUmB9e+ucn/nVq1r4La97by2tVDf3OdX2djYl/TWIqo8PhtbQx78NtGqFbB4xcPYO6rG6gwOZBLBf512UAxJKWF6ufNdfnMG5EcRKSDWNucTIvJ4/FicrhRy6VB4/SCIDAsNYwf75rA2sNV9IrWkxahDSBYWkKjkDK1bzQen4+UCC27SxsYmBASkGbZhDqbk39+eyBg7fMdpdw/PeuEPjkngxCNnD+f35fp/WLZcKSac7KiOGayc9/HO/F4ffznp8OM7RVBjcWJgJiO5vX5KKgOHEG3OD3YXcH1y28ZMknrFg6ReiVqhYTbJ/fmghfW+FM7F41LIzvOwOKl2wE4v38sD8/K7pYmdMuKMCZExaEKM+9tLOSFKwZzpNLiT0++b3pvsU6vtVJUa2NfuYlR6eGEaxWEnUXTFD3oOvSQR2cjDHEw6SHwOEEhnsnTI508Mivbn5J088QM+jZ2dKkrCn6MunxwOzueliYIEJYGl74FHofoF9ABqbfV5SHKoOSGtzbjcHs5f0AsarkUlVwSkOCklkvPCuO+k4XZ7uLvK/f6N7M2l4d7Pspj6cIRARs4j9dHtdnBgWMmjBoFsSGqblMWtYdam4ur39jk9yV5Z0Mh0XoVN01I7/BccoReyX8XDOOxL/eyo7iesZkR3Doxg2qLA6fHe9pG7Mrr7Ux95mesjaTHs6sOsuLWMdRZnWwpbO4W5qaE4XB5yY4PITVCy6b8Gkamhwc9z7J6WwAhBvDMqgO8eMVgbpuUyZxhSRTVWOkTayBUc2rjIFF6ZUAalkwi8MB5fU5q5DFCp2RK32hqLE6mP/uzX9FkdXr482e7eeTCbC5/eQOr75nAyLRwlDJJgHJswZgUdEo5qRFajBo5dS3SpuYNT261KA3XKHjrumEsfn8bhystDEkO5enLctAqZFSY7AgIGDViKp1UKiGtcaTT6fZiVMuRSiVYHG4m94nm463NM/IGlYzwdt6DjCgtXy0ey5vr8onUK7lieMfHXvUqOXqVnPjQ4Cp4V3EDj3yxN2DtPz8dZkiykTCtkrGZESy5Jpe31xcSG6LiiuFJrDlYycSsKOKMIjE0vnckH28NHA9osLvZXVLfpeRREwwqOY+u3BPgf7HxaC37y01EZJz4PTHZXXy391jAms8Hu0sbSAzTYFDL+eP0Pvzjq72M7x0VoEoTBBib2Tq540PceB2fSCi0k1Y0JiOSe6f25o21+WiVUh6c0ZfoU1WYnCyMKcFr4b1OqLbtDtRbnby+Vkyi8/pE5cP7N4wIShIEsLs9QWTs1sI6HO7f1qbK6/Wxs6Sea5ZswuRwo5JL+PcVgxmbGYGiC8d/etCDEyE1QssXi8dgcXhQyyV4vD6OVFmCjiurs9E/IYRZA+P4bIeoohEEeGhG31YTVttDjcXBR1uK+XrXMQbEG7hpYkbQ9UOnlKFTykiJaDttuQlGjYK/XdiPT7aWsKWgRvRiyopqc6T6eHUv0KqiuKsQrlMyrV8M0/rFsGxTIfd9vBMAiQAvXDGYO5ftYGeJOGGRmxLKC3MHMSw1jF+PNieJxoWo0HTDiPiZhFwmYdH4NL7IK/U36bLjDAxNCSU3JZSHV+z2E0cgel1+eONIf333xc4yLhwcz+Q+pxYI0BrSI3UkhqkpqrFxrMFOeqSWsno7D366kz+d30dsCKvk7CtrEBNr1xzljcbmK8Czc3KY0T8WmVSC0+3F4nQ3Jgqf3creHpwYPeTR2QqpTPxphFGjYM6wJKb1iwEgRK1onn1OnyDG5XpaRA/nXgeqk5jz13ROSSOXCAE+Ip9tL2VwYihPzh7Abe9v96/fM7V3p2PFuxper486mwulTNJp/xybyxskAS6otgSNrhXVWpn5whq/1HZMRgTPzsk57QTSnlYMbb/eXc4VwzuXHhahU/Cn8/tic3lwe7zc/8lOfjpQSWaUjnevH07UCTbLDpeHWquTgxVmYkPUROgUnZLYerxelqw9itXpoV+8gTsm90KnkmFxuDlSaeaV+bnMe20jE7OiSAhVM+P5Nf77zhuexODkjpl6+nzinPnErCh6ResDYqFPBeE6Jf++YjD7yk0U1lgZmxFBuP7U1AEWhztoFK68wY5BLcfp8bK1sJZfj9bw3wXDWLLmKCa7mxvGpTIgIQQQSagVt4zmn98eoLjWxpxhiUzpE92qB5NUKiE7LoRli0bi8fpQSCUIgo831h7lPz8d9se1zhwY5yfEju90apUy7p+ehcfr5ds9YprNE7MHtEugaZVysmLl/N9F/ZAIQpcRz8enm4CY5mRxeAjTgtfnIzZExbDUUArnRs0+AAAgAElEQVRrrFzx6gYa7G5uGJvKovHpzBoYh8XhJlQbfC4zdpPqw+n2UHhcBxagsMbK6A7cX62QMTDBGJR4mB7ZvCFJj9Ly90sGYLG7uXVSOu9sKESvkvHQjL5EHUfuWB2iN9grvxxBJZewcGw6sUZlu8lETQjVKrh+bBqzcxMQEAjXKk5pLPSUYEwS05Z2fSzeNsTBhPv9DZvTiVqri+dWHfLfLq618dhXe3nikgFBo51yqQSDSuaPogaRpG4v9etsRLXFyeL3t2NqTJC1u7zcsWx7o4Iv8LNUY3FQUG3lcKWZYSlhROiUv+nUsh6cXZBIRJN+Gi/7dqebc/tG8/LPR/zHKGUS0qN0GDUK/nxBX+aPTGb/MROj0iOI1CnbPY/VWZ3i+LfPh0YhQymT8PR3B/yeo1sLa1l/pIb3bhh+0rVircXJXR9sZ82hakD0k7tqZDL3T88K8lszqORcNyaV539oPueMTAtD28r1sTsQ06JuHJUeweb8Gj9xBLA5v5btRXU8c3kO93+Sx7pD1WTHGXjqsoGdJum6A16vD5vLg0ou7ZLzboxBxVd/GMvechNapZSUMC0ReiWVJjtHq4NJzEqTA51ShsMtkkqb82s6TR7ZXB4aGv0UdUpZq3uiSL2SpTeM4PO8MoprrYRq5Pzfhf34+5d7ueGtLYxIC+Pxiwewt8zE0JSwoPG7R7/Yy6j0cEDgzXVHWX+4hnG9Ipg3Ivms8nftQefRc/X9DUHeFDl6PLSRsOBb+O7PYK+HETdD8qjT8pw2tYhlbsLqA5X889IBfHP7OPKK68hJNBJlUJ1ROXqtxcmXO8v4YHMRSWEa7p7am8RQTYc3LjqllBiDivKGZlPxadkxASNcVqebp77ZH+D5suZQFQU11tNOHiWHB3eq+sQa2u3a2JweTA4XAuKIj8frZePRGm5+Zysmh5tIvZKnL8uhxuJkZ0k9724s5LZzMpC14w+yt9zE5S+v9ytgrh6Vwh2TMztMIPl8YHd6SA7X8JcLsrl96XZK6mwoZRL+dH4fEASm9YthZk4c93+cF3Df934t5MYJ6f7bVWYHm/JrSIvQkhGlC+jeLxgtzt8PSgrtcmPCcJ2S0RnKDm30OwKVXEpahDagM5qTaORIpXjbqFawfFsJP+yrYObAOCb2jmJIcqj/sy6RCCSFa3n8kv44XF6MGvkJyZmWF/qfDlTw2FfNUdp/WbGbvnEGhmrbHvWJ1Ct59KJ+PHBeH6QSocPfB2kXe8+khGvpG2tgT5lIpMilAtePTeOVnw9z37QsSmrtWJxu/vH1/oD7fbilmAWjU3l4ZjYmhwuTw8PaQ1V+deXgZCPJrahEugI6lZy5w5NY3UIRJJMIjOmgT5BaLmXxOZlsKahlX7kJqUTg5gnpAWNRSpmU+EbPnNsiMrlqRAqSxlG/48+RxXU2pj/3i5+c/nhLCavuGk9cBz13FDLJ2WEyrA2H8/4pqnwdZtBHn3Kc+8mipM4WtLavzITN5Qkij0I1Cp68dCC3vbcNp8eLSi7h6ctzCO8O3wuXTawpBGmX+wd5vL6g191gdwf57NVZnfzt8z0sb/RLkQjw5rXDGJsZ8ZtWM/fgzMBkd1FldrI5v4a+sQbijOrmRoa9AWRqVAqRXLG7vHyeV0qcUcUjs/oR1vgda/KqzE058XhrtdnBQ8t38dUuMW1sfK9Inpg9gA+3FAcct/+YCYvDfdK1otXp9hNHTVj6axG3TswIIo9UcinXjk4lO87AF3ll5CaHcf7AWMJOEzHTLz6ECb0iWX2gktgQVasEyab8Wqb1i+W5OYNwerzIJMJpe36twen2UGNxsq2wjlCtArfHR0G1man9YonQiTYKVqdY+2sVslabY5UmBzUWJwqZhBC13D9mLJEIRBlUQc1Yg1rOef1jefmnZhJTo5ASbVAFWAkcHxxyItRanbyzvoAXVx/G7fUyd2gSt0/JbPX9Lam1seFINaEaBVe8tpEZ/WP5+vZx1Fic5BXXc9/HeTx0fl98Pm+QH2q9zYXb6+OuD7az7rD42dxaWMvesgaenD3wdxX08L+GHvLo9wC5GuIHw+VvixGkmvB2k9a6ErmtxNSOzhCjyMN1ylYjvU833B4vH28t5tGV4rjKjuJ61hyq4pvbx51QOdOECJ2SpQtH8NDynewvNzOpTxR3n9s7oLB3uL2U1tuD7lvRELzW3YjSK7lhbCqvrTmKzwfJ4RrunNKrTdPsGouTf/9wkPc3FWFUy/nrzGwGJIRwy7tb/Z3hSpODv6zYzW2TMrh92XZ2l9bjdHuRKVrf4ItF086AzcB/1+Vzw9jUDpNHMqmE68amkRmt45/f7PdvNhxuL39dsYfPbh3NwIQQEoxqnrhkAF5gZV4Zy7eX4PU1y7DL620seHMze8oaSAhV8/Z1w/h6VznFtTbO7RvN1sI6fs2vQdeF3ew6q5P95SY+215KTpKRSVlRXdJtidSLMeP3fpTHjuI6hqaEceeUXixeuo3LchMorLHSYHfTYHfz4urD7Cs38cIVg4IKSDHVrXO/2+v18fmOsqD1lXllDD1BIa1Tyv3RtGcKETolL80bzLrD1VSaHIzJiOCt9QUcrDDh9vooqbMGdEWbcOP4dNxeH/k1YjJYslbBj3dPYNPRWqINSjKidN1KEA9PDePJ2QNYsvYoepWcB6Zn+RPxOoJog4p3rh+O1elGLpWgV8rQ+axQshO2vgMx2dBnJuiiUMqkRLURUe32ePluTzneFopLm8vDyp1l3DA27ZRfZ3uoszqpaHBwuNJMv/gQwrSKTitIg6AJOyP+RscjLVIblBI4JTu61YAJhUzC2MwIfr53IvU2J0aNgpDGEdEuhaUK1jwD298RG1QznoL43C5TZilkEgYlGtlWVOdfSwoLDi4w2d1+4ghEv7SHP9/DskUjerrXPegUXB4vP+6r8PvFANwwNpX7xkchO/w95C2D6H4w8maiDLHcN703i8anIWvc3J8MNhfU+okjEBNXV++vYFJWNF/ubL6WCgKnNM4jKnQDTbOVbSSzgZhqOK1fLJOyopFLu07d2xGo5FIeu7g/ZocbiUSg0uTg+z3HuHZ0KkNTwqgw2ekbK+4dussMurM4VGHhohfX+uvZSVlRPHheH8rq7PjwceeyHfxyUPR6ndQ7kicvHRhQExxrsHPZy+v9Pk6T+0Txj0sGtFs3KGVSFo5N8xucJ4RqeGRWNntKG9AopMgkAovGp5PYyoh+ezhSaeap75o9r97aUEBuShgzc+KCjk2N1LKvzORvnEcbVDz46U5+Ptjsa3vV6xtZuXgs2XGGAN/ES4Yk4PH6/MRRE0QPXHcPefQbRg959HuC+vSbNyeHa1k0Po3XfzmK2+tjUlYUFw6KP6sk9HVWJ+//WhiwVmt1UVhj7XBBIAgCKRFa/n3FYByNhqbHy+aNajlXDk9iSws1lkouISfx9P9djBoFt03K5NrRqSeMqfd4fXy+o5TXG2eVrU4Pi97Zwqo7xweN6h2uNBPbaEJ90aD4duOnPV4f5a2QaWZHcKJVe4g3qpjcN4anvzsYsO72+nC4vFwwMI4v8sp44UdRgn3t6BQendWPpZuKUMul7Ciqpcrs9KtNimttLH5/G49fMoC31uVz/yc7Kau3s3hSRrtJJp2By+NlxfZS/rxCTDN579dChqeG8dK8wZ3untXbnDjdPr+3EIjfu5fnD8Hp9uLDR4PNzXvXj8Dl8TL92V8C7t9WvPvJQBDEefyPtgSu94s3dOj+TQmAtVYXGoUUvUp22hMYVXIpH24uQimT8tLqw9hcHh6emY1eJWdIcih7Shu4fGgiyzaJXnLXjEpGKZMw7skf/Qlub183jKFtFFvdAaNGwSWDE5iUFYVUIpxUQS1utBs/ez4f7PkRPry6+YDNS2D+Z60qTKwONxUmByt2lBKmVbBs4Uju/GA7xbUimas9BR+KJvm82yPGzrdWTJvsLl5afdg/RiIR4NWrcpnQO6rda02NxUm91YnT4yNcq/Cb8J9tCNUoeOe64Tzw6U5K6+zMzInjhrFpbcZyi8SvrNVAgC6Bxw3b34X1z4u3bbXw9kWwePspkUcWhxuvz4deJXbdX7hyMPd9tIMNR2oYkBDCU5flBJGixyuRQLyme7sg7bQHZxe8Xh9VFgcVDY7Ga4O80+e6KrOD/eUmSupsjE4PJ1yn9Kve66xO/vbFnoDjzVYbki1vwI+PiguHf4D9X8K1X6HRRbVb43QEm1p49jTh16M13DQhja92lfnJnmtHpZwSGa5VyrhyeBLvbGiude86t9cJ37+2zjHdBbvLwze7y7n7wx1IBAGlXMLym0fxyc2jePyrfTy76iDJYRqemD0Ah8sTZCTe1XC4PVQ0OPh6dzkROgVjMiKDauV6q5NHVu4JOBf9sK+CBaNTuf+TPF67KpfSFirKH/ZXsu5wNRcMFOsDp9vLkjVHAwzAv99bwYFjZkaegAAP1ym5b1oWiydlIAgCb649SpXZycvzh+D1+vgir4wKk6NT5GZLX8MmfLunnOn9Y4IIzEi9iuW3jOat9fkUVFuZ3i+Gf3y9L+CYWquLGouD16/OZX+5iZ3F9agUUvH1N9ZMLd87rUKGpEc1+ptGD3l0NsJSBS4rCBJQ6E6YeHYmEaZVcNukDK4dlYrX50PTjbGRJwuZVEKETsnhykBp7Ml4MIVoFNRYHJgcbqwuT0DnUxAEJmZF8cTs/ry1voBwnZIHpmcR1oo/yulAR9PNzHZ3QAcMxL3l5oJahqaEBiTnDUo0UlRr5b5pvRmV3v7YjEEt5+LBCbzSwjcgUq/sdCKQWiEjTANje0Xw5c7mDp5WISXWqCK/2hJQED717QGWXJPLm9cOxe3x8Yel27l9cq+Ax9xZ0sDybSXcPqUXl+YmEq5T4HB7sTo8qGSSUzZsrbU6ef7HQwFrG4/WYLaL3jodgcvj5WiVhb+u2E1pnY1LhiRw5fBk//vX8nsW3cjd1FqcXDcmlVd/OYLL42Nq32hmDozrMl8ZoXFM8Otd5WxsLIrHZUYw+gSfhSYU1dq49D/r/J5NC0ansPic5jFGt8dLjcWJpzHBqzvSo8K0ch6/eACPrNxDYpiaOcOSuGBgHA02F9uL6li+rZT5I5OZPyKZw5VmhiSHMumfP/mLfIfby90f5vHJTaNOKxkh6cS43wlhqYKfHg9cO7YbzOWtkkcHK8xc/NI6/6haeqSOxy7uz/zXfyVSrzxps06T3cVn20p49Mu92F1eBiaE8MpVuUHGsWa7m1d/aT6PeH3wp+W7+OzWMW2S4tVmB3d+sMNfKKdGaFm2cMRJKwi6Eyq5lGGpYSxbOBIvPrSK1j0oThvs9bB7eeCa1w1l28CY2OmHc7g8FNZY+dd3BzA73Nw0Pp3+CSHEG9W8cMXgxrEUSavf9xC1nJRwjT8yGmDeiGSMp5l07kH3o6jWyiUvraPKLI7kzBmayH3TsjocMFFtdrDo7S3+Bp5CKuGTm0fRL170+/P5CLAVALikjwbJ168e90CHwFYnph+fIqb2i+G1NYFJyecPjCM9QsdPd09ga2EdvaJ1xIaoT0mJYVDLuXNKL2YOjGdbYS1jMiKID1WfdnLoRKi3uXho+S5RGe7zkWZUU2V28vGWEr7ZLQY7HKmyMO/1jfx0z0SiO0geub1eJAidrnUKqqyc//wanI0G4inhGj68cRRyqYDd5UUiiE2zanNwgm2dzYnL4+XPK3ZzxfCkgDCOzQW1zeSRx8P+clPQ/Q9VmBiZHn7C59hgc/HD/gpMdrfYSP3+APNf/9X//+f0jfZ/xtuDy+Oh2uSkX1zwsaMzItpUvsWEqLjr3F64vT7Mdjd9YgMVRqkRGkLUCp7+/iC7SuoZkxHBxD5R2F0eIvVK7pjSi8dbWB38cXoWIacYRtODM4se8uhsg7kSPrwGChqNfwfOhXP/T/RnOEuhU8rRYReLyzOgfjoRjBoFfz6/Lxe/tM7Pfk/NjjmpjVhRjZXF729jW5F4wX9+7mAyo3T+C1aoRsHswYmc2zcGiUTA0EpM6tkGtUJKv/gQPxnQhD4xegYl9qWkbiuHKswMSjTyzJwcdEoZepX8hEWJSi5l0bg0tAopX+SVkR6p44Hzsog8ifddp5LxlwuysTjc/HywiqQwDf+6dCDhWgUvHkfSAHy/R5SFr8wrJb/aSpxRTaReTNO6MCcepVziTzL5Iq+U9zYW+f1DPr5xFNkduBC3B6HxJ2i9I3WN3QSOBiS2OpR2NQrBS361lae+PYBEEFg0Lq3NxLxQrYJbJmZw1cgUfIjmnF1tVB+qUfDPSwdisrsRBNCrZB0iecx2F499uTfA7HvJ2nyuHJ6MUaPA5nTz69Ea7vpwB1VmJ4OTjPz7isHEdtBLp6OQS6X0itHz78ZNa6hajg94e0MBD38ukpArd5YxOMnIy/OHYLK7/YVlE4prrXg5NeWD0+2lwe5CJZd26bhkx9HqJzRopd7m4olv9gUY8B+uNOPx+nh+bg7DUsPbJHBOhFqri4c+2+2/vaO4nqe+3c/DM7MDRmydnmA/hWqLE187f4M9pQ0BHdajVRbeWl/A7VMy2/VpA8SkUlutGFqhOT3XXkEQzh5llFwNUX2hdGvgelh668efAFVmJ+c/v8Z//f3lYBUfLhrJ0NSwEzabIvVKli4cyX9+Osy+8gZm5cQzNTvmrNsU/57g8XrFgITTmHpntrt4/Kt9fuIIYOmmIhaMSe0weVRSZwtQfjs9Xh77ai8vXTkEg1qOVilj9pAE3muhRBckElAZwByYSImsa8jJzCgdD87ow/ONSckLx6eRk2BEo5SRpJSR1Io/5ckiTKtkWKqSYamndxS30uSgpM6GWi4lUq9oV13tdHv9yblTs6OZNyIZl8fH6gMVAcfZXV6ONdhPmGBqsrsoqLby33X5RBuUzBuRTLRB1aExPIvDzdPfHwi4vudXW8krruOrXWV8tKWECJ2C167KZe6wJH99AGDUyIk2qDjW4MDrhRhDYJ0yo3+s/986pZxLhsQH+BZKBBjbq3UfuTqrk7J6O3vLGhiQEML3eyp4vFHto5JLeOe64WwrrKPG4kQpkzAwoWP1akWDkylP/8Q/LhnAZbmJfLSlCK8PpmVHc+4JfJOkEglSCSh1Up6+LIcrX99IpcmBSi7hxSuHcMt7W8krFk3Pd5c2kF9t5eGZfXG6vZzXL4bRGREcKDcxMNFIlF6JsidR8zeNHvLobILXCzs/aCaOAHa8LxJIaePP3PNqD247VB+GVX8DpxlG3w4JQ886tVRmtI7V90xgZ3E9cUY1cUZ1p1UNNWYnt763lR2NJ8gDx8xcveRXVtw2mii9CrPdTXmDna93lZMRpSU3OQzOviZ3EBQyCQvHpbHmYBX7j4ndkXnDk4gP1RCmVbB04Qg8Xh9yaecNC8N1Sm6emMGVI5JRySRB5q+dQbRBxXNzBuNwe5AIAuE6BYIgMDg51J9a0oTcFJHETGo0Mf7bF7tZesNwfjlYxS3vbsXidDMtO5Y/XdCHdzcW+r1G7C6xi/TsnByUMlGxdjJeAKEaBYvPyeSh5bv8a2KayQlOuQ4T7HgPvr4fqc9LssrIU7M/Zr5FNHn+ZGsxl+UmtG6c3whtG8kZx6PB5sLscGN2uDFq5ER28LWq5FISwzS43F7ohE+DzeUNihgHseBPj9JRb3ez8O0t/g3mrpIG3tlYwM0T0tF2g1dSyy5vpcnOqy0UciDGn9dbXYRoFCSEqv0jWgCT+0Sf0ihgldnBa78c4bs9FfSJ1XP/9CwSOulbcErQRsCEP8IH85vXYvqLptHHwefzBXjxNEEqEbhgYPwpPY2jVcGfhy0FdWJkdgvySKuUBZncXzw4Hm07IyUHWvms7StvaNenDQBLNWx+Hba9LSoPpj8pEiny38DJvKug0MDEP4q1SG2+uJZ7Hehj271bW/hhX0XQ+Nlra47SLz6kzSjxlogJUfHH87Kwu7wYVLIeo+xuRHm9nbc35FNYbWXeyGT6xBhOizeJ3S0qbY9HWZ2tw+mnZnvwSHyDze2PpdcqZdx1bi/So7R8u/sYOUlG0pJSYOrf4b3Lmg2D+l4Iyo6NYp8IRo2Cq0emMKtxxDlEJe/2UayuRq3Vid3pQSIRCNUoAojbsnobF7+4jrJGi4KRaWG8cMXgNpuzaoWU3tF6DlaYuHF8OnNe2cAdk3uRFWNgzaFmlbtEgCi9ivJ6G7tLG4gPVROtVwURifvKTFz68nr/7aWbivhy8dg2FaYNNhcNNhfVFiexISpsjURWS1RbnOwpFWvhKrOTy15ez6q7JuD2+vgyr4xYo4rrxqTx2Jei0ujc7Gj/mKUgwOJJmfSK1gU85piMSB6c0Yc31+ajU8p4cEYfIluM6FaZHVgcbiSCQHGtlQVvbsbmEp/bXy7oywUDYvk8rwy7y8uHm4uZOyyRDUdq+PMFfTu8l/lkazFWp4e7P9zBzRPS+WDRSHRKcfy5MxMj6VE6Vtw6mlqLE7lUgtPt9RNHTfhuTzl/vaAvb28o4KlvDxCilpMQqmbB6JRTrht6cObRQx6dTfA4oXB98HrxprOXPDJXwCsTxOcOkL8Grl4JqWPO6NM6HgqZlNgQNbEhJ69icHq8fuKoCeUNduyNF5/tRbXMX/Krv/4YnGzk1fm5pz1p7WQQbVDx7vXDsTQa6mqVUr8Xzamaksobxwa7AqLUNbCQHZsZydjMCL9Z4ej0cMY1dnTiQ9VcMDCO1fsqqLG6+GuLztGXu8roHaNjWnYMn+c1j+0da7CzKb+Wf323n7cXDCclovOdQZlUwvkDYsmK0bNiRymDEo2M7RV54ou8wwTf/BF8jRstex3hq+5i8ch/c+MnDSQY1V3SDa6zOgM8ZCL1Sj66cWSrKX1tQX6Czr/Z7qLS7GRTfg1ZMXrijWpmDowLMGpUyiT+Iqva7PBvMCf3ieLWiRlsOFLNTweqGJoSdtLqlo5AJpUwf2QyRyotfLWrHIvTzbCUMEI0ciJ0Ct67YQR//mwXe0obGN87knum9u7Qhsrj9VFjcQI+dEo5aoUUi8PNE1/t44PGtJ3DlWbyiuv5+KZR3foaAyAI4jVl4U+w/X2I7gu9p4vGyMfBqFFw68QMrjraLJOPNijJOskwBK/XR63ViUwikBGpCzJ5HZsRHuQ9FqFT8s51w3lu1QF2ljQwNTuaucOS2iVJJ/aO5NGVgY99aW5i+x4mHg/kfQA//p94u64Q3pgGi7eB/H+s4A1JgOu+FUfY5GpQ6E+6KRShDz7vRekVyNoaMbHVNY/ua8JBKkcpk/Z0q7sZlSYHF7241k8EfJ5XxsvzhzA1O6bbf7dRLWdWThz7WiRdKmWSToWuZETpCNcqApKorhuTGnDdDdcpuWZUKrMHJ6JRSMXrWNIouG0rHFkNkVkQ0atLjfTPmoTJk0CN2cGhSjMgEKFVYHd5UMqkhGjkyASBV38+4v+8AKw/UsPeMhNjMlu/lkXoxMCPl1Yf4kilBYfbyzsbC3jm8hyOVJoprbcjlwo8fVkOZfU25ryywV8XXDokgQdn9PETHSa7y+912YQqs5PtRXWcmx1DtdlBca2Nolorg5NC0SikvL7mKM//IN5nUKKRe6dlBSiCjBo5vaP17C1vHstyenzsLm1ge2Et14xOIStGzz++2sehSjNzhyVyx5RehKjkfH/nOHyIibfHKyNDtQquHZXChTnxSAQC9gUVJjvXvrHJPwo2vV8MT146gFvf2wbAM98f5Nk5Of461e72cN2YVK4fk3ZCVV6NxUGlyUGFycG0/jH8ml/DLwerePr7gzz9/UEWjUvj/ulZ7T7G8ZBKBBpsLhxuLzOeX8MHi0YGBT6ENCq6n18lvtf1Nhf1NhcPf76HsZmRZ+X4eA86jh7y6GyCXAXZF8HezwPXM6ecmefTERz4tpk4asLGl8T0ty5KZTlbIJMIpEZoA7pjBrUMqUTgx33HCG30f3qu8WS5taCOKrPjN0EeAUTolUTw23iuLRGhU/LcnEFYnG58PrG72FQshmmV/G1mNs4ZWfzcwrupCT8frGJ6vxh2FNczd1gi0QYVCpmENQcrKaqxcc9HO3jlqlxC2+jKuL1eHC5vq5tYo0ZBbkpYh+J8/XCYxcTElqg+SGKIAr1Sxv3n9emSMbQ6q8tPHIG4aXjkiz08fXkO+i4YtfR4vPxyqIqb3mkee5k3PInF52Rid3l4f1MRsSFi/HFT8ROuVSCXCoRrlSwcl86cVzdgd4lFY3qklqULRxKpb47EFQQBbRd4rNVZxcjZrYV1RBtULL1hOC6vj+1FdTzz3UEuHBxPZpSO5+YMwu7yoFPJOmSiana42XC4mr+s2E2NxcnlQxNZPCkDt8/HZztKA44trLE2dh1FMulIlYVRaeFE6JXYXV7MDjc+n69xRLCLvqOqEIjLEX9OgJxEI8tvHs1bG/KJN6q5cnhyu+q3tlBndfLDvgpeX3MUg0rOIxf24/m5g/jT8l3UWl1M6B3JLZMy/Aa3LRETouJPF2Rjc3owqGRtjm42IUqv4o1rhvL3L/didYrF9gnHOey1kLc0cM3tgLI8MPyPkUcAumjx5xSRmxwWoBwzqGUsGpfeOgFtPgbLb4ZD34tj8DP+BZnnglIXfGwPuhRHq8wBRADAiz8eYmhKaLfHpMukEi4fmojF4ebjrSVEG1Q8PCu7zWtva4jQKfns1tG8+ONhimutzBuRzLDUsCClmlQiBHquKHXiT1j3JkaeDXC4PNRanRw4JoafROiVbb7HNqeH8gbRO+7mCRn8Um9jyZqjeH1w/dhUrhqZzJFW1GL51RbGZLbtgxhnVHPvtCyKakQfs+JaG3/9fDePXtSfcK2CSL0SmUTghrc2BygWP9xSzK2TMvzXfDGhLpiAVsgk1FmdPPDpLr7ZLfpkKqQSli4awaq9zeNx24rq2F/ewPJbRrFkbT7ROiXXjE7h/Y2FAXmMvGQAACAASURBVE0HiQApERq+2X2MlTvL6R2tZ/7IZB65sB9hWoVfJdvWNdHicFNvcyIVxFQ7bYsay+318t7GwgAPoa92lXPpkAT6xRvYVdKA2eH2p1BKBFg0Lr1D38cai5M/Ld/NykZPU51SxutX51JQbaWwxopGIWX+iOSTUnL6fFBaZ8Png/wqC4snZfobg4IAD83oi1RC0Mi/WMt0+tf14CxDt5JHgiBMA54FpMBrPp/v8TaOmw18CAz1+Xybu/M5nfVImwBj7oCN/wGZCib9CYzJZ/pZtQ1DHPXnPIkl+Rw8PtDU7iW8ehtIfn+8ZLhOwQtXDOLqJb9SZXZiUMl45vIc/vr5Hr7bI87L3zu1N1cOT+LdjeIYVWvjHr9LWKpEtYwmAk7kJ9IJ+Hw+KhocfLy1mEqzgyuHJxEXog5KugvVKtrswBjUcr7ZXd2q6mx4ahgzB8aSmxzKP789QH61hanZMVw4KIHPtpexu7RBHM9qBZUmO+9tLGR7UT0zc2IZ3yvq1A2eVSFip93aHG3q7TUdldbA29cPR9FFcdxl9bagtcOVFuwuT6vkUY3FidvrRSWTdkhxU2118vCKwFSbd38t5LqxqczKiWf+yGTkUkkAsWpQyXl+7iB2ltTz1vp8P3HU9Nx2ltQzICGE25duY80h8f25YEAcf53Z96QJWp/Pxy8Hq7jt/W3+tVHp4SxZc5TNjd4Z7/5ayN8v6s9luQmdGt+oMTu44e3N/kLpzXX5JISqmZUTR0yIKiB5RdI4/nf/J3l8t6fCv7b67gn88ZOdrG2Muh2SHMrL84acdm8cg1pOTpKR7PgBSIXOm5I2YVN+DXd+sMN/e/qzP7Pm3ol8ffs4fD7Rz6E9MlAtlwZFubcFnUrG+F6R9IsPwefzEapRnJBwQqaCsFQo2x64HtJ5k+geNCNSr+T9G0awt0zcCA1JDm1djeqywU9PisQRiL5THy+AP+zsIY9OA1obQVbKpactGSlMq2TxOb24elQK0jYM1NuDRCKQEKrhLxf0xeXxntKY/O8V+8pNXPbyej8pc+XwJO6Z2rvV867J7uLZVQeRSQSMGjkPfLrT/3/P/3CIQYlGFo5LY/X+ZuWOVCL4ld/tQa+SExsiqpFX7ChlV0kDd32wnU9vGU2cUU2FyU6FKdik2tRiNFGnFE3CV++v9CcDJ4VpyI4Lodrs9BNHIJIYj36xl9lDEvwBK0qZBI/XR7RBxUPn9UEhE68/V4xIZtX+CvaWmVDLpfxtVjZhGgUX5sTz5a4yBAH6x4cQqVeeUAleXm/jsa/2saWgltzkMK4ZlczaQ9VM7huFXiXH4fKyo6g+6H57y03869Ic5r2+kVHp4dTbXMweksD1Y1JJDAtszFebHWwtrCOvuI6p2TEkhqkJUSuoNDn8xBGIxM2Lqw/zt1nZbDpaw1UjUwjTndx3JEQjp198CFKJQLRBRb3NxbKFIzhcaaZ3jIHv9pQzKj2c4alhAX6q0/vFdmhUuQdnN7pthy8IghT4NzAFKAY2CYKwwufz7TnuOD2wGNjYXc/lNwVNOIy/D4bfJN5Wh3aZcV93oCZ2HP/I28+ylaKZ2+CkUF658k4imp6zwwyOBtGAVKHpkvSKMwVBEMiK1vPlH8Zic3qQSyU8+c0+P3EE8Oyqg7y1YBjvbiwkJVxDzO9dmmk3QdFGWPWw6H81+g7Imt4p43SX20ttY1fmeBKg0uTg/BfWUNlYRLy1voAVt44mu5W0iLZQY3Hy2Fd7uXpkCjdPSOe1X47i9HgZkRbGtaNT8PlgwX83N44XwetrjmJzerhsaCIltdZWVRDVZgfXvrmJXSVit+jH/RXcMjGd2yZltnp8h6GNgGu+hM9vg8oDuNLPpXzYgyxcuo/DVRZ+umfCyT92C6RG6oLiU8/rH+MfVWyC1+vjSJWZuz/MY29ZA2MzI3j0wv4digivt7kCbvt8UG12Mvs/65k3PIl7pgZKpTVKGZOyohmUFMp9H+cFPZ5KJuHrXeV+4gjg87xSLh4cz8Sskzuv1FicAWmAos+C0k8cNeG5VQeZ0je6U2NlWwvrgjpsX+0q57LcBB6/uD9XLfnVTy7fOikDn8/nJ44ABiYY+eVglZ84AthSUMu3e8q5YviZaSi05W9VbXZQUGPlWL2dnCQj4VpFUFFttrt49zhvMpfHxw/7K5k7LMm/5vF4qTA7WNko0Z8xIJYonRJpG7+71uKk1urE4vAQE6IM8CkTBKFzI7NKHUz+qzh+bWncEPW/7KS9fnrQjEi9kkj9CTaVDjMc/SlwzeeDqgMnlfLWg84hMUxD31jRXw9EIuDeaa0TC90FhUxyUqrGllDKpb85X6HTgRqLgz9/tivguv/uxkJuHJ/e6t/Y6xMTwbLjQthwpDro/7/YWcYfp2fx94v6sWRtPnqljAdm9CGig6RfqFbBwzOzuX1yJvU2F/FGtf98HapWcGluIs+tOug/PlKnJOq4a3BqhJZVd43ns+2lRBmUTMqKQquQYnN5ePu6YazMK2PZ5iJ8PvH1tyQkH7u4P78erWHU4z/g84n7l5fnDyHOqObt64Zjd4l1vkEtQy2X8fCsbO6d1htpB5NPq80OFr69xe8HVFxbQlm9jRkDYqm1utCrRBP3WTlx/Lg/0DB8UJKRp77bz/NzB5ERpSNEI2diVlTQNbjG4uTej/JYtU+8//M/HOLJ2QO4aFB8qwlxZfU2ZBKBiwYnsO5wFTKphOGpYe2OkTWN3/t8PlRyKU6Pl2vf2EROopEnZg9Aq5Ty6Mq96JQyog1KSups2F1erhmVwgtXDGLJmqP8ml/LhF6RzB2edFo81HrQvehOecgw4JDP5zsCIAjCUmAWsOe44x4BngDu7sbncvbCZRfjkXd9Iqo2ek0VTUvlXZsw1F04VONk2dZmdn9rYR1Lt5Ry0/h0pM4G2Ppf+OER8LjEWfJ5n0DIb1f+L5U2z66X19tZvj1w/MTh9qJRyLhjSi/mDk08e9JzugumUnhvdrOxyGc3QchnooKuA6ixOHh7fQFLNxURoVPy8Kxs+sYa/ATM5oJaP3EE4kXsuVUHefrynA6NDjXB5fbx9y/3cu3oVN6+fhgSQSDGoCJSr2JvWYOfOGrCN7vLeWZODplRulYvdBaHx08cNeGtdQVcPSrl1MgjiRSisrDNfpcj5XX8eNTKK2/sp8Hm7tKEilC1nGWLRvLgpzsprbMxKyeeBaNTg+b0qywOrnxtoz8h7fu9FTg9O3h+zuB2o1b1SjlzhyWyZG2+f61PrJ7yBnEk4p2Nhdw4IT3oMRrsLvaXm7hmVEpAN1OvlJEVY2DppqKg37W5oOakySOFVOD2yZlUmBws31bCpvyaVvO7TqbxnhkdrJToH2dAKZOSk2jk53sncqjCTGKohlCNnJLjxkXijGoOHAuO991aWMecoUknrf7palSbHfxh6Xa/2alKLuGzW0bTOybQcFYhk5AQFnxdSwwNXDtmcjDtmZ9paOwwP7fqIF/fPo64VlL3aiwOHvx0F1/tEq9BUXoln948mvjQU7h+hiTBjWuhoVRMYVKHdqn/SQ/agUIDicNFsqglwjPOzPP5H0OETsl/Fwzj16M1FNRYmN4vlmhD99Qw1WYHmwtq2VpQy7nZMaRHak8rSXU2wun2UGt1UVBtIUqvwqiRd+o9qbM6qTQ5OFhhpl+cgVCtIkBJ7Pb4gsYSQVQYtYYwrYIpfWP45WAlY3sFj6Flxxm47f1tDEo08taCYajkEsK0SqrNDixOD3KpcMLn35ZqXC6TcM2oFPRKGcu3l5AaoeXeaVlBDRy1QkZyuIzF52QCIpny5Lf7eXdDIXKpwA3j0vjrBdn8ZcVurhyRTG5KKCPTwrE5PYTrlAE1xdbCWpb+WshNE9NbbTp0NIwExCaIzelh/ohklm8vYW1j02vj0RruOrc3hyvM/kCXcZkR3DYpg7fWF6BVSLl1UgbrDlfzze5jPDwzu12iyuJw+4mjJvzz2/2M7x1JepQOnVKG2dGs1poxII7UCC0XvLDWX/fGGFQsv2UUMa2o821ON5sLarn3ozyONdiZ0jea+6ZlUVxrY1+5iUqzg7vP7c2EXpGsPlCJuVL8XbnJoShkUsK0Cu6Y0hur041OeeJx8x78NtCd5FE80LLSLwaGtzxAEIRBQKLP5/tCEIQ2ySNBEBYCCwGSkpLaOuy3idqj8PK4Zt8gYxJc/32Qz4DTLfpe6JSysyqidmdxXdDaloI67G4vWlstfP8XSJ8E6eeAvQ7WvwCTHgJF18WTnimo5VIm9o7kh33Nm9wBCSHEhCi5dWIG0jO0uas02VmZV87BChNzhiaSHK7tcqbf5vTgcHsw7PkMyfHyii3/FQ0oT6CY83h9fLa9lKe/FztLZfV25ry8gdX3TGh1o9iEzs5nh2rkLBqfxsOf7+H1NUd5fc1R+sUbeHV+LgCGRnNeiSAa6p7XLwaFTEpmlK5N8q+1v61G2XWdToU+EkednNd+3USDTUxDe2ne4IB0jlOBUi4SGG8tGIbH60Ovlrc6DmR1ePzEURN+PlCFw+3heOPyJlRbHByrt3P1yBSSwrV8vauMrBgDs3LiAsbDrMelnFRbHNzy7lY2Hq1h8TkZvDJ/CB9vFaNybxyfTohKyvl9QlhxnF/Q5MyOq9Baos7q5Mud5bzy82GUMik3TUhnQIKRepuLocmhbGqhPlp8Tiah7ZBlrSEuRM3VI5N5a0MBPp8Y2XzjhAx/R1ytkAWMUjo9voBUtx3FdTw5ewD/XV8Q8LgXD4o/a4gjEL+3LVNy7C4vf/9qH8/PHYShxcZFIZNy84QMvt5V7o/jHpoSSlZsIMn0weYiP3EE0GB388HmIm6f3CvodxfV2PzEEUCFycGzqw7w8Mx+Jy+Nl0jEBk4ryXM96GYotDDxQajYAyVbxCbauX/vlJK1B6eGSL2SGQO6V2lXa3HywKc7+Wa3qNp++ecj/OWCvlw5PPmsqm9PNw4cM3Ppf9b7U7auG5PK4kkZhHSAQDLb3by1voB/NfrOzB2WyPVj09h4tIbUcC3hOgUhajmXDEngpdWH/feL1CnbVGfW21xcOTyJWouTKL2K6f1i/Ofbib2j6B1t4JEv9nLgmJnZQxKJMag4XGHiD8u2s7u0geGpYTx1WQ7x7dRz7cHj9ZIQquYP52SKo1gdSFr85WAlbzQ2rZwe0Wz6zWuH8tycHMZmRhKqVfDSvMH4gOXbSoLuv6WgVvQ2VAZ+Dj0eL2aHp9lkHbGGsDo9CIjK6SY/SrG2KOOln8Ta4sbxaQxMMPLi6sMYNXLsLg8ZUc3NpRqrk0sGJzAkORSLw8Mn24pZtbeCSL0S7wmcL7ytGAg53V7wiT6Sy28ZxaMr91JWZ2d2bgIzB8bxzoaCgIZpeYOdL3eWsWBMsOdXnc3FtW9s8o8FfrP7GKEaBbOHJPDmunxW7a1gW2EdyxaOoFeMnjUHqxiWEsrNkzL8Ki+FTILiLJ6g6UHn0Z3kUWvfcP+nXBAECfA0cM2JHsjn870CvAKQm5v7+zGRcVrhp38EGk7XFULRJuhzvn+p2uwQU71cXlRyCTEG1VljwjwmvTkSXSWXcLDCzIzsCDQKKRQdhQtfAmsN7PxIHFkbc4eYovI7II9CNHL+cclA/v3jIdYcqmJIcih3Tul1ypLrU0GVycGcVzZyuFI0Jn13YyGvXZXL5L5dtxGqsThZsuYI6w5X89qwNEJ6nUdN/+vxSeUY976PIiKtQ55X9TYXnx538XZ6vOwsqfeTR7kpoUTplf7Zd6lEYPGkzBOqjkx2FxUmB2sPVpEVa2BqdgyROiXf7T1GWqSO0enhvLuxgFsnZaJXyblpQjoZUTqOVFq49b1tSCSiIuWiQfHNnTNzhRhbLZGj1adzYU5cgPLsgfP6EN5FnVOpRKB/Qgjf3jEOm9ODWi4lVKtoc3TnZHGi84hKLg0ab0uL0LbpgVFjcfDHj3fy7Z5jSASY0ieaxy8ewKEKE1e8utFfFMcYVEFkTL3V5Z+Nf27VIdIjdVw8OI65w5LFIsTjJjfExG1jE3h9YxkyqcAdY+NIpRzo/GZne1FdgIfDHR9sZ+VtY4kJUfLS/CGs3l/BjqI6ZuXEkxGl63THLFSr4K5ze7NofDouj2iq3t4IVaReyYc3juSVn45wsMLM7CEJpEfq+Mcl/Xn6u4N4fD5umZBO37iuiZDuKtRanUFr1WZHkFdYldmBTCLwze1jOVRhQauUERsSfC07PtIdGovhVlBYYw1aO1Jpwe729Pgq/FZhiIUrPhDrBIkc1CEg/32Fb/yvw+p0+4mjJjy76iDnD4g9o/XTmYRobrzLf40EcYT+mlEpHSOPHC7/iNe4zAhGpIUz5V8/+cmH2yZlsGhcGjeMTUWrkLJiRylpETr+eF6wmgfEWnLuqxsoq7Nx5YhkVDKBh87vy4Mz+lBrcbKtqI6b393CpUMSmJ2bwDsbCwjTKpjQKwqJIODzwYYjNdz23jZeuzq30/5VVSZR9XzgmNm/9uiF/Zg7NLHNOsjp9vB1i2ZCE7YX1fGHczL9xFNTTTc6I1hNNb1/DNrj6stqs+i7+f3eCoYkGVkwJhWJIPDQclH1KghiU+fBGX0I0yrZWVLPA5/u8t//7g/zePf64Xy0pZi7z+2NRMBf/9RZnTz46S7uOrcXBdVWHv58N16faAT+pxl98J6APdIpZQxKMrKtsLmRv6hxDFEmlZARpee5uYNwur2EquUIgkBVK+NsVWYnbo83qM4prLb6iaMmrDlUxe2TM/23mzwx7zq3F4vGpaFVyk5Ngd+Dsx7dSR4VAy2H1BOAli1jPdAPWN34hY4BVgiCMPN/xjTb5xWTXAbNg+yLxVjafV8EkEl1Nie7Sur5w7Lt1FldhGrkPDtnEAMTQ4L8Sc4EYjUevr9jLHvKzVgcboYkGYlUg+CyQkx/2LUPvnlAfG1hqfDx9WL87+8EkXol90/Pwuxwo1VI/akLeDxgrRSJs/9n77zDo6jzP/6a7T2994QQIPTemwo2EBUbduwiepbT8zw9vZ+e5Sx3llPPfp4FCwoIglgAAaX3FlpCGumbZHuZ+f0xySabXSCBIKh5P4/PY2Yru7Mz33l/3kUXAVqzbIE4ySirdwaIo2b887sCBqRHdhrhuKu8gZd/kCdXDReO50exL/9YVILb6+GmEbO4pH8GUe0IzdapFGTHGgN+8Ga0trHEmbQsmD2aeZtLqbZ5uHxI2jHzdvyixMo2TV8X9E9mbG4cJq2KzYesvPjdXronmLh6eAYJEXpuH5/DusJaXmlV+/rYgp30TY1kUIYGGg/D25Nl8giITBnMI5fOY8awdLaVNjA2N5YEi65TyR218tTX+0YYVPxjel/u+3QrHr8oh8Rf3v+IiqzKRjffNGWAiRIs2VmB0+fn2en9uGNiDl9tLScr1sht43Jwenz4RSmg4mq7RtpfZeOjtcVcOrhJbapUEa32MUv6hKuvuQxEH5E7XkdjuQtokfz7RdmXH26x6veL1Dg8ONx+ogwazugZH2hfkSRYVlDJ7eNli8z0QWlMH3RiOSsWvfqoqr9auxuXV2wKJNWQFKHnwXN74va1BJdfPDCViU22vEiD5oi5Q6cKeQlmLHoVDc4WtdA1IzIDDT5Oj4+tJfU8Mm8HNXY3lw5O48YxWUdsi7liaDpvrzwYIJG0KgWXDw2vOB6YERVSETx9UCoRp3FQrtvnp8HpRadWdkqz4W8SxiM3NXXh149w18N+v0T4mfPvAz5RpMQaWmTRcARLWVt4/VLgIv+KYen834KdQZ/zKz/s48ph6SRG6Ll1XA6XD01Hp1IcMVR846G6QDviu6sKWb2/mtHdYrn3rO5sKbbyyLwdpEbpmTYghRlvrMHf9GLvrirkzWsHc/GrqxEl+XmcHh++djRktkZzI1xrvLZ8P5PzE45IMKqVCkbkxASpUQGGZIY27gEkWHQ8M70vTzY1cs4Yms5ZvRKD7mtze3l68W4+WV8CwNqDtTQ4fQzIiAq8jkIQ6J8WRWG1g4LDjXwSxl6/5mANi+4cg1+UiDJqAgo7j0/kYLWdUqsLq9PD57eNpLLRTbxZy/9+LqJ3ytGV1TEmLW9cPZj5W8rYXGxl2oAUBqRFBin4LG2+4yuHZTBnXXFg/1ArBab2Sw47FAxnAe+bGkF2rImspkHifZO7kxJlQKtSojV1kUa/B5xM8mgdkCsIQhZQClwOzGi+UZKkeiCwQhAEYRlw3++GOAI5nHPS47DtE/j0Wrmie8gNkD4icBe7y8cfP9uK1SGfQOocXu7/bCuf3z6SMPbUXxxun8TtH24KHOQjDWq+urkfUQaLTI5t+wx6nCcrjip3y1NFVwNYko/4nA1OL7V2D3sqGumZaA7xbZ9u0KmVoSx79R5491y5LUZQwJmPwaDrfhECqS0EhE5dk327SyYH4kxaSmxw19yWQMO/Ly0iJzmOMyLMx3weg1bFfZPyWL2/JqAsmtY/Och3LQhyk8PNY3OwOjwoFMIxVUe1djdPLNwVtG3e5jKuH5nJvZ+2ND2NzIlhS0k93Tx+kiJ0fLW1vO1TsXh7OYPSI2HjfwPEEQCl64kuWsTQvpcyNCvmmP/WXxp2tw+/JIUsGjoKvVrFmT0TWHH/BOxuH2ad6oitdiDbEdqiot6NKElolAouG5LO4XonM99dDwIsnD06ENQYZVCTn2wJqqy9bVwO0a0VSrHd0OWdiW75n0CpkdsoLcnY3T6WF1Tx4Nxt1Du9DEyP5NWrBpHQKgRSkiR2ljdy3TtrqbF7sOhVPH1xX0SRQFhlbvyx99tjwlkPPqf8/pqycqoa3Ww6VEeN3cO47nHEmjTUObzM+mAj64vqsOhVPHlhH8bnxWNsY01WKU88QPZkIsakZf4do3n+mz2UWV3MGJbOwPQo1hysoVu8Ca9f4so31wQubP69bD/RRg3Xj8wMS7YmmLV8c/dY3l55EICZo7NIPELuSrRBzcc3j+BvC3ZQ6/Bw1bAMJuUnnla2vtaosbn5z48H+GZHBd0TTDx0Xi/SovQIgkCNzc2BajuldU6GZkUTY9J0WsZZF7pwOsGkVTEqJyaoDODmcdlY9L+9lt72wqJTM61/Cm/82FLgEN1UW98eGDRK+qREsK20ngi9mqo26hJRalF1qpQKYk1abC4vlQ2uQMtYa9Q0ncvP75vEDaOz2FxsJS3agNXpZVS3WP55eX+qG918sKYoQBw1P25zsZU+KRFsKaknI8bAttJ6FAohbOPtkRAuGkCrUhzVtiYIAuf1SeKH3ZX8sKcKQYDLBqfRMyn8eT1Cr+bCASmMz4sDCcw6VcsAuAkOt5+5G4MV8j5JYvX+Fqv2DaOzOFTr4OF525mcn0BuQujr9UqKCDt0M+vVnNsnifmbyzijZzzTX/sJk1ZFg8vLwPQoIgxqqm1unB4/GqUCi14doqqNNWu5flQmPlFq13ApwaLlfzcO473VRagUAteOlNXd4c6bEXo1f53SiycX7cbjF8mJM/LQeb1ItOj49JYRIMj2uI7GSXTh142TdqSWJMknCMIdwBJACbwtSdIOQRD+BqyXJGn+yXrtXxVslbDsqZa/V78EGaNkkgVZRdG2rvJwgyvoYH1M2KugqgDqSyBzlDzVU3XOxcjGElvQdMDq8PL66nIeOS8CtcYAKYMg71x4b4pcwwvQ6wI47wUwhl50Oz1+5m4s4dEFLbnq/5jelwv6p/xqvPB+Ww3KBXfKxBHIJNq3f4XeF5908ig5Qk/3BFPQd3L3WbnEHGHKfyTU2OQLfm2YavaROTG8s6qQ3ikRrNxXFfLYuRtLGZMbe8wKU5CnGgvvHE1loxuTVoVFrw4oFprR6PKypbiel3/Yi1qp4L5JeeQmmI5IIklScJ1rM/QaJRa9ikaXjwl58ZzTO4mr31qL2+fnq9mjGZoZHbJIGJQRJZO6NftCno+a/aHb2t7F5sbtE1EpBaLbUxV+gnB7/RTVOHhu6R7sbj+3jc+hT2rECZFIBq0KQztDInPiTFh0qqDMmhnD0tGoFDyzZE+QQgRkkqsZMSYt714/lPlbythWUs8lg1PJT7YEEwy6CMg9Sz6uCEIgC6XB6mT2R5sCx8WNh6w8sXAnf7+oL6am915t83D7hxsCi+IGp48/z93Gvy4fwA97KhmWFc2A9MiOf0Ct0VAGX90NB1dAcn+44BXqNClc8cbPgSmuTq3gu3vG8dw3BYFWtwanj9kfbWLlAxPbHch5ukCpEMiMMfLURX2pd3l57ps93POJTNKOzInhquEZIbL3BVvKuGhgalh1mFatJCPGyCNTejU9/5F/M3qNikEZUbxz/VD8okjUL/AbO1443D6e+6aAD9fKjXMHq+1sLaln3h2jUCqEoNBxjVLB57eNoE/qCe6PXejCaYgoo4Z/XTGApTsrWHuwlqn9kumfFnnSyFKH20dj07nGqFVi0p5+w0idWs7G0agEFm4tJzPWyCPn92r32i3GpOXNawfz6g/7KKhoZErfZOa2igXIiTMF2bEqG1z838KdrCiopkeimScv6kNmjDFAIIzrHkfvFAuXDk7jstd/xuOXiafR3WJ58Yr+XNAvmTqHhy3FobmnCkFAQh4mPzY1nxe/28vZvRO5eWxOuz+PCIOa4dnR/Hygpeb9/rN7EHMM+1uMScvzl/bH4fGjEOSQa7dP5MM1Rewqb2D6oDSyYuUc0Fq7h0aXrFaWSZkw515BJpXqHC0KsD2HG7ltXE5gvXhmzwSufPNnAL7fXcktY3NYsv0we5vO+cOyohmcGT63Ta+WA7L/9W0BTq+fd68fwvI9VeSnWBiTG4fXJ3LVW2vZV2lDq1Lw8Hk9uWBASshAXRAE1Mr2EThxZh0qhcBfzuuJKEmYtSqij+BMMOvUXDY4jXN6J+Hxieg1ygCh2ZYMq7G52VhUx7rCOib1TqBbnClASjY45Xwoo0aFuatt7VePk7pKlSRph/RCpQAAIABJREFUEbCozbZHjnDf8SfzvZy22LModNuOLyB3EijkutHsWCMHqu2Bm3PijOjaEim2SqjaDa56SBkMxjhQqsBeDZ/OhMIV8v2UGrhhqXxh0wmoCo2coNLuwyeoUGt0MGIWfHl7C3EEsHMeTPhLWPKoweXlqcW7g7b931c7Gds9LkhFcLqiutGNy9pAaluyQRLl7+YkN83FmrV8cOMwvtlRwb4qOTeludGhPfD5RfZX2bjnky0UVDQyNjeOJy7qQ2Krz35QehQXD0xhZ3kD5/ZJDHmOvqkRqNphWwP5hBdn1h1VWbG/ys5Vb60J/L16fw3f3TOOzNjwh68IvZprRmTw0vct30HPJDMmrYp/zxhIapSBJTsOc/P7GwL5Ag99sZ3Xrh4UNA2d1CuBIZnR8u9o8EzYOqf1G4feFx3131Za5+SW/61ne2kDcSYt/7y8P4Mzo06qmqDa5mbKyysDE8aV+6r59NYR8r/jF0CMUcO8O0bz5KJdlNU7uXxIOuf2SUKUJLJjTexp1R6mVgohi7U4s5YbRmeF9d4HoU37VZnVGUKorz1YF2j4ANkWUFwbbAuoc3hJjdLz7T3jiDKoQ6ydLq8/0EQTbdQePQTfUSvbcotWyX8XrYb3L0IxY2GAOJKfU+RAtZ21hbVBDxclKKlzHDUs/nSGQavi6+2H+WxDywXLrvKGkGplgNwEcyCgvdrmZld5AyV1TsbkxhJr0qJTK49KGrVFR/M0TgVsbl9I2Ht5vYtGlw+PTwwKHff4RZ5YtIvXrhr0u2+g6sJvE7EmLVcMTefSwakd+q2LokSN3YPT40OrVhJlCLYAWZ0eBCDaIGcE1to9vPnjAd5aeRC/KHHF0HTuPiv3iLbZU4kYk5a7zujOdSOz0KoUHS46SbDo+NO5PXF4/JzfN5nUaD1Ld1bQOyWCe87sHrjYb3B6+fMX21i2p4oEi44tJVZmvLGGL2aNDKiDYk0a/j1jIA98vi1AHIG8pqhocBNt1BJt1HLHxFy+3n44MCCIM2k5s2c8PRLN+CWJV5ftZ+MhK5PyQ9eKR/0sjFpenjGQDUV17D7cyNn5iSRH6tqlcJEb3OT/r7a5ue6dtQFF8/s/H+LlKwYwOjeWe+ZsZlmBPADtkWjm/RuGhqxFowwaHj6/V2AgAjA8O5qBGZHcPDab91YXolQQGIx5/RJ3fryJx6bmkxypR6NSEGVQH3V/izVp+fO5vWhwepGAjGgjGpUASDy2YGdg/eD2iTw8fwfje8SfsBsjyqgNfEYgZy/tKm9g3uYyBmdGMT4vPpDR2J4BYp3Dw8PztrNom2zl+8+PB3jovJ5cOyKTGrubtQdq8YoSeo2CQenRx4yf6MLpjV/XiPO3iIwRsPrF4G2Zo+XKbuSTwXvXD6XY6kApCPhFibRoQ8DqAcjE0f8ugsNN4a+6SLhlOURlypPwZuII5DylpQ/Dpf/tlAaTCT0T0C7aHRRyOnNUZstFoUoPttAAu4Aqpw18ooTLGxyO2uDyIYVpFDjdYHN5eXzhTrIsArd3Owf1tg9bbvwF657jzDquHJ5xXI+tdXiY8caagDrju92VSHO38sJlAwJNEtEmLX+dko/d40MAJubF8X1TrXrvFAsXDUztNNuI1y/y358Kg7b5RYmvtpZxx8TcsI/RqpVcPyqLzBgj87eU0SclgmtGZKBWCrzx4wGuGp7Bk18HE5ROrx+VQuDlGQOxuX0ITROrgAoqrgdc9gH8+KwcBn7GX8FyZCLQ6vDwwOdb2F4qL1iqbG5ufG89y/44ngTLySOPvttdGRI4LLfLRYRtUzsifC5orIDtn4MhFrpPblf7lFKpICvWyPOX9sPtE4k0aAKEy7OX9mPGf36m0e1DqRB4dEo+Zl34U1BH1SPJkXqUCiGIQBqSGSUH9zdBo1TQK8nCzvIWW1xKpB6728fawlrO65OMKEqBfbfW7uGNFQd4/+ciTFoVD5/fk7Hd48Iu2iobXRjddozNxFEz6g6iEUOrkUtqnQzOiAo0q4Hc9pcaFUr0SpJEncODUqEI/AZPVxTXBU8T6hxenB4/lw1OY856OQciJVLP3Wd1R69RUmNzc+v/NrC+UD4fqJUCn902kn6/QcWNQiGQHKkLUoUKgjx5rrGF2j3r7N4QxVYXuvBbQ0eII5AVe9e8vZZSqxOTVsU/L+vP6NxYnB4/n24o4T8r9qNRKrhvch5n9kxgX6WNtGgDH900HAkoqrGz4ZCVs3qenm2KGpWi3Va1cGgdo3DHhFyuHZGJoXUeJ+DyyZl/n946gsIaB6lRetYerOVwvQuNUoFeo8Tm8qFWKYgyhp5zWucwpUfrWXrPOD5ed4gog4YLB6Tg94tc8/bawFrEpFUxtd+RoyqOhFiTlsn5iUzuIPHUGjU2T5AVHuCf3+0lN8EUII4Adh9u5NP1JdwyLidoSKRWKjirVwI/3DuO9UV15CdbSI7UE2nQcPeZudwwOgtJlBjbPZYVBfIAoKTOyfwtZTw+rfcxSR6PT8Tq8CAhr0Mv/PeqgMppzi3D2VYanAkqSfKwLNxa4Xjh8Yl8vrGE//tKjnv4eF0xo3JieGnGwLCDmUaXF7tbHryatEo8fpFauzdAHDXjpe/2MqVvEtU2D5tLrGwptjIoI5qsGCMqhXDE7MwunP7oIo9ONVKHynam7Z/Lf3ebJGcE+T2AAr+gxOr0cveczVQ0uEmwaHnr2iGktLrIoXxLC3EE4LLCiufg3H+AuyHkJXHUghhq6zkexJq0fDlrFC8sLcDm9nHz2Gy6t/b7GmJg4LWwtJXgzBANUeHJDb1awZDMKNYVtpBL4/PiTmlyvyRJVDa4+XRDMVWNHq4cnk5qpD6EiXd4/Xy1tRy9WsnU6+8nFVDv+xpicmDKS/JF+GkOu9sfII6asbygGofbh1ohBP7NrYOAn7u0Pza3HH5s1qk6tQlQKQhha16TjqHOiDZquGhgCpPzE9CplQEy4qmL++IXgyvRAW4dl0OUQfZ8h8300UfKDYjpw+UrPsPRc448PjFgSWqG0+un0eUj4SQ6F+PCfPYJZi2qjvrRawvh9TEt4f0RaXDTd2Bq34LbpFNjarOtR6KZ7+4dR53DS4RehUmn7jSLlkWv5l+X9+fPc7fR4PLRPy2Sh87rFWRPiDFp+dfl/bnnky1sK62ne4KJv13Qm4fn7WBzsZVXftjP13eNIcGiQ5Iklu48zKvLZWuize1j1oeb+P7ecSGLwYoGF1NfXskrU1MZHJkuN2YCKNU4h86mUZvAe9eb+WJTGV9ullU53eKNTOgRz6FaBxsPWbHoVDw+rU8IOWR1eFhRUMWbKw9i0al58Jwe5MSbOuV46POL1No9lFqdRBvlGucTVblM7ZfMi9/tDQpqtejUPHhuD+6Y2A2n10+UQR2Y7pbXuwLEEchT26cW7ea1qwa2q2Ho14RYk5YnL+rDjDfWBC6qbh+fg0mnIjPWQIxRE3TsvXZkRoiF97cKn18MZKVEGTRkxxmP2kzYhd8nau1u7v5kM6VNwdI2d5Pd9/4JbCmt5++LWrIO7/lkC4vuHI1Fp2LJ9sM8OFdeIw/OiOJvF+TjE8V2K6R/rdCoFGHXY2qFggk94rnktZ8CBPXt43Oa7FkenllykK+3lZMRY+Sxqfk43P4A0RJj1JAV0yJZcXlFVu6twuH243A72VvRSN/USJbeM473fypCoxKYMSwjrAL1VCJctMG20np8oohSEXx+NevUmHVqsuKCVzV6TUtG0vOX9GfO+kOs3l/DxB7xTOsfai1ri3qHly83l/DskgLcPpGLB6Xw/KX9mfneOiQJvtlRwehusXzcKoBbrRRI64CbwOsXqbN7sHv8GDRKIvVqtG3WD1anh5e/D3ZLrNpfg93tCyGPau1unlm8h083yAHiM4amc+GA8INUvyjhFyX+vnAXPx2QFf0bD1kprLHzt6n57f43dOH0Qxd5dKphjIXznpMDlQHUOnniv+QvoDXC8Dt4d6UsEwWoaHBzy/sb+HLWyBZ5pa0i9Hlt5TJBFNNNvtB1tAQTMuwW0HdOyG+D08uBKhsPnJOHKMoSUZvL3yKHVKrkNjmVHjZ/AJEZcNajsq0uDKKNWl6ZMZB/L9vPusJaRnWL5eYx2adUul9lc3P+yyupasqeev/nQr6cNYq+babjCgSSInXU2DzMmlfMOXm3MmbqH8hLikIfGX8q3nqHYQhTzd49wcTawlp+3FvN/ZPzglVvNEuET873o1AIgWaI5uyvnDgjY3ODiTinx4+EhM8v4vKJKAWBGJM20CTi9vopqLTx6PwdGDQK3rt+KF9sKuFAtZ0rh2WQn2xpn1rqKC1AtXY3dXYvXlEkSq/h7N6JfLmpxaaiVSmOqLTpLAzOjKZbvIl9lTaiDGouHpjCTWNzUHckL8zrgOVPB7U+Ul8MxWug59Tjfm9qpYJ4iy5k/+kMGLUqJvVKZGhmND5RQqdWhJWJKwSBGcPS6ZsagdXh5bEFO9hVLlvpau0evttVwYxhGdjdvrAB6qv2VZPdZgG5cGs5FQ1unl1Vy6tnv0LU3CvAY6P24k95ozCed577Ea1KyeyJ3TirVzxxZi09kiyYdWrevHYILq8fpUIIsl80Y31RHXd+vDnw94X/Xs0P940P24DSURystnPxq6sD+VTXjczk7jNzA6SN1eGhuNbBuqI6hmZGkxqlP+ZxOMGi49NbR/DskgI8fpHZE7uRHW/ErAtPTNncoQv4BtdvV3HTOyWCFfdPYH+ljeRIPVEGNRadGpNGxbw7RvHid3sprnVyxdA0xnSPO7pN8jeEkjonU15aGcil6Z8WwZvXDukikLoQBJ8osb2NEsPp9eP1i3yxsSTk/kt2VDCqW0yQwmR9UR0/H6ylV/LRW6x+LWh0yVanjuQa+kSJvy/aFXScfX3FAaYPSuU/Kw4wp4ms2FZazzVvr2XB7FG4524nLVrPnWfkBv0uV+2r5uF5OwJ/f7CmiO/vG09mjJGHzut54v/AE0RkmCKOP5yZS0IYMmv6oNTjjhWINWu5ZWwO14zIxKBRtevYXWp18tf5LfmuH60tJjvOxMicGFbtq+GTdcUsuXssVY1uvt9TSYJZx9MX9yHS0L7vWmz6vVz3zjrqnV6MGiWvXT2IYVnRwZmkEmHtgCqFQFWjm+UFlZTUOZnaLxmrwxNEZr3/cxH90iIwaJSMyY3lx70t9uubxmYjSgSIo2Z8u6uCvzZlGnbh14ku8uh0gD6qxUJWsRNeGyVn5ADKzR/yx6t/5KvtVYEL+lKrE0/r4Nns8XIAtq+VPWLY7XKbm9oANy+D5c+AtQgGXQ85E6CTJi51Dg/zt5Qz68NNgJwt88Jl/XF7/S3stiFGbpHrfZH8PrVtNQnBiLfo+NM5PbC7fZh0qlPeOLPpkDVAHIGcTfKv7/by4uUDgpQTMSYNb107BKvDQ2GNg9x4E1U2N906wR74S8Hc1ED1wOdbcftEogxqHjq3F09+vYsdZQ3U2N3887L+ROiPnyyqsbkpr3dR0eCiZ5KFWJPmqOHaCRYtC+8czc7yRrQqBTlxJiL0KioaXNjdPjQqBQu3lrOhqI5rRmTw7a5K1h6s5YXL+tMt3oRSIVDn8DL91dUtE/8PNvD4tN7MmtAtfEhiB1FtczP7w4381BTumBNn5P0bhrG3opEdZY1EGtRNn9vJtR3FmbV8fNNwSq0OjFoVb60s5JF5O7h5bBbdE8xhJ2EOjw+FILSoWSQp+FjSDK87dNspQr3Di8PjAwEsWhVGnxUNEvGm2KMe2yINatYerGV7aT0urz9AHDWj2famVSvpmxoRtBAC6JUcKhuraWq1+flgHQ/pY7h/xgri9QKryjW8ukLOSXB5RR5fuIsFd4wKCkE+WlaPzeXlfz8VBW3z+EVW7qvisiHhq+vbC6vDwyPzdgSII6VCICPGQFm9i1X7axiQFsmc9cX889uWJsX7JnXnhtHZIU0vrWHUqhiUEc1rVw9ElDimciY7zkicSRvUDHTD6KxfRYbR8UCrUpJgUYbk9ykUAqlRBv52QW/cPvG0tyd2JpweH88vLQgQRwCbi+vZW9HYRR51IQgapYJh2TH81KqlzaJXoVUr6JcWyYI2hH/vlIgQsglgW0n9r1555HD72Ftl44VvCvBLEndOzKVHUvhzfFtISByuDz7H+0UJr1/ku92VQdttbh82l5/Xrh6EVqUIUr3a3F4+2xBM2okS/FhQReYII6cadXYPc9Yd4tEp+Ww4VEdxrYPpg1LJiTMhCPDvKwfy9OLduLx+bhqTzcCMjq3VfX4Rl9ePUatCEARUSgXmDljuV+2rDtn20/4a8pMjWLWvBrVKgVol8Pxl/XB5RRRCO7IXW6HO4eHHgiqmDUjh623lVDa6uePDTXxz99ig+IRIg4bZE7vxWKuiorHd4xAEIajs48Xv9vLu9UPpmWQOWjttOmTFL0rcNj6HMblx7Cpv4Lw+SQzMiJKvBdsMpI0aFarfyWDkt4ou8uh0gs8j5x9JrTJLPHaMB79mcOZgVu2TT5gZMQY0rQ9Qxjg54+j7x8FphZGzIWWgfJtCAZHpsoXN55btN52I0noXS3a0+Fx3lTcyb1Mpd57RJo9GoTyqaqMtWvu2TzXCHeLCHffsHh9LdhzmuW8KAvd545rB6NWd9DPzuuSsKE8jaC2giwJ15y6uDRoVk3olMDx7Aja3l4oGNy9/vy8wtVm2pwqXV6QDjatBqGp08fCX21m8Q1bL6dVKPr9txFGngM2h2uOalHZ+UWJjUR03vLeOBpcciPzM9L78dKCGq99ey/szh7Fkx2GuemsNC+8cTbxZx86yetw+kTizlucu6Uet3cPO8kaSIw3EKYR2NcMdDZuLrQHiCOSQ7083lPDBjcOxuX2olQqijWrUypO/T8eatfhEiTOfXx5QdizZcTgkOLu60U2Dy0uZ1UmUUYNFpybBokWjMcKY+6Dga5lIApnczhp90t97e1Bjc/PX+Tv4ams5j5yVwuWxB2HV0/Jxc+wD0O2MluOcq0FWYDbljXn9IoMzo8hPtqBRKpm/pSwQdGnRqTirl2zLUysVXDsikx92VwUykqYPSiEzNnRBPH1wGq+vOIBPlFi0s4bFu2r48f4JLNy+K+S+ywqq2t2gpVYqwoZnd0agtscvBuUT3T4+h+JaR2DxOOeW4by6LLhN8KXv93HJ4LSjkkfNaC+5HGfSMu+OUby2bD+Hah1cOTydIZnRv9va39PpvPdLweuXQmrFQW5H7EIXWiPSoOG5S/ox+6NNbCiqIz3awItXDMDUVHM/f0sZW0tksmhCXhwD0yPD5gdN65/8qyaOQG5dvujfqwMDj5X7qlk4e3S7FFUGtZLz+ybx5eYWZXRWrBGVQkFOnDFoWCoIEG1UhyW0NUoleYnmIGUXQLf40Kr69qLG5sbrl1ArhROOQCizOnl+6V4EYS/Ds2OIN2tZc0AmZzQqBWfnJzatiSQiDZp21dw3o6rRxfs/F7H5kJVz+iQxOT+xw0OPcO2uA9IjKbM6GNc9lr9OySfGoEWhEDq85na4fZRaneyuaEStVPDSjAG8s6qQxdsP42mTi6lRKbhwQAq9kyNYsLWMQelRjOkey/5Ke1DZhyjBq8v2M6VvMrvK9wS2j+seh1alQCkIJFi0pEbFMzw7GpNOjcPj4+6zuvNUq5zRP53T46S5Fbrwy6CLPDqdIAigCVXlGIyWQF1ndqyR164eRKyp1Q9PpZUDfae9Jl8ohSOI1Hr5v07G/lYHlmbsqbDh9omcgDil8+F1g6MayjaAJQ0i09pNZvVPjyQpQkd506RGqRC464zu2Nw+Nh6SFzCRBg1Ojz9oUi9KcovXgtmjjtom1i74vXKL05yrZFuRxgiXfwwZo6CTCYnmZoXD9XDeuyuDJgYJZl1Y4qy9qLF5AsQRyJLzxxfu4uUZA9rdflJjd3PHRxsDqgmb28fDX27n+Uv7sWxPFV9sKmFCXjwfrj2Ew+0Hc0tG0jMX9+WZJbsDQdZPfb2bBbNHndBiB6CgojFk2+7yBvQa5SmxXK7eXx1iCXp9+X56JVkwalVYHR5e+LaAD9bI+TxRBjX/uXowapWCRIsS4vLglh/h51dlcnroTWDsmPWy0SWTj6v3VzMwI5KMaOMJN4QArNhbxVdby0mK0DE1zY3hw+tabvx8Jtz4Lb74vtQ12pHqi4ku+hpVUh/IGMX2MjcPfbEdtVLgogEpfHDjcOZvLsWiV3PV8IwgpUO8Rce7M4dgd/uQJPl3rwhDJSdatHw1ezQvfb8Xnygxe2Iu0UYNQzKjWLw9OEByQFr7J5tatZLbJ+SweMdhapuycAakR9Iz8cRDsyL1Gqb0Sw4QRBN7xHPxq6sDtysEIahhB2TCqbOLCwRBIDlSz0Pn98TrEwM20y78fmDRq7l+ZGaQmkSvVh6x2rozYXN7ERA6LXutCycfRo2Spy7qg9cvolTIF6tqpYJYs5Z3rhsiFzII8ncabdTgEyUePr8nry07gE8UuW5kJj2STmLw4C+EuRtLggoiJAn++1MRf7+wzzEt+Cadmr+c34t4s47vdleQn2zhj5N7EG2SlebXvrOWWrsHhQC3jcs5ItGmUSmYOTqLxTsOU1QjDyPO6BlP94TQ6xhRlBCE8PaoZhyosjHrw43sKm+kR6KZV2YMJDvO2OFhgsvrp8HpRatWcuu4bN5ZVRg4vhzOiuaKYRloVAoUCuG4wslrbG5mvrs+EGa9Ym81Bypt3DMpr13DlWZkx5m4dkQG7/9chCjBqJwYLh+SBsgq1Y627bXGoVoH015ZFcgfXLz9MB/dNJz9VY3o1MpAMyESmHQqIg0ahmRFMySrZcC4Wwxd13r9InmJZlQKAUGAq4dnkJdo5uq31nKo1sHY3Fievrhv4Fxu0Ki4YkgaZ/SIZ2dZA31SI4g1aU+5o6QLJ4auM+bpBKUaRtwBWz4Ej13eZk5E2X0Sj3SP4k/n9EDTdJIMi2PYwU4GRnULJWDO7ZMYqMcGwFYFtQfAWQvJA8AQ1+mExzFRvRveOktWXwHknQsXvHzM4GOAeLOOebNG8dVWWfZ56eBUbG4fI5/6PnDyfvCcHpzdOzGkLrza5g6IN7xNF2MdmW4E4KiBuTfKxBHI+8fcG+QLfPPxN1EcDRF6NX+dks9DX25DkmTJ+LOX9D2hitvqMBPmykY3Lq+/3c/h8YmBDLBm1Ng96JpO2ha9mlq7B71aGTiRJ1p0XD8yA7vHFyCOQCavnl2yh2cv7R+8z4aB2+uXm/+QiGozpZrUM4FnFu8Juv+lg9PQqpRUNrpYtqeKapub8/smE2/WtltdYHP7sLvlVrvIMJk4R0I4ksasUwfkzjV2T4A4ArkV65Uf9nHb+BwSLU3W0sQ+MOVfICg7bHP1+0V+2F3FXXM28cS03hRWOXhnZSH90iI5t0/ScdtRRFFiZZOVbHBGFJa9n4Tcx+rw8vWmcv713X5ESeKOUecztWEbkeWbyYwZBMhqhznrS/hmZwV3nZnL5UPSg74Th9uHzeOj0eXjwblbWXtQDnW+alg6903OCyIE9RoVPZIsPHtJPyTkxRLABf1TWLqzgp+bFGkXDUyhV1LHSMrkCD2L7xrD3kobJq2KlCh9p1h5NCoFN47OAmD+5jIUghAUcr2xqI6zeibwzc4Wovfc3kmdYvEMB61K2bWY/B1jaFY0r181iLdWHSTaoOa+yXnBA7JOht3to6CikZe+34dKKfCHM7uTFWM4aft3FzoHLq+f//5UxHNLCwLbzu+bxOPTehNp0BBj0oaoVTYeqmPTIStPXNgbhULg623lLN1xmKtGZP7C775zkRRGipIcqWt3022sScu9k7pz01jZimzSqqhscPHS9wW8PGMAICuUvt1dSbXdTcIRqtUTLDo+u3UktXYPGpXcCNpagePw+CizOnl3dSERejVXDssgwaILsV5VN7qZu7GER87PR6UU2F5az72fbuHNawZ3qJXL6vAwZ10xL363F69f4uJBKbxy5UBufG89AJPyE4651jsaJEnC6fXzl/N7Iknw4ZpDzN9Sxv/WHOKmcUe3dbdFtFHDvZPzuHV8DqIoYdCoOkWR4/OLvL3qYNA53e0TWVZQyX9nDkOnUjB3YwlPLd6Nw+3n8qFp/OHM3JC1fW68KWhwDnDHxG4MzYxm5QMTAdlhMemF5Vid8rByxd5q/vbVTp6Z3jewDo0waIgwaMhNOLEhbRdOH3SdKU83RKTArLWwa4GsLsmdBKYEYk9TGX+M2sMLl/bjuaUF2N0+rhqewZjsCFQ+ByhNYK+Cj6+AknXyA3QRcPNyiM765d6kow4WP9hCHAHsWSSTWu0gj0BWIcxsutiqbnQx4401QUTRs9/sYUq/ZHLjTextUmMNz47m8iHpaFUKDlTZeH35fiTglrE5pETpO2ZP8HvllrzWsFV2WmteOOg1Sqb2S2J8XhyH610kR+qJ0LcvCPBIyI4zEaFXU+9sqXq9cEBKQBLt9Pixe3z4RTn0OiqMv1shCPRINLP7cMtUJDtWllpHGtRc0D+FG95dy/OX9Qs8b5RRwx/OzGPV/lCPudXpxd9GZdEWdXYP//25kDdWHEStFLjnrO5M6ZccIBESI3S8fe1gnlq8G5dX5Oax2QxIj6Sq0cXFr66muFZuh3lhaQFfzR5NXjvUI7V2N88uKeDTDcXoVEr+ODmPC/ont6uFqn9aJFmxRg5WyyS0Xq3kzom5gX2usiGUxDtU68CgbbNPKo9v8lXr8PD4wp1M6ZuM1eHlz19sB+DzjaV8samUN68dHFBTdgQKhcDk/EQ+31hKZaMbR0YeQZ9GVCYHVNk8+MWGwKZHFheRd+UAhu38D8njB3J2fiKLdxxGr1Zyy9hszuyZQL3TiyjJi7cam5vnlhYwf3MZiRE6Hjg7j0RLeWCBeOu4HLRqJfo2v9+2F56xJi3/vnJQIFPKqFER0c6gy9b/3pPDAT30AAAgAElEQVQVMh5j0vKHM3O5fmQmogR5CWb2NCnoXvlhHx/fPIKhWdH8uLeacd3j5H3vd5TF04VfDpEGDZN7JzIsOxqVUnFCF3ftwaFaBxe9ujow2Pl+VyXf3juOzJiuJfHpjAaXN9CA2Yyvtpbz53N7EnmEAqotxVa+2loeVIAgSnD5MBFRlLA6vNTYPUQa5Eatk73vdRbOyk/gtRX7A2uLBIuWSwd3LAtPq1YS1+o8plIqqGz0MOONNagUQiBQ+7LBaUd9njiz9ogKnkM1Ds57aWVgvfy/nw81Ze4En9M8fhG9RsXMd9fh9PoZmxvLX87ridvX/sEiQFGNgydbWaQ+WltMj0QLI3OiyYgxMq1/ygmtYQ9U2bn2nbWU1DkxapQ8OlUmu34sqEYIG3JxdFh06pCw8+pGN06vH41KQaRB3eHBikIQwp6rY41aDBolZfUu/jS3paH7vz8V0TPJwuVD0oJUXnFmHV/OGsWcdYcoqnFw9YhMsmONAXcCyGqxG8ZkE2fW8tP+GhZtK+fHvdU4Pf5OUZp34fTEr+Mo+XuCUg0RqTD8tsCmBpcXh9tHRYObBIsWg0Z1QnLGzoRF6WVUTizZTQF0MUYNKn8jqJoUSVV7oKrlQI6rHpY9Dee/AJrOt9GB7EVeXlBFVaOH8/omEa8Gnb0q9I4u63E9vygRktHQnJvy35lDeeHbAs7pnUR5vZPF28vpnmBi2iurAzaQLzaVsvTucWHzU46IZmti688ysa8cQH4SYdKpMenUnZKzAmDWqvjopmH889u9lFqdnN83iQsHpGDUyt5od30liqLVmKo2Y885D1tsDhHRwXYpjUrBExf24YmFu9h4qI7+aZE8dVEfSq1Ovr5rDH6/yKK7xmLRqYIIugiDmkEZUVh0qoDlDeSA3mMRMhuK6nhhaYsl8eF5O+ibGhkgj0w6NRN6xNM3LRJJgmiDGqVSwbe7KgKLO5D3k39+u5fnLu0XUKiEgyRJLN5ewYdrDzU9zscj83cwOCu6XeRRnFnLJ7eMYH1hLXUOL+Pz4ogztzwuO86IXq3E2UrxNSk/IeR7trtl9Y3b58egUbVb4i0hq6bO7p3Io/N3BN226ZCVBocXs1bdbiVVawzOjObGMVn87+ciaiePJzKpP5Q3NZL1msa8baEE4Rd7XAzLHYpBp+PvF/Xm3knd0amV/OvbvYz7xzJUCoHbxudw9fAM3lp5kA+bVFn7Km3M+mATc24ZzsJt5fhFicpGN08t3s01IzLokWg56rE42qg5rcOftSol8U3Bme/NHMrL3+9la2k9k3olkGDRcv2oLC4fmo5erfzdNH914dThl7D4iqLEe6sLae3A9IkSX24q5Q9ndj/pr9+FE4AEHXXOnt07ideWHwjaNm1ACiqFgk0ldVz15hrsHrnx8olpvZnaP/mo5+bTBfFmHXNvG8XO8gb8okTvFAvxJxiPEG3U8MSFvVm1r5p+qZFU2zyUWR3H3RLr9vl5dfn+oEFrvdPL8oIqLm1DSNndPv6xpEW9vWJvNbkJZm4fn9Oh11xRELrW/+lADS9dMRCdWnncFlW310+p1ckfP9tCSZ28prN7/Pzly+18cOMwxubGEdXB4VA4FNc6uO6dteyvsgfyPMd3jwuQNeEgilKQ4kyhELhuZBZz1hfT0KQISrTo6JMawRsrDhAdRr28ZPthpvRLDiFPEyw6Zk/MxS9KqNq4JpweH35RYn1hHSV1Ds7uncTrVw/mzR8PHNfargu/Hpz+R8jfOVxeHxX1LlbsrWJjkZVBGVGMyY1F06b14FShVojkwldWBmxEWpWCeXeMIkappMbupladh/fiH4gTrMQtvhVq9oGtHEQP0PnkUVWjm+mv/RTwXz+/dA8LZo+mx8i7YP6sljsaYiAq87heQ69RcnZ+Igu3tUyyusWbApbCR87vxTurC3numwLO7SOrJFrnh3j9Eh+sORRSY+r1i00+4jAXaaZ4mDEH5s2SVVxpw2XbXQdCyI8HdXYPpVYn20vrGZIZTZxF26FK2LYw69VkKoz83wW98fhFzE1eawCFsw7L17NRHvgWAN2al7Cf/QKNfa/AbGjZVwxqJRuKapk2IJn7z85jf6WNLSVWpvRNPuoJFiDWqGHB7NG8+N1eKhvdXD8qi0HHaNjw+kXmbykL2b50ZwX90lryxQRBCLEUucPY8ZIj9bi9ftQKBeojnGAdHj/f7Dwcsv2n/TX0amdeQ5xZyzl9ksLeFm1U89ltI3hk3g7KrE4u6JfM9aOygtRADU4vn6wv5unFu/H6JbJijbx/w1BSo1pGvPUOD26f2DQha7nwM+vUXD08A1GSwrZq1Dm8rC0s4ZzeSR0mwqONGu45szs3jclGKYB/xqcoHVWABOYU+u+x816blrIBCSrImQgqDdEquQXs0w0lfNZU7+wXZVJvdLdYNh2qC3qsxy9SWOMgwawNkGLNk+z3Zg5hXPeOZUGdDFQ1uvH5RVRKxXFlOICsnvvL+b1wePxYdKrAQvF0mcTX2NxsLKpjw6E6JucnkhVrPCV5Yl34dUMQCPsbietqdguBxydS5/Dg8Yno1ApiTdqg9UlVo5ulOw+zv8rG9EFppEbpT6rawKxXc+OYLF76fl9g29m9EzAcxSqUGWPgyYv68PzSAnx+kdvG59A3JYLqRjf3frIFu0c+R/tFiUfm7WB8XvyvgjwCeT8eZ47r1OeMNWlZe7CWJ7/eTWqUnmen9wtR2bYbEmHP/yqFgMPjo8HpRZLkc8zOsoaQ+20squuwlmdwq1KQZozMiSHaqDmhIoY6h4cyqyso9gBkO5hFr2ZigjmEXOkorA4Pf5q7lf1VsmLc5vZx18eb+PH+iWHXttWNbhZtK2dLiZXpg1LpmWQJUsN/fecYFm0/jEapoHdKBH/6fBsur59nL+0HyGrjWRNySLDoMGpVaJXhPx+5SS74tsP1TuqdXi55/acAQfXKD/uYNT6H5y7p13Vu/o3j13GE/K2j2ZKkUMjhtK1gdXh56ft9gYvXhdvKuaB/Mn8+t+dpQR6tKKgKyp9x+0T+s/wAfzqnB7M/2sSag7LVKjPGwJzL55Dw3igYerNsXzsJ2F5aHyCOQCZqXlhawPMXXoBxih82vQ9RWTDxoQ4HADfDrFPz2NR8EiN0/LC7kr6pEdx/do+AL9vR5MsHmhZdod+TsZU9qM7uYVOxlS83ldI/LZIp/ZLDXwBGZcKl74PfIyuR9McZKOqxQ+Nh2RoZlQkZI2Vyqg0aXV5eW76f11e0TO2eubgv0waknNBUobXktTVUPnuAOGqGcdXTeHqcC63JI62KSwalUVDRyI97qxmRE0PPJPMxiSMApVJBRoyRR6fkY/P4ECXwi0e3rKmVCgZlRIYQSOGaMtpicGY00UYNtXYPggBPX9wXo0bJPZ9sJSfeyI2js0kMkyWgUykYlhXDsj3BU7QBaZ3TlqhWKukeb+blGQMQRQmjRkVkG4VMg9PL4wtbGsMOVtt5YuEu/jFdDkMsqXPw4NxtrC+sY2BGJE9f1JfUaJlY0quV3DIum+2l9dw6LodHWqmPRmTHcLDazgOfb2NQRvRxqSiD9yEdmFv23zG5BkZkRwfa74ZkRHFGv6ygfcjtE/luV3AlMcDq/TWM6hYb1JwHkBFtYFS3WK4Yms7D87YHtr+27AD9U6MCdjSfKCIAyl+oyUeSJIpq7GwospIcqafM6mRgRiSZMR0PGYXTt+3L6vDw0JfbWLxdzmB6bfkBHpvaiyuGZnRNOLvQIQiCwJXD0vlo7aFAo1tKpD7QtPhrh88v4vTKStFjqQVr7R42F9fxw+4qJuTF0T89KqCUrG50s66wlj9+thWb20dmjIH3Zg4lI0ZWTFfb3EE13m+tLDzpZLperWTmqCwGZ0SxaFs5I7vFMrpb7FEvVCMNGi4ZlMqZPeX3FaGXswMrG10U1tiD7utpql7/vcLu9vH017v5tuncWFzr5Jq317Li/gkkHMd5QatWcvv4bizYUh4YoMaZtYzIieHFb/fy5sqD+ESJC/olc8fEbiGPH9UtpsMlCnmJZq4ans6Haw4hSnIZxHl9kk64wfNAlZ3tZfUMy5at3M2w6FSYdZ3jBvH4RLY1tQU2w+uXsDo8IevEGpubme+tC7QLfr6xlCem9eayIWmolAqUCgGlQsHSnYdxeUUeXbADSYL8ZAvp0XruPjOXkd1ieXDuNvZV2ki06Pj3lQPpkxpxzFzWqkY3N7+/gdvHdwsQR834als5143KPOHPogunN7rIo1MNR61MaKz9j0yoTH4SUgfLeUfIcuqvtgZftC7YUsb9k/NOxbsNQduAaJBD+6ptbu6Z1B2vT2LellI+XV/CB9sc3HnNV6jiQk8SnQVXGH+02ysiqnQw4GroOQWUWtB2wDLWBvUOLx6/yMxRWdw0JhuzThUkhVUgYNaqqGp08+Peau6YmMuHa4qoc8g5PxF6NZN6JTJ/cymju8Xy2cZS/r5Ivkifv6WMeZtLefu6IeFrSg2hU5UO4/A2eOccudocZPvb1XNDiEu728ebKw8GbXti0S7G58WdlAwWgTB6dNEXNqs5yqhhWHYMw7Lbl1nVGjaXjyU7K/jrvO3YPX4GpEXy6lWDwpI4zZicn8SibYcDZOikXgn0Sj62AijOJDdx/fenQuLNWtxeP/d/thWAH/bAoq3lzLsjtI1PqVRwyeBUftxbxer9NSgEuG5kJlkdsToeBXa3j9I6J8V1DsqsLgamR+IVxaD3UWp1hjxue1k9Tq8ft0/klvc3sKNpWrhqXw03/nc9H9w4LLDfRhu1jMmNo1eSh75pEczbXEZ2rInMWAOzP9oEwPrCWrrFd27Qf6xJyytXDsTm8iEhN4m0zVfSqhSMzY1lyY5gdVdegpmsOAMfrS2m1OpEaGqbSYnUceOYLK58c01QhbhRq0SpkINcy6xO3l55EKVCYOboLJIidGhOcgi01eHF6vDy4dpDbDxUx8D0KHLijNTqPceVKXW6wu72B4ijZrzw7V7O6ZN0wlaNLvw6IYoSNXa51lurUnSo1jvBomPRnWPYcKgOlUJB/7SIE29EPQ1QbXMzZ10xP+2vYUKPOKb1Tzni52JzefnXtwUBleb7PxdxzYgM7p+ch8srUl7v4g9zNgfaVgtrHPzxs628fvUgogwaSuucQTXeAM9/U0CflIgTKtU4FqKMGsblxTMur/0klazIDP5+dSolE3vEB4gSgKQIXdBg73RBrd2Nzy9h0atPKrlvd/uCiBGQBy0VDa6QjKL2IjVaz3f3jmPuxhIsejXn9kmixubitVZDyXlbypgxPJ1Hp/TimSV7cHj8jM+L47qRWR0eDkQbNTxwdg9mTeiGJIFaKeAVRQ7XOzFoVcetnE+O1HPPJ1v46Obh3P/ZFtYV1pEWrefRKflsK7YSZ9IiAC6fiEGjPL7hjUbJsOwYlrYqqtCpFWFDtOud3gBx1IxXftjHWfkJgXOiRadi+qA03v+pkP9cPYhIg4ZEiw6LTsPlQ9K54b/rAr/hww0uZr63joWzR2PUqo5KyNY7PBRUNBJlDP0skyP1x1cK1IVfFbrIo1MJSYK938DSR+S/60vg/WkwexNEyxeJCkFAqRAQ/S0X1iqF4oRZ9M7C+B7xWPSqAPusVgpcOTyDvy/cxcJt5Rg0KmZNyOH+yXlsKanHmzgQVQfaCDqKQU2Ts+Zqa4BZE7ph1qlpcHpx+QwIfohWS8eV4VFr8/DYgh3Ma1KhTM5P4LGp+bzywz5ESWpqktDyl/N7ccN763D7RP62YCcf3TScDUV1NLq8DM+J5ZF521lfVMdjU/MpOBwsg91SUo/N7evQYrjdcNTBt4+2EEcAh7eCtTiEPPKJUgg5aHefvIBuQWtCShuGULwmsE0c9QdUnUGYtUK908sfP9sSyE7YVGzlmSW7efyC3mHVS6Io8b+fC5k+KJUHzu6BIMDWknq+21XJVcMzjvpaCoVcRX7/5B5Nk9o1QbeX1bsos7rCXrjEmrS8PGMATo8fhULApFV1miWgwenliUW7WN6UD6BVKXj/hqGYdSp0avkzyIgxyguvVseeCXnxmHRq6uyeAHHUjN2HG3F5g1VcgiAQa9YSYVBzqNbB2ysL2VzckjXWO+XkKBCjjdqjXsAIgsDZvRNZtb+ar7cfRqUQmDEsg0a3l7vnbOHjm4fj8Mjkk93tQ6mULRvRRg1JEXoeHBtDikVNtMWESafmYLWdyf9cEfis5qwv5tt7xgVZ/I4XVocHp9ePQhAw61RBlgqHx8f9n2+loEJeAG4oquOPn23lneuHQOfwjKcFpDDEst8vHVdAaRd+/fD6RbaX1nP7Bxspr3fRI9HM61cPCqhijgVBkIPoz+kd3tb7a0Sdw8O9n2xmeYF88b9yXzVbiq08Pq1PWFWEze0PatwEuTnq9vHdWLG3ivRoQ4A4asbWEivepm3hoockAOn0/k3aXF6q7R52lNbz6NR8DBolywuq6Zlk5smL+nRKm2VnwePzU1Bh46EvtlFmdTG1XxK3T+h2ctaGyEqhXslmlhe0uAkUgkzI7CpvaFqDHJ1YCHlOlZK0aAN3tcoTm9tkF2+NN388yPOX9OOcPkmIkoRerTxu65NZJ4ef19jcPL5oF19uKkVAbsC9/+y84yI3owwaLhmcSo3NzZR+ydw3OY/qRg+vLtvP4QYXvVMjmbe5jLUHa5mUn8Dk/MSgvEOvXzwmqWLRqfnbBflYHR7WFdaRaNHxwmX9iAzz+w13DahQBJ8RDVoVU/okMSQzimveXktxrROtSsFjF+QzrntciAXP6vBSXOfki42lPHBOjyPmNWrUSlxekb0VNqb1T+HLzaUAcoD4lF4h35vH58fq8OLxiWjVSmJNJ2Yh7MKpRxd5dCrhboAtHwVvk0QoXAHRmYBcO37dqEzeWNGiAJk5OrPzW2/s1VBdAOVbIWeCXP/eDmtZnFHNkrvG0thUYW7Sqli8/TALmpotbG4fTy/ewwc3DqNPSkSHaiyPB7GtlB4VDW5mjpLVGlWNbh76Yhvf7qog3qzj6el9GJIZ3WFv+/qi2gBxBLBkRwUjcmJYV1jLusI63l1dyNK7x9E3NYIld41lWUEleQlmIg0ahmZF8/C87Tz7TUGgxeL9n4uYNT6HzzaWBr2OIsyB1erwUF7vYvMhKwMyIkmy6Dvc3oQkBrfONcPnCtlk0CgZlBHFhqKWDJiLBqaENnJ1EhSmOLjsf4g75qEoXYfY9zIUyQNA1bne6UO19pDQzfWFddg9/rDkkYRErcPDyz8Et7w8eE6Pdr+mQiGgUirCBk+qlQq2lVhJjNCFkEjRRu1JIQFq7J4AcQTydPH5pQX887L+JEbI7zFCr+Ld64fywOdbKa93MTk/kTsn5qJXK2lUCMSaNEEqnCiDGvURPPNqpYIR2TG83zTlVioEbhyTRUrUyQnNbw88PpGbxmRxy9gcPH6R73dV8qfPt+ETJXaVN/B/X+2kuCkYc2RODC/PGMgnNw1DX1+A9ouroXovJPVDmvEZ762uCiLZXF6RuRtLufOM3BN6j9U2N3/6XD5uaVUKZk/sxlXDMwKLM1EiQBw1Y2+lDa9fbNdi9dcCg0bFyJwYVu+vCWy7eVw2Fn3XEub3iDq7h+vfXYe1Sc27+3Ajd328mbevG3xSVS+/NJoLC/yihF6jPGr4vtPjDxBHzZCbyHod0VIjIZMD14/KYnJ+IoLQYoXNijVi1CgDmUAAw7Nj0DYpX1Ij9WTHGjlQ3WL9+sMZuUQa1Dg9fnTq9g85G5xeHB4/giArs0+WusbnF/l/9s47PKo6/eKfmTu9JpPeE0KAhBISem8qCljAgogo9t7bru7q/tYtblNXVmxgb2BbsYEoKr33DqGEQHqfXu79/XGTCUMGSAPRzXkenofcTMvM3Pt9v+c97zk/7inn7gbla4RBzT+u6MNvL8pGr2k7WXGmUO30ceXLq4LBFnNXHEKnEbh1RJcWBWe0Fla9mqcv7c30uauDRMPvJ2Xz8foinv9eDgyZOTSd+8/Latd7NTQzGtgTcmxcj1hMOhXmDtzbrCyo5LOG2loCPlx3hPNz4hiX3foRVatBzS0julBW7+bJz0NDQLJiTew4VsvfFsqBNj/sKWPHsVp+e1E2bl+AJbvL+GlvOeOyYxnVLeaU16gEq55XZ/TH4xdRKiHqhMRhty+AxxfAZlAzKMMWVMMDPHR+t2aP7RVFnvx8RzC4xeMXeeKz7Sx7ZDQ9Ey0hTUCrXk1AlJi3/ggzh6Wf9Hpj1qm4JDeRp7/cyZOTcrh6YApev0j3eHOz+3j8AdYcqOLeDzdR4/SREW3kjZkDWhcY1IlzDp2V188JlU5O0DrwY+jxqKYNh0mr4s5RXRnXPY4VBRUM7xpNtzhzmxMDwsJVDd/+LpTIunwu5EwG4dSLuNMnMn/9EWb/WIA3IDKhVwK3jMhAqZA3No3YV2rn8n5JHfeaT4JGpccj47sjSvKm1eUL8MLCPXzbIAUtqXNz05vrWfbomFaTR6sOVDY7tv1oHelRRtYdqsbtE3l/zWEGdYni7vc30SPezNurDhNv1fGnS3ux+gQvlQi9utko0tjuMc0+X6fXz3trCkPSKB6fkM2MIWmtMzM0RsHwB2D+jKZjliSIap5oYTNqefnafry96hDrD1VzXk4sl/VNwqQ9g0l/pliUg24B8QaUyo6/PPkCIsmRhmbfz8FdbBhPQmwKSiU3DevCR+uLggSBQSNwcW5iq57bZtTw+IRspr22OqjoGtzFRkG5nXs+2ESiVccndw4lwXrmCZVwCrJKuzdEyaHXqBjSJYrP7hyGhNwJbFQ+RRo1PDe1L7e8vR63T0SrUvLc1L5hZcyNiDHreGVGP5wNyTZmrarVfgYdBb8o8ubKQxypdpIVa+bf3zcl6enVAnEWXcjY3sqCShwePynqepg3FeoaCOTiLbB6Njr11GbPoVO3j7gJBEQ+Wl/Ed7vk65bHL/LPb/cytkdssHDXqpTEmLQh6Y/RJg1Ob4Afd5dh0KrITjD/4jfUNqOGF6blsWhHCesOVnNJ30TyUiJaHWHcidYhEBCpdvlQC8qOb1i1A05vIEgcNWLzkRr8gXB6mF8mapxe3lx5iBd/2I8vIDG4i41Z0/JPaogvKBTNlKJ6tcDJ+BujVuDqASlkxpiosHu4ds4avAGRoZlR/POKXP701U6ev7ovT32+g2O1bvqlRfKXyb2D34Nos5Z5tw3myy3FaFVKhnaNQq9R8faqw6woqOC87DjOz4k97bWn0u7h959v55vtJRjUAo+M787k/CSs+o4nR6qdPv7wRdPGv8bp47Z3NrD00TE4vQHAe04RSIcrHSGJqCATgn1TIki1GegSY0R9mhq9tUiNMvDpHcNwev1oBCWLd5UEiSOAN1ce4rohae16n9KiDDwyvjuzluzDF5CYnJfEBT3jO0yNIooSdo8/pEHWiOX7KtpEHoHczPeJIsO7RrN8fxNR+8j47ry+4lDIbeetO8I9Y7L489e7gn6ZX24t5uoBKfxuYvYpa59wY2qSJHG0xsW/v99HYaWTq/qn8MK0PNYerGJbUS0X5yaSGmVoNlHh8YvNVOIBUcLhDTBrWh43vbWegxUOYsxa/jK5F68tO4CgVOAPiJTUuvEF5DG849VukQYNT12Sww3D0jlQ7iApQk+0UYNSUDRrWDWeY43f44MVDh6cv5k51w84p5NoO3FqdJJHPydUWhh2H+xdCNWH5GM9JkF0aLc60qhhcGYUgzNb7+/SInjscGgZjP0dRKTB0fXww18hfQSYT32RPVzp5LnvmhaWr7YVk5tiZVS3WH7Y0zRLPiA98oymcJwIQamkcUm1u5svIn5R4lClg4RWRtCPz4nnjRMWiSFdoph7nDeQQqFg8c5S7B4/6xtUO0XVLkw6FaO6xQRfi1pQ8PtJOXSJMfLVPcNZuKOEPslW8o8zrWxEndvPC8ct4ADPLd7LpX0TW5+EkTESZn4F6+aCLQMG3AKm8J9zjFnLveOycHkDGLUnMeC0l0H1YQh45O/uSR6rVTgDxJHT42dlQSUbDlfxp8t688zCXdS5/AzuYuOhC7qf0nA7MULHwvtGMnfFAbQq2bQz2tz6ha9XooUfHhrFT3vLSY40IEoSD87fAsgjbHOWHuA3F2Vj9/jxBUSMWlXHEsUNSIsykhKpDyprAKYPSiXaFPo3KZWKsJsVtaBkQLqNnx4ZQ53Lh0WnxmpQn7aQlcfJOuZvaA9EUeJYjYtFO0qZkp/MXWO68uXWYyRYdfx+Ug6vLT3AiXZuCgXgdzURR43H173Gtbc9zLurC7E3kHIRBjWX5LacLK+0exqicBXBzZbDG2D5/ubF76bCGnISZVWozajh39P6cuvbG7B7/Ji0Kv46pTcSEk/8dztl9R6mDUzltxf16BBDz58T0SYt0welyYagZ8mQ/H8Z1Q4vX2w5xrtrDhNj1vL7ifJa1WYfr4AfXJWyBEBnAXXbSXK9RsCiU1HnbiLBeyZa2jSKfq6ipNbN88fVVqsPVPHWqkPcOzYrrA+MSafijtGZvPB9UxLZgxd0OynpZ9apeeD8LIqq3Vz24org8ZUFlby/7jAzh2fw4ZrD/HlKb1IiDZh1qma+NzFmHZflJfHxxiLWHKxi0Y5SluyW677FO0vZWJjC/eOyEAQFUQYNwgkbS39AZP76Ir7eJnvPObwB/vDFToZ1jT4j5JEkSdS6QklHUZLf6yteXsXIbtE8e2XfYPjJz41wfm4ZUUZ2FctKux8eHk2cpeMJdHnN11Jh9/DWysJmvy+uddMlpu1ehREGDTcOy+CKfsnBtDVTGFV2W1Dj9LJkdxnf7SxlTI9YPt4QOiI3Nrt1hu5ldW4WbDnG4UoHNw3vQoxZw6xpfdl0pIY9JfWcnxOPUSuw5oTGsl4t4BdFvjjBs/ajDUU8cF63VjfOyu0eJr+4MtgoWnOwij9cnMWp1v0AACAASURBVMOMwWmnbGQaNSpGZEXz+eam16FTK7Ho1cSatcy/bTCVdnmqYe7ygyzfX8H/XZLDwh0lvPzTAQKiRM9EC6/PHBBy/kcZtUQZteSlRlJW5+bVZQfYXVLP1QNTyE2OCJKLDo+/GQG6+UgN/tME1XTi3EYnefRzw5IINy0GR7lcTOmscoz82YRCKSuNlv4DNrwpR1pPng0t8JNYc7C5EmdlQSXnZcvkkVpQcMfozJ91PEWvUdI7yUphlTPk+Gn9SAJ+cJTC7q9ApYes8+keb+Oh87vx0k8FiJLETcMy0KkFdhbLzL5BI3D1wFRufntds4cTJYlnr8rlQIWDomonA9NtRJm06NQCPZOs9DyF/4soSs38B9z+QLPxq1Oh3u1DAiz6CEgfDkkDQFCB8tTFh1pQotafZLNmL5N9ukobunmWJLj5e7Cce14StW4ft7+7Ab8oMbF3Av+Zlk+USUOcWUv0acxS9RoVmbEm/nhpr3alaRm0KlK1Kq7sp2XhjhLun7cl5PcF5Q6Ka108MH8L+8rqOa9HHL+d0KNDzVxrnF7c/gCzrslHpVTw7upD5KVGckFOfLPi/lRoTOZqq5HmzwmNSmDmsAy+2FrM7e9sYGKfBO4d25XBXaKItejIS43kv8cVW6O6xcgqRVEnpxy6mkY5McdRVV3JB7cOZnVBJWpBwYW9Ek6qEDgeoihRUGHnvg82s7O4jvzUCJ6/Oo9UmwGjRmBEVgwr9odeY/PTmlIWVYKSvJQIFt0/kkqHB1WD58HrKw5RVi8XmR+uK+TesV1/8eRRI9pDHEmSRIVd9pDSqpRndETmlwxRlFi4oySYkri31M5ls1fw48OjiW+LMtJVKzfJFv9eTvsceCsMvbvNtU6kQc2r1/Xnrvc2UunwkhZlYNa0vDPmBfNzYNvR2mbH1h6swuUNhCWPjFoVNwzL4IKceDYVVjMgw0aCRX/K77cCBZuOG0tvxJoDVdw8rAuPT8xBIckNTGUYYk4UJRbtKOHPX+3i49uHsGT3tpDff7KhiCl5Sdz9wSbmXNefXknWEILP4Q3w097mqZcbC2vIijOf9HW3FUatiin5ycxbdyR4rFeSJagyXbq3gg/XFXL76MxzgqCOMKi5eUQGc5bJzckoo4Y7x3TlwfmbcXoD7CutP6Prr0Wn5uLchBASU6tSktkO4qgReo1wRmwsdhyrCzbkLu6byPRBqcxffwSlQsHMoen0bEHQSSPK6z1c+coqAJ6f2pdPNxVxtNrFNYNS6ZdmY2wPuVFa5/YxY3Ba0HweZDWSUqlAUCjwH1eoq5SKlmytmuFotStEYQzw9qrDTOwTms7s8PiDyvIIgwajVsUTE7Kpc/v4cU85yZF6/nFFLk6vn0qHghizDkGp4Iutx9hTUs/AdBv90mxMmrU8+Jg7jtXxnyX7mTksnRizNsR0vLTWzbTXVgfHV7/ZXsJfJvdmav9kBEEp+2RpVdQfp3YfmGFD8ysZqf9fRSd5dC7AFBs2Kv2s4pObZMNugI1vg9cJE/552rsNSGseFz+iazST+iQwtkdc0OT1TKgnWgqTVs0TE7PZU1rP/jI7GkHJbyf0IOJ0fkF1R+HlYeCpb3igOCJvW8otI7swdWAKNHRMalw+Hjw/C1GCK/ulEG3ScPfortz74ebgQw3vGo1Jq8Zm1BBl0jIgvXUm0AaNwNgeMSzZ3aREGJ8Tj6EFi6/D42dfWT3PLd6HKEncf14WPeItGLUdUGgfXNZEHIH8nq2fC6MfJ2xM2s+Io9WuoNfUV9uK+WpbMYlWHf+9a1iLH6OjCsqNR2pIjpQlxsebkl81IIWnFuwI+kx9uukoAUniz5N7dci4YLXDy1+/2cX89fK5Hm3S8PHtQ0mLMvzPGRhmxZl4+8aBzP5xP7VOH93jLdiMGtSCkkv7JpKTaOGrrcX0S4tkSGaUrAYMRCFOfRflvGtlAskcj2/KG3y0to75G3bywrQ8xveMb/FrqHR4uOGNdRQ1KMA2FtZw53sbeOuGgUSZtFyen8yWIzUs3FGCVqXkvnFZJJywWdBrVCRpVCRYddS6vEyatZyjNW7Sowz8dlQs3WM02KgBSUfjDIskST/r5+3yBRAUnPE0uhNxuMrJdXPXUljlxKgR+PsVfRjTPfaUqsP/RdS4fCEbbJB9vLYW1baNPKovhs9ubfp5+bPyyH5u83HPlkCjkv34vrl/hGzCqhKaqSbPBLz+AJV22S8u0qghPzWyRSRxW5CX2ry2Gt095pRpYJEGDZEGTYuDCERRIjvMZnpUtxgMWoEap4+jNS7sXj9WvbrZqFKt28dHxyk7TlzP1IISvyhRXu/htnc28MU9ocmiRo3AkMzoZuP8fZJP//plnyQ/oMCkE8Kuj25fgLoGpZGpQcX76PjuZMYY+XZHKb2TrVySm8jd728K3mdlQSXXDUnHcrKG2VlEhEHDPWO7cv2QdI5Wu5CAvy3cHVwvznTSpEalZMbgNJzeAJ9tPEpChI6nL+2F7RTj6S1Feb2HNQcqcXj9jOoWQ7RJi6qdhILXL/LB2ial1H0fbObG4el8ec9wIgwazFpVq671h6scHK508tYNA3ho/pYgQfLJxqPMnp7PRb3kUTuLTs1953Xjkr6JbD5Sy9DMKBKtMilz3ZC0kJG2m0dkYA7nrdmgitOqwpNqpjD3iTRqZDKqAVUOL//6dg/z1x9BpxJ46IJuTM5LJtai4/mpfXF6A+wpqee/m4ooqfNgd/l5aUa/4ITB9UPS0aiUzRL3QCazF+8spUe8mdENSYfFNS4OVzlDfM8AXl1awPk5ccSYtUQY1LxxwwDu+WATxbVueiVZ+OeVuefUeGgnWo/OiqkTsllybai0k10LYPxfTnvXNDPcPzKJl1YW4w2IXJgTw6U5FnRqgQjDudMFTIzQ8+Etg3E2dO0sutMsImIA1rzcRBwB2Ethz9fo+t8Y0s1TKhVMHZBKvduHSpAD50d1j+Xre4fzzfYSeiZa6J9ua9d8b4RBw9+vyGXeukKW769kVLcYruyX3CI1QXGtiymzVwbHcFYfqGTJQ6Pl90JQtM94sXHc8nhUHQDJD5xbi0NihL6Z11F+WmSLCLiORJXDw98X7qFHvJmXpufz4g/7sXv8XD80ndzkCO58b2PI7RfvLOWJCdno1ALVDq+cYNbGDnt5vSdIHAFU2L38bdFu/nF5n7Ayal9ARKlou9LqXIZFp2ZktxhyU6wNJHfT3x9h0DAg3dac5BXUbPBnYbn8O8yCjyqvwD8XVnHf+d15d20hGw5Vt4o8cvvE4EagEduP1uENyCrD0jo3uckR3Dg8A39AYsnuUjyB8HJvpVKBVi1wQc94vttVyrypScQtug2OboTIDLjideyR2WwvcfLJxiL6JFm5qFfCWR3RqHf7KCh38OrSAiw6NXeMzjxr0b41Ti+Pfbw1qEB1eAM8MG8LSx8d00kenQCtSklShD4kGREg3trGzWrBkubHdnwC2ZNA07Y5VrWgPOOb5xNRVO1i4gvLg2MYmTFGPrx1yBkhkGIbPEie+WY3do+fSX0SmNo/pd0b7OMRYVRjqFXym4t68J8l+3F6/VzYM56pA1I4XOnk8pdXBpN0wxkl61QC6VFGNhyu5se95UwbmMq7q5vUFzePyOCbbXJ4SkmdG+8J6mmVoGT6wFQ2HK5i6d6KYChAwmm+Z1UOD09/tYvPNx1FqVBw/dB07hrTNaTGqnZ6eX9NIS/+sJ+AKDFjcBp3jskkyqTlpmEZXNU/hXq3n/HPL23wO5IxpnvsSf0Pfw5Y9Rqseg2+gMhls1cEP49LcxPPGHF5PKJMWh48vxs3D89AUCo6RN1XVu9myuyVwbXPpFXxzX0jSLG1L51UUCoaFGvyd84bEHn5pwPkpkRwUa+WK44aoUSBVa/GL0rNCJJZS/YxKMMWfD9sRg02o6zaOR53j+3KeTlxrCqoZERWDFmxpmbrTbVDHrWbt/4IKZF67h2XhVkr76GUSgXl9R4MWhVje8QGx0LVgoInJ+UE/ZHqXF72lNTx5dZifAEJX8DPH77YycAMG1aDFY2gZNmhcqJMOnomRmAzuhjVPYZdxbXEmGPRqgRiG0Yg+yRbG8zzm17j0MwodjQQSLkpEUiSxP3zNnP/cSl6jdCpBRo5LY1KIC81ks/vGkZAlNColL8qhej/Kjorpk7I43JKQSZMGhGZxkmdFo+Dadc8blWWMu2mKxGVKgxHlmJd8hK+SbNA3X5pawgclVC0FvYugqzzIWWwbADdQrRqkyRJSB57M3Wp6LZT6/AiSRI2kxZfQGTtwSpufUc2Dtaplbx2XX8Gd4kiJ9Ea9CbpCESbtNw2MpMZg9MxaIQWF5Hz1xUFCRNBqWD29Hw+3VTE55uOEWfV8dSkHDJj22i82PNS+OFPcopbIwbeAsK5RRyBTBb8/Ypcnvx8O05vgJwEC09MOLVx4ZmAJMmGzR+uO8LO4jqm5Cdj0Ajkp0YgKBXNurcZ0UZESeLtVYd5fflBDBqBxydk0z/dFrYbdSocq3U1O3aw3IHHL3L82Wr3+Dlc6eD15QeJMmqZOSydOIvuV+Up0ojWeGtUO7z89dsCNhaGjnpc1MdO1xgTVw1IbtVza1RKIgzqEPPfFJselVKJ0+tn1pJ9LNpRGnKf3kkRXNI3vMeBQaPinrFZ3JQfQdyiG2XiCKD6ILx3Of6ZS7n61a0AfLS+iI82FPHGzAFnrZgrKHeE+Kt8seUY3z006qyYxHv9YrNRIG9ApM7tazsp8iuFUavikQu7s3x/RdAjZlx2bNvHzxNy5YCQrueBWieTSUn95WO/ELi8AV74fl+If0dBuYNtRTWMbaMB76lg0au5ol8K52XHISGrjzvaN1ItCHSJNRNr0XFBThwalRKdWkCtVPDkgh1BogJko+QbhqWHkEd6jcAD52exdG85r/xUwDNT+jCmewx7SurJSbRQWOXkPz/IHkwpNn3Ycbtos5a/Xd6HOpcPX0BCLcijPpV2Dw6PH0FQYjwhCe3HPeXBFC1Rkpi7/CDjsmMbUrxkFJTZQwJG5iw/SF5aJBN7JyAISiIMGhTI40X/XLQHly/ApD4JTMlPatX49qlQXu9hxf4Kyuo9XNgrnlizts1jsmk2A989MIpDlU5ZwW7UhDVW9vgDOD0BzDpVhxGNjSPqHYUV+ytCmiZ2j59Xlx7gyUk5qMN8R1oKQalg2oAUPt1YxOFKuUmQlxrRaqV/I1JtBtLCmFA3PldLYDNqGZqpDfluHo9AQGTBlmM81TAivPYg/LS3nFdn9Edb5yHaqGXaa6spr/fw9yv6cOPwDCrrPfTPsBFl1FDj9LKqoJL31hSSGKHjzRsG8IcFO9hSJK91KwsqyYozsau4nmSbgd/9dzvbj8o2Gy/9VMBr1/VHFKWQsVSbUcN/puXx1IId1Dh9TOqTyIisGK57fQ3902woFXJY0pqDVVTYPQzMsLG2IfVNoYDHLuwRrCk8vgCVDi++gIim4bzrxC8fneRRJ0BrhnFPweIn5Z9VOrjkPy0apROjumJY/BsMq58LHvMOvg9FO8kDSZKotHvxi/IFx6b2wk/PwNpX5RtseAP63wjn/Z9svtnBEBUC7n63YdjyXhOpptbj7n4Jd7wnm9POmpaPQSNw/7zNuH0yeeL2idz/4Wa+uW8EsWdgFl0lKFstp06IaHod43vGseNYXXCG/UCFgykvrWy78aI5AW5YCN//n2yYPfwhiMlu/eOcBZh0Kib1SWBEVjS+gIheLfwsHZAok5Z7x2Zx6zsb2FpUy9aiWtKiDHx8+1D0aoHfT8zmj1/uRJTAolPxjyv6UFDu4I9f7Aw+xg1vruP7B0dhaqX3QI94C1qVMsQ/67K8JKwnjHDuL6tn8uyVwc7T/A1HWHT/yF+kv1FHQi0oiDI138ClROp57bp+rVZC2IxqXrwmn9vf2UC9x4/NqOHFa/KJ1oNHIkSS3giVcOqi1WbUYBNVULg69BfOKnyu+pBDW4tqqXX5zsp54PIGeOWngpBjDm+An/aUc/XA1DP+/Dq1wNDMKL7b1eSxYtAI51SK2LmElEgDix8YyYEKB5EGNTFmbdtT+2Kz4ZYfYNt88Nph2ny5QXUav71zCQFJpNbVPKXyeNPujoZGpTwjdcTxMGlVzZoQ5fUejpzgEQmyUjUtKlQplhSh56v7hnO02oVFpybKpGFsj1gOVTh4+sudSBJ0iTby8ox+YRWz5fVurnhpVdB3SCMoWfzgSO5+f1OQ7L20byJPTsohqqFh9+Oe5kECK/ZXhGzQGxUax2PR9hIuyIlDoYB6tx+DRuCagalM7J2AJMnXVm9ApLDSgUGrarPCV/67PEx9ZVVQsfKPRbtZcPdwshPaVq8KgvxdONX3oazOzStLD7DxcDVjs2O5ZmDqOanyqAtzHtW4vIi0Py0x1qLj49uHUlLrQt2QRnqq96DS7qGs3oPbFyA5Uh8yVhlt1jL3+gFU2j3NYu0fuaB7h7y31U4fbx/nlQTyeVZW7+GF7/fx8ox85lzfn0BDgtyqgkou75dEnEWPKEp8seUYj3y8NXjfJbvLeHF6PlNfkdf/vNQIapw+nv5qB7+f2DNIHIHcyHxxyX76pUaiUyupdvrYW1pPqs3A8KxoFtw9nOJaNz/sKePmt9YRECUeGd8dq16D1+8m0arjyc+38/zUvlyen8yRKieX5CYG9xxur5+NR2q474PNlNs9ZMYYeWVGfzJjjP9zNgm/NnSSR52QyaN+M6HnZKgvAWsK6FvG1CsT+hDIGI1w8Ef5QGQGikG3oda0nTzyB0T2lNZz13sbOVTppFeShc9mdEG9/vXQG258C0Y+ckbIo4Ak8c1RDaOuXULkppcRVTpq8m5n2SEJg0bF6gNV3PzWet68YQBVDm/IfSsd3qC3zrmAib0TmLv8IEXVLoZ0iQ6RlQPtM17UGCF1EFz9Hohiq5RgZwKiKGH3+tGrhbCjMG3toEmS7Nuw41gdakFB93hLuyTjg7tE8dmdQ3lvTSGZMSYuz08KPt4V/ZIZ3zOeWrcPm0GDQSPw7OLNIfeXJLn72trEk0iDmo9uH8JTn++gtM7NFf1TuKp/coiXk8Pj58UfCkIkyzVOH6sLKrk0r+UJYr9GmHRqHr2wByv2VwZHHfqnRyIoFXy66SjXDkpr1QiUWhAYkB7J9w+NwukNYFBJ2A5+iWLl1+jyruWZCX1ZvKsUr1/+MBKsOvqnN/dCaQalAPF9oKSpqERrxk3zc7yji7jyeg97SurxiyI5CfJ5olAoEJSQHKHn2atySbXJ3dw1B6uw6M9OGWLRq/nTZb2od29mzcEqkiP1PHdVXyJP5333PwpBqTjtZrXFCHjhrYngbPC2Wf8G3L785/d6bAVMWjW3j+oSkiJr0qoY3OXnXfPOBKx6NZfkJjL7xyay16xVkRxGeaZQKIg165oR5xkxJubdOgSfKKJWKk+q/D5U4QwSRwDn5cTy4bojISrBzzcfY1oDEaIWlIzuHhOMP2/EsBOUHYO72EJeP8ijN06vn/fXHGHxzhJykyO4fXQmcRYdNU4vc5cfZPaPBQREiaxYE2/dOBCNoCDCoGm1imd3SV3IqJMvIPHs4j08N7Vvh/gXnohKu4eb317P1gbFyaYjNRwot/P0pb1ara6WJIk6tx+dSom2jYqjxgRRtaBsppA6PyeOZ77ZHVTxKRRw28hMtB3kgRdj1raoPquwe7jz3Q2sPSQriROsOj67c1iIErXxsd66YSBL95Wzv8zOpX2TSIroGFJXEBTYjGoKTuBDTVoVhVVOfH6JRz7ewsbCGlRKBTOHpWN3+4mzyKOZJ6Y/V9i9lNd5SLTqGN8rnoxoE25fgMJKV8h4ZiO8AZGAJLGxsIbrX18b3LvcNSaTO0ZnohYMZEYbuXVUJhf3SQi+N1FGLS9My2PmG+u4/o115KZY+cPFPUmPNgS9DKucckhNI1lYUO7gwfmbefXafsS3Mum6E+cWOsmjTsjQWeV/Ea3rAC8+HGDEpFcQ3FWIPg9KSxxf7vczsbevzeNAVQ4vM19fF0wW2H60jgq7l1Pmd9nLwO8BQQ2GaDlFrB1QC0rS4qOZ9N4mLsq5HZ9fYuHbR3j7xoH84au9ABSU21EqFGQnmNlV3NTRz0mQ1R0nQ63Ti90bwOeXo9jP9Nx6rEXHZ3cOZeexemItWn7cU8ae0lAFQrvTvPQt2NCeYVQ6PHy1pZgf9paRk2Bh5tD0DkspK63zcPF/llPekGCVHmXgo9uHtvmzs+jV5KVGkpsc0SzFxqRTY9KpSUBeXP0BkW5x5hDFBMiGz62FVi3QJzmCuTMHEBAlIvTqZjJxpUKBLsz3tz1y8o6AKEpUOryAhC1M7PPpEAiI1HtkYrGtBTHIn/2Sh0ax8XANJp0Kj1/kjvc2UuXw8s22Ej64dXCrOtaaRq8Bexm8OQEqGpJtdn6OaeKzrHjkat5ff4woo5oLcuJbpm4yRsPlc+Ddy6H2COgikK54nWJvaME2MD0SaweSN+X1bq58eRWHGkYGYs1aFtw9nHirDo1K4MYRGdz57kY2NXjpTMlL4rKTjOCdCcRb9bw8ox8en4iglAvgcClSnehg7P++iTgCEP2w7F9w6X9+UaNr2QkWPrptCK8tO0CkUcNdY7qeFaPusw2NSsmNwzMQJXm0NMWm58lJOZhOYdYdDi2xCjhxlC0l0sCekvpmt9t+tDZI1A3rGs2U/CQ+33wMQaFg+uBUREnC7vEFiZleiVau6p/MRxuKkCQ4PzuOcdmx/PXr3XzYYAa/sbCGtYeqePvGgVQ7fcxasj/4fPvK7Pxr8R5SIg3o1QJX9k9plW+lK8xG3eUVOVN9Rac3ECSOGrFgSzG/uah1o/nVDi/f7y7jkw1FZMWauGNM5inHikVRotzuYXdxHUadii7RRirsXu55fxN7SuvJT43khav7knycn1G0ScM3943gxR/24/D6uX1UJunRbfM+aw92HK0NEkcAxbVu5iw/wGMX9mjWfIw2a5mS37qx9EYEAiJOXwCDRtVs3C3SoOGpi3ty81vrKalzAzAyK5pyuweDRsDu8bOxUF4v/aLEnGUHmdLQxBOUirDK2bQoA5/eNRSjRoVZp6bK4SXVZkChgORIfcjI4B2jMxEU8Phn20Ka3i/9WMC1g9NIsOqZHObvVioV9Em2suShUdg9fowaFVaDOiQEw+UNNFOZbS2qJbxrYyd+SegkjzrRPigU9H92E6O7x2DSCny3exuX9U1iUp+2R7W7fIFmkZSf7ajl9v43omwcWwPIvx40JqgsgA+mypsuYwxc+SYkDwRV+4o6tVLJYxf14N3Vh9GolDxzeR88fhGLXk2d20+8RRf0OHrsk61sOFxN/7RInrm8z0nlrFUOL89+u4d318iJEJkxRt67eVDbEmxagRizjlHd5SL9iYnZrDtcFWK8GHsWTXPPBJxeP99sLaZXkpVkmwGbQc1/Nx1lSn5yu6XFoijx3prDQeII4FClkx/3lHFl/5R2PXZLNq4qQcn1Q9P5ZnsJBxs6maO6xZDTRvk7cMoiWFAquGl4Bot2lAaNm5Mj9fRuYYLPmUCty8fSveU8u3gvflHkrjFdubBnfIvn5yvtHj7ZeJRFO0rolWjl9lFdSGhj50stCMRb9QzKVHL962tDZOD7yuzUunxtG3dwlDcRRw1QrJxFTPbF3Dcuq/WPF5UFt3wPPheodCj0Nnr4FCy4exgLNh+jV5KV4VnRbR9FCoMf9pQHiSOAsnoP768t5P5xWYhIfLS+KEgcgZwmOG1Q6hm//h2PyE7PhbMPRRiiV6GkA6ZUziosejUDMmz0TLKgUirOelrg2YQ/IOLy+Hl4fHcq7B7um7eZF6/Jp1tcx6pmkiL15CRY2FksX0e3FNVweX5ys7Gzkd1igv8vrXOTajPwwS2DkSSJ73eX8fBHW1lw97AgeWQzafndxBweOK8bEnKym88v8snG0HCYHcfq8PhFDpTbm7223cX19Eyw8scvd2LSqZg2ILXFZHPflAhsRk2IMv2uMZkhMecdCbWgQKVUhBAAVr26VanwvoDIvHVHeGbhbgBWHahk3aEq3rpxICCrzGxGTQgBUlzrZtKsZVQ3+PZ9cMsgHpi3JUiEbCys5u4PNvH6zAHBukOjEkiPNvKny3ohSoRNFzsbOH6tAuidZGV8z3iOVrvQawQsehV6dfu2yRV2D/PXH2Hl/kpGd49hcl5SSE1aafegUMB/rskj0qihrN5Dld3Ls4v3MGtaHh9vONLsMXeX1JOTaCXCoOHxCT2Y8tJKfAH5cx+UYSMxQh/yHDajhpeuzWfO8oPMnp7Pwu0lFFW7uGZQKtkJFjy+AKUNn1cjRIkQe4Pj/56tRTUcKHcwLjuOOLP2pOrUxvfweAIpt8GMuxO/bHSSR+cY/AGRSoeXlfsr0GvkONoOUU947eD3ymRLO0mV45GXEkF2gplvd8qmrjFmLTcOy8DYDlmuTt38gvPl7jpuvuFRNJnjYO9CyLoAUgZCwAef3tK06XKUwwfT4O51YG556tGJ8AVEXlt2gGM1bi7sFY8/IPLPRXsYmRVD93gzdo+f2dPziTBoiFIqePGafLx+scEA9+Tvb3GtK0gcgSzjfPGHAp6YmN2hhoSnwvHGi1FGDbaTGC/+kuD2Boi36rlmzmrcPjkh7DcXZYdd/FoLUZI4VtPcaLq41h3m1mcGcRYd828bQqXDEzQdPF0XtKLew87iOmpdPgak24g2tUx67/EH+GlfOR/eOpgle8qw6NT0T4tka1FNu9NQ2oojVU7u+aApTvk3n2wjPcrYopERp8fP89/t452Gcc0Nh6tZfaCSt24c2C6jZFGUfTNOxEmTwzx2EH0nVelVquMJTP0a86FF6DfNAa9DNhc+ofyvd/tQC8rTXy+USjCFGvlaVNAnOYI+yRGnvm8bEe6cOFbjRETC4xPZVFjT7PfbimrbqHXNMAAAIABJREFUbGjaiV8IMsfIjR1Hw2yGoIYRDzV8v395MGhCS2e724/d40ehoNVx4C2GoxwK10DJFsi+RFaJ684cof/tzlLeWn2Yt44bc3/lpwL+OqVPWOPrtiLapOXtmwayqqCSwioHE3onYNaquWtMJm+tPIxBI/DbCT1CR4lMWmYt2R/0bgR5FOpEEsKiV2PRq6mwezhS7cIfkHjv5sE88vGWoKGyUiFfYXMSLc3SWId1jQ6qeT7ZUMSEXgktrpWiTVq+vGc4b6w4SGm9hxuHZpAZe+bUNSadirvGdOXf3ze9J09dnNOq2q7a6Q2ukwB6tcD/XdqL//tyJwu3lxBr1vLMlN4MyLBh0Kjw+gO89NP+IHEEckOs5AQiYvORmmZJe0C7FMAdgZHdooMBJelRBp68OIf7P9zM0RoXWpWSZ6b0ZnzP+DafzzVOL49+vIUlu+Xr3vL9FWw+UsNfJvcOfi9ve2cDGw7L6qdEq44Pbh2MSglzrx/ApxuPYAkT6JGX2lRDZMWZWfLQaFbsryDWoqN7nDns5EO8Vc/952Xh9AS4a0wmakEInscOpYJL+yYxb10TUZVqM2BsuM41jiCKSNz3gTz2DfCXr3fx7s2DTmoGHmXU8OqM/tz7wSbK6j1kxZp4dmrfsxKQ0Ykzi07y6BxDaZ2Hi15YGiROkiP1fHrn0LZH0koSlbV2dhWVUVTtYnhWLNEmLTpTxxQdEXo1L0zL43ClE6fXT7c4MzZj+zorkQY1L0/vxx3vbaTW5SPBquPZqX3RWCxguRC6X9h04/pSOLpB9vgwxYGzEjx18sarHVALSoZmRvH4Z9tDkpUen5DN9UPTgnPcjR2Yliog9pc1727tOFaHa/8ydGoREvuCoXUbqYAoUeXwolTQIpWNICiD3SOVoPxVGMa6/SJPf7UzaFwuSvCvb/cwsXfbFXCNUAlKZg5N55ONR9GqlIiShCjBJbntG7dxePw4vH6UKIgyaU7rPdPSOX6QfWeunbMmOJ5o1qr48t7hzcxOw8GsU5MWZeTauWsYmGHD6Q3w94W7WPLQ6BY995nAl1uPNTv20fojDEy3nbYTXO/xM399aPduT2k9Dm/7jG6jjBoen5DNbe9sCB67ICcO84mFpt8LVQdgyZ+p7XMD9fGDcHgDKBQKoowazDoVu0vqefyznRRVu7ik56XcN+1yot6/EM77gzyChlyIbiys4a2Vh4i36Lh7bFcSI/TnVALepbmJvPD9vpC0wOuHpKNSKhE0Cib0jg/xjAEYnhW+8OzErwjGWLhtGWydB+5ayJ8hhy38ClDp8PC3b3bzycajqJQKbh6RwYzB6Xy7owSAC3rGE2PWtu88dVTCJ7fAgR/kn3/6O1zxOuRcdsZMx8NtQLVqoVVKlpYi2qTl4hPW03vGZnH90HQUKLAZ1CFjyha9mmevyuXxT7fh8AboHmfmDxf3DJtGV1bn5oY31wXNjjOijbx2XX8m/HsZflHi1pFdMOlUKBUKXr2uP7/7bDuVDg+T+iQytkcs181dC0B6lBGduuWkmVKpIDFCz2MX9UAUpTOuUjNp1dwwLJ2JfRLYXVxHboPy6aTNjDAQFPIYVKMH1eS8JBZsOcZXW4sBuTlw41vrWfboGAwaFb6AxLGaUKIoIEpYdKoQI/mMaGPY8IefG8dq3Lx8bT4v/VjAtIGp/GPRnuDf7vGLPPLxVoZkRrWZPHJ5A0HiqBFfbyvmdxNzsOjVbD1SEySOAI7VunljxSHq3D4iDRq6xproEm3kSJWTr7YVY9ap+P3E7JBRWbcvwPPf7aWg3EGVw0thlZPZ0/MZ3zO+2TXHpFWH9dsyalU8Or47MSYti3aUkJNo4dHx3bEZNewpqeP+eZsprHTy+g0DgsQRyHX2M9/sZu71/cOKHLRqgQFpkfz3rmH4RRG1oOwkjn4l6CSPziH4AyJzlx8IUdwUVbtYvq+izbO2lXUO7vhgK2sPyx1ftVDIxzflkqvVdkjXz6BVkaZVYdWpEZGI0Gva7SGhUQkMyIjk2wdG4vEH0KkFok42WiGocI36PTVdJ3Owyk1yhB5r4WKsmuabZK9fpNblQ6NStCiee3zPeH7YXc7iXaUoFTB1QCq9kiztGvPIT41s1t2a2N2IZfNs2PMFjHkCht7b4s+mxunl620lvLbsAHq1wGMX9aBfaiQm3clP7SqHl482HGH+uiISrDqenJRDRowRtbtSJt2UatCagl3NKrsXv3Rux2wKSgWFJ6TDePwivsDJlUcVdg+iKGHSqZp1kk9ERrSRHx4eTaXdg6CUpdvt8aqqsHv4x6I9LNh8jASrjr9O6U1uSkSHqc+2FdWE+FrVe/y8uGQ/f7ysV4ueY1RWDA+e3403Vx7Cqlfzzk2DQvwrKuweKu0yYWkzas54okt2fPMRvd5J1hZda0RRwmbUhKhiFIoT9Tyth1KpYGhmFN8/NIpdx+rolWQlIEl4AyJuX6DpfXaUw2ujqb5wNrMK4njjnR+RJOgWZ+JfV+YSY9Iy9ZXVQfPQt9eVoNOk8NCdG9HqjTRqvFcVVHLHexuDz79wRwmLHxh5xtOYWoNYi5b/3jmUf327F29A5J6xWUEvC4VCwbjsOG4ZnsE7aw5j1KhkRcE59Po7cYagVIIlAYbf/3O/kg7Hj7vLmb9eHoUKiBIv/lBA7yQrc5YfpLDKyb8W72XhfSPaPCYLgKe2iThqxPdPQ9pwMMeFv084OCrk65HfA5bEUxqWj+keS4xJG7QQ0KmV3Dayy1nzvjtVuIVRq+LCnvEM7hKFLyCiUwsnHRVeurc8JCXrYIWD73eVMv+2wRg0KuKtOvwBiTUHK9hTUs+r18mpcJuPVHPzW+vxBkRiTFoeOL8b+tPUCeGgUirhLNkFRhg0RBg0dIszt+n+USYtT16cw/Q5awiIEr2SrMxZdiDkNgFR4kC5ncQIPUatiplD00NGDN9ddZgXpuVx9/ubsHv8RBk1zJqWR9Q56A1WUe/hteUHmJKXTK8ka0iiLcgeQ7UuP/Fheu2iKFFW76bW5WfD4SoGd4kixqwNITAVCgUaQYk3IJKXEkFOooWj1a7g2NaJY3MAx2pcpEUZeW3ZAa7qn8zobjE8MTGb307ogaBQEHkCIWj3+Plk49GQx/jzV7sYkN66qZUok5b7xmUxc1g6erWAUauirN7NjLlrKav3YNWrsYdRWjs8geDIXDgIgpLETnPsXx06yaNzCKJEgyFsKKrDHGspSuo9QeII5MSHv35XyMtTTUS0Y2TjRER08NiTWhBaFB0v6mxsTJrBzJc3BC9gj40fwwxVBMfbCVc5PLy3ppBPNhSRFKnnDxf3lLshp+jKRJm0/OPKPji9ARQKMGpUWNqp0rEZNcy9fgBPLthOtcPH1LxYJqe6EVZ8Ld9gxb9lL6dw5JGzUh7PO7gMuoyCqK5sOeLn8c+2BW8y8421fPfgKEy68GbK/oA88//Xr+WZ9oJyO9e8tpo19/WC96+S05kUCqSBtyGN/i0H6gUemLeFHcdqGdQlin9dmXtOLgR6tcC4HrEhptLJkXJxcyI8/gDbimr5zafbOFbj4uLcRB4Z3/2UPjUuX4A73t3A7gYjz0EZNl6cnn9a0ikcPP4Ac5YdCEqED1Q4mDF3LUsfHUO8tWPIo3DXkXK7N0QRcipEGjXMHJrOpX0TUSoUIeRQeb2H615fEzSJ75tiZc71A9oVa3w6DMuKpn96JOsbzC17JlqY1Kdlyq8Ys5YnJmZzzwebggly0wakdojPglmnxqxT4/YFmPLSSqocXvRqgRem5TGyW7ScHnNoOaj1lNgG8PpHTelne0vtvLemkBlD0oLEUSO+2VXBLaO7EaOTrwPVDi9zlh8MuU2ty8f2Y3WMPYfIF4NGRe/kCGZdk4co0UzVqFcruWF4OpPzk5AkeRzzxJjwTnTilwKvPxA2En7D4Rqy4kwUVjmpdfmYv+EI943rFvx9jdOLNyB34lvkwSWGaYIEPM2PAfjcsk2B1gyq467J9nL46Ho4vEL+OTIdblgok3phEGPW8uW9w/l2Rwl2T4BLchOJMZ87BIBWLRDXgkbIvjBq7/1ldm4Z3gWVSokvIPLGikP85etdADz33T66xZl4+8aBLLh7GHVuP4kROmLOwcj79qIxRMKgUQVHmPokWfnx4dGsOVhJ35QIVh+whqTGASHj67kpEbwyox+vLj2AWafi7nFZpNn0fP/QKFzeAAaNQJTx9MrqnwNDMqP46ze7+eOXO7n/vCyGdo1i0Y7S4O+NGiFsGqccjlHMfzcfJT3ayPSBqdzx3gYevqA743rEBZtaFp2Ke8Z2pWuciWqHl9UHqhibHYvQ8F6My47lz1/vCqnLJuUm8spPBaRHGRpCX7Sn3KeES3a2e/whabkthVqlDKnjnJ4AZQ1en3LjXcmQLjYu7BVPv7RItColCoXilAFBTo+fOo+fGqeXSIOGCIO6w1L1OvHzobNqO4egUSm5eUQXFmw5FjzxtSol43u13bvH7mme+FDv9hOQzr0L+eng9Pipc/s4VusmwarDolPj9AZ47LMdIcz3vxbvZ3J+KqYGjsMXEHlvTSH/+lZOSTtU6WTK7JV899Co08bTy52clr2+KoeH0joPZXVueiRYwkqGjVoVo7rF8Okdw5ACXswrn0E/bw6IDZ/TyRZYjx1WzIIVz8k///AnpFGPUW28MuRmkgSLd5aSOSo8eVTj8vHx+lDDyEm9olGserEp1luSUKx5mfKBv2HG3LVBxcaqgkru+3ATr87of8Y8kqocXg5W2NldUs/QzGiiTZqwUvQTYdGr+cvk3ph1u1m6t5ycRAt/uqxX2CScGqeP6XPWBP2Q5q07QoRezYPndws7gy9JEp9tOhokjgDWHKxi3cEqLmrDWFydy8e3xxUoIMelFpTbm3nwOL1+6t1+FMjfxZZ6TQzrGo1eLYSQEreMyAhLpp0MKkEZtnP11dbikHTBpAgD1U6vrLZRCS1K2Gktok1aXrm2HzUuH5IkEWHQtJisUglKBmVE8c29I1hzsJKusWYSrDoi2kAE+0URf0AK6YhX1Hu494NNQWNUly/A/R9uYsnDo2UC3BwH5kT2ljfvMu4trccQhsTKjDGFFFgqIXyqSkcmpXUkTnbOHql2BcdFQB79+/q+Eae9DneiEz8LJElW6kgSqPWgC1VAalQCo7vH8NW24pDjuSlWFu8sCf7sOK4OK6py8vDHW1h/qJq+KRE8e1UuqacbJ9ZbIb5P0xoNMPIxXJpInHYPZp1aXhvqS2H5c1C4ErqMgSF3NamLjm5oIo4Aqg/Bujkw5regbH4dUSgUxFl0zBiSfurXdo5jQu8EXlkaqp65rG8SgiDXWtVOL3OXh/5+b6kdhzdAZkzrE01bC48/gFqpPOupj5V2D59uOsqi7SXkpkRw68guxFl0GBo8uxoJoocv6MaOY3UUlNtRKRXcPbYr+uPWP6tezfie8QxMt6ESFMFrf3t8T88WYi06Ftw9jMW7SvH6RJ68uCcuX4Bl+ypItRl47qq+RJxAHvn8Iu+sPsRzi2VvqXWHqllVUMmfL+vFUwt20DclMqhKN2hVXDM4lReX7Of1FYcAWLDlGMv3VXDj8AysOjXv3zyIvy3cg9Pr55YRXRicYWNgeiQqpbJFdgYmrapZ4vN1Q9I6xI5CrxF49MLuDMqIQpIkvH75PfrjlzuZs/wgF/ZMYERWNB+tL+L2UZnN9gWN/pn3frAJX0BCp1by+vUDGJRha3VabifOLZyblef/MDKijHx6x1Be+rEAg0bgnrFZ7UrCSrUZQ6THADcMSUGjO/fUI6eC1x9g6b5y7np/EwFRQlAqeOHqvvRPtzUzafWLEh5/U7FW6/Tx6QmyznqPn8OVjg7btFQ5vDz+6XYWNvgcGDQCH98+lLUHK0mKNJCfGhFUbyiVCnlxcTqh7jD4j3v9wx8EfRgzW089rP5PyCHFiucZdfO1zW7aNfbkBY9WpSQpUh8y0nR+lhnluo3Nbuvy+pu9t+sOVQcTuDoaNU4vf/pqZ/CzUijg5Wv7cX52XIsKq1iLjqcv64XT40erUmI9SUf3YIWjmZH2wh0l3DyiCzFhyCO/KIUkajViZ3Fdm8gjvVqgR4K5WTcvMUJPaZ0bSQKjVsAXEHn+u318uPYIeo3AYxd2Z2KfxBYVBTFmDV/eM5znv99LjdPHrSO70KsD0tJEUWJncS1KBeQmRzCmRwwJVj2Xz15JndtPtzgTr88cQHJkxxtrR5m0bR6PizFriTCoibPI949sw+hpSa2bN1ce5FClk2sHpdE7yYLVoEGUJArKQz9LhzfQRNzF9gSNmfwEHQoFIR3B4VnRmLQq7hqTyewfC5Ak2Qz2qYt7hqgczTo1j13YnRX7K4Lf3b4p1hZ5WJ0rcPsCzP5hf0intNLhZcX+to9ld6ITZww+DxRvgv/eATWHofskmPiPZib047JjuTQ3kQVb5dj4mUPT8Qek4EiKRlAyfVAqIG/Yb3t3Q3CMav3ham54cz3zbht8ajLcGAPXfgJb58OxjTDgZoqtuTz3xS62H63j/Jw47hwUgfbj66FwlXyf4i1I5Xuou2gW5T4dEeYeRFsSoe44/7iKPeD3QRsUtL8UxFu1zJqWxytLC/AHJGYOTScz1sSag5UkRRjQqJQYwqz7aqUClzdAvduHoFS0au2pcnhxNBioGzWqsM22KoeHVQWVfLG1mPzUCKbkJZ+Rxks4OL1+nvtuL++ulsNb1h+WCZC3bxrYMJ7ko9Lhw6gRKCi388j4bkSZtCgVCr7ZXkyV09tsXPqXGroSa9ExfVAaIH8mf7+8DygUqBThvSirXV7eW10Ycqyo2oVKUOL1i0gnREj6A1LwfW7EtztLuW1UJhe9sIzfXtSDl6/NR1AqiDS03vYj2qTlrRsH8s6qw2wrquWSvomM7h7bIWbkglLBsRoXV768ElGCL+4ZzlUvr6LeI4+vvdYw0ljj9HKk2tnsO1Dj9PHIR1uDzX23T+SB+Zv54u7h59S4fSdaj1/vivELhUmnIi81kuev7otSoWi3B4rTJ/LhrQN5fcUhiqrdTBuQTIxZ3vD8klDt9PGbT7cF5Z0BUeK3n25j8YMjmdg7ngVbmjp/6VGGkHEitUpJUoQ+GHPeiJYUA9UOr2xqrFBg1AgnJSTK6z1B4gjA6Q3wzDe7GJBh45a31zMiK5p/X50XmpBliISLn4fel8OhFZBzKcT1DJWaN0ISQTxh3jjgw6wTSI8yBAvVQRk2+qacPEnJrFPzxIRs1h+qChoaqg1WnJkXYTi+KwlotVqMGgGHt4mIS48yoDxD8mOHJxBC8kkSPP3lTvqlRra4qDJpVacdg0kIM67ZPc58UjNMtaDkqv7JLNgSato8oY1m3CadmscvymZrUS1F1S6UCrh7TFdKa2VjT29A5OELuhFh0PD2Kjn5xOsSefyz7eSnRbaIPFILApmxJv42pQ8BSWqReqslUCoVXD80nWsGprKxsAarXk1GjJEUm4Edx+rYW2rn8c+2MWtaXot8xToKDo+fWpePAxV20m1GrAZ1s79ZNrlvW3FeXu9m8uwVQTJ14fYSZk3LY1KfBNQqJQMzbKw9zkgyzqJtUhSZYmDqO0Q66nlleh5/+GIXlQ4vk/OSuHpAKmadmltHZjJjcBo+UcLtDaBTK/F4A2iPUyWlR8m+WysLKom3aOmZaMEvSpTVubHq1T97ck1b8Qtbis4cnFXgqpb/WZNlwuAMmSH/L8PjC1Dj8lFU7SLOopUTucJdH11V8PalTc2dXZ/LCqAL/waaJnLcZtTy9GW9+M2EHgCoFArqPX6mD0pFkuCWEV2CilKPXwzx3wF5dNzta64QbwZTrKwkEn1UuCSufWU1BQ3x8juL65jZKxttI3HUAMW+hdQOreW8l9fSM9HCm5d/Qsybw+R6AuQRec0vq5HYWsRZ9AzPUpIZY0QCok0abn9nA5uOyClqj0/I5rmr+3LZiyuD97mgZxw6tcAzC3fz+eajJEXo+fPkXmTHW8JeZyvtHrYdrWX9oSrG9ojjWK0rOCZ9XnYsf7u8T0i96fYFeGPFIWYt2Q/I68m3O0t5dUa/dnlqthR2j5+PTlCg7yyuw+nx4/EF+HpbCYt3lZJmM3DziC5sPlLN7e82NRjPyw4lUH0BkRqnNxgCcS6OqJ0KTq+fbUW1/N8XO6lyeJk+OJXpg9LC/h1KhUzyNI5zNUKnFpg+OJXIMHWPoFTAcaf48Q/790V7uLRvIrGmtpMpsWYd943Lwu0PhDXEbisOVTiCxFeUUcPRaleQOGrEwh3F3D9OVqedmOLq9YvYT7h9aZ2HQOei/4tHJ3l0jqItXirhEGnU8JtPtpFg1TE0M4o3Vx3m95NyzurGriMQECVqjosDBahz+xEleHJST6JNWpbsLqNnopXHL+pGjL8EjlWDOQGrOY6nLs5hyuyVwQvfVf2TTx91bvfw4LzNLN1XAcCU/CSemJgd1ry70tHcf6C0zoPNoOGCnDimD0oNXkRDntcYDT0ny/9OBY0RcibDjk+bjvWZikpn5qPbh1L+/+ydd3iUZdrFf9NrMum99wKBhN6rIAgiIIKCq2LvBbGs+unq2ta2uqKu2HsvKBaqgHRBeugllfRkep/vjzdMMpkBEkgAXc91eV3Ow8zkzeSdp5z73OcYrMgkYsK08uObizcjJVzNkruGcbDWRLhGTnSwEot2KtLGg8i3fQjKEPTD/4lC7OHfMwq59ePNWB1udM3JeoFawToDgcyt9VYHbjp3oQlRy7h9VCb/WbYPt0eIR31wQt4JCZZu8TqemNyNV345gFwi5u6x2cSfhvdTQpiar28aiNHWTBQ4XIx8boXXSF1vcfqkWhzD6v115AQwjz4euiIyOlQt54KXVnnjeSODFMy/vBcXv7YWp9vDltLG5vul0390QDhczarEDzd7P78nJndjclE8Klnn/P5H6sx+KrzXVhxgYHo44VoF/57ekzmfb2XtgTryYoP59/Sevt9DbSRabSSjIj30TArD7fGgkku9RKAHD7/sqWfu59uwu4Tv2htX9CYrOsj7HIVMQlyIiot7JQitj7uO8vSPe7A6XMwenMqVA1PO6eqvUibhpuEZfL+t0qdtbchfaWsCcbTkEdj8rvBYFQpXL4aIzLN6WZ0KY7Xg2Wc3QWyBkMAm9ifsjVYnFU0WvtpcTkqEmlE5UR0yfj0ZdlbouXT+Oq+C797zs7m8fzLatvO/vtxXFQywb5EQaiH3VVYGq2RYnS5eWX6ADYfqGZ0bxd1jstAqZT6t61KxiKgghc/BM1QtQ97eFg6RCCRyTDaTlzjyXq7NQ6hU6XvNimDMDo/39/6hNJYrel8Nh34RgjkSerfv5/7BEapWEKpWUG+yMfGlXylvNZc/8/NuVswdwZI7h7J0dzW5sUHNRtGHeHfNYUBQUEz/7zpWzB1OTJuFrdFs59Hvd/HtFqG49PLyA8wZk8XUogS+2FTGkuJqfjvSwNj8FvsJvdXBW2087H473IDJ5iLsDIhJRQj3bE2r+1AkEkzRP1hfwktLBVJrw6F6Vu+v5ZPrBngj7UPUMtIiWi6ywWTn801lvL36EFqFlAcn5NI7OazdLfJ2p4sGs4MqvZUIrYIgpfSUil21RhvlDRbcHg+JYeoOeTDWm+zMfGO9d116btFeIrRypvdO8lMCRWgVPHxhHpe/ucFbzL6gewwKqZhZ/VJotNjZc9SITCIiLVJLsErGTSPSvbYZIKTYrTtYBwhnm/ZYUeotDqwOwX81XKPwuy6pRIy2k1vBtpY1ef/faHMGPDMlhKqpMdr8CEUQ2t7SIzU+yuzeyaEo//I8+sPjL/LozwRvf75bSMqSqQjTKHhySncO1ZmoaLDy/CU9CT+HDxjHYHW4aLI4MNudaORSVDIJRUkh7KrUE6tTcbTJSla0FrlUTLhGwT3n53Dj8AxU2NAumQtbPxLeKDgOrl5MakQcS+YMo6TOTLhWTphGfsLkMI/Hw4/bK73EEcBXm8u5qGc8Q7Mi/Z6fEaklSCH1YeUn9IjF4XYztlsMd3y6hQazg6KkEF6Z2cvP2+akUIXA+GcgdRgcWAKZYyB7PCiDiVTSoeQviURMVLDSRzZa7wpnVcptJOXfgtXpwiYLJUepZkimlhVzR3j/DqFdWFXSKqVkRWtRySTEh6rYVtbEpJ5x6DpJNXMMOpWca4akMqNvIha7iyCl9KQbjRC1nOm9EzkvL1qIDtacfqpgZJCSyOZQlDd/PeSzgThcZ6IgQccve3xjXnsmnn7r2eni042lXuIIBNXdir01DMqIYMXeGvqmhPl4InQ1GkwOHvh6h8/n9+j3uxiVG91p5FEgBahKJvFG4caFqHh1ZhF2lxuJKHCLg8vtoaLRwsvL91OttzF7cAoFCTp0KjlNZif3fLHN2xLaZHFw35fbeebiArrH6/wSjsobLdzdynz7xaX7yIoJ4oKTqOFcLjd1Jjv1Zjs6lQyt4tQ26qeKxDAVi+4cykfrSwhRy7i4V2KXGq3/YWCqbSGOQFAf/fwATJ3vTb38Q8NYDe9PhqodwmN1OFy/AnSJfk/dVtbIzDfXexVpmVFaPr62f6e09NQabdzz5TaftuVnF+3losJ4f/JIG41fn2l0N5D6r90NJju3fvS7l/DfValnS1kjL80o9NlnhGvkvHRpIVe/sxGT3YVKJuHFGYWEajr2HZRLxX6prQt2G7l51MOIf77fO2YY/hhvbGoJTNlx1IR7wsOInfcIf4P/MWWb0+WhUu9LCDpcgpeLSi4hLzaYiCAFFrubH3cc9XmezenmYI3Jjzwy211e4ugY5q88yH8uLeSLTYK65/cSX/JIhLCmtFZ1A37R6l2FMLWcf1yYz80fbfbe3rMHpWJ3efw8MSuarDRa7AzLjECrlDJnTLbP+vbr/hqv2TjAlW9vZPmc4X7kkdXhosFsZ89RAwmhaiLQOzdNAAAgAElEQVS0wh58V6Wey+av9wbTPDQhj0t6J3YoSKHGYOWy+eu95uipERo+vb4/Ue0knX873OBnPP3V5nLGdYv1Oye43B4SQ1V8e/MgNh2pJzM6iLQIDTE6wXbgonktCuW0CA2fXj+AWf2T6Z8azrLd1fRJCSUtUku10cro3CjEIlFA38PWqDZYeeDr7SwtriYuRMUzFxdQmBTaaem8x0OflFDv/wuqySYu65vERxsENVKQQsrtozJpMNmJCvafnyO0Ct65qi/3f7WNbWVN9E0N47FJ3c7pItdfaB/+Io/+LLCbcJduQPzD3QKBVDhL8M/RRLR4hSSf7YtsH2xOF6v313LLR79jcbgIVct4b3Y/XptVRJXexq5KPbmxwUQGKbzVfW+sa+nWFuIIhP7+lc8hPf8JooNV7fY4cro9AZUfvx2pD0gehWvkfHPLIJ78oZiKRiuTC+NICFMTE6zkkv+u9fb8bi5p5NHvd/KvqQX+m9WTQRMBva6AHjOE1rZOJHHCtAoGZCdisjero9Ryr6FdVy9QxxChVfDe7L78uq+WHRV6np2WQlqEpkvacY6lZJ0IBqsDs80FIsEUUimTdGoFvDV6JfvKfZcUV3H32GzWH6xn/aF6xCKY1S+Z1IiuN/A8ETweDw1m/yQ3o82JspngfWxSt9NOJewI3B68ZtXHYHW4cXaiN1esTkmPRB1bm1sdJGIR947L8dlYnoiMBuHgesF/VqG3CN+x5XuqeevKPozMicLqcPn5cB2sNeLyeGiw2P02wYESnhZsqWBUThRKmYQag43NJQ00mOwMy4okIkiOTCLhQI2Jaf9dS5PFgUgE94zNYVb/pDNGIKnkUtIitTw4Ie+M/Lw/DIxH/ccaDgmR6n8GlG5oIY5ASA5d/R8Y8zhIW+69BpOdZxft8eFr9lUbKW0wdwp55PZ4KK33Na53NbeK+kGpg7FPweIHweUQiK7xzwb0JLQ4XH77hZV7a7E4XLR+tkQipigphGV3D8dkc6JRSAlRy5BJOrbGaRVSbhqezsvLDwAgFkG3lFhEyZdB1hioLsYRkcf7m/R80YrYmNYrAbEyCDi1KPc/OlRyCed3i+WHVgbnaREaXB4PI//1i5eM+8+lhaRFaPysDgLdg4EsIBwuD5JWqrrWxBEI6t25Y7O576uWpNyJPeJOSiJ0FiQSMUMyI/jl7uFsOtJAdkwQcToVDrebUI2cijYqW61CynOX9EQhE/t0RVjsTm8C6jF4PLBqXw0pEb4Sqh3lTVw2f723QDJ7UArXDU1j7ufbMDd//zweeGJhMeO7xXSIPFpSXO2Tqneo1sSCLRVcMyStXa8/dq0hahkqmYTKJiuZUdqAe986o41J89ZgsjnJiNJSY7AxqWc8d4/J4tMNJT4K5YO1JpbvrmZMfjRpkRpU8hj+/tUOtpU3oVVIeXVWEd3idCfcO5htTp5btJfFu4Q1v6zBwhVvbWTlvSOIloqpNdrxeDwopGJUcikmuxOtQuoX1hMIDWY7+6qMLNp5lH6pYfRKDiOsVWdBpFbBZ9f35501h1laXM3+aiPXD0vj2qFp1BltxIeokEtFBKtCj/vzEsPUzLusCGszQRuwRfgv/OHwF3n0J4DZ5kRiqEHx4dSW1K6180AbA/1vAskf68/caHZw+ydbvIazDWYH322rID1Sw71ftiy2T0zuzpSieN8Jvv5Q27eDur3CJlzW/j4amUTM+O6xfL/NN0VlZHaU1zPhSJ2JmGAlOrUMnUpOeqSWF6b3xO4UIni3lDZitDp9kuAANh5qwGx3dZg8ajLbqTYIvfUFCSFEBSk69ZB+LGXjbKHBZOeeL7ezcq+gtnlnzWGenNKdab0SThhV2hWoM9r458Jivt1SjlIm4Y7RWVzSO+GkBMGpIjlMw03D05m/6iAJoWruHpOFWibh5csKsTndSMQiNHJpl5AyJpuQ5taev71IJOJvA5L5cH2JV7Itk4i4rG8SKrkEuVRy0nbQzoZKJmZoVgQr97aoBLvH6zqV9AzXKnjzij78fqSBw/VmzsuLJqqDipmtpY1e4ugY5q88SK+kUNQKiV87y+CMCI7UmUiP9O9jKEjwV6MUJoUgl4ipNdiY8fpar1RcJZPww21DCFHLuO+r7TRZBNWYxwP/+nk3k3rGnVH10V8IgPBMkKnB0YrY6H6J0L72Z4Ch0n9MXw5uB9By73nw+MRWH0NneTRq5FIu6B7LV7+3eOvF6pRolAHmPmWwUITLuxAcFlBohVa7AJCIRX7plkEKaUB/QLlUIqQwngaClDKuGZLGRYUJHKo1khcbLKiC5VKB3ArPwGxxkBhbQ2pEEy63h1tGZpAV7U8a6a0O7A43IWrZGV9nzzSClDL+cWE+UUEKftlTTbd4Hfeen8PDC3b6qLie/KGY96/ux7byJm9r198GJKMJQO6o5VKGZISzan+dd+xvA5JZua+acI2cO8/LIrUNkSKViBnXPYbuCTqW7a6mZ0IIeXHBAfcXHo+H2ubAG5Vc0mmeNscKaG1DFx66II9Zb7a0cI3vHkOISuajFrE5XNQabSwtrqYgIYRPr4tlzudbKWuwAJDZ5j6rNdp48JsdPmErb60+zDVD0jhS50vmOt0eLI6OFX4OVBv9x2r8x46H5DA1n17fH4vdhdHqJC5ERUKoKuAeosZo8xarjvmXfbOlnNtGpVHa4J+oWtpgYu2BOiKDFDz5YzEz+yfzQLiaAzVGXlq6j3kzi054bUa7kxVtFOh2l5tGk53yBjN3frqV0gYzQzMieHBCHo8v3EVhUigz+yefUNVrc7j4ZEMJT/+0B4A3fj3EhT3ieHRSPmq5hEO1Jp78cTe1RhuX9U1i7tgcdpQ3olVICdcq/O7pE0GnlvMn0M/+hVb4Y7EKfyEgGi125Ac3onC3qZ7t/Bp6zgRNeJf+fIPVgdHmxO32oD5OskRHYHO4/EzWhmVFcv37m3zG/rlwF6Nyo3wn+OQBQuxsa3PpHjNPSfrfPy2cG4al8c6aw8glYm4fnUlKhIZdlXpmvN7imXDryAyuG5rmp2YZmhVJZaMFqVjkI4ktSg5B1WYTUmu0sf5gPVtKGxjfPZa0CI2PObfF7uLT38p85MGPTMxjRt+kM6YM6moYbU4vcXQMLyzey+jczvW8OBncbg/fba3k6+YDhtnu4okfihmcEd5l5FGoRs5NIzK4amAqjRY7D36zg4e+3cno3Cjmjs3pUFtie2GwOthbZeCVXw6glIq5fXQWyeFqn4j4QIjTqfj+1sHMW74fqVjEzSMyiA0JvNE6E9Cp5Tw3rQcvLtnH6gN1FCWHMndM1iknsx0PEVoF57WpIHcEgYi/IKUUqUSEVqngg2v6Mffzrew+amBgegS3jcpAJhEFNFDNiw1mQkELuV2YFMLFRQmIxSK2lTX6eAxYHC5eXLqX+8blcrDWd0Pt8QgtcnGn4d/1FzoBmgjB4+iHuwVSpeBS6H0VSM4iqedygbkGqnaCOgJ08cJ1ngqyxsLPfwdXK4Vgvxv8vIPCNApuH53J7Hd+844lhalJ6iQjGI1Cyt/H5xKklLJ4VxXZMUE8cmE+kcebKxRa4b+TQKeS8sD4HB78dqd37KGJeX4x352JELXQ9nO8dFWdSsYF3WMZkBaOB8FrsXVblMvl5nCdmccW7qKswcLdY7LokRCCqLmN5kyqR88kIoMU3Dcuh5tHZKCSi7E6XGxv5e0CQquWRCxi3mWFOFweITjE5gpIsodp5Lwwo5Cfdhxlw6F6xnePoU+K4Gt37ZD0ZmWZPymnU8nRqeTkxx1/b2p1uNha2si9X26jvNHCBd1jmTMmm1/31zIgPZxIraLd3kLtRUGijuV3D2fD4XrSIjQkh6v91qAjdWYmvvyrdw+cEaXl6akFzHxjPeflRZHZ5p50uz0cbdMuCOByuxmTH+1TpI0OVqBRdGwvMbVXAm+08ZC6tG9Su1/v8nh4ftEe1h8SVFThGjnf3jLI73kGqyOgIiohRIXCrufynjo+39RCTItFcFFBDPNXl3D90FTuPT+Xf3y3k50VenomhvDQhDxOZumplEnoFh/s8/mJRMJ+Ysqra7yqrRX7alEt3ktBYggvLNnH7ioDT08pOO732GB18nKzYfsxLNhawX3jcrA63EyatxprM4n396938Ny0HozvHoPqHE5mtNidGGxORIgI/R8gw88mzt274C+0G2sP1DMkzF+e6YnOR9QBtc2poN5k5z/L9vHumsO4PTAoPZwXZxR65b2e5ophR3xylHIJMcFKn8lSq5D6EUpmu8u/SqmJgCsXwtZPwOMSPAqyzz+lFq8wjZzbR2Uxe1AqiCBEJUdvdXD/V9t9WkxeXr6fS/sGbv3QqQWT6fu+3Ibe6iQ/LpiHJ+b7PLfBZOeuz7Z6iZP5qw7xxOTuXNK7RXGjtzp4fvEen/f+1897GJMvVIXOpmKosxCouHw2UgHNDifL9/i3Ba0/VE/eCTZ6pwutQorZ7uTS+euoNQqHrM9+K8PhcvPPi7p3+ibxcK2Jqa+2pPMs3lXN0jnDSAxTn+BVgkIpNzaYZ6b18Ho3nG1EBil54II8jDYHGvnZVdAdDxlRWvJig9lVKVQrFVLBeP3Y3zUrOoj/Xt4Lh8uDweogXHt8X7ZwrYJ/XtSN+8fl4vZ4UCsk3hbeYymKrdFkcaKUiRiTG81nm1o8LYJVUsJVYjAcFRQLAfxcOopqvZW1B+uwO90MzYokQqs4Y14ef1S4RVKqVemUDpiHQuTCpQghRRTMWdUdNR6G+SPA2nywTh8FU15vN4EkJDA5kEtFKBThiK5agmzFPxHbjVj63oooIp9Ad1vvlDAW3DKID9cdIS1Sy+TC+E4lzyOCFNw3PpebR2agkEralV55MihlUi7sGc+QrEj2HDWQExNEqEZ+UiK+qyEWi3xarWqNNo42WbE5XcSFqLjni61sKmnkhmFpVOltnP/iKvRWB6NyonhySkGnFy1qDDZW76+hSm9jfEEsKqkEk11QZ4eoZGcsqt5rcwDIJRIu65fEi0v3ef89OVyNRiEhVaHFZHeilIqFJNfjKDQjtApm9U9mep/EdrULtReNZjuXv7nBq9j5ZksFWoUUD/DA19t5d3ZfhmT62yicDtRyKeow6XH3ASabk+cX7/HZA++vNuJwufn13hFeb8zWCFLJmFoYz5urD3vHYnVKlDIJD08UlC7LdleTHRPEPy/qfnwy9zhICFXx3uy+PL94Ly63hzuaC73txd6jBi9xBFBnsvPK8gP838Q8731SVm/mnwuLGZIVwd8GJHuTcFUyCY9d1A252E5q7S98cNkgXlpbh1Qs4u7BEQR5mogJViIRi7n7862UNLfNbilt5IGvt/P2lX1OeG3BShmPTMxnf7WRw3VmFFIxD03Io8ns8BJHx7DmQC1TCuMB+HnHUR6ZkO9HHtUYbByoEf5eb1/Vhwe+3uHT8icRwebSBi9xdAwfbyhhVG4UIpELvcWBB9DIJR233+gi1JvsvLhkH59sLCFIKeWhCXmMzIn6S1XdRTj3dth/ocNIDFOxqUbJiMLZKH9/SxgMTYVh9/lV9jobh2qNvN1qQVh9oI4vNpdx1cAUqg027wT7twHJRAcrkLdjMxWhUfD+1X2549Mt7KrU0z81nMggBYMzwvm1lTS4f1oAY16ZmurQniyLjqXWYGNiRjxRUgWnSqGp5BIflZDb7aG8WZoL0C0+mBFpQUgIHLWrlksZnRvN4ruG4XR5UMrEPooIfbMp+MicKErqTBxulvC+sGQvo/OivF4nLrfHbzK3OFxUNFp4f90RrhuS1qkmdMeSHYKU0jNWadAoJPRJCWVjqx76G4end5na53hQyaQMyghnRRsVVFFSx49y9SY7lU0Wag02cmKDCdPIT7i5NFidXuLoGH7eWcX943I7lTxyuNy8tdq3Umd3CSah1w1tn0/AmTTFbg/aflfPNURoFbx3dV+2lzVRbbAyJDPSL7mwrRnriSAoD/zH+6eF+5HtNwxPI1gp5+aRGTg9HpYWV5MWoeH+8TnIqrfDl9Pgghcge1y7lBYg3EMi8KnuVeutXPjyao7qrYhFcN3QNC4fkIJEJEKjkJzWRk5vcdBkcVDZZCEpTE2IWn5OEJedgVqTjQte+pW6Vt5dT0zuxvQ+SWeHeLMZYck/WogjgANLobGkXeRRvcnOh+uP8OWmMuJCVDw0IY831njIjnoAjUzElyuMXDHQwqSe/q8NVsooSAih2xTdaYcSHA8qmaTT569glYxglX8b0LmCWoONa97byJZm37ZYnZJXZxZx1TsbGZ0bzcWvtRQSlhRXk/nrQe48Lxu5tHPIkBqDjen/XcvBZh+h9CgtH647wvLmlpyMKC0fXdPPJ8jjTEAuFXPFwBRidQo2HWkgTCPnqkGpXrVzJO0nMjqTOAJB4WNv4923cl8tt47M4MP1JTy+sJgPrgk+o6EDLo/HL64dBJVUQmjLguTxeKgz2REhFDtuGpGBTi1n4bZKMqO13Ht+DhFaBSKRiEcm5nP3GOFeO5X9XpBSxtCsSLrFB4NH5OPb0x6UNVr8xkobzDhc7mYPQSsz5q+jrMHC0t3CfuzbmwdhcbhIjdAQqpaBREyQLpzBv15Pt7xLEbudBO/YgHHUk+yrrqPebPcSR8ew+6ihXVnCCWFqPr9hIGa7E4VUQrBSit7q8OtqyI/VcaT5Z2iVUr+aebXByiWvrfWeM+JDVMy7rJBpzb6so3OjUMolAb1h40KUuD0e3lt7hH8v2Yvd6WZKUTz3jcsJqI4+dobQngE7DLfbw8JtFby79jAANqOd2z/ZwrI5w/4ij7oIf5FHfwKkR2p5e7WFhsSrGHX1zUjdNoJCwpHrTr3For3YXNLoN7a1tJEqg40xL6zwEh7vrzvMkjuHkXASVQMI1bLM6CDem90Xl8eDXCIsKM9P78mryw+w7lAd/VLCuGlkhh9hUmOwMvXVNZTWC4vBv5fu57tbB5Mb2/548xNBq5AysUccH20o4eXJqQyUHyBs9yu4N2RA/xuFdLc2kEvFASfjykYL9329nXUH6uger+OZaT14ZIEgaXW3UVSp5RI/X5cR2VFsLmnk1V8OMDQzkgHpp9+e6PF4KKk383/f7mD3UQMjsqOYMya7S9qm2iJcq+DVWb34eedRNh9pYEphAnnxwZ2+ITsZJGIRU4oSWH+wnqW7q5FJRFw7JI2kdty7rVFvsnHPF9tYUiyomDRyCd/cPMjPD6A11HKJX4pOaoRG8MIR0e70kJNBJBJI2rb4IyQx/pERoVUwIiewb0rn/Qw5P9w+hHnL99NgsnPtkDRyYoOoM9m56YNNDMqM5NlpBVQ0Wnnwmx28PjmRUIcZvr4O7th+UvLIbHdS1mBh/sqDqOQSrhmSRqxOgUwiYdGuo17F6GOTulHaYGbks7/gcLm5sEccD03IO6V2QqPVyccbSnjyx90AyCVi3r+6L31Tw7os/fFM4nCt2Yc4Anh3zRHG5MecnTQ6lw0M5f7jhgDG3m3gcLn5aP0RbzT14Toz015by7uz+zL11TXe54WoKxidG31cUryriKP/Vfxe2ugljgAqm6x8u7WCab0S2XPU4Pf8lftquWZIWqe1/+4+qm8hjiK1GKxOL3EEgnrlw/Ul3DoqA6n4zK75CqmIoVlRxOpUxIeqzhmlZGybduLs6CDuGpNFTLCSqwensnJvTUDF9qnA4/FgsDpRySR+6Z6tEayUcePwDFa3KuTqVDIKWxXXmix2VuytZd6y/UglIuaOzaZ3cig3Dk/nsn6C1ULr9q/O8tsMRGKcDA6Xi36pYcglYh+i7rJ+Ld0EJpvL6+fkcHl49PtdBCulLL97GOHalj2ZPWkI0guS0G37FE9ULvr8J7j1m1JW7K1hep9EwjRyn3CPOJ0SmaR995qwB2/5/TzAU1MLeOBroRMiIVTFXWOymPPZVgAeHJ/nR8Qt3lXlJY5ASG1dtb+W+8bloFPJGJEdhU4lJznMw+CMCH7dL5w3glVS7hqTTZXe5mOd8dlvZRQmhTKjT6LPOlxab+bhBTvYWaFnaFYkc8dmd9reNRCMNqdfOiLA+oP1pEWe3ZCZPyv+Io/+BAjXKnhicgFNFgcNThfhGgXyMyT/7Z3sr8aY1iuBTzeW+ChlrA43H28sYe7YnHa9r9HqwOpwU9lkISFUjcXuJCpIyb3jcrwpJYGqztvL9V7iCATzvRcW7+WF6T07RbmhVki5a0wWPROCGe5ejvbb2wEQg+Axde0y0J78cFhvsnPbJ797VTa/HWlgzmdbeeCCXK5/fxM3jUgnROWb5PT8tJ68u/Ywaw7U0Ts5lFG50Vz3vuANsWJvdaeQR7VGG5e+vo6KJitSsYifdh7FbHPyxJQCtIFMRTsZEVoFM/slc2mfpLN6eIjQKnjukh6Y7S7EItAqZSdM/3C7PVQbbHy/rQKTzcmUogScbreXOAIw2V088WMxL80oPG41JEgp5f7xuTzxQzEej0BW3nt+Dvd+uY0mi4OvbxrUKUSeVCzmysGpfL65jEazYKCcGKZiSNYpepr80WEzgt0ksGqayE5NMjzTkErEJIWpeWxSPs5mHzoAi8NKvdnB6ysP8vrKluc73R4QiQXz4qZy0CWc8P3LGyyMe3GVt2X4i01lLLlrGHEhKq8Zd6xOSVSwkge+aUnY+mZLBX1Tw7i0b1KHCR+jzcm/fm5p27W73Nzz5Ta+vGHgGWt16UoEBZhbQzUypGdrDlSFQa+roKzFewi5BuICSIXaoMls9/rFHYPR5qSy0eJjCt8jQYdC9pcnxYngcLmoMzrYWdFEVJCC+FDVKR2QAY7UmfzGKhqtpIarA/om9UjQsbOiie7xIZ2iam69H4zRKThc6389uyr1OJxupPLOvy+sDhf1Jjvby5tIak7CPfZ7FVcamPnGem8r1lWDUrh5eDoRZ9BrMRB0Khn3jM3mucV7GZgezk3D03n6pz0crjNxXm40r87qJaheTgEOl5sGkx2DVdhPr9hbw3dbK+iZqOPKgam4PR5kUjGhAZRABQk6Pr9+AG+uPkSUVsG1Q9MIadUetbfKyG0f/+59/K+f9vDGFb2JU8o6RIZbHS70VgcysbjL4t3rTQ7sTjdvXNGbV1ccQG9xcHGvBHJjWop8SpkYiVjkY5MRppHj9vgSJv/4bj91JjuX9b2J0TlRVBtsXgX7W6sP8fjkbtz7hWBhEaKWMW9mkbfdvKPQKKSM7x7D4IwIbE4XcqkYu8PFnDFZFCTohHNgGxKwddfEMVQ0WvjnpG7edGUQzpQvzuhJZZOVBrOd7OggITTk14N+r19SXMWkHnFe8q/GYGPmG+u9KqvPfyujwWTn+Ut6dpmPmkouoTAphDUH6nzG8+LaLxqoM9rweDyEav5qs28P/iKPzgFYHUIPqUgkIlwjP6VDc6hG3mWT64ngcnu4Z2w2r/5yAKvTxUWF8aREaNhS6q9Iam81yWJ38c2WCh76dgcej5Dm9NaVfRiYHuHTqx4Idqd/+5jd6fZ6L3UGIrQKpuaqkLz3qu8/NJUKsv52kEd2p8unPQugpN5MrE7JB1f3o1t8sN/EHxGk4NaRmYzMieKdNYeZ9UZL7Omg9M459JtsLiqarNw4LJ0x+dFUG2xEBSmw2J0nJI/qTTbcHghTn9r92xbnQtX5eG1BgVBjtDH+pVXeqtIrvxzgu1sHE66R+ygKqpps2J3HTxLRKmTM6JPI+G6xlDaYBdPOZfu9qR7rD9YxoYe/uu1UEBOs5Oc7hrLhUD0quYQeCbozakx+zsBUI7TobP8MgmJhwouQ2Lf9Lb+mOoS4uq4NJugo5FIJrVeEMLWc64em8ch3u7xjubFBhFjLhChysQRCTkwcOVxu3lh1yGcTbba7+GF7JdcMSWNSj3heWrqfjChtwDVg+Z4aJhfGd7gV1urw97crb7Dgbpfo/9xHdLCCIZkRrNonVHrlEjEPjM894y27XohEkD0eJr4Ev70lrGnnPSoQqyeBXCohPlTlY9oOEB+q8rZS5scFc1m/pNNXmLjdggm37M85bx2qNXPRvNVeb5MR2ZE8d0mPUyKQRudF8+SPu32+RzP7JZEcrsbqcPH38Tk8t2gvNqeboqRQpvVOZNYb67lvXA7TeiVgsLlQysSn3AbSI0HnXQ93lOu5dWSmj88QwNSijs8N7cWO8iYunb/Om357ca8EHrwgF6vDxcMLdvp4+Ly9+jBXDUrtkuvoCHQqGX8bkMyUonjcHhj7wkpvy9jnm8pQSMU8cEEep2KttbvSwMw31zG+WyxBShnzVx1ELZdwy8gMnl+8h8W7qkkKV/PE5G6kR2p92pODlTKKkkKIC8nl+22V3PDBJkblRnHlgBSC1TI+3lACCPPYC9N7YnE4eXnZPkbmRlOUFNKu+7fOaOPVXw6wYGsFiWFqHr+oG+lR2nYr0e1OF/UmB8WVemJ0SqKDlQGTYKuaLBQfNbJwWwXDMiNRKyQsK67m1/21vDSjEI1CilYhZc55Wd4Chlwi5qmpBd628xqDlUub29oAfi9p5MIecdw/LkcwW7e7+GVPDTKJmPlX9CZSq0CrELyhOrLXbTDZqTPZqTFYSYvUEqaRE6Pznfu0ShkGqxO91YHL7fE5F04piufVFQd81Gqz+if7EEfHEK5V+KkOewUQCwxMD/c5k5ntTr/2vGW7q7E6XF1GHskkYq4cmMLKvbVsL29CJILL+yWf1L8TBA+vLaWNPPXjbiwOF9cPTeO8vOizt/b+QfAXeXSWUW+y8+avB/lgXQnBKin/NyGfAWnhZ0Tl0RkI1yooqTcxb2YRcqmYlXtrqNJbmN4nibdWH/ZuFrUKKZf0SWzXezZZHDz2/S7vBOdweZj7+Ta+u3XQSQ+3RUmhPgd2kQhuHZXR6aZuEolEqMS2RTs3sWKxiIRQlXexAeEzig5WUpBw/PeQSwVVgQhwuIUI95n9ksiP75y2PGOffhIAACAASURBVKVMwlUDUwhSSpny6ho8HsHY952r+hIRpPBTDBitwsT79E+7sTld3Dg8gxHZkac88TaY7FQ0WdhfbfT+Lc9F8+O2WFpc5SNHtjndvL36EBMLYnmn2fcLhASQk302QUohJeKZn3fzzZYKn39raxp/ItidbhotdjwewU+qbcSvRCwiOljJxE4io/6QcNpg3Svw+/vC44bD8OFUuH3ryckjqx5K18MvTwrKnREPQEJvUBy/LfFsQioRM6lnPMnhGr7cXEa3uCCmZsmI+PQCUIfBxP+AMuSE7yESEdBX6thYZJCCH28fwofrjtA3JZR5bZ43JDPilHyKNAqp33w5vnss6q70PLI2gVgO8q5PogvTKPj39J4cqjVR3mihT0oY4R307eh0qMOg8HLIuQAkciG6vh0IVsn4vwl5TJ63xnvQvbhXAvEhKhbfOQyn241GIT39djxjDez4HI6shbyLIG14lyfLnknoLQ4e/6HYxxR3+Z4ajuptp0QeRWkVfHJdf576cTdWh4vrhqZRkKDzrkeJYWrG5MVQY7RxsMbEjR9sxgPkx+l4fsk+ft55lMwoLQ9NyBP2IB1UD0YGKfj+1sG8s+YwR/VWIrQKXr+8F0/9uBuT3cnVg9Pol9q5fz+Hy029yU6TxcHDC3Z6iSMQFJO3jcpEIhLUF21hDBA8cDagVcrQKmXsKG9iUs84LioUiCS91cFbqw5isDk67PVXa7Rx52db0FucjMqNZu4XQqvTtN6JLNhSwUcbSgGhKDbttbUsuWuYnxdVncnOuBdXeQMadlbo8Xjg9lGZZEcH8bcByczok4TT7eb9dUf4YlMZH20oZWa/JO4fl4NaLqXOZMeDh1C1rxekzeHi9ZUHvQlq1QYbF7+2lh9vH4JGIWnX/b+/xsSUV1oSwyYUxPLYpG5+RfaIICUpDjeTCuNJCdfw1I/FbDzcwMSCWMTN97hWKWNm/2QmFMRS0WQlJVxDiFrm/Q60bms7hh93VHLj8HTuHZfDIwt24vYIJMrEHnGkhKk77O3VYLbzxA/FfN4ceKGRS/jqpoFkx7TMy9UGK1e+tdEbynFB91genZTvJYFidSo+v34Azy3ei9vt4bZRmR2yY0iN0HLtkFTeWn0Yl9vDyJwoJvWM9yHAFFKJTwugViHlyoHJON0ebE5Xl4UIRAYpeeeqPpjtLqRiERqFtF1kVZXeyqw313vPm3O/2MZ7s/syNKtzjej/bDj3T2V/Yng8HhbtOsq85QcAgTS57v3fWD5n+B+GPNpfZWBKUSLvrz2Mye5iep9EyhutFMSHsOjOoXy1WZjophQlENXO9gK70+VTBQKoMlhpG6wWCJFBCr6/bTAfrDtCld7KVYNSO+xV0y6ow2HMY/DOBPA0X2vSQNC2z2cqovmwcOXbGzHanCikYp6dVtCuaN9wrYJHJ3Xj3nE5iDh9I9rW0CqlzOyfxPgXf/VOpjanm7lfbOXrmwb6kXdH9VYuf6tl4r3z0y18fG0/BpyCEqrJbOe5RXv4YL1QtRKL4K0r+zA0M4Jao53iowbkEjEZUdoz4sHUEfil/gFOl4fbRqRT1mihssnKpX2TuKB7bEBJrMvlps5k50i9mTCNnAiNnNmDU/l2a4X3s9UqpAzLbt+C1mRxsHBbBU/9tBuzzcWUonjuPT+n0+Pr//CwNsHuH3zH3E6oLj5p+xYNh+DDi1sev38R3LAaYrp1/nW2gdHqwGhzIRIJ90V7W3JDNXJG5EQxKCMCqViE2FoPsxcJqiN1+Emj4aViMVcPTuWz30q9h9rIIAWjc6MBUMgkpEVquef8HAw2JzePSGf+ykM43G7Gd4vhgu6xJz10Wh0uTDYnQUqZV30ZGaTg42v789j3u9hVqWdUThS3jMzsmqQXSwMcWgUb3xA87IbdCyFJwmfUhThW6e3dSe9nsTsx2pyo5NITttyeCGaHG6Nbi8gtIlzuaXeVPCVcw9I5wzhSbya8WRUdqP3llGGugy9nw6Hm/sviBTDwdhje9SEhgVBjsFJab0EqEREXouoUnyqHy02N3uY3Xm/0H2sP1AopfVLCeOOK3rjdHsI0cp/volouxeIQ/KmO4dh3/ZONAplwpM7M9vImvrpxECq5uEMklkgkIjZExdzzs3G7hUJYeqSGoqRQ3AEIhM7A4VoTF81bzdMXF1Bj8P/czDYn8SEqJhTE8f66liJPZJDilNvBugrhGjlJ4Rpve11imIqXLy1CeQqG5m6PhwM1QsKW2e4kWCmj0eygT3Io//h+l89z9VYnVQabH9lR1mDxS/b8+vdy/jYghYsK43lj1UGmvroGqVjENUNSefTCbjz07Q4+2VjKDcPS2V7exP1fbcficHH14DSm9UrwEjt6q4Pvt1X6vLfR5mRXpZ7V+2u467zsExbhGs12Hv1up0+r5PfbKrljdJYPeVRrtHF7K/sInUrG21f24eaPNnPb6EwfUk6nkqFTyUgKYIivlIn9zKvjQ1TsqzJwqNbElzcOpKLRSlyIEpVMwo87jnJlB5VtjSa7lzgCwQbhkQW7eHVWESFqOU63m4/Xl3iJI4CF2yuZ1T+JAc3zkUYhpXdKGK/N7IUHT4eLvGEaOXeMzmT24FScLg9BSqnfewgiiFweWrCTmGAl82YW8eWmMq559zeGZEZwzZC0Ltu/h2sVdJR+Xryrys837KMNJfRNDfvTBHJ0Bf4YDMWfFAark++2+ioLPB5Ye7CuQzGTZxM5scFcOn8tY/NjUcokPLdoDw9PyEejlKFRyrhlZGaH31Mll5IeqfUubgAjs6PalY4iEomI1amYc142bo/HR2rb6YjtCbdugr2LIDxdeNzOGGOxWERBgo5lc4ZhsDrRKqQEq6XtZuWPJbu0F/UmG06XB3VztGad0YbZ7kIuEROkbDEr1CqkSMRiv4SPikZLQGPGn3ZU+k+860volRzW4ZQWk93lJY5AMI1+eMFOPrqmH5NfWeP1ykiP1PDJdf3PqRar0XnRPPPzHu9mSioWcf2wNGJDVbwwvSd2p5sQtfy4vdSH68xMfmW19/VTiuL5+7hcFtwymPmrDhKslHL90PR2R9hW6a38/esWv5nPfisjLzZYSL5q5wHQ5fbQYLYjEYnOSkvsqaDeZMfl9hCmlgWUYvtBroHo7lCz23c8NOXkr930jv/Y7x8IB1ilrst8k+pNNp79eQ+f/laGRCTiqkEpXD8sPaAk/3jwfjdPodUuRqdk6V3D+HHHUZQyMaNyo/0KAwqZBIVMwk3DM7i8fwoehLlHpzrxNVbprcxbvp9NRxqEjebgNK+nUWKYmucu6YHF7iJIJeuatD+PB/Ytga+uaRnb+xPctA6Cuj6AorNQrbfy7KI9rDlQR1FSCPePy/Uz3z0Z6ow2nl+8ly82lREZpOCxSd3omxrWLqJSKhETFazsuuQsu6mFODqGja/DgJvPOHlUpRdCOo4pD/Ljgnl3dt/TJpBC1HIu65fEg618w4KV0hMGLpwMVofL2zZtsjv91KjRwUrG5sfw807BfHZwRgS3f/K7z3Oq9DbKGsy8vHw/L0zv2eHfUyoWN5tECvu1rvIs01scPLZwFya7i5V7a5nUM575q1o8W2KClYRp5QSpZNwyMgONQsKinVWkRWr4+/jcdhc7zxRcHg9P/VjsLaKW1lt4btEeXry0sOU5zUUoh8uNXCohQisPSNYrpGKGZUXyy54avthUxu2jMrn7i61UGaykhKv9iLZARFqg9SYxVI1SJmb9wXrmr2pJc31hyT5ev7wXiWEqKhqtVOmtiMUiShssiEXwxA/FpISrGZMvzLFyiZikcDXlbRRh4Ro5n2wo47qhJ07hdbo8VAcgXhvNgjrc6hAKH/urjT72EU0WBx+sP8LXNw1sF9ltsDowWJ3YnS7mjMnm6Z+EfYRCKubxyd15Zfl+Vh+o4/21R9CpZEhEIp6+uOCU9q71zd6UrVHRZMHRvFe3O91sLWvye86uSoNfMVd3isSo0+WmssnKwwt2UtZgYXJhPJcPSPbxbVLLpVxUGM+I3GjsDhd3fbaV35tb2HdV6jlYa+TZaT1Ouhc4UwhkqJ0ZpW23kfn/Kv4ij84iVDIJ+bE6n9QCgOyYc7PtIRAigxS8N7sfZQ0WJGIR5+VFkRpxeu72wnv24bHvi9lW1siQrEjmjMnqEFkiFosQ08VffrkGwtKg/w0+w/UmO1Kx6KTXK5dKiAqWENU5HWcB4XS5OVhj4p4vt7GvysCEglhuG53FNe9upLhSUPLcc342l/RO9F6vViEhKUzt07c8Ojc6IAsf6G+dER10SkavbdVmAPVGOw1mh5c4AjhQY2LVvlqmFJ1EGXIGEaVV8NMdQ/lw3RGMdhdXDkghRicsqCdThektDh5duMunivfV5nJuHJYupPBdXIAY0QkTUNpi46F6v7HFxVVM7ZXQLpVao9nOwm2VvLX6MMFKKQ9MyCU/LhiV7NxcMsx2JzvL9Ty2cBcGq5OrBqZwYc+4k1fW5Bo47xGo2AT1B4X2syFz2uXtQkQAYlwbBd/dDuc/GTB5sTOwen+dt63AhYf/rjzI0KxIBmWcGbNzmURMbIiK2YNPXjnVdEAVVWeyccP7m7wbzZ0Veg7UGHl2Wk90zXNTkFLWtdG7lnrY8FqbsQao2vGHIY8azXbmfL7V659U1mDhQI2J92b3bbfy0Oly88nGEj5sJvPLGixc/e5GVt4zolOCJ04bogDEoUQBZ9gDy+328MmGEp+WlZ0VetYeqDvtdmCJWORVqn6yoYRYnYp7zs8m4hSJ/EaznU83lvLi0n3YnW6m9krg3vOzfdRDYRo5T07pzp2jM6k12kiL1BIXokLfKo1NJBLI4VX7avm9pIHz8s7N74Xd6aaiUUh+/Ob3cl67vBdapZSlxVWkR2qZMybLW4yJDlZy28hMLu+fjFImOScVujUGm5/6flelHrPNRahaUKptL2vihg82UW2wkRqh4c0regc8HOtUcp6eWsBD3+xg5b4ahmZFsuiOofxe0sjDE/OZ+cZ6b/jBbaMyAs65IWoZs/oleQt+WoWURy7MRyWT8N22Cr/nrztYR16sjv6p4azaV8uQzAg+u74/DpcHvcXBL3urGZIViUomQaeW8+ikfC5+da33Ov42IJlNRxqwu9zYHMf3jTx2bZf0SeSpH3f7jCWGqjlQY2Tesv1EBSvICkDEHm2yomoufrSGx+OhzmjH4Xbj8QjqXzdw16dbKD5qYO6YbJbNGca+KiNRwQq2lzUyKjeaNQfrcLo9NFocPD21O8t2V3PXeVlYHULxtr1qzsRQFcEqKXpLyz7x4l4J3j2OWi7lop5xLNtd7fO6oZmdty+oN9mZ8soa717130v24fbArSMyfPanx1otyxvM3vX8GJYUV2Oxu9G1o5ZhsTupNzvYUtJAUpimOTCgc0mnwqQQ+qSEeknExDCV4AN1hhMf/2g4B3YB/7uQScVcPSSVZXuq2V8tqGymFsWTHH7mZdenCofLzZ4qA48vFHrzrxyY3CltYvGhap6ZViBUmZXSE5ooNpntlDVYWLanmsLEUHJjg87K4t9ksbNqXy1vrDqEViHlvnE5ZERpz4r00ely02B24HC5+fS3EraXN+FyewhSyXj25z0UVwqbQbvLzT8XFnNeXrSXPIoMUvLhNf14ZMFOdlboGZYdmLwz2hz0TAzhhUt68NKy/RyqNZEcrmZ674RTMrwOUkhJi9B443wBZvRJpLiVDPcYAnkUdDqcduHg2I4ELolETFyIirnn5+DxeDrkB2F3uQOmYNQabWRGB51Sj3j3BJ3fWL/U8HarNVbvr/NJyprx33UsuWsYGoWTCK2/99XZRp3Rzoz567ztg/+3YCehGnn7DnC6BJj9M9iNIFWAPKh9/i75U/FUbqMucQwij5uwsiWIkgfCsscgOh+G3XOav5U/nG43S4ur/cZX7q05Y+RRV8Fidx1no+nykkddDrEMlP6moCfzgjobsDldGK1O1HKpT3uF1eH2EkfHsLNCj8XhHyZxPOitDn7aUeUz5vbA9vImEkLPgf2JXAM9LoOtH7WMjXhASIlrg0azoMSQiMWdfvBweTx+xuBAwCSxU0GoRs703omMzY9BLhX5KYU6gpJ6M0+2Okx/urGUoqRQLumd4DOfh2nkPp/TE5O7c+n8dd7izuxBqazYI8xBxZUGH/LI5XJTZ7Zjd7pRSCWnHADTGQhRy7ikdyJP/FCM3eXm2vd+Y2L3WF6b1YsQlczPS7Gz4uK7ClFBCpQysU8r1sD0CORS4fNtMNm5+t2NNDQrVA7Vmrj5o818cHW/gPvh6GAlz17SA7PNya4KPXM+34pULCZOp+DNK3qjkAoJZ0FKWcD5N0Qt5+6x2Vw9JI1ao42kMDXhGjlSiZj+aeF828avsWdiCH1ShNSyWz/+ndG50Ux+ZTVOt4esaC2vzuyFvJXaIy1cw093DOFIrRmZVMyGQ3U88/Me0iM1J/V4kkrETO+diEIq5otNZSSFqrh3bCZh1esQySLJD4cXVh1h4W1DUEjFPoXLiwrj/YIYrA4XW0sbuffLbVQ0Wjm/Wwyz+ifz96+28+y0Aq54eyP/+nkPS4qruKxfEje8ugmPB64dksbiO4dRpbcSq1NicbgYkhnJkuIqFu+qYlBGBBMKYtt1XgnXyPn6xkE8tnAXpfUWphbFM6Nvkk+r55DMSO48L5O3Vx9GI5fy9/E5fobap4PSgK2KZVzePymgmkoiFvt9vsFKGe3lZXZW6Jnx+jpvO+CkHnE8Min/pKowl8tNjdHOr/tr0Sok9EoO9bm+WoON0gYzbo+HpDANr1/em2qDDbvTRYxOdc7ZYpyLOHdnyv8RRAcr+eS6/hitTmQSMRqFRGCSjTXgcYEi+Kz08LcXVXobN36w2fv4+cX7SAnXcGHP+NN+7/ZUmR0uN99vq/Q56E4ujOfhiXld7pbvcrmpNtr4cftRxCIYkRPFO6sPe1OGJr+ymuV3Dz/jm+0mi50fth/luUV7sDvdzOyXzAuX9OC2T7aQGq7hlz01fq8RiJ+WVsnEMDUvTO+J1elCK/ffVFUbrDy+sJhf9tQ0L/xF6K0OrA43VQYrMa3KCjUGGxa7E4VUQrBaelz1SkSQgo+u7c+85UK62ISCWC4qjKe0zje5QSIWcWGPOIxWB2a7C5W88zyfvDDXw+Z3Yf1rINfCmMchZVC7zJA7SqyEqGRMLYrn6Z9aosg1cknAimF7kRiq5rqhabz5q5CM1S81jMv6JrWrjdNgdfDpxhKfMafbw087j7KtrJF7zs8hJUDf/9nE6gO1fr5Tn/1WyvDsyPbdG9oo4OQpia2hl4axOv0h/r30AGIx3DnyQQaULybI4wZDldAC1ckkm1QsZkROJN9s8Y1CH9yJ1cWzBWmAjaZOJeOMnj2VwXDeP+DwKnAKqgUS+0Fo8hm8iJOj1mBj/qqD/LKnhh6JOu46L9t7SBCL8Et5VMkkHfKTUcmk5MUFs73ctw0i7TRVxZ0GVYjgOdhjBpRugMzzhFZTqe+aX9Fo4Z4vtrLuYD0FCTqendaD1AhNp5HfMomYWf2TWdDKfkAkgvEFsZ3y/iCoqDuD9FrTRuEOQsz2hT3iTngYz48LZsU9I9h71IBKLmHTkQaeaU6dGpvvSxztqNBz7Xu/UW2wER+i4o0repMTE+T9vC12FxaHi2ClNOBaZHW4aLI4qDHYiNDKCVHJUXbADLreZMdkcyIWi9DIJVzcKwGxSIgLjwtVcsuoTKKCFF1rZ3ACNJrtVDZZ2VzSQGFSKHE6Zbv3qUqZhFdmFvHIgl2UNpgZkR3FXedleVuGLA6Xlzg6huJKg49JeFsEK2VY7S5u/fh3TM0edpuB77cfZemcYSfduwqJtHJS29hsjMmL5uedR717zYk9YkkIU/N/3+5gR7meqwamsOZArZcU2Ftl5LttFdw6MsP7HhKJQDQ53G62HW5kxd4apvdJZFqvBJzuEyuPQCBe/9Y/mQu7R6Oo3YH2g/6gryAKuOS8Zygp6IXJ5uStK/swf+VBGsx2Lu6ViEIipm1oc6PZzuVvbvDaOSzYWkGQUkr/tDA+WF/CRYXxvLvmMPurjURqFV4rh0W7jjKuWwx3fbaFZ6f1oDAphMcXFvNxs3J40a4qVu2rbfY7PfF9IJGISY/S8tKMQuwuNyEqmd99HKqRc8OwdC7rmwQIQQydGTsfaB5KCFUfd20JVkmZOzabfy4s9o7948J8QtrRslZntPHIdzt9fKS+3VrBXWOyTkoeVTRZGf/iKm9gQ2KYiq9uHERkkIIag40Zr6/z2qIkh6v5/PoBf6iOn3MBf5FH5wAitIqWvnGHVUgP+f4O0JdDt4th5APta6M4DhwuNw0mOx6ETWRnxiWu2OtfBf9mSwWjcqPPiLy90WznmUV7fMa+/r2cuWOz2x2zfqqoMtg4/98rvUz8C0v28e7svsx6Yx2JYWoaTA5W7q3lsn5JXXshbVBab+H+r7Z7H7+64gBPTe1OQYKOnRV6BqaHe5VuIBw2AvkoBKtkBON/rxisDh7+dic/7hB8ETYebuDytzbw7+k9+dtbG5hYEMvz03XIJGJK6sxc/tZ6jtSZUcrEPDG5O2PzY457b8TolDxwQW7zBlOGRCxCJhHx/tV9eXnZfuRSMfePy0EqEXPPl9vYeKiBouQQHp6YT1wHPT1OiAPLYckjLY8/mQG3/NYlSVpSiZjpfZJwe4QEmFidkocn5p/WgSFUI+fWkRnMHpSCy+1BJZe2+/0UUgkp4RpWtlEvxIeo+Gh9Cfd8sY3XL+/VJeSs2+2hzmTH7fGglEnarThJDUBmpUdquyzZA+BgrYkbP9rifXzdh1v5fvYQugUnQN9ruszzaEhmBFOK4vnm93LEIhGz+ieTH+evNDse7E43DWY7nubP+FyJpA1WSrl7bDaPt9poPjIx/8xfX3gG3LoZjqwWWg8js09r/e1s6C0OHlqwgx+3C/PvnioDOyv0Xp+dMI2cp6YWcMMHm3C5PYhE8PCFeehU7V+PVXIJd4zK5LfD9RyoMSESwTWDU4kOPnFF1uFyU2Ow8cWmUtwemNYrkahgRacbIQOCv2DaMOG/AKg32bjlo9/ZXCK0I2wuaeSKtzfwxQ0DcXs87K82khCqJlQtO617LDtGyyszi5i3fD8KqZh7zs8hpqu8nk4DvVP8FXWD0sNRnKQdWiGTECOToJKJ+W5rJe+vPUJSmJp7zs8mLqTl96wz273EEUB5o4UbPtjEFzcMJDJIQWWThReX7KO4Us/47rFM653g0zLncnvYfKSBq97ZyOTCeC7ulcBXm8tJidDQNyXspN5ItUYbN3+4mfXNLdvHkqauGigYOCuk4k4tMjldbmxOd7v3uRa7i082lvq0Us0dm81Vg1JQn0BZX2u0sbW0kSq9jTF5Ufx3VhGIRChlYh9ll0omIVQt8yGQ8mKDT+rdIhGLSI3UsKNc7zOm6WCCm9HqQCIWo5ILbX8vXNITs92JSCRCJRPjcHl4eGI+kVoFVXorM99Y731tVrSWULUMp9uDye7A6nAhFonQqWSs3FvLvirBt6ei0cK9X23ng6v7teuaJBIx4TTBxxeCo0XdHbTyUWZdspzdNf/P3nnHR1WmX/w7c6fPZNJ7b5ACoST0XgQFASmKomLvumLfn2V33V1d19XVLfaKK/bGrg1QqUrvPRBIIaT36e3+/rjJJMNMIAkBYdfz+fAHN1OSmXvv+7znOc85ZoprTfxqUgYqhcDaQzWE65WEn1ArldRZ/HxA1x6q5a6JGXywuYzJ2VLjaUpuDDlxRl5fWIDZ4SIqSMN9H+8kOUxHdqwRs93Nx1uO+bzOd/ursDjcXd6vnGr/plYIRAadmbonVKfkymFJ3nFmg1ohkUGd3D91KgWXFiQyKTuaQ1UtZMcaCdEpu+SH6mkdEzwRZsfJFbROl4dX1hR5iSOQ9kQ/FUm+Z9/tr/Lx0y2ps/DFjnJuHpse+PdorUlBRK9WnPRa/V/CL5/CuQZrPbwzE9ytF83Wt0AbKpmwKrovpTPbXfx4uJb/+2w39RYHk7Ki+NOcvF6T5WVG+W+ms2KC2hcstxucJlDqQej9002EgPPPgdKvehvvbSr1kXA2WZ0cqTHx0S0j2VxcT0ywhsyos9+p/X5/ld+xtYW1DEwMYfneKj67fSTVzXaW76skXK/midn9COkGoWh1uvnuhPeoabGjaP3O0yINCDIZTRYHj3yxm5JW5ZDN6eGBT3YxMj3ipAWXRin4jPoFaZSMyYykf3wwcrkMl1vkxsWb2VYqKbyW7a3iWIO1W54eJ4XdBIXfUD/zHSzh/RBkIrqjywguWiltLM8AwvQqbh6bxmUFiagUsl4xE+ypP4xKIefW8eks31dFZbOkvhiRHo5GKae03kJNi91rutqbsDvd7DzWyL0f7aS80crYzAienjeAaKPmlKOAGVEGxvWJZHWh1OmMDdZwy7i0bpu2dwcftSYQdcSn+y30u/ZLMESfsfcN06v53YxcHpzaF5AKuK6mjrXYnCzfW8Xj/9lLs83FuL6RPDNvgM96YLI7Mdlc2JzSxuhsSbh1agXzCxKZnB1NYVULObFGQrtYaPYqFGoIjoe8y87u+3YRVqebZa3EfRv2Hm/G2lpUKwQ5o9LDWffgBErrLSSEagnWKtF0068sNkTLh7eM8KaB6lWnjj6ubrEz9bk1mFoL91fXHGHFPeOID+2c2LfYXVSb7Kw8UE1ahJ5+8cG9ch93uDxe4qgNZfVWmm1Opv1trVeRcefEdK4bmdrj9wzWqrioXwzDUsOQn8PhAmmRBm4YncrbP0kx25Oyorh4QFyXx8qCtSouzotlfJ9IZHII16l9VEEOp8fHmxCkjVkbobjgtY0cbR3n23msicpmGw9OzfKqnkx2J9/sqaR/vJHJOdHMf7V9DPlUJuSiKPLlzuNe4gikpKl5+QlMyIrqlfQ7ABJ0KQAAIABJREFUkO6fKkHuNVbeU97MJQPjGJMZecrvvdnm5PnvCn2O/f37Q8zLT+h0Q1pnsnPLv7aytUQ6jx/9Ar68azQ5sf5j1aF6FW9eO4Rb391KVbOdtAg9/1ww6JTndbhBzdNz87j81Q0021zIZfDwtKwuJzQ225zsLW/ildVHMGqVLJqcSWKYVkpYPOEzaTPQd7k9uDyiZJY9pz+6Vg+tz7aVkxtn5Pq3NxOiU/HspQO4bXwqn247zpc7j5MVa+Sta4d0b00S3T7EEQAOExpBxrF6C5nRRu75aCdmu4trRqQwJDXM75oI1JjsGxPEsQYrU3Oi2XO8iflDErl/Sl8pfTRHQ73ZQXWLjdcWFhCqVxKuV1PdbEOlkOPqQIAIctnZVdeeBkJ0Kh6Y2pcbW0cVk8N0p2xKtqXUnahOO+V7aVVcMTSRv6445D0WG6wh0nDy9/Mg0hjAXLzt2NEAY8ZHa80Ba0yz3cWmo/U8tnQPNS125uUnSGq/c9AT7WzjF/LoXENtYTtx1Ib9/4bht7WOVnQPTVYnt7671Wu0993+ahJXHuahi7J6xYsnXK9iam40y/ZKZEJWTBAzBsThdIuo7DWw4304vAJSxkD+dWDo3Q5ukEbJdaNSeHFVkffY0NTQM6J6arY6MdldWOwuooxqP9IqM8pAQqiO2S/+6B29GNsnkufnD/B22FweD4JMdkY9Y/IS/f05BiWFcFG/GO6ckEGYXsXT8/J43JmLDIm46I6MWy6TkRqhp7Cqnb1XCjKUcjkJoVoWDEtCLpdhd3nYc8LYg9sjUme292gOu627UdFk9RJHbdh7vNnHC+C0oNBQM+YP3P7pETaXHEAmgyvzh3PvuHj8HTV6D0pBfs7MWseFaPnPXaMorbdic7qpM9m57+OdAAxPOzMRpo1WJwvf3OT9HlcX1vKHL/dxxZBEvtxdwYKhSaRE6AMSYuEGNc/NH0C92YnF4ZKKjDOcxtcmc5bJ4NJB0Vw9wEhquI4mZTA7jppIDPMQpledEeVMd9MW29BocXq/R4DVB2t4dU0R90/pi1op0GR1smRDCc+uKMTtEUkK0/HeTcPO2uht29/V3ULzfwkyGYTr1dR0iGxXCXIfdU+bf0t3E9ZOhI8qugv4eEuZlzgCsDjcvLephAemZnX6nJ3HGrny9Y3eGmV4WhgvXjm4WzHwgSDIZSSEan3MrIPUChotTpxuEbVCzsV5scQFa7E63BxvsBIbounR2txkdWJ3eZDJpDqhN9XdbWi0OGiwOKhotJEWKSk1TjT1PRnC9CrumZzJjWNSEUXQqbqnOqxssnHD4s3sPd6MWiHnsenZzBoU770fq5UCscEaKpps3uekR+pRCXJMdpeXOGrDx1uOcdv4dJSCjKpmO0s2laAQZDwxuz9Ldxz3aQDuPd7MsQZrp+eiyyOypaTB7/j2sgYmZPnXzSa7E4vdjUoh79Jn0GhxsPFoPe+sL+aeyX145PM9HKySfCN/OFDNfRf04ZZx6SclukVR9AsFsbs8eALF2LaiusWOTiVIPk06JVuKG3jq6wM8f8VAv+tDKcjJSwjhP3eOxukRUQvyLifZZUYHseqB8TRZnehbPdS62pA4UNHMFa+1q4hW7Kvih/vGnfTeEx2s4ZWr89lW0kBVk43nvpMIgo+3HmNEWjgPXZjFA5/s4srXN/LDfeO4fmQKcwcnoFUKp/Q78oNSB6nj4Ohq7yExYyp2uYaJ2UamPr/We/zZFYWkROiYMcDXdsOoVfLA1L78tXVdTAjVcseEDDYX1zNrYByXDIpHKcgw2V2sL2ohNcJAiE5JVozR73XumpjhY1FwzYjkcyOEoIvobFSxt6FUyLlqeAqhOhWfby8nPcrAokl9TlnXqRUCN41N48tdFd5jGqWcyTlSQ29ufjyvrTvikxJ9xdCkgPf9BovkI9Z2K1qysZS4EC23jE372UZfzxWcP2fs/wqCAyRIReWAomdF4OFqk19Cw5pDNdw+IaNXNoAqpZzRGZHcMjYdVysxUFxrJjtEhK8fgL2fSw88ugZKN8Dc10HXe1twrVLghtGpZMUE8fWeSvKTQ5k1IK7XjTGbLA5eWXOEl1YXIYpSUfTqwgIW/1TslbNeVpDAX1cc9CkQ1hTWUN1iRyGXc6jaxHsbS0iN0HNZQeIZizHOiw9mWr8Yvm7tThekhHLJoHifwsuolfe4wI0wqHnm0gEseG0jJrsLQS7jsek5GDQCn98+0ntz16kERmVE+N3ET7cLKMhkfvJso0bRa9GaLuR8sLuFzSUSQSWK8O6WSmYXpBDWi9xnk8WJ1elGLodQnerMjHacBiKDNARrlew+1sRT3xyg2eqiIDmUJ2f3PyObo1qT3Y8AXHe4lovz4nh/Uxnvbyrj7euGML5vYBI9TK8+7Q1nV1BvtlNYZWJURjh9og3cOSKCifYfMHzxLHjcWIbehTNkBhPf2syt49K4fXzGGfm8eoIDlf7m8+sO13LruHSJPLI4eHpZe2FbWm/hya/38/TcvC5vJn7BmUWYTsUfL+nHbUvam0L3TulDkObU5ZzT7aHe7KDJ6sSokRRrXVUYdESD2UGd2UGd2U5KuN5rlBtI8HsyEXCdyc6TXx/wecyGI/XUmhynfS2H69X8/fJBXPPmJlrsLjRKOc9eNoAlG4rRKOW8cc0QVh2s4Y11xawprOGWcemolTLCDd1bl+tMdn796W5W7K9CLoP5Q5J4YGqfXr0XNVmdvLDysDf+XK2Q8+HNwxmYFMDc/SRoS0HqLix2F39ZdpC9x6X7h93l4dGlexnXN8pLHoXpVbxxTQG3vLuVsnoraRF6Xr46n4ggtd/ID0C4QYUMmaRWe75drfbexlI+umUESzaWepO2QFKmejxiQKWUUpAzY0CcT60BUkrsiahutvHHr/ax5lAt2TFG/jSnP8nhuk5JQ1EUWVNYw68+2IFcBndPwkscteHtn4q5fGjiSTe2WpXA1JwYvt3brhqcnB190hALQQbzCxJ5/D97qWq2cUFONPdN7UtnfJMgl/WormyxOflk6zG+2lVB35ggFk3u0yXVssXh8p6TICnE+sUHs7+y+aTkUZBGyQXZ0fSPD2ba39f6/Gz9kToeaFXVmuwu6swOooyantf0ujBp37HhRWkfkj4Bht5CtBDCR1vL/R7+2bbjTMzytd0I1iq5ZkQycwbHY3d6UCskf77c2BSUCjkmm5N31pd4107JamEYw1LDfM4rjVLgiqFJjEyP4MfDtRSkhJERZTizCaJnCA6XB7vLfUZ/9zC9iiuHJXNxXhyaE4hDp9tDncnBrmONRASpSQ7TeRVBaRF6Pr99JC+tKsKgVnDXxEyvYikuRMu7Nwzj2eWFeESRuydldurhuftYk9/6tWxvJVcMTer1Peb5hl/Io3MNuggpKnrdX6Vda3ACTPkjaHrmtZISgB0emBTa7XnmzhBl0KBVybn5X1uwONxcPTyZm8amgbMe9i31fXDR9+C0QC/rN0rrLXy0pYzM6CA2HqnDqFEwY0Bcr86mNlqdvLiqiAiDiolZ0XhEkVX7q/h20RjeXHcUmUzG1NwYPt56zO+5zVYXFY3SLH8bPtxS5jVw622EG9Q8Oac/D0/PljqMasFrqthbSAzVseyesTSaHYToVARrlRhO2LwYNEoeuziHZpvk/ZQQquXZSwd0a0QuEEL1Sv4ybwC3LdmK0y2ikMt4au6pDQe7CpvLw9aSRr/ju8qbyU8J75X3qG6x8eAnu1hdWEOYTsWTs/szJjPinEt7USkEBiWFsvTO0bg9ojeB5WTweEScHk+3/YbC9SoEucyn45wbZ6S4rr1j/bfvDpGXEPKzLdwtNifPrTjEvzaUEB+i5S/z8hgiFKJc/Kj3Mbq1TzBwdh59o4N4Zc0RFo5IOWfIo0DeZkNSwryF8rEAKYb7jjdjdXro5p763ITLLpnhN5ZCUAxogiXz5fMICkHO6Mxw1rSaGKdGGgjXq7rUvS6sauGK1zbQbJVI/8dn5DB7cEK3Ot8NZgdPfL2PT1o3Xga1gs9vH0lmdBDzCxJ5fe0RLK1jGRql3GveGggeUdqAnohTRXF3BXK5jP4JRr6/bxwmuwu9WoFcJhX/lw9J4uvdFV7vjqIaEzvKmvjk1hHdeg9RFFm2t4oVrWPcHhHe31TKxXmxjMrovTXXZPfdpNtdHh75Yk/vjWqfAmaHm+2l/sqekjozia3puoJcRnaskc9uG4XT7UHVQfmiVyu4ZmQKi38qJlSnJD85lNvHpxNhUPHy6iM+ajW7y8Nn244xMSuKz7dL51i0UU1CqJZHvthNtFHD5UOSiDb6pn4OTQlj0eRMXl97FKUg474pff2Sf5utTh76bBcrD0jjzeuP1HHl6xv54o7Oa7FGi5M3fywGpO9XEYC80qkF4OTNq2Ctiidm92NgUghrCmsYnRnBZQWJJ61b9GoFiz7c4TUNXra3ikiDmoenZ5/0vboDq9PNSyuLeG2ddH7tPNbEhiP1fHrbyFPWp4JMRphOhUIu47n5A7E63Ww4Ukdlk406k917btaZ7DjdIkpB5j0mb/WzlAcg7doOCXIZIbpeWDsNUTD+YRj5K1AZqLOKvLDiEIOT/cnX3HhjQB+wkxGvJruLf6w87P2/0y3y0Ke7+PTWkX7qrzblzoAAEwLnCyqarLy6+giHqk1cVpDAmD6RpzSx7ink8sCjwKV1Fmb8c513rRmeFsYLCwYTblATpFEyKCmU5y8fiFwm87PBGJURQU6sERHxpCR/oNCa3Dgjdpebmhb7OTMp8HPg3Nqp/AKpkB11NxTcIM3pqoN6NK7WhhCtkt/OyOGpbw5gd3nIjTPywJQ+vbZJtbncbCiq409z8lAr5Kw8UE29yU6EXibJRR3to00IKpB1fUPpdnuwujzoVUKnXaHaFjv3frSTo7Vm1rWmiawprGVcn6heJY8qm2zMHBDHVcOT+XTbMdSCnPzUcIxaBb+bldtaNshYOCKFRzskv4XpVSSFabnxnS0+r1dWb6Ws3gKIZyRCuG2BOhOobR1harY4USvkyGTwjwWDMQS4nUQbNfz98kHYXZ7WFCD1aUf3KgWBkRnhrH1wAlXNdqKMaoK1veeNolcJTO0Xw6pC31S64WnhmFs3IacDq9PNP74/7E0iqTM7uG3JVtY9NPGcI49AWry7ukhWNdt4b2Mph6tNLBiWRG6cscvnYZBGyZ/n5vHoF7uxOT0khem4Z3IfFn3Ybkot/5n9AUx2F0s2lgCSIex7m0oZErzU73ERR5eSl3ALB6tasJ8Y3fIzIkyv4vGZufzpm/3YnB4KkkO5s4MKNS1Cj1KQ+ST0TMqO7pKq5bxA1R54++LWJgYw7v9gxG0SiXQeQa9WolcruzVOWGey88DHu2i2Sht1t0fkd//Zx+SczgMMAr6O2eEljkC6Jn7/5T5eWDCYKKOK5feM5b2NpXhEkSuHJZ/UZDtMr+KG0Wk8/Hl7wENCqLbX4qWVgkCUUfDmKDbbnFw7MgWXR+Tatzb7PLay2XZKM9YT4XSL/Hi41u/4xqN1jMrovQREs91FXkIw944MIz5YzbpiE//aXn9WvB0BDBoFozIiONJh9Ewu899ctdhcmO0u9lU0kx0bhFIh93qeLJqUyXUjUzDZXXy3r4ryRhvpka6A93NBLuOmManYXW5ig7VcMzKZm97Zwr4KSfGzZEMpX909mqgOSp9QvYrbxqV7A0oCqXltTrdf2mx5o7WVwAx8nioEXwJjX0UzU3KiWb6v3ffx4WnZfibLgRBuUHPT6FQWDE1CpxJOOfpS1mD1SZsCWH2ohrvtmb1W37ZYnXy41de/r7TeQovNecp1X60UuGNiBiFaJTvKGnmjlYD6bFs5Pxyo5pl5A6i3OLh9yTYOVLaQFRPEi1cO9iYehuhU3D0pk9/+e6/3Ncf1iWR/RQsqQc7vZub2nrJFoQJFGHaXm1fXFPLWT8UMTQvjgpxoVrR+l5lRBhYOT+7WSFKLTRqDfeWqfDRKgX/+cIg1h2qpbLLi8njYfayRTcUNDE0JJSZYg83pYV9FM5lRBsINqpP6WzbbnNgcbnTdGCM806hpsTPvpfWUtzaa1h2u5Tczclg4IhmF/Oyo5002J099u99LHIGkWC1rsPqQ6Se7RrriTRdtVHPTmFReX3e0deLEwGUFiUx9fg2RBjX/umFY7wb1nEf4L6kI/8ugCfYpZtviPbe3xnvGdiPe06hVMn9IIhf1i8Xp9qBVCb1mHghS/OvwOIG8oBZkoht5ssCSjaU8OjUN5cRH4dtftz94zH2g9jf6C4TaFjsfbilj89F6puRGc2G/2IAEiweRkjrfWXqH24PN2bsbtpRIPVcPT2bB6xu8G6vPtpWz4t6xPjfMi/Ni0asE3t9cRmKojkWTM9EoBZQBbqoOt4dr39qMUpDzuxk5ZMUaz4iXTG9j77FGFk3KZFtpAx4RCpJD2VbawJScmICPP/FcFVtTFDyI6JQ9WxR1Kin1ICa492/ckoosmgMVzXywuQytSuDOCRl8v7+KrBgjE/pGIpzGiJnZ5mTdCRsOjwhHak3n9UJU02Jn3ss/UVYvFRVf7a7g+fkDmTUwrks+Inq1gul5MYzOiMDucqMS5Pxm6V6vZ4lMBvdd0OdnTQcTRd8xnLJ6Cy2Z+X5aysbIoZTttZIQqj3rfgYWu4sGi5PC6hZSI/SE6VRe5ZNRo+SyIYlc2C8Gt0dKW+t4Xw3WKll83VAe+mwXlU02pveP5bZx6efFfemUMNfCf+5uJ44A1jwFg68+78ijnsAtij4pMyB5xQRS/pwM9Wa737HyBit2lxujViK0Hrywc4+jjhDkMqb1jyEqSM0Hm0vJiDJw7cjUM9bRNWqURBs1lDdaiQ3W+IxFAejV3TvPVQo5U3Nj+Gq377jU+D49b/gFQrROzjsXKglZdh3UHSYtYyqXLPwzmrOkaNQqBe6d0odjDRZWtapln5jdzycN0+508+WuCh8i8Hczcpg/NElKAtOr2FXexLVvbfKOXQ1JCeH5+YN4YeVhb/iIRilnbn4CD3++m0FJoQxKDOGPX+33EkcANSY7O0obmZLrW3OolQJRJ7lXyWQyksJ03hAPoHUEqfPnBGmU/PrCLNYX1WF3efjT1/t56ep8rh2ZwoHKFsb1iSTK2PWmmCDIMWq7Vj/EB6gH8uJDTjrq1l3IZTIi9GovqdyGrt7z44I1XDMqhYnPrvI5/t3+akx2F9e/vZni1s/7QGULNyzewse3jCAiSEphnDUwjtx4I1/vqmBwcihDkkOxuTyseXACRo2i2w01i92F2eHGqFUE/F5brC5+OCilRN//0U4enpbdusbJcXtEVIqud6dMNhcfbynjj1/txyNK9gn/XDCYOrODa0em8OHmMq+fE8DdkzJptjl5q1XJ9tCFfVk4IiVgjXC80cpvlu5hR1kjw1LDeezinF4j1U8H1c02L3HUhrd/LGZGXtxZU+I43SK1Lf5JbHUm/7XpdBCiU3HXpEyuH5WK1emmsMrEvR/tpNnqotnq4ulvD/DE7P7nlWdVb+F/7y8+z2B1uHl/U6mPwdr/XZTFwhEpXTaOa9tonwmMihMJWft3VN99BEBU3CCyZ/4Lj6CGAVdIMbplmyA+H4wJoD61yVq92cGd729jwxEpOWNVYQ17jzfz8LRsv4tUoxCYmBXFd/urvcdigzXdLgJPhVCNkn/uPO7Tkbc63SzdUc4dEzK9x0J0Ki4ZFM+ErCjUivYZ3T/MyuXfuyo41mBhxb4qMqIMWBxur4fAZa9sYPWD44k9A2RIbyM2VMeC1zZQ2xqjGapT8sHNw0+ZiAVgdbjYXtro3ZxenBfLI9NzTkpo2p1uqlrsvL+pFK1Szrz8RKKC1GfUsC5Mr+aOCRlM7ReD3enh8+3l/HvncaKNar68a/RpmTHrVAoGJYb4GYgmh53fJsHljVYvcdSGl1cXMSYzosujFVqlAm1w+zX+5Jz+TNwfxdEaM3PzEwIW02cTOpXApKwovj8g3W92HmvCOnsEYt+LkB38BgBP2kQaEiYQWVrPM5cO8OmOn2m43B7Jw6hDSMIj07O5cmiStwjXKoVONx9alYIR6eF8ftuo0yJ3EUXp31nqRHYJHhc0lPgeE0Vfdex/CRotDo7UmFl7qIahqeH0jQlCp1QwOTvah+gI16v8xo1PheRwPUFqhU8U8pzB8T0eWwjRqZicE83IjHCUbcbf1kaJ5JPJQRcOQu+RJFFGDXq1gj9c0o8rX9vo9eO5YXQqQeruv8/ozAiuG5nCko2lKAQZd07IIC2yd+/lRlqQfTwX7BKBIhR+RYhKh2zGc0DPLA26giardB59vr2c3Lhgnpqb5x3OCtX7KnsarU6e/Hq/z/P//O1BLuofi1YpUGey8/S3B3z8ejYXN2J3efjo1hH8e8dxXB6RefkJlNVb2FHWxI6yJrRKIaDCqifrf4RBxV8vG8BVr2/C6nRLo5uzcn1IsEBIjdCz8v7xbDxaR4xRQ2Z0EBEGNSN7UV3WETUtNr4/UE1csIZHp2fz9LcHcbg9pEfqeXh6dq+qUMINKn4/K5dr3trs/ZyvGpbUZWsLhSBHIZchBKj9RPASR0pBxrT+seQnh+Ls4IEVolNRkBxGQfLp21lUNFr5y7KD7CpvYlJWFDeNSfOOjdmdbhqtTuwuN69fU8D+4828uuYIj3yxB5kMPrx5BAvf3MjjM3O5rCCxSw0vk93JEx0825ptLv787QEemZZNSoSeCc+s8nn8y6uLWHz9UC959NyKQ8we5D82XGuyc8PizexvJUy/2l1BdYuNV64u+Nm9dgKRikatolNFeKPFQWWTjd3lTQxKCiUySH3K6+1UCNEpWTgime1l7fYSBrWCfvG93wQyapQYNUrWFNZw67tbfX62u7wZi8P9C3n0C849NNmcPN+BuQZ47rtCLhkU3/3UgTOAcGsxwt6P2g8c307IgfcQxt4PyhBpDC8qp1uvaXG4vMRRGz7ecoy7J2X6XaRGrZInZ/dHp9rH6sJasmOD+NOc/r2qrgJpgQy04ZLJZBytMROmVxHcKm1uk+O2od7s4FCNiaIaE7lxwTw4NQuzw8UNb7ePsjncHnaWNf6s5FGz1YnF4UYmk27OnXXjfjhQ5SWOABosTr7cVcF9U06tKmuyOrnmrU1eEu7z7ceJMKi9aU+BUNFkY+rza7xG5K+vO8ryRePOeBfG5vKwoEOKCECtydGpWWVXoVMrePDCvhysamHv8WY0SjmPTsvundn+nxGqAIblbWONPUVkkJorTuKZcrYRopOSCr/aXcGPh+uYmhuNLiQK2awX20kIpR6jaOBPcxK6ZUZca7LjEUX0KkWPi5Fak4NHPt/jo476y7cHmd4/tssdXJlM1uWUHj+4ndBSAZtek/yFht0CxnhQdn6t1prsHKoyUd5gYUR6BOEG1ZlROqmNkDsbti1uP2aIBs356z0RCFanm3c3lPDM8rZY8ENcMyKZB6b25Xczc1AIMn7YX01mtIE/z83rth9euF7FZ7eP5Pdf7qO8wcqcwfEsGNa9UY9A8Da4TFXwxR1SSqsuDKY/BxmTQe3vP9GGBrOD0noL28saGJYaTlyw1rseB4JerSAvIZg1D47ncLWk+Oy4hncHYXoVD1zYl9vGpwNSTdLZ+VtvttNkdeFyewjVqYgIUkvXvUeUxqw6Gb2WWeq8xJH32OEV4DBL1gZnAG6PyA/7q7nno/Z0xoGJwbxxzZCAzQCPKPp4F4F0LrYREqIomeyeiFqTgzve28qAhBAEuZzZL/zIKwsLiAxSU9Ni5+vdFfx+Vj9WH6zxjnAlhGrpH981FXtHyGQy+scHs+qB8dSZ7ITqVQRplCetpU12JypBIC5Ey+xBAQJtehk1LXZmv/iTV3F7w+gUvr9vnNe/srdrW5lMxuCkUNY8MIGdxxpJjdATY9QQ3A0y2KhVcvuEDP7SIWxh1sA4lIKMaKOaRouT1xYWsOFIHUs2lLLhSD3/d1EWCaHaXkserm0yc/WbWzhcLa3Dh6tNVDRZeWJ2f3RKgW2lDSzbW8WojAje/PEoTpeHm8amcbCyGbcIm4vrsTk9fLOnkovz4rq0BrfYXH7E5tFaMykRekRR9DOKd7g9CB1YFofbg8vjf03YnG4vcdSGzcUN58QIfKhexYS+kaxsHf9sC8wJdE8w210s/qnYR3315Ox+zMtPPC2bCZlMxvisKJ6/fCD/Wl9ClFHNA1P6dml0tKfIiDL4eXJOyorCqP3fpFH+N//q8wg9ifc8m5BX7vI7JpRvwWIxsfqohfVH6rioXwxZscYudyYFmeRr0vGerFHJO/UjjDJqeHJ2fyyOrkevdhdyuYyFI5N5b1Opt0AK1SkZmR7B1OfX8NsZOVw2JNHbiTPbndSYHFQ0WllzqJaXVhUB8P3+alYfrOapuXmI+H6HZysOOxDqTHZ+s3QvX++pQK9S8OuLspgxIC5gh6DF5j/m0GJzdUl5VFRj9lFvgSRvvnlsGpEBCm6Xx8Mb6476XAPNVhff7qng2lGpXf3zegSdSqBvdJBPssqMvFh0vUDaxgRreef6oVidbpRyKfnuXCCDTwfRRg0DE4PZUdYESGNmD12UdVYS0M4mwg1qrh6ezGUFiR02iWHeFEk50B1bdbvTzZ7jTTz06W6ONVi4uH8cv56W1aNNgkeUEi87wuH2+K0hZwymanhxRDuRtvUtuH09hGcEfHidyc4dS7ax8ajULFAJcj69bQT9EwITOk0WBy6PiEoh774XhkoHEx8DlR4OfAkRfeCip0HfixGK5wCarU5eWFnkc+zdjaXcOj6d2GAtT8zuh2WaG6XQbn5f02Kn3uxAqxQI0ipOulYrBDmZ0UG8sGAwDpebEJ3KjziyOtwgo/vjNU4rrHlGIo5AMjf/5Fq4e3en5JHJ7uTVNUW8tPqI99hvLs7hymFJqBRy6kwO7G4PKkFGmF7t3bx3uVu6AAAgAElEQVSpFQIxwVq/0WerQ0p4+vFwLYmhOvrGBJ1SOdkVdbfkObWTH1o3XemRet66bih3vLuNapONBcOSuHp4SmBlgTYU5AJ4Omweo7IlH8kzhHqzg+e/921c7ihrotHiDPh5aJUC4/pGsrqDp9CI9HDvORCmV3H7hAzu6eBhlxqhRy6DmhaHj3q8sLKFYalhfLmrgoomGyIiy+4Zyxfby4k2qpmSG9Nj9a9KIRBtFIg+RSpZo8XBpqP1vLexlJQIPTePTTsrY+U7jzV6iSOAN9YVc7zRxjOXDjhthUOtyU5Nix1RFIkyarxrjE4tjYfFh/bs79MoBRYMS2JoShjL91UyLC2cQYkhhOhUvHxVPt/sruD7A9Us/qkYkNLqtpbU85+7RveOMtdci6XF7iWO2vDV7koenZ6D1eHmsaV7eWJ2P654dYN3b7GlpIFPbhvBhqJ6nlkuEV9DUsLQdJHY0KkVhOtV1Jnbm6kTs6JosDhYd6iWKTnRLNvb7o01NSeGrcXtxvMDEoID1n1KQY5BrfAhYyMMqoDqrrONML2KZy4dQFGNiSO1ZkalR3RK2rTYXPyzg5E4wJ++PsDk7OjTTpsO1amYNSCOcZmRqBTyM67+CdEpeevaIfz6011UtdiZ3j+Wm8eldTsY5r8Fv5BH5whMdieI+MlRtUqBydnRfLe//QZ0QXY0ul7uzDZZnDRaHRxvtJIaoSdE17Xuryx9ot8xT+5cXl1fyfPfSzeNd9aXcP+UPtw4Jq1Lr6nXKFg4IoW3WxcagAenZhFyEmO5jkkINqeLJqsLjyiiUyp61E0MhBijhhX3jOXLXRXYXG7GZETw+L/34nB7eGb5QS7IjSYqSIMoimwultLVFl83lHc6/B0gjbq4PSIvXjmYZ5cX8lNRHRfnxRIZpOZ4oxWFXFIuncjM15vt7D7WxOrCGiZkRZEbF9wrElaXx8MHm8u84wwmu4tHv9jD8LTwgOTRpQWJvLrmiJcEEuQyrh6R3KUOUkKA4iQ7NqjbxMnZ8AmNMKhZfP0Q/rqikN3lTUzMiuK6Uam9Jhk/Gyk5ZxPhBjWvXzOELcX1FNWYuahfzCkL9PMVshMSPE4HDVYnN7+zlQtyormoXwzri+p44YfDPHRRVrffQ5BL8c8dzVyzY4NQd8PH4bSw51PfMTC3A9a/BNOelja/J6Cy2eYljkAiup785gC3j09nZ1kjc/MTiGy9Tqpa7CzdXs7+imbG941iVEZ49z3PDJEw6bcwahEoNKD97/Q6OrGb7faIXsWkQa3E0GE863ijlUtfbjdAvWRgHL+ZkXNK0lfy0fK9F1odLkrrLfzzh8N4RJG7JmaSFK7r+ti83QRHVvkeE0WoLYSQxIBPMdncPklkAM8uP8isgXE0Njq5cfEWjtaaiQ3W8PJV+fSLM3o962pa7NicbU0nSW1bWGVi7ks/eVUuw1LDePHKwad9v95X0ewljkBqpLyzvpjUSD27jzfx3IpDRBrUXD4kyd8/R22Eac/CNw9I6r6gGJj5Dy9h3RE2pxuz3UWQpvdCJDqis6U3RKfi2XkDeH3dEX48XMfwtDBuHpvuJSjlchkT+0by/k3DeX9TKX2iDVxakMjqg9V+rzU0NYzpeTHcMjYdm8vN59vK+W5/JZ/cNpKkszDe7fGILN9XyYOftPo3FdbwzZ4KvrxrzBn3dQmkzrK7PIin2TCubbFz7dub2FMuWSVkRhl476ZhpzWC3xGhOhVDUsMYktp+TtqdbrJigog2apjxj3U+j69qttNgdp4+eeRxw+5PUMVNRCGX+RiMRxqkRD6n20NqhJ7v91f71Y7vbyxFKcgRRRiaGsr8gsQue1rKkOr4Z5Yf5FC1ifF9orhmZDI1LXZeWHmYV64uYGBiCBuP1DO2TyTT82L5YHMpuXFG8pNDuWNCRkDlZ4hOyZ/m9GfRhztwe6SUumcuHfCzj6y1IdygJtygZmjqydtkblH0axabHa7TVu+3QSYLnMR2JqBTKRidEcHSO0chiqBVCb1n5n4e4hfy6GeGxeHicLXJO5p296RMMqMM3hGDEJ2Kp+b258PNIaw7XMuY1njPQJJSq8NNs82J2yOiUwldVuC02JwsXl/MX1dIMneVIOdfNwxlaGrYqQmBoFiY8xqseEySUA+5GWfaJJ7/YJPPw15aVXRCp75zGDVK7p6UyayBcWwva2RkejixwZpOCyG7002jxUmNyU6YXsU3eyp5ZtlBrE43k7OjeGpuXq9IfRWCnNgQLZcMimPRhzv423eHvAtVxxtkndnBH77chyiC3eVGp1L4pbg43R6ufXMz39w9BqdHRKOUc8+HO/ipqA6jRsEfL+nPxOwo79iLqXV88Z31kmfHmz8Wc+OYVO6akEGDxcmSjaUEaQQuLUgkKkjjI409Fcw2N6tPSBYD2FHWQEaUAafLg9nhwqBWoBDkxBg1fH33GF5cWYRHFLl9fDqxXRwhC9WpuH9KH5777hBuj0hSmI6Hp2X7bGY6QiGXc8PoVD7aUuZVTxi1Cqb1j+3y33c6iAnW8vjMflgcLowaZadjBb9AQoRBzYX9zs530xH1Zjt7yptZsb+KMRkRFCSHEnaekHO1LXbeuKaAj7YcY2dZI3MGxxOsVdJscwa8XzZYHFjsbuRy0KsUXjNskLy6Hp6eTZRRw/qiOvrFG7lrYsZJifdeRSBvGkFJZ7LRQCrGZquTo7VmnlleyKtrj7B80VgA7vlwB5taiab/7Krg9vHp3Dw2rftKU6XmpGN05zsMagWXFSR6Y+gBpuZEexWTDRYHDpcHuUxGkEbg798fQiaDp+flkRKux+Xx0GB29EgxWNlsZ/rf13nXxW/3VrH8nrGkB4g8DgiVHhKHSmRRR3SiXANJbXdiIpXNJantbnt3q9dbrqLJxg2LN/P1r8YQZdRQWm/hurc2UVRjxqBW8JdL8xiSEsYTX+/3eb2NR+uparadNnlUWOXvrVVca/ZJLPtix3Gm94/1r+/UBsi7DPpMldRZKkNAxVxNi40XVhaxubieMZkR3Dg6rccjqGF6KQnr3g5jawMSgwk9STMuIkjNvRf05eaxLvRqwa8rH6xTMSI9nIKUUElhLpcxKTuaC3NrWLavEpUg586JGSSEamm0OJnxT1/C4d4Pd/LawoIzvmGstzh4Y22xz7GqZjtl9ZYzTh7lJ4cSpldR36pmkcngzokZp920WlVY7SWOAA5Vm/j3zgpuGH1yBbfd6abe7GB7aSMxIRqSw3SEG9SY7VKynkwmQ6+SY3K4kSEjTKfE7vZQWmfh5dVFKAU5d03KICZY46PQge4b1AeE0wKHl2NoruXecTN4euUxQGpqPjmnP2F6FY0WB2E6FVEBvrvEMB0Lhydz58QMdCqhW/c9pSDn7Z+KuahfLDeGatle2sDaQ7WU1Vtotrm46o2NXJYfz9Pz+hNukOry28ZlcNWwZPRqRaf7IXWrl+uPD02kusVGVJCGYK3ijPp8ngnolALD08J8bEikEfqfR63T5rV1YgpjVyElD//31g7dwS/k0c+M4402LnnhRy8bvupgNcsWjSUzun2OPcKg5paxaVw9PLnTeM9mq5NPth7j6WUHsDk9jO0TwV8vHdilwsFkd/H8d+3FmsPt4def7eajW0aceqHUBkPuXMkYG0AdTJ3Zn1YWodOxs0AI1asI1asYlBR60seJosie401c9fomVAo5L101mD98uc/78+/2V/PexlJuH5/eazdeQS7H6fb4FJg3jE7F2Lq4e0TRm1zx6bZy7pyY4RNFOiMvlm2lDbTYXRRWtTAiPZzHlu7lp6I6QDLdW/ThdtY9NLGdPLK7fDYDAF/vrmB+QSLT/r7WS169+WMx3949tlt+QDq1wIS+kVw9IIjBsWpcopyP9zQxMDGE6mYbb6w7ytaSBiZmRzG/IJFwg5rMqCCemtMfkZOnctidbhqsTo5Um4gJ1hCmV3HtyBTm5Sdgc3rQq4VT3oxjgzUsv2cs728qRaMUuKwgkQjD2evAaFXCeT9S9t8Mi93Fq2uO8HLr2Mq/1pdwaX4Cj12c40OsnKsI06uY+9JPVDTZAFhzqJZHpmUHVJfWmezc//FOVh6sQSaD+QWJPHhhX2/BqxTkROjV3DkhnSuGJhKiVRLUjcSaerOD3ccaWbG/itEZEQxJCfPZNNe22KlusSGTyYgMUvuT8jmzYPWfwdoqzVfqYPitnRpnp0Xo/WT/8/IT+KF1hKXZ6uLLXRVMzo72EkdteGd9CVcNTybk55v27VW0GboGSsHrDvRqBfdN6UtBSigr9knf49TcGEJ0KiqarCz6YAcbj9aTFKbj+fkDiTSo+McVg/jdv/ey81gTQWoFv52ZQ3SwtlueXQAfbi71WRfdHpElG0r4zYzcrr2ASgcTHoWqfXB8Gyi1cMEfpLGtTqBTCUzOjiJYqyQt0sCBimbv/fpEwqbW5MDqdNNocfB/n+2iqEYilkx2F3e/v4OV94+j+YQENsCv+dMTTOgbyR+/wqfrPik7mo+3tMek94kydOr9h0ov/esE9WYHt727jS0l0rW393gzh6pM/PWygT1SXwtyGZOyovn89pF8svUY/eODmZwTfUoSTaWQE6Y4+bnbcfMWblDz53n9+a0jp5XQlEYAizskorWhstnmY7Z8piDIZAGN5M9kHVBvduDyeNAoBb65ezTv/FRCdYuda0el9EqYxqHWayElXMfU3BhcHpHKJisej3jSpLiiGhOzX/wJlSDH5nIzMj2Cp+fm8fz3hXy2rZyXr8pn/ZE6lmwowaBR8Oj0HAYkBDP9H+u8/jBHa808PjOXBR0M6q8Zkdwjg3o/KHWQNgHDise4ckIE026dQkm9hczkJEIMOgS5jHCDml9Nkhqt6ZEGb+pkbLCGK4YmEWZQ+yWmBoLHI+IWRZ/z98YxqawurGFzcT0X58Xh8nj4W+u4p9sj0mxzo1MrvA1dlULeJSJar5a8D8+FhLWeIlSv4h9XDGbx+mI2Ha1nfJ9I5g9JPOuKHavDRXmjlVfXHEEhl7eOoGpQ/Y+OnPUGfiGPfmZ8sKnUR0bpEeG9jaX8dqZvsaU4RbxnTYud33cgTdYU1vLmj0dZNLnPKaXLdqfHT8p5vNFK5wLlEyAIkvFoK3QqB1NypNGJGKOGh8ZHMSE9GKPYCJ6oXk3gqTU5uO+jnVidbjKjDd70so5Ye6iGq4Yn4XCLHK5qITJIQ1SQusfdqzC9ihevzOfLncfZUtLAjAFx0px0a9EXqlWxcEQyz64o5Ns9lWTHBLH0jlGsLqzxprDc/7HUzQszqDE7XGw8WufzHh4RSurMPjP2J8qWJ/aN8hkfA2i0OPnhQBULhiV3+e9RCnJuHhyE7PN7kX+7GgQVvxr9AG51Egv+tcubaLClpIGiajOPz8zBoFF2XuR2wIHKFi57Zb1XNXT9qBTunpTZrXETtVIgOVzPry/K7vJzfsH/DlrsLm96SRs+3XaMe6f0OS/Io6pmm5c4asMHm0uZPTiejnoNURT5aleF16hSFOGDzWXMHBjHyPT2YtSgUWDQKLo90iWRcEVeEu7dDaXMGRzP72bkYtQqqWmxseC1jRxq9ZXIjTOy+Lqhvg0KQzTc9pM0vua0wYDLpRGbThAZpGbpnaN4YeVhyuol82WH28OqDkpIjygGVFIqOxi0N1udmOwu7C4PBrXirEUG9xZabE6W7a3kt0v3Yna4yU8O5cUrB/d47DNEq2R0RgT5yaFoFALBWiVNVge//nS3d0ywtN7CNW9u4ptFY3jqmwPsPCZ5lbXYXTz4yS5Gpkd0mzwK5JXUbRLMGEvj5f/G5pYhl4mEahUo1Z2fywqZjN/P6sfbPxbzw4FqRmWEc/mQJBRyGZlRBu/5CpLZt1Yl4HB52NnqzdYGh9uDW4TrR6fy4CftXo6RBjXJYafPUEYGqXljYQFPfnMAi93FdaNSSQzTsa1UWl8TQrXcPiGjx+OwVqfbSxy14YeD1VidLoLp2X0wWKdkUFLoKZt4p4tgrYoTb1dxwRpCdUoaLO1k3rz8hDPiadlkdXKs3sJXuyvoFx/M0NQwHrs4h3knjC8GUq6cLjwekSO1Jh74eBf7K5sZmxnJHy7px31T+uIRxV5res4aGI/FIanx39tUikIu5/YJ6TjcHjQBRopB8pj7cHMZ71w/FLPDjVGjYHd5E8cbrXy1q4KClFCKaky8ukZaM8wON3e9v50v7hiFQa2gqZWI3VLSQGWTjdUPjudgZQvxIVoigtS9YykhFyDvciheR/APDxGs+RMpYx8A7QLocP+KD9URpHGy5MahlNRZcHtEMqMNXVaSVDfb+GhLGYeqTSwYmkRWrJEmq5P5r2xgQlYU8SFaWuxOjjdavX3y1Ag9D0/L6lRZ/7+AyCA1v5qYidXhRq8OLH7oKlpsTsrqrXy0pYz0SD0X9uua91lFk40Ln1/rvZY/3XaM7+4dR2Iv3Nf/V/ELefQzIzoAqxzo2Kmw53iT37H1RXXcNMaF6hRdIL1aICFU62PSd3H/aLQ4gO7/LiE6FX+a05/Zg+IZEekg5Ns7YPlaCE6EOa9CXD4oe2cRFhEprZc6VKX1FnJi/RM4RmVEYLK5uPBva7G0dhBnDYjjdzNzT0ogeTwiNSY720obUCsE+scbvTeqCIOaa0amsGBYsh85p1TIuWp4MnEhWj7fXo7J7iI+VMucwfHc8PYWrwHzsNRQEkO1aJUCQ1PDKas/5n0NuQyf2X6dWsG8/AQ+2tL+mPzkUNYf8SWdpOd209/E7UTY8jocXd36fweq1U/gzp5GcZ1vnPzSHeU8eGFfDBoldpcbUexceVRnsvPoF3t8zHrf/LGY60enEqxT4fZ4EM6lKO9fcN7ixBn6cyNOoGsIZPRo1Cj9om8dbg8bjtQxIy+WqbkxONwelu44zuaj9YxMP/3I6EAk3Ofby3lgal+MWiX/2VnhsxHfe7yZVYXVzMvv4EUjF8AYByPv6tJ7ymQyEkJ1/HZGLg6XB7PdxfgO8cYGtYKL8+JQK+Rc1C+Gb/ZUen92z+Q+RAapabQ4eHFVEa+tPYIoQnK4jvdvGn5WzG17C01WJw98sst7Hm8taeDZ5Qd5fGYu2q76BbVCFEUOVrVw/dubqWiyEWGQTGvjQ7VsOGG9aLG7sDjcbC9t9DnuEaG8wdrtz3DmwDheX3uUGpNk2h6uVzFncPcSqmpabDzw6X5WHawhVKfkj5f0Y3xfZaeGqM12F/d8uMNLim0taeBQlYnHZ+by4lWDuXHxFkrqLEQb1bx8VT5hOhUWh5vhaWE+Js1apYBaIWdKTjTGq/J5b2MJSeE6bh+f0StkpChKpN7z8wciyGU0WRykROj54b5xWBxuwvWq01IZKOQy1Aq5z3obpFb0WprV2Ua4Qc1nt4/iya/3UVpn5ZJB8cwfcnopTYHg9oisOljN3R+0G3mPTA/nb5cPZOX941l7qJakMB1Zsac2Tu8Jas12Fry2keoW6ZpZvq8Kh9vD3y8f1KvNj6QwLZcWJPhMOizfV8n3940nqZNNtFsUuWRQPDcs3uIdo5uXn8DwtDB0KgUDE0NZe6jW73mbjtbRNybIRy1aa3IQG6z1SxRusjg4VG1i6Y5y5gxOQC6T8c2eCnLjghmRHt4ly4lGWTCq6f9EdZENuVxArgkGtb9ay6hVYtQqu91YqW2xc9kr671quKU7jvP3ywcyOjMChSBjRavHoEwGj8/MZc2DE3C5PWhV518j40xApZD3ynW7taSBa9/a7P3/2z+V8OHNw086YSOKIovXl/goYu0uD59uO8aiyX1O+3f6X8Uv5NHPjJkD4nhj7VEqm6XOc7RRzdzB8VQ12/CIkny9rZvXbHVitrsQkTYcHc2M+8f7G3+OyozokgN9ZJCG928cyhNf7Wd/lYkLMoO5daAKw+rfwQW/P2lEbmcIN6i5KFMPX9wPxWulg01l8O5c+NV2UHbeje4ONAqBSdlRrNhXTaPFyZ7yJhZNzuSlVUXYXR7G941kwdAk7vt4p5c4Ali68zh3Tco8KXlU1Wxj+j/WeRfNxDAtn9420mvwJ5PJUHViRBuqVzFncDxTcqPRKASUCjlOt5vF1w9hR1kjkUFqUsL13mLkwal9Ka41s7WkAaNGwe9n9fPpyhg1Sn59YTZj+0Sy8kA1k7KjGZEezoDEEL7YftwrBQ7VKZmQFdW9D9FhgpJ1/scrdpIcnkKDpX1jEaRRIIpwqLqFF1YW4fF4uH1CBklh/qaobo9IRZP1xFel2eri1d1HOFjVzJVDk8mIMvRKkeRwSd5XDRYHwVoVQZqeR57/gvMHQRoF14xM4bW17WlLlwyMR9/NTffPhQiDijGZEd4iXCGX8fD0bD/vBbVC4K5JmfxwoJonvt6PWiHntvEZFCSfWVUAokSkH6j0V3UWVvr7uPQEGqWApnXzvvyesby7oRSVQsaCoclEBalRCHJ+P6sf8/IT2FHWyKTsKFLC9SgFOTUtdm/nG6CkzsKzKwr5w8zcLo/r/dworjX7EaCbixsw2V3dJo+qW+zcvmSbV81Wa3Jw67tbWXrnaHLjjF6lC4BaIUevEhiaGsrn29vv1YJc1iPyzWR18srV+ewqb0IURQYmhtBidUAXX8vmdPPPHw6zqlVd12Bxcuf721n34MRO7+Vuj+hjug6wbK+UspQRaeDTW0did7lRKuSEt6atGbVy/jCrH42W7WwpaSDGqOG5+QMI0UqK2gv7xTAqIxy1Qt5row31ZgfHGq28sLIIi9PFFUOS0GsUPPX1AbaUNGDUKPn8jpE9Tl01apQ8dGGWjwL9NzNyupxy213Umey4Ws18z0SipiCXkRqh56+XDcTu8hCiU6I4A82merPdm7TVhp+K6jA73KSE61kwLKnX37MjLHa3lzhqw+rCGmwuN8YeKsYAnG439WYnTrcHjUIgVK/k/Y2+kw5Ot8gX28v51aTMgK8hyOX884fD3hoY4JOtx7hpTFqrCsRCZrTBzzNzYGIIn21rb3RGBqm5qL9/ze9ye/hmTyW//mw3k7Kj2F3exG+Wtls8DE+TzOpPdn5Vt9hY9IHkF6pTCTwyLZsZA1T4t5F7juNNVr8xyhdWFjE8LZzXFhaw6IMd1JkdZMcYmZgVdV41Ls4X1JvtPLfC1wuvqMbEsUbrSckjmUyGIcC46flSH56r+OXT+5kRbdTw77tGsetYE6IIeQlGvttfzR+/3IfZ4WZURjjPzx+IXCbjT98c4NNtxxBFuDgvlsdn5Xqd+sMNah6fmcufvz2AxeFmQt9Irh2R0mW2N1HewDMJa7DmZmI8/hXqJUvA44RxD/aIPAIkI7uja/yPWepPOsrQGUx2F01WJ8W1ZpLDdQS3dhGemN2fIPUBVhfWsO5QDU/Ny+OKoUl4RBGtUsDlESlv8Ccx6k8w7+sIj0fknfUlPo8pq7ey6mANlxUETn05ETKZzGe2VylI0cAXBuh6RBs1vLawAJvTjSCXERogbS3MoOLivDim9Yv1zqhrlQIr7h3Lh5vLMKgVzBncnk7UZaiDIH0ylPzk+/vHFzApS86OsvbNxmMX5+ARRab9rd1n6avdlSxfNJb0KN/zxKhVMntgPK+ta0/CiTSoMdmdPPn1fgA+3VrOK1fnMzX39MhEURTZe7yZq17fiNnhRiGX8dTcPKb1j+l60s8vOC+hE+D+kSHckt+fFUddeOQCYzMj0Z9hnyqn29Mt40WT3YnLLfqNXYTp1Tw/fyCFVSaK68yMzoggvBNPr+ONVv6yrH2j89Cnu/j27jEBH9tocXC01syKfVUUpIQyICHkpJ3zILWCa0em8EoHIuaSQfHo1ArkchnzhyT6KB+ln8d1+noWh4smi5MjtWYSQrWE6FQB0xs7om1E9ZHp/iOqkUFqJmVHMyk72ud4Sb2/N8r+481YnW4/8shkd1FnsrPxaD2ZUQaSwnUB027ONlIj9Mhkvgq64WlhPRp3cLo9XpPoNtSaHCCK/GZGLncs2UZ5oxW9SuC3M3JRCjJuGpPOsQYrm4sbCNYq+b9pWd3yKGzDkk1lLF5fTP/4YGTAH77cxxVDk3hidv8uPd9kc7HusK86ShThcE1LwBhxl9uDIJehEuTeBgpIijVBLq3BnW0sYkO0vLawALvLgyCXrsOO45G97cthdri4+8Md3u/46WUHiQnWcEFOND8W1VFjsvP37w/x+1n9ejS6plUJzM1PYEJWFAcrW8iJDSJUL9URVoekMDNqlT02i22DKIocqTFz5/vb2F/RQv/4YP6xYBAp4WcmBS1IoyTo1A87Lbjc/lpVz9mIdKVd8dZRMZYeaei+grwDbE43G47UsejDHTRanGREGXj/pmEBR0jD9J2f5w6XJ6D3VE2LnSEpYSzbW8n7Nw1nfVGd1zJiXn4C6ZEG3r5uGKsOVqMU5IzJjAiowGmwOLz+QDMHxPmReBuO1NNsdXVKHtmdbl5ZfcTrF2pxuHnkiz2MyojoVdWWItDYtEKGIJcxPC1cCr5xS35Vva1Oc3s8uD3iL/48BFaUdyWFcMHwZP61oYTm1oCOML2KGQM6r11+wanxy67qHEBUkIbJ2ZKapaTOzP99ttv7sx8P1/Hy6iPMGhDHJ1vbC/cvd1UwJSeamQPjAQjWKpk/JJEL+8W0RtQL/8/eeYdHVadf/HOn97RJ742QQOgldBAEpKiIiKKo2Htf3XXdtezPVVddV8XKWte2FlREVoqggvQeeqiBJKQnk+n198dNJhlmAmkg7HKeh+chNzPJzOTe+/2+5z3vOSET2VqFVIpu1dPovC2MIfVxIHRso2FxuJH6ZKjiezcrj0BM3lGHt/vnOd1eftxdzn2Nmy9BgBcu782U3vHE6FX85dKeWBxulDJJ0Pt2e7zMGJDEcz80L0wGtYy0qNY7fB6fj4oGe9DxqhM6RF2JtnpDtDQ3VDUWWw9P7N7xXyyRQf9r4fh22P2tmOQy9gkk+lhmD5gV0dcAACAASURBVNFwYV4su8pM9E2JEEcgfj4Q4LPk8fr419ojPD41L0Air5JLuW10JhqljIXbS8mI1vLIxFx+98W2gF//yo9FDEiN6NSiW212cv+/t/qNTd1eH3/8upDhWcbz5FEnUW9zUmd1UVZvJy1KS4SmbX5XZwS2Orw7v0H5y3MofV6mFTzABu0YLnt9Nd/fM5yYDnrGnAzVZgfLdpfz6/5qLsyLZViWMeDarbE4cHp8yBoLV6fbw5FqK88v3kut1cmNw9MZkhlFWIsEtCidkiE6JUMyW4++dbg8zN9cEnR8ya7jdD9hXNfp9vL1lhKe/K5ZhTC1VwJ/ubRHq54hGqWMW0dlUpAZxZKdxxmRHc3gjEg/4ZMdo2fuVX15ZXkRUonAAxfmtOoZ4PX62HSkljnvbfDLxX9/UXdmF6R2uRowL96AVCL4zVkBJvaMCyoefD4f6w/VcOMHG/wF/KV9xPHl0+Gj0h6EaRS8dEUf/vztDkx2NwUZkdw/rluHDHolgkBOrN4/Hg0QZ1AhCGIS0t+v6A2ATCqIaViCwGPfFHLziAz+79KeONxePlh9mMxoHYnt7KB3j9Pj88H2Y81j9LkhRslbg1YppX9quN/QtgkZxuAGVlWDg882FBOulnP76Ex/EQrwh0mByj27y4NSJgka4TpTMc8Av+6vClKXLSosY3xec+PkSLUVl9uLTCJ0yBskTC0nTC0n3dhM5JTW2Xhx6T72lJm4qGccVw1K6dRaW2V2Muf9DX67gMKSem79cBMf3zy4S1JtzzQiNApuGZkRcK/smWg4Y6plvVrGM5fl88hX23F5fBjUMl6c0RsBUU3dEdKg3ubito82YXeJhNT+CjMPfr6NZy7L55P1xX4fqfgwVcD5dyLCNXIu7ZvAi0uaFR8quYTsWB0vXtEbq9ODQirh3esH4mg8b5umIqwOt18Fr1fLTzk+KRUEPKFIvJOQA2aHmzUHgq0b9pY3kGbsOjIzxqAiPzGMwpJ6DGoZk/PjuXZImv86Oh37DIDj9XY+WH2Yo7VWrhuaRk6s/pzwcTwdiNQquX9cN+a83zy2lhmtJbkNSs04vZLF949k6a5yZI0Jj+1usp9HAM5XVWcL7CJrf6w2WA2z5kA1I7ODPS1+Kapiau8E/025SfrfISh0MOx+WPmC+LUgwKQXQd16MdMaGuxi8tvkdBmqsX+Gr2+FmoNiUsiUf4AqeMTuVKi1OvnTNzv8my+fDx5fsJPh2UZiDVJ/MkEoyKQSZg5MQSaV8OXGYyRHqnl0Ui5RJ9k4yqUSrh+WzlctijW5VGBKrzMfQ35GoI2GqS/DxGdEwlAVDnIV4YgeVi2L01DqgbBWNgdROiV3jsnimoJUVHIJJbVWvwF3E2QSgc7aMnh9viAFgsPtxe7qfErO/zJMNhf/XHmIV5fvB8Qxl09uHkz/1LZkk5wBVO1DsvBe/5eqpQ+Te/nX6FWygE5uV6HO6uTR+YUsbvQ4WLCtlDlD03hoQg5apYziait3fbqZ7cfqyYzWMXdWX8LUcqbOXeXfyG84XMs71w0IUtCcChIBsmKCi+iMEDHodTYnLy0LlHh/t72U30/qftJ0skitgjE5MYzJCR59NajlTO4VT0FmFELjY1srCKotDh75cnuAz8ALi/dyaZ+ELi/KwjVyPpgzkMe+2UFFg4PL+iVy9eCUIIVFtdnJU9/tDCjgv9laykMTcgLII6vDTVm9nW+2lpAcoWFM9+jTHs+rU8qYlB/PkMwocVxdJu0wsRGhkfPiFb154POt7Cs3kxal4fnLeyOTCFz/3kZmDEgmPzGMozU23vv1EK9c1ZdHJ+Wyo9TEh2uPkBSh5pqCVFIj1WCpBrcNBKm4bitOvlEflxtLj4QjfhVCbryeC/NiqTDZ0avkpyTD1AoZD4zPYe/xBrYdq0cll/DHSbmEn2CsW2NxctvHm9h4uBaJAH+cnMu3dw7jQKWZPsnhGPVKFDIJNRanmGC7s5xhmVFM7hXvL/ga7C7K6+2s2FtJ35RwEsPV/iQlg1qGWt6152m3WD1DM6OY3i8JpVzC0l3lJIarWHtQHFcVBPjzlDy2Hqvzp5td0iexU54plQ0Orpq3liON6pGdpSbKTXYenZTb7nHIJjjcHj9x1ITD1Rbw+bA43OfcqHi9zYVRp+SVK/uwfI8YajI0M+qMKY80ChkTe8YxNNOIyS4a/7+4ZC9bj9Xx/OW9GZFlbPf4rdnh9q83TVh3qAaVQsoP941k7YFq5DIJA9Ii/DYMoSCXSpg1OAV7Y+MiPkzNU5f0IEIjRyGT0lp1UGNx8vqK/Xy45ghSicAdozO5piA16J4WoVFwz9hs/jC/kEU7yrh2SBrP/rDH//38xLCTqlV1ShlDMqPYVRY4Ut09rmu1akadkveuH8iusnriwtR8uOYwzy/ey+yCVPqlhgc0groKlQ12Lp67yj/SuHB7Ge9eP4ALurdv3/DfhAFpESy8ezj/3lBMZrSeSb3i2pQoLpVKiA9Tc+2QtNP/Iv9HcG7d5f8b4bBA1V5Y8TT4vBSMfJh7h8fz8qoy/0MKMiLJiNby+tX9KCpv4KN1xVQ2OJjYI67rzBBVBhhyF+TPEF9PQl9QR4pJau1Evc3Fwu1lXC7dB1vmib5JmkiR8SnfKW5E2wmv1+eXHDbB7HAHdJtPhkitgjlD05jWNxGlTNImSXp6lIYvbxvC3OX7Ucol3D+u22nrMJwVUIe3SRV2ce9E5v3SbIoaoZFz5aDWR/kUMol/A2zUq8iN17O7TOyKCwI8NCGn054JSrmEUd2i/V4ZIKa1aJRnViFjd3lE5d9/idrJ4nAzd8V+/9cOt5dH5+9oc5e52uzA4fbiQ7yG5VKJmAbWVQXGjq+CDkXun8/onNtRyrveH8Pq9PiJoyZ8vK6Y20Zn4nB7uPOTzRSWiKqLA5VmnvthD1N7JwRt5N9ffZhB6ZHtGo0RBIHJ+fEs3nmcPcfF62doZhTdYkNvlEONYrRF4t0SLo8XiYDf2F4QhDb93X0+KD9Bpen2+qi1upBIhJMWLO2FRiFjWJaRL24bgs8nemCFKoy9+PzpPy3hPIFk3H3cxIw31/i9QTKjtXx2y5DTbnyqkEk6nK7WEmqFjOQIDXNn9cPp9qKQSojRK3B5fdRZXTz9/e4THi+hsKQ+QHnx895KFt41BObPhiO/glwNYx+H3leddI0w6pV8cMMgqs1OfD4fWqWMR+dvZ8vReqbkx3PPuOxTnj9xBhXvXj8Qm8sjEjkhSCer083Gw2KymE4po3ucgc3FtRyvtyGXCgzLisbicPPS0r38a20xIPog/byvkheu6E2YSs6v+6u47aPNxOiVvDW7P9e9t5595WYu7h3PfeO6savMRGK4mpRITZeMouTFG7hyYDIv/1iExeFh1uBkZvRP5sEvtpEZreOxyblsPFLL4wtEz5dvt5by9ZYSPrxhUId/v8Xh9hNHTfhqcwl3j83uMHmkkEow6hTiKCSieuXNa/rz0dpith2rZ2LPOEZ1M6JXtW5yfjbB4/Xx+IKdGHUKBqRGsrm4lpd/LOI/947gTLUKNQqZ+Dq+3RGwvtz1yWZWPjym3eSRXilDo5AG+HwOSItAKghEGZRc0jexzT8rSqvk3rHduG5oGnKJxE8A1dtcVJkd7Co10SPBgFGn9Kti1h+q5p9NdgUeeHHpPgZnRDEoPbDpJJOKQQjZMTq+2VLC0KwoPr5pMF9tPkbvpHAm5cef9NxXyqXcNiqDvcdNrNpfjVYh5bEpp8fny6hX0t1n4KKXV1LdaGexfE8Fc2f1ZUqvrh+B2nvcHOSF9dqKA/RNjjijismzCXqVnJ6JYfRMbNsY9HmcPpz9d/b/djSUwj/Hgk/cwEoPruD2G39mwW4Nh6qtDMuK4uaRGfz1+91sLq7jqkHJfHrzYH7cVU6/1PaPf50UmgjxX0wnRqAQpZb3jctGYz4C5Tvg39c0f7PXldDv+nb/TJVcyuD0yABjzP6pEe1SWsmkknbJqnUqOQPSIpk7qy+CIJwTG6FTwefz4fR4xXGFEPB6fQFjcaEQa1Dy/T3D+XV/FR4f4jx7Gz9Xo07Jv24YzM/7KjlYZeaSPokkdCJhpglhagXPTe/FU9/tYmVRJbnxBp65LP+MSVOdbg/Ham28unw/Vqeb20dnkhWj7zqSpAPw+XxUW5x4fT7C1cEeWk1osLuQtHJ+W12eoFGLkjpbm7qyJbU2bv1oIztKTETrlfzlkp4s2FpCQUYUl/VLQqfqgs8msX/QIXNMX67tlip62XjcYK2C44Wiui4sCbQdTyYTBFEB1PLtN/mkON0+P3HUhENVlpDnYKxe1W7vEZlUglYl48Hx3dCr5EglAmV1NsJDdGYNKjk3Dk/3K8YAhmdFtZnUbLC7OFBh4f01h4g3qLl2aKp/9Kkt0ChkTOoZx3fbm5sgGUYtR6qt3PXJFv59a0GXjrgIgnBKdVCYSs41BSm8uvyA/1hmtBZDCwKv3urihcX7Av6+ByotHKoyn1OpOWEaeVAMttvj5eGJOTz0RXMM/YQesXg88K81RwIeW9HgoLSyhpiKRkLJZYMffg9ZF56ywWDUKTHqlFSa7Ix+4Sf/KPGHa48glwr8bmL3U67bpyJLJILg94i6d1w2768+7E88AphdkMrdF2Tx2YajAc/7cU8FVqcHt8fLXxeJCodZg1N4bcV+9pWbyYzWMWNAMhe9vNKvXBzdLZq/z+zd6QZHgyPQ8+jvS4vIjtHz5uz+OF0evD7449eFAc/ZWWqizubqMHmkkEmCvLRi9Eok7TS0sjjc2F0ewjRyIrUKXr+6Hzd/uIl6m4s/T83jj98UsqNEVH+s2FvBjcPTubh3Aj0SDF0WNX+6IHozJvDOr4fZVy6OS8YalCHvq6cTNqeHjUdqA465PD4qGxztTgcLU8t557oB3PPZViobHPRMNPDc9F4dHs9VyCQBhL/N5WH+5mMBhPNTF/fgioHJyKVCQCpmE5bvKQ8ij0BUtg9Ii2RAWvP3hmREnXIf2oRovYq5s/phc3mQCILf9P50YF+52U8cNeGfKw8xNNPYZtuJtiJU80sll7T5czmP8zidOPer4XMdWz/1E0cA+Hwot7zHN3f+DYtTvBn+7sttqORSXpvVlyW7yvlhx3Eu65dE+GmQSnYElQ0ONh6uocHhZkS2kYxoLeUmB1WaIcTqYsHcuKmTKmDEgyBv/0YoQqvg1av68uLSfaw7WM2g9EgeHJ/T5TfsUNB1sXHmb4Vqs4Mlu8r5ZV8lF3SPYWxujH9DbHG4OVpj5YM1h4nRq7hqUAqxBmXIYlEQBGIMKqa1M4K5CUa9kun9O/bckyHWoOLZ6fnYnB4UMskZ9TGpbHAEFBxLdpWz4K7hIVMQzwQsDjebi2v5y8JdmGxurh+WxswByQEdqwa7i12lJl5bsR+VXMoDF3YjzagNKOz0KhlxBpU/DRLg4t7xaBUyKhs9wSI0iqACoc7q5OGvtvkLisoGBw98vpX35wziqnlrGd8jtmvIo8wxkDbC76vmSy5A03Mqer1WPHerDsG8MeBo9H/JGgfT3uowgaRVyJg5MIVP1xf7j90xJpMwtZwGu5sMo5aDLcyK66wuusXq6J0cxrajIrFkUMm4e2xWqwW0w+XB7vZiUAXHbMfoFZAQxvfbS1ErpIzPiwtJaqjkUm4Ylk5+YhgLt5cxKD2SiT3j2ny/LCypZ9a8df6vv9h0lEX3jmizYkinkvH4xT2I1itZsbeS3Hg9N4/I4HdfbudApZlqs/OM+6MoBQ9z8pUkqFJYsNdCXrSCWwYZMUosgPhafPhwe4PHHV0hVFynAy63F6fHe1oaFTKphPF5cSy6RwzlyE8Ko1diGBJBCDkaopV5wX2Cx1/FLjBmten3Hauz+YmjJizacZxbR2V2fLy+ETqljKsHpfDRumL6JEfwl4WBaqrPNohqQLlUTDltgqSR/PUhFusgkppN1/OM/km8vuJAwMjrT/sqqTA5Ok0e/bS3MoiI/2rzMUblRGPQq6hscCAPQfC31zjZ4/FidXnQKMRR/huHp/PPlaIKRCoR+L9Le7ZqyH8ifD4fR2ttPPefPRysMnNx70RmDkymb0o4S+8fia2xudB0n2/CvzccZUz3GGqszi5VGZ4OqORS7hiThUEtZ+H2MrJidTx6Ue4ZJ4vVCikD0iJYvLOZBJVLA0lxm8uNyebG4faikUtbHdlRyqUMSovk+7uH4/b6UMokXWrkbLK5+NsPgebWz/6whwk944g1qBiWZeTbraUB3x+c3nYLjJYEic/no9LsoMHuRqOQolPKghS74RoFbW2l11qcWJxuvD7RY609gQk6VfB9S6eUhTTU7izSo7QB3nVSicDDE7qfMnTiVHC4PZhsLnyITabO3ovP438T58mj3xqGYLmjEJZEmEZBmEbs8u8sNfH27P7MfHutf1Pz3q+HWXTviC6RuXcGlQ12Ln9zjV8arVVI+f6eEZjtLh76rph5MxejO/AdMqcJe94VyNUJHU7OiDGoeGJqHmaHG61Cdk7EMDfYXdRanOyvNJMdoydCI/9NyCiTzcUTC3b6lQD/2XGcy/sn8fjUPPQqOfvKG7jsjdX+ze3inceZd+0AzA4XCeGaTi9YZwp6lbzLU3Lagh92Hg8oOHw+eGflQf52ee82Jx52JarMDq57d71fQfHsf/YQZ1BxaQu5+oFKCzPfXuv/esXeCpY/ODrABDlap+TzW4fw1MKdFFWYmdgjjhuGp/PFpqO89tMBJALcN64bw7OMHKqy0C1WR4RWgdPj9Y+VNMHqFEf6PF4fDXY3cV3Bq2mjYcYH4GwAnw9BqUfWRAw5GmDZ483EEcD+ZVB/tMPkkUEt53cTujEpP451B2sYnRNNZozO7zf32tX9uO7d9VQ0ODCoZbxxdT8itQrevW4gB6ss1Fld9EoKw9gKiVNWb+P1FQfYX2Hmsn6JjMuNDSD85FIpieFqbhmZecrXGqFVML5HHGO6x7RL5VRvczG3hWIJRJPcwmP1jM1t+3pjbPQ765MSwZ4yEzd/uNE/6nI6NtunhK2WyI8u5MrYXkzOGoXKdAjF+5/Drb+AVux6hzd6cMx+Z73/afFhKrJjO5g42g6U1dmYt/Igh6utXFOQQr+UiC4nwA1qOXnqMPISAi++x6bkMfOtNX6PqjE50UQKZjEdtQW8MT041ZnUYHdhcXiI1iu5/8JuvL5iv//emG7UouyC+6FBLeeB8TlM65dImFoWZJgulQhIBYF7x2bzzH+aPVSuGpQiqhNUcm4YnsZzP+xld1kDg9Ii+W57GXqVjGpLcChGvb153NHqcGN2uhEQiNDI26ys6RbiHMqNN/jXhyitggfH53DPp1v83x+SEUmYuu37nCqzgy83HWP1/irGdI/h4t4J3DUmiysGJHOk2kKPhDDC22Be3ITKBgfTX1/tH1HfXbYHi8PFPWObR/hL6oKTbLVKKWa7O4gs6yjsLg8SgdOWOBWlU3LHmCyubvRm7EjKYWehV8l5YmoPyk0Oth6tI0Ij5/nLe2NQy6g2O/B4vawsquaxb3Zgc3nIjNbywZxBJLUSWiCVSk6bzYLX58N2gp9k0/oOMDg9kvF5sSzZVY4gwKV9EsmI7piBdXGNlZlvreW4yY5EgHvHZjNnWHqHjKOrzQ7+ML+QJY0qxQFpEbx5Tf82NzKSIjSMyTGSGaNHr5KzqqiS31/U/bSYWBv1Sj6+aTBrDlZTWmdjYs/QjaL2oNbq5PMNR5m7fD8en4+bR2Rw/dC0/9kxuPPoOM7+6vu/HblTYPUrUNcoG9fHQ5+r/d+WSQQu7h3PF5uOBRSn1RYny3aXc/Xg1DP9igOw9mBNwEy9xenhzZ8PMGdYGjtLGxj15m6GZQ4mLyGM2vV2HhzfudhVtSK0n8XZCJvLzbdbS3nsmx3+Yy/N7M3k/IQzTihYnG4WFpYFHPt6SwkPjc9BAF75cT8+n+hn8PS0nkRqFfy0t4K8hDD2lJnonxpx1svPf0uEUgFGaBScWCO7PB5qLC4OVpqJ1quI0ipOy8K9en81J06WfbX5GGNzY9Cr5Lg8Xt779dAJr83HosIybh3VTEwIgkBKlIaXZvbB7vISppax8UgtT7SQq/9hfiHzrh3Ak9/tpMLk4LNbCsiI1tInOTxgzFQllyCTCP5EoLbC5vTgdHtaT4/URon/ToTbCQ1lwcfNFW3+3S6Ph1qLi9J6G0atEr1aTqRWyYjsaEZkRwc9PiNayzd3DsPu8qCSSwlXy0RjUd2pI3wrG+xc/sYafzG25mA1f7ioOzcMT+9UvHZ7nysVCNmN7EjRH6lVoJFLef2n5lGxwemRRJwkHvq0QRBArkE4+COGgz82H5cEvpY+yeEsuGsY/1pzhJQoDVcMSD7t6onKBgeXvPar3+Ni+Z4KXpjRmzE50ZgdbjQKGUZd6wblnUVevJ6ffzeGtQerSYnSkBalQbBV48magPTAElDoaRj1FG7BQMRJfk6NxcGLS/bx2Yaj+Hw+pvdLYu6svtz84SYitQr+cknP9qXAngSRWgWR2kga7C6uGZzCBy1G7+4cnUWYRkygHZQeybJd5eQmGHB7fEx7/Ve+un0oVw5MITVKy5Jdx7l3XDeqLU5+2lfJ9H5JAYRThEZOemMMfbXZwSs/7uezDcXoVTIem5znv6eeCnnxBi7oHsPyPeL9JzNax+yCVGSNfmISicDobtEsumc4iwqPk5dgYFB6ZJsVT3VWJ7/7YhsrGn3/fimqYtvROv5yaU+6xepb9UYDcHu9+HzB94pKs8NPHDXhy00lXDs0zX9NaBVSpvVN5OstzeEid1+QzcFKM0NPkh7ZFlgcLg5VWXnz5wNoFTJuH5NJYrgKeQe8OE8FeTttDU4H4sPVvHv9AOwuMblMr5Kxr9zMH78u5Olp+Tz81XY/SXqg0sKfvt3By1f27TB54fP5sDo9qGQSpO1YJ9RyKSO7GfllX5X/2JicaNRyKR6vl9d/2s/gjEj/XmLtwWq+3HiMByfktOv1mewunvpul1/57PXBS8uKmNYvqUPvecvROj9xBLDxcC3fby/j2iGpbbq3hqvl/GlKD/6xtIhdpSZuGp5BtF5BcbUF9Wm4Rxv1yi6NlC8qNwfc217+sYg+yeH+VLzzOI+24tyowv+boY+Dm5aKnhxeD8T3AX2zm36ERs70fkkBG6MmhDJEPdOoswYbkNbbXIRr5Hx1+1AUUgGNUsaKPRXEh6lwe0TlgfR/YG7XZHMHmZM+vmAnQzONZ1wxJiB2Yt0tWoH+lDNBQC4V/x73X5jN+sM1fLHxmP9xz03PJztW1ynZvt3lwenxBviL/DdhRDcjSRFqjtWKhb9BJePGEelBhNvBSgvTXl/tN7Kc0T+JRyfndrnBY2ZMcJcvJ06PqrFzKwii98WJiDGE/huLii7RE6tlkdCElUWV9E4K5/vCMh77Zgcf3zSI5y/vzZz3N3Cg0ky4Rs6TF/fgx90VfHZLQZvGpzxeHyV1Nv6xdB8ldTZmDU5hZLfotn9W6ggYcAOUbG4+ptBBXK+2PR/R4+CKN9f4x2/uHZvNjSPSQ57HPp+PvccbuPbd9Y2dcoG5s/oxLDOqTR4MlWZnUBf/wzVHuKxf4mlP+2oJnUrOgxd245d9lX4lSoZRS05c2yPXmyAIAoMzIll6/0h+2Hmc7rF6+qZGdHoEqEPQGGH8/8Hns5uP5U4FZWBRrVfJ6ZUUzrPTDY3eOqd/rTpSbQkyR31n1UGcbg+Pfr2D5Eg1H99YQErUydPO3B4vZodbHKVoTzGokJGokPnHiWssDu7+9igX5zzGkOF/xe728c9NdYwxuLnoJHzAluI6Pl7XPNL5xaZjjOkew08PjUKjlLVrRKSt0Kvk3DuuGxN7xrPuUDUjs6NJj9ailktRy6WYbHXsLDXxfWEZhxsbXe+uOszDE3OYlB/PmJxoFDIJr1/dD7vLiyBAlE7BZ+uPkhyp5v4LczDqlHi9Pr7fXsYHaw4D4DA7ue/fW1n+4Kg2kUdROiUvzOiNye7C7fYSrlWglEkorbPhahxVNOqUIZVhbYHV6fETR01YsK2U31+U2+rrc3m8HK+3886qQ1idbm4ankFShNqv6g71vFiDMkA5GK5R8KcpucwckMzm4loGpEVSb3MyoUdcuwv8Ez0Xj1TbmDp3lV/BtGBbKT8+OIqE8PZ5AJ1LaHlvLDfZmfn2GmQSCVVmR1BAzPZj9dhdng4RKbUWJzUWJya7C71KRpha7l9nxIAaV6sJzuEaBS/O6MO7qw6y5mANQzOjuGFYul8pmZ8YHtA0BZg3O9if8FSwuzz+sa2WKK+3k9KK4upk2HZC0i/ApiO1zBqc4t8DnwxVFicXz/0Vs0MM71l9oJrnL+/FZxuOUm6y8+ENg0Kmn54M1WYHLo8XmUTSpuSwzmDxzmAvqoXbSxnVLfq8l9J5tAvnyaOzAbpYyAodv6iQScmM0XHLiAy+2VLi38zrlTIm9Gh7ZKPd5cHm8mBoNFrtKozOiQ5KdbhpRDoPf7mdn/dVMTYnkifGxjGzu4wfi0xc++46PrhhEPHtNAA8F2C2u7A6PUglAlE6JR5vsLTXZHO3O/GoK6BTiR4ob6886D92y8gMDI3JRPeNy2b5ngoKMqL42+LAWfaXlhaFVFm0BT6fj9J6O3OXF3Gk2sqVA5MZ0R4C4BxBjF7F13cMZePhWmwuD8OyjEGjSXVWJ08s2BVwrXyx6Rh3jM4kQqOgzur0JwjqlLJOeRRkRuuY0CPW75+QGqXhpuEZfk8NmUTCnGHpfLW5hJpGA8i0KA3Ds04+ziWRCPRNDg8gF5t+X+ExkVQ6brLj8vhIidLw71sKsLvFa0IuERieZWzz+6o2O7hk7ipqGwnqdYdqeG56PjP6J7dtoyORQM5kuNgHG98FXRxc+GSbR9aqzQ4enV8Y4NvyyvIiZg5MDkkeVZkdfLHxKO9ejKne8gAAIABJREFUN5AGu4swtZzvtpXSI8FAbBvII3XITbq83Z4nXYGMaC3LHxzF94XHiTMoGZ5tbLNkvqExbhpAI5cSplGgV8nJPony4YxAIoGM0XDneihaCnH5EJsnJoGGQFPCXGuobHBwpNqCQiYhIVzdKdWCJkSEvU4p8597R2tsPPZtIa9e1a9V1V6V2cHHa4/w64FqRmQZuWpwSodfk14lZ1B6JI8sKvIfEwS4+8IeJ33eT3uDVX2/7KtkUv5pyq3yir5MkVo1QzKjGBJC6XKg0sLm4loGZ0SREK5m3aEaimusuD0+5FKROKu3uThcZeHzjcfISzAwOT+ecbmxKGUSv9LZZHPxQ4jia92hmjYXjKJaSlwXaixOnv9hL/9adwSfD3Ji9Xx446AON5YkeJFLhQB/LpVciuDztPqcKrODif/4xX+efbW5hEX3DPcTxQaVjCsHJvuNx5UyCU9e0jOI/I3UKinIVNI3JbyRvAxrl2lxjdnJukPVLN1dzpicGIZmRqFXyZi38kDA6JvN5WHJzuNcPyy9zT/7RNRZnRTXWFmxp4J+qRHkJRhOC6nZFThcZWlM6vQS2Ug2tpxAGJYV1aFEWbvLw/5KMzd/uJE6q0v8u17cg3F5sUgFgcU7j/PV5mNkxei4+4LskGRdtF7JAxfmiDYSSlmAmn5izzgWFZax+kB149ex9Es9mWYxNAwqORPyYnnn18P+Y0qZ5JQkemu4MC82IEQC4JI+CW1W524prvWvbU34avMxxuTE8MKSvTz4+TbeuX5gm70Fj1RbuOPjzewsNZFu1PLarL7kxBlOW3N9UHok76wKVJwXtMOc/DzOownnyaNzABqFjORINYvvG8n7qw+jVUqZXZDW5o1hWb2NV38sYs9xM5f0SWBq74QuM5reXVrPhzcM4pP1xVgcHmYXpFBaa+fnfVVc1dfII7k1hH9+LZgruDRtOAOnv8qCraUBozH/DahssPOXhbtYuquCjGgtf7u8F3EGFf1TI9jUIkFjZLax0azTfUbH73RKObeNzmRcXixrDlQxPNtIhlHnfw3p0VqWPTDKb4DZEnU2Z4cXs8oGB5e+9iuVjV311QeqefrSnlw5KOW/Tn0WrVdx0UmKJJfHS2l9sD9EjdVFmMXJ4wt28t020WSyR4KB9+cM7LDiJEqn5NnLevHoJBcOt5cIjSKo+I8zqPjh3hFsLq5FLZeRl2BoE0EwPi+OrzaX+M/rIZlRZERr2dLY1busb6K/E9qZTtr+SrOfOGrCh2uOMC43NoCAqjY7MNnFDZ1BdQLppomEPtdAziTRsF/VdvWM0+PlSE2g54vPBw12d8jHC4gR4bP+udY/dvD41B5B3eLWEK6WM7FHnL9AlUoE/jQlr0uNToPgsoO9TvxsWpAoaoWMlCgZt49u3326xuLgH8uK+HhdMV6fjyn58TxxcY9TvgebU1QmnnZvNZVB/BfdvvGJE1FusnPZ66v9SjHxeh3UYU+KWIOKAakR/rQlmUTg1lGZ/H3JPv9jdpWacLg8EOIzqrM6efjLbSzfIypP1h+qYXtJPS/M6N2hz1QulXBNQSrFNTa+3VpChFbBXy7pccoR2wu6x/KvtcUBx8bmnqaRCHMlFH4OxWsg9xLIugA0weTRhB5x9EoKY+mucsLUcn43IQcfokExiCqLn/dVBngNfbKumA9vHER4izVaJZfSNyXcXxA3oUdC+xV5AKV1Nj5c26wo31vewNu/HOThiTkoZVKcbi/1NidyadvCH/SCg1uHxDN3VbNR8X0jEwiTOIDQfjOLdxwPIMc9Xh/zVh7imcvy/b/3kYni6GxJrY3ceAMRmtbPJ6VcekrSqM7qpKjCzKLtZfRLjaAgI5JXf9zv/yzmby7hsn6JPHlxj5DeQ53xNHS6vXy7tYTHFzSPXU/rm8gTU3sEpROeDYhrkUS7pbiWt2b35/dfFXLcZGdYVhS/vyi3Q/5MNRYnj84v9E8OONxeHl+wkxHZRr7ZWsrzjQ3EDYdr+XlvJd/eNTzkvU0ukxAhCz43jTolc2f1w+p0i0nFCmmH/NtUcim3j8nC7PSwcFspSREanpme3+EkvNRIDc9cls/fl+zD6fFyy8gM+qU0k1o2pxu319fqORYZ4j2EaxSYHeLnWFhSHzJwIRSqzQ7u/EQkjkBMZr3uvQ18f8/w0zYmPSA1gsn58XzfaGExJieaC86PrJ1HB3CePDpHoFbIyIzR8eTFPRAE2mV4eMVbazhaI25yNxfXUtFg554LsoMWeZPNhcnuotzkIClC3bbISwGO1li5c0wWXq8PH+LGSxDg7iHRhH8wBTyN0ZaHVxGz5i/k9fxze9/+WYMai5NtR+tYvqec0Tkx9E2JQCmT8MyiPSzYJt6Qd5aauOrttSx/cBRvXN2PV34sYv3hGgamRXJZvySmvfYrz8/ozdBM4xklUCK1CgalR4aMS1XLZaQZZVSZHeTFG9hV1pyectXAlA6Pmx2ttfmJoya8v/owE3rG/eb+AmcaYWoF0/sl8felzQWhQS0jNVJDUXmDnzgC8Rz6ZF0xd16Q5ffEaC8iTuGnJJGIqXkTe7ZPFWDUK3n72v6Y7aJprFQi8NKSvWTH6JicH8/sIaldkuARqugN18hF5ZbZQZROSZXZwe0fbWJDozl335Rw5l07IPDckkjabZB93GRn2e5yxufF8fnG5rjvSK0CQysGti6Pl6e+29nYKQa318cz/9nd5uI5Qqvg6Wk9uXlkOoeqLBSkRxHZxlSkDsFSJfrtFX4JEakw6UUwZoO040XUrtIGPmwxYv3d9jJG5URzef/kkI/3No4mvrysiGN1VmYNSjnrlYler49P1hUHjBjuLDWx9mB1h/0ponRK3pzdn50l9VSbHQzJNFJcY+Wv0/JxerxieuKRmlZT2Gwuj584asKy3eVYne4OE3JROiVPXpzHIxNzEASBSI38lL4ovZPDuGFYGv9aK6pprh6cQv/U0Mqu9sLmFNXTYSoZUnstfDnHn7LI7u9g6D0w+g+gCFQlmOwurnx7rV+1nRiuZv7tQ/3fr7E6eXlZUcBzIrRyLHY3WoXU32BRyCRcNySVX/ZVUVhSjyDAtQUpJHVwhGpfiHGc7cfqsDk9WBwePlp7mC82HSM+TM2TF/cgK0Z7Uq8frcTBjfGHmHB9TzaXWhmYpCWhbiMqofX7jzqE4k11QkR40zpyMs+ktsLp9jJ/cwlPLRTJm/dWH+a7u4bxSYv0SkGAtQeqsTrc3DIyg6+3lPjVHglhKkZ061jYAYjE1Yst1l8QvR9/NyHnrCSPwtUKbh+dyRs/HaBvSgQvLyviqUtEomtniYnXf9rP7y/q3m4CSRDE5kxLONxebC4vH7cgNAFK6+1Umh3tJsZbquw6A6NOyeNT83hwfDckgtCpfWOYRsGM/kmMy43Bh/j5KmRiIuPRGhv/WFZEndXJTSMy6JMcHjQOmBkTmJyqUUiZMyyN+z7bCkBBRiTKNvpxuTy+oJTCygYHdmfrSsHOIkqn5OlpPfnj5Fx8PtAopWf1WnseZy/Ok0fnGNorL6y3ufzEURM+W3+U64akEdOiwDPb3Xy24Sh/XSR69ChlEj66cTAD0iJOSlT1Sorg0a8Luf/zbQBkxeh4a3Z/1h+uQWY93kwcNUJ+dBUDLjw3b1Zmh4uXl+3z+0/9a20xswtSuWNMJsv2lAc81mR3U2Vx0j3OwL1ju7F413F2l5m49p11WJweHv5yOwta6ea0BR6vj8oGO/M3l2Bxupk5MIVYvbJdUvFQMOqUvD9nIO+sOsS2Y3VM6hnPlN4JITeZbYEuhKQ6XNP50Um7y0O9zYXJ5sLQaMB8tkeOKmRiN18qEZi/uYTkSDV/mpJHhEbu7z61xNaj9ThcXmTKs8+oPEqrJEqrxOHysLvMRFac6GVTb3P6i7TOIs6gYlhWFL/uFzv9SpmEhyd0p9riYPHOWi7pk8iqoko/cQSi58qSneXMGpzS/IPs9eC0giAR1TUhyJEqswOr04NCKkEuFfjj/ELWHqzm3esHIpcK/LhbVBTeOy671QQhQRAorbcHHLM6Pe36PKJ0SqJ0yi4ruFuF2wGr58KvL4tfm0rg3Qlw1wbRh6+DWH2gKujYL/uquKRPYsjRgCqzg+lv/ErflAjSorS8uHQfNpeXGf2TflspvaUKnBbxXFEaQNk8luTx+ThUZQl6ypHq4GPtgVGnZGB6JEeqraw5UE2Vxcnzi/fg8viID1Px8U2DWyWPJIIQNNKikkk7PfKoU7UvHTRSq+SB8TncOjITH+K4dFckV5XW2Xhp2T72lzcwuVcCc3rKkDYRR01Y/zYMuSuAPLI63fxj2b6Aa7Ckzsa2Y3WMD2s+z5s+JkGA964fSGK4mpJ6G5ZG8i0+TC2S7aadvD/SjDW8O1LBh+7oTxi8RqD9Y3l9ksMRBALuJ+PyYtEqpPxz1SH+vlQktI7W2Jj+xmpWPDSaWMNJ1jh1BBFKiFh0KfkRqbD1MEx9RfT6agWjc2KI0Sv9fltquZRbRma2OsbT1GA8Xm8nKVJDeDvX3Xqbk5d/DCTqrE5P43nq48K8WO4YncnRGismh5sorYJlD4xixd4KNHIpQ7KiOqfKEEQC60R4fwMrgbYgTCPntlGZXFuQynGTnZ/2VfJLUSUquWgVEaVVcM8F2e2+xlQyKSOyjPxS1Hy/jtYp0SikRGgVQetYqLHaMwmNQoami5T6MqkkSNFdZXYy5dVVfkuBX4qq+OjGQQw/wa7BqFPyzrUDKapooMrspHdyOD/sKGN0TjR2l7ddJKRMKpAZreVAZfO6cSb2seEaBeEdm/o7j/Pw4zx5dI6h1uoEH21OaDqxiwRiR+DEjbnZ4eK5H5pd+B1uLw9/tZ0vbh1y0tGTA5Vmf3oIwP4KM99sOcYfLuqOT+cCiVQ0Am+EL3EAclXHIjt/a5jtngAzUIBP1hdzx+hMsmP0AeNpEqFZOWFzeYLMA4+b7J3asFQ2OJj48kq/7PifKw+x+L6RpBk7/9nGGFQ8ND4Hq8uDXinrVBFn1CkZkW1kZeMmRS4VeGxyXqe6HW6Pl42Ha7jpw43YXV6UMglvXNOfEdlRpyWFpSsRqVVw68gMZg5MRiGT+BVdI7ODN/iX9ElotVg8W1Bvc3HVvHUB3l47Sk08N71Xp8YLQCRSXrmyL4eqLByttdIjIYxXfixiyc5yrhiQRGWDHYsjuEu37VhdM3lkroBFv4PdC0QD7UkvQPaFASbJZXU2rntvPfvKzcgkAt/fM5xfiipxeXzMeX8D0/sl8eik7uTGG7jpw428c93AkK9XKZcwJDOKNS3GWtKN2pBeRr857HWw86vAYw4T1BV3ijwanRMTkKwGos9Ea8VoSZ2Nt2cPYMmuco6b7Dw2OY/yeju1VufpHdc7GUxl8NlVULpFJI/G/BH6zwF1ONA80rWghVJQItAlvj7FNVamvrqSL28bykNfbvMnJpbV2/nztzt4bVa/kGllconAHWMyeWlpc2F+55hM5GeYgHN7vHi9PqJ0ig6nczbYXZTV29lSXEuYWk6f5HDW7DrMgwV6JE5owIfDK0VzIvMiUwGBa6rXR0jytmXYiEom4ZaRGTz85XZm9E8i1qDiqnlrqTKLja8rByZz37hs4lRu+OVvRO1bTMBwnD4Mes1o9/ussTh5/vJevLhkH7VWJ9P7JdE/JYIai4v5mwNDCaxOD/srzCf3Q5KpoNsESCmAhuPidayKAGnra0iMXsnCu4fz454KLA43k/LjidaHXpvNdjefbijmmUXiPlEpk/CvGwcxMC2yzUp4HwR5Pi7bXcH1Q9P4paiS2QWpXDVvrV+9ed2QVO6/sBtXDUoJ8dPaDrPdhdnhQSLA9UPTefPn5nvU0MyokMSE2+Ol2uKkuNpKpE5BpOb0JKOeCv50UgEeuLAbI7KN1NtcaBQylu8pDyIbfD4fFQ0OVuypwObyMKFHHEa9AkWLvVGEVsGz03vx2DeFrCyqIidOzwszehNrUPH41DxmzVvnv24m58cTdoq13Oby0GB3IdA2heLZhrUHqgO8KEHcU/dJDg8iz416pb8mqmywI5UI2JxepvVrX5PVqFPyz2sHcOW8tZSbHIRr5Lxxdb/fJon0PM6jnTi7K5Pz8MNsd1NYUs+LS/bi9cG947LolxJxygJNp5Qxo38SX2wSDW6lEoEnLu4RJP20ubxB3hzHaq14OTnBsed4sGJiZ2kD47rHYpU4cV38BvJFD4DTDDG5CBf9DZkmvC1v+ZyBTCrw7GX5XPn2Wqotoj/Qnybnom8s/DVKaVCHYWz3mE4VlUt3HQ9IunO4vcxbeZAnL+7R4U17S8hlEsI6EM19IqJ0Sv4xsw8HKs0crbFRkBFFVCdHcWqsYspN0wbT4fbywOdbWXLfSPQqkQhVyaWdJi9OF2QhIoFjw1TMndWXv36/G4vTw3VD0xjZrWMm5WcSNRZnkCn8qv1VWJ2eLvn8m5Q4Hq+Pya+s9JvBfrSumH6pEVyQGwPfBj5ner9E8T9uJ6x7A3Z9I35trYavboB7tvnJI6vDzfOL97KvXJTwu70+Nh2po3ucgcKSeqxOD/9ae4TPNx7l05sLkApCq2NAERoFL83sw1Pf7eTX/dX0Sgrj6Wn5HVYXnlZIFRCRJpJFLaHt3DmXHaPjnrHZvPXzAbw+HzMHJDPsJCbs0XolV7691p9SOH9zCS/N7BNSQVljcXK0xsruMhOD0yMx6pVdf427bPDL8yJxBOBxwbInoPsUP3kE0D1Oz5vX9Oe1FftFRdzEnE4naLo8Xt5ZeQiVXEa1xcmJnMee4w0ByqKWsLu9qOUyPrpxMLvKTPRIEM/f1h5/OlBldvD5hqOsLKpiRLaRKwYmd2jEpLjaisnuZl+5mbgwFd1itFyiWI/snfvA5yVGHYH9mu/wDX8IYeXzzU+84DFQByr2dEoZd1+QxfI9FX6eKUqrYEBas8+J1SkWvu9dP5C4MBXPL97rJ44APttwlOuHpRGnblShnQhlx8a5vD4fC7eX8eepeegaE2m/2HiUP0zKJSVSQ1FF4FhRqHTMICi04j9D28YnBUEcXW4LOWN2uPjbD81hGg63l0e+Kjxlg7ElwtUK7hidxbM/7OGqQclM75eEVCIQa1Bx5aBkHvx8m39dB/hgzRFuGpHRIb+cJrT0YZNK4OMbC+iZYGDRjjIGpUUxpXd8yPGqw9UWpr22mobGkbnL+yfxx0m5vwmBBKCQSnC6PUx7fTUgkkqf3VIQNFpV0eBgyqur/HYBzy/eyw/3jQxKJ0sIV/OPmX2xuz3IBIl/RDo/KYyffjeajYdrSTNqSYnUnPQ911iczPvlIB+uOYxOJeOxyXmMzonu0L3Z5/P5VcBKmRSDuusURydDqPd3KgK82uzgxg82sv2YOML2zdYSHp+ax+yC1JM+r9bq5ECFmWW7yxmUFsm3dw7D5fGikEmJ1Mo71gC114OtDszlEJ4qrlWytl2T9VanOMJ3fnztPNqB8+TROYJaq5NDVWZ6JIYxf9Mxrnt3A9/dNYz8pBZEjN0EXneA8Wm4RsEfJuVy3dA0DlZa6JcaHtL0TaeUilLtFj4OF/WMQ3MKgmNEdjSCsDugATgpP56nvt/NpiO1XNk3nVuu/JnUcBlShRZ0Z39B3Bp0SilXDkzmoxbqo5kDklDJpWREK/nPfSNoaPRJ0Cnl6FTi5WXUKfnwxsH85btdFJbUM7Kbkfsv7NaheNUmhJqE8fp8p6D6fhs0EQCDOh6QEgC3xxewuQeos7qwu7z8Y9lOftpbSY/EMB6fkkdSB+JcfwvoVXIu6hnP4PQofPgIU8tRyk6/YqWywcGxWisKmYRYg6rdxV64RoFMIvi7lNcMTuGKgcnYXR6qzI4u87Vauqs8IEUIYGVRFRN7xPLCjN78Y9k+fD6464KsZm8OhwmKlgX+IJ8PjheKHj+A1eWhsKQ+4CEfrD7Mi1f0Zs57G6g0O1DKJDwxNY+SOiuf3lJwUjIozqDiuem9sDk9KGWSkCqRswLqCJj0PLwzQVQhARTcGUCQdAQRWgW3j8rk6kbll04pO6l6rqzO7ieOmvD+r4cY1c0ILZ5nsrn4+9K9fNTCjHnuVX25qGdc13a5nRY4tj74eNU+0Q+qEQa1nIk94xiYFoFEInSJb4QgiJ+X2eEmXKNALZcGELOju8W0+llKJQIvL9uHXCYhJVLDayv24/X6mNY3sdOvqy2ot7n4w/xClu4Sx7fXHKxmy9E6Xri8d7u8ZEw2FyV1Nm79aJN/T/HFRh2fTMnF6GskFWy1qP5zP54ZHyDNGAnHNkLWWLFoCmHemx2j5z/3jOD91YeJ1iuZdUIKnV4lo6jczLurDvP27P4hxw8rTA66xxlg1COwZ6FIMgJEZUFiv5DvpcHuorxeHDXKjTfQPU4foKbLjNZhc7q5/aPNgEgGfHfXMMI1Cv44OZeNR2qpt4kNosv7J/3mHoH2UzQYq80ODlRaKK6xiE0irSIoFEQhkzBzUDIjso2iQnTeOpweL1FaBV/dPjRkoES9zUVLxzSPx4vZ4UajkPnTQ0+GnaUmvw+bxwsz3lrDB3MG8tIVfVDIJCFVUyabi6cW7vITRwBfbjrG7aMyfzPyyO7yMHdFs2Kq3ubiz9/u4O3ZAwJe04o9FQE+k1anh3dWHuRPU/OC/BMNajkGAq9PtVxGUoSMpIhT7518Ph/LdpfzRqOSy+L0cPenW/jxgVEhySOTzYXd7WnVu6i4xso176zjaI0NpUzC05f25KL8+NOuwO6ZEEb3OD17jos+ZDqljHvGZp90hKzB7vYTR0148+cDTO4V3+popcPl4d/rj/Js45THmz8fbDRszzvlXsHp9lJrdYpeRQppc/1gN8GGf+LbvZDKC1/l2NE6dOFyjGH4UxHtLg8VDQ7+U1hGjEHJ8CwjWoWMHaUmXlyyF4/Xx73jsumTHH7WNl3P4+zCefLoHECFyc5rK/az4XAN/VIj+OCGQdz20SY+WV/MXxPDENwOqN4Py/4s3kiG3CVGEjcWAgLiSEW0XoFEEEKOIRl1Sj69pYAnF+xkd5mJsbmx3DM2+5R+B7UWJy9c3pu5K/ZjcbiZPSSVcLXcP8L12ZZKPttSySc3DWJo1rlLHIHo//DA+G6M7BbN8j0VjOkew8C0SP/NNkavIqaVJmRiuJrnZ/TC5vKgV8o77CHUhAk94nhx6V5MNnFzo5BKuHlERpsjR89lKGUS8hPDAor+nFg9xTVWPlkvmhuX1tvZV97Al7cNPTuVHyEglQhn9LWWm+xMf2O1v3jvlRTGu9cNbFdCmkEl4/kZvfjD/EJuGJZOmFrOjDfX4HB7yYnV896cgSFjftuLoVlR/POEiNkR2UY0SjnT+iQwqls04CNSo2gmExRaSB4Ex7cH/rAWSVt6lYwLuscEdPmLKhqI1iv5/t7hWBweNHIpSpmARikPiCNuDXqV/NzYgEVmw53rwFQqNhxU4Z0mjwAsTjfVZgcuj4+EcPVJN/4yafBaJJMGF3QmuytoZPiphbsYkBYZkEjUaSgNkDUewpIh8wKw1cK2TyG2Z8iHd+VonUwi4cbh6Xyx6Rhv/XyAubP68vT3uzlSY2Vcbgw3jkintfZAuFrOn6bk8fv5hdRZxfvi3y7vRfgZMgG2Ot1+4qgJy3aXY3W5CaPtr8Hq9PDmzwcDmlH7ys0cc8dh1EaDpdEUvKoIqUQK6SPFfyeBVimje7yBp6f1RCIIQeeWWiHjwfE5NDjcLCwsZVJ+fECct0ouIStG9LyqU8bjmbMa6YFleFQReJIKUEjCOPGq8Xh9/LKvkjs/aU5wm5wfz/9N6+knGqN0Sl6/uj8ldTbqrK4Acik1SsvS+0dyrNZGhFZOuEbxmxvbapVSkiLUAWRvU4OxxuLgoS+2sWKv+PeRSQQ+u7WAASG82yI0ChwuL08s2IXTIxKC1RYn324t4dK+ibz180H/YyO1igDFVbXZwfwtJSzdVU7f5HBuHJF+Sg+kVUXBPmxfbyllWLYx4FyoszpxuL1+/6WS2mAiq8rsIDNGF3T8TODE5FGAw1VWXJ5mpZbJ5vQTji1hdQan6HYFLA43328vCzr+6/6qoM+pwmTn0a8LWb6ngoxoHS/O6E2PBD2yRqVNndXJo18X+j1aHW4vj8wvZHi28bSTR0a9ko9uHMzu4yZqLS4GpUdiPIVCPtSkplwqwen28un6YhRSCSOyjajkEuwuLyq5FLvLw6vLAz2/vtnaZNje+u8y2Vws3F7KM4v2YHGK46VPNqWYOhpgzeuUXLmMSz/c39hY3c+YnGievSwfpVxCaZ2dS1771d+AyzBq+eimwcx8e43/vJj9znoW3j2cnolh7fnozuN/FOfJo7McNRYnd326hfWHagA4UGnhaI2Vuy7IwubyiIufpRLmjWk2p/7iOpj1OXSbQJ3Vyd8W7+HTxqJaLhX49OYCBqQFLuqCIJASqeGlmX2wu9tOcBypsbBgaxn3jM1CLZfh8Xr5fGPgJv+uYXEMijDDztUQkwO6WLHzfQ4iUqtkfI84xvdovy9IVxaVRp2CH+4dyb83FGNxeLimILVri6izGE3JRI/O386Gw7X0TQnnr9PyuemDjQGPO1Jtxep0A+cGeVRjcVBlduJweYgLU59WIsnr9fHxuiMBhcD2Y/VsOFzDRe3wbtEoZUzsGcfQDCM2t4fRz//k/97e8gae+c9unrmsF7pObv76JIdz5cBkPt94FB8wJT++kTACqVQS+rOSq2HkQ1Cyqdm/ZvSjAaNZSpmUm0dmUFpnY9GO4xh1Cv46LR+9qlEu3/mAobMXUqnoi9IJj6MTUWV2cP176/0pMmlRGj6/dQgxrYx0JUdoyInVs7cxeUoQ4HcTcoIKZZfHG1T8mOyuIP+UTkOmgMG3wPYvYNP74lp1+XtdQqq1BXFhKpY9MJLFO8uxONy8e/1AzA43q4oquevjzXx6S0FeBuwRAAAgAElEQVRIc1ylXMrEnnGMyI6m3uYiTC1Hq5ScEfUihDbsVsok7TbsVsgEPCGirj1eRMP7RvhyLkJQtK+Il54ktTJar+TZy/KxOT34AIfLy9dbS0gIU/HUJT0x6hS43F7eWHmU9349TJ+UfCwONztLt/P1HUPpmxJ4/6mxOPjroj0Bx74vLOMPk7oHnNtNqtzg1yqOk7V23fwWiNar+OTmAp76bie7yxoY2z2GuxsbjEXlDX7iCMTx36cX7uad6wf41Q8tYXW6/cRRE95eeZDlD45GLZeyYGsp6UYtj03J8ytULA43LyzZ69/Lrj9Uw5qD1bx3/cCTkrijcqJ565eDAcfG5cUEqHDKTXYe+mIbK4uqSIpQ8971A5nWN5EXljQns+mUsi7xlGwvLA63qGhXynh7dn+e+2EvBxqT0i7Kj/PvKeusTh75aju3j8pEo5D6PXykEqFdjUWPx0ul2UG5ycEXm46SYdQxtXd8kMk0gEoupVdSGD/vC0x6zEsQxzurzQ4EQUAhFXhq4S6W7Rb9UX0+cHu9LCo8js3lYWS3aOQSISg4xOP1UW1xEhfW+QbUqWDUKxmhb3uDW6+SB/h5Atw3Lpu//dCcvByjV/L+nEFcPW8t/dMiePKSnnjxoVfKMDvd+HziZ+Hx+qhosKNXyoLUegCVZgePft3sm7pwexm58XpuHZmJzGXD1vMqXl5THaDID1MrqLW6OFBp5ustJQHK7YNVFnaVmphdkBqQjvrxuiP8dVp+mz3MzuN/F+fJo7McdpfHTxw1Ye3BGh6Z2J3Epo7+wZ+CUs1Y/zakDqXBLvUvtiDGQ/75253868ZBIRfcUDLWk2F0txjkUnHkze314vP5eOSiXLYU11NpdjAh9//ZO+/wqMr8i3/u9D7pvZFCAiGU0HsTwa7YkKJiV0RlrVv8ueu6uuqu3bVjLyhYEFFEadJ7h1CSQArpdXq7vz9umGSYACEkCsp5njwPeedmZpg7977ve77ne04EM5KLULwyttnccuRDUqxuO70CzkGqzseFaJk1LvPkB/8OER+i5aXr+uB0+1ApZHh9YpD3jkouQ90Bvk2dAa/PF1AFr7Y4ufuTzazJl671hFAtc+8Y0mmEoMfnI78yuD0jv5UUqZNBq1SgNStY00rS1raieuwu72mTR2F6NX+5sBv3npcBTbLtNrWEGWNhytzjJmeBpLp8cmIOj17cHUGQXut00wD/qFi1vyogfriw2ia1e4xKa3VBGmFU89EtA1mxr5LCaiuX9Y4ntpXvvFohJzvOFLC5uCo3oUP83QLg80He97D4b9Lv5TuhaC3cvRE0nV+RVchlxJi1XNIzlgOVFrYX11FYbWNQajg6teK4bRRur4/txfXc9qEUIqBVynnr+r4MSg3v+M+oFZg0SmaN68q/v28mTGad19UfCNBWhOnV3D0mg1s/aC4EJIZpSYqLAXO81C6WdSHCuH8EXcenA5vLQ73dzbr8GlIiddwxKpVbRnRBIRP85EeD3c2OknpcXl/AmmxvWSN9kgKLYaJIU+EiEB5v+8nOBrubRodb2kybNITqVaetNBZFEbvLi0Ypb1MwRlKYjueu7Y3D5cWoVfp9G481Gwaos7vxHsdyS6dSEKZXUWNtXrcO6hKOVinnrlHpTBmY5PctrGx0YnV6UClkzG3y7jyK7cWSL134sS/QAlkxJmaMTmNHU4tRSoSegV3CKKiysL2onj7JITz13V4/CVBtcfHBmkLuGp1OSriO5386QIxZzWOXZBP+K7esNTrcfLGpmH8v3IvL6yMtUs+Lk/pw/+dbGdglnHvGZviLvDaXl0W7ynG4fXx080DmbirG6fFy6/BUEkLbTr6U1NvZcriOe5vi5wHJ9+/2wUFFGoVcxrTBySzZW+G/N1/VN4GkMB0/7irj5SUHUMgE/ntNL5Y3kYuCIKki7/1si794ZVArWHjPMMZ3j2bOxuZzrFXKf/N2zeMhTC95HG4srGF7cT3DMyKwubx+4ggk/6kleyvoHm/ipz0VXD+4kfkzhnGoxkaEXsWHaw9RZ3Oz+XAtD83dztSBScwYkxHkwbWtqM7/b0GQ1rbL8iqZMjCZELURV3Quh4uaFWcRBhXXDUzk4pdXMnNsRoCP2FFUW5xc2isugDxKCtMjCAIVjQ5W7q+i3u7m/O4xRBpVqH6lQsQ5nB04Rx6d4ZDLBAxqBbFmDRnRBvaVWyivdxDdsirVmjmiORFkSmyuYAlrRaMDbwdVbGWCwPytJf6qU2qEnjm3D+K7e4ZRbXWRqrWifntqYCrKL/+F3BvPavLI6fZS1+TPEGVUY9IoT8vDyOb0YHF6UMiFVit15xAMs1YFTWsin0/k2at6csPsDbi8PgQB/nxh1hnXPlRvd5NX1sCn64voGm3kytx4okwadpXW+4kjgOJaO++uKuCB8Zmd0oqoUsiZMjCJBS0k5zIBJvRovwolJVyPXCYE+GIMz4g4beLoKEzadl5j+gjp5wQ4a1rNznAcrLIEje0rt+D1ia22qIGk+riyb8IJn9esVfDipD58tPYQeWWNDMuI4OKesR2/mbPXwuYPAsdcVsknq40mxB0Bryjy6tIDLN8nbWgFAWbf2P+43/9aa2CIgN3t5b45W1l4z/BOVa+4vV5qrW58IkzsE8+YrCg2Haqld2IIsWZNu9qzB6aG8fWMoXy09hBpkXquzE0g0qSByV9Ino4qQ4cSRwA7S+q57q11/nvXuO5RPH1lr4BNnEGt4JJecaxukaYoCDAoNZi6MOuUTB/ahecWNytXuseaMGrady9ssLt5b3Wh//kMagWf3z6I7nHtJzRrrE5+2FnOkr3lDE2P4NJecW1qwzRplEGkYGyIhmiTmvKGZq+dGwYnE9ZK22RVo5PvdpTy6uRc/rlgN3nljYzqGsmTE3P83++jKpeiGhuT315LUY2d2Tf2Y0xmFIPSwnG4vXy1pYQDFZbj3leOIkSrZOqgZBbvKsftE5mQHcPO4nqmNymV37+pP6vypessPkTLK5P78PXWUu77bCvje8Twya0D0Shl0nrjNFBrdSEintL6rt7u5vFvd/t/P1hp5X/LDvLe9AEYNYogWwlBgOX7KtlaVMf53aMxaRREGFTo2jgH19lcbD5Ux3urCwPGC6qsFNfaWlX4Rhk1fHDTAKwuLwqZgF6tIL/Swm0fbvIfs3xfJZkxRjYeqqVPYgjbi+sCVM8Wp4c3f8nnoQuyKGt0smJfJfEhWp6/pjchp7Gu7mxEGNRM6BFLn6RQ3voln0ZHM2HcI97EhOxYsuNMHKm3E65XU2VxMf29jXh9Ikq5wMvX9SElQs++cikM4Z1VhXSPMzMxNz6g2JIdZ0IuE3hsXDzj03XInI3IDBHoVTIa3GGUx43h4l51rGsitcdkRfPl5hI8PpEfd5XxyAVZrDzQXNwL16vIiA7cf13RJ47Lesex90gDbq+PnSX1zF5VyNM/7OX7e0bQJfLsTMk+h87BOfLoTIC1SkojkymlhZG2eUEQolXyxR2DyStrZPPhWsZnx5AZbQxMrIrJgfi+UnsGSP4Vw/8ESg1heoEYk4ayBof/8Gv6JZ40erOt2FsWKFfOr7Ly3upCZp3XVVq0NtrAFqicwucFXzCpdTZhZ2k9k99a55fp/+XCbkwekOQ3yT4VVFmcPLsoj+93HiEpTMe/J/YkM8ZwxsfOn0mQyQT6JIWy4qHRFNfaiDFrmlo3zpxbnM8nsjyvgntaVPS+2FjEl3cNaVXxc6DSgsvj6zQfq+6xJl6a1JvXlh9Eo5Dz0IQsYkztJy7NWiVvTevLw1/uoMriZHRmFPeel3Ha/l7n0H7YXV4anW60v1L64CU943h5yYGAWsGUQUmnrX7Rq5VEGuC24V2otbmJNqvRKRVtUkucEhRqMMVC6THjhuiOfZ2TwOL0+okjkGov/164l5x4c6uVeLdXDFBxAFRZXK3G1HcUrE4PK/ZV8pevdlBrczOyawTPXt3rtGPVTRolvRNDyIk3BbSa2ZWhONxeTEolHXlHqbY4eXzB7gDSe/HuCv58gSuAPJLJBMZnR3O4xsbHaw9havKZas0bRa2QM3VQMl0i9Hy9tYSe8WYmD0xqt0eWxenh+Z/2Bfz+5y938O70/u0qNjU63Pxr4V7mNSl5ftpTweqD1Tx7Vc8Tpi6JotiqgjDKqOGru4by6tIDFFRZuaZfIiO7RgaZ2Tc43Dw6fyff7yije6yJG4akkBqhIylcH5RW2Ohw849vd/k9cFweH+N7xPDe6kL0KgV/vqAbdXbXSYsTFY1OLnpppf/6eH7xPj6+ZaDfnF6nlJMda2ZNfjWPXJDF377e6VfRrCuoobDKyiMTsk7yiR4fFoeH7cV1/KeFMXG/lLA2qfKODRMA2FFSx4bCGnaUNHDHyFT/d0qvljOxTzzzNpdQb5cUSw9PyGzTfd/i9FBlcWJ1eLA6PZzqXTXcoParv7w+Hx+tOxTw+IdrDvHipN7c8sFG1Eo5VmewKq/e7sagVvDStb1xeHzIBImc+c1bqLxuKalVFKVW+FZamAUBVh+o4v8uyfYrbbNijHy89jAbC2uYPiyFcL2a695c67/PuL0if/1qJ89e3YvYFm15C3ce4YKcmICUuWiThm9uziYt722077wkDeoj4balrC5Xc8PsDbw4qTcPjc9k3uYSEkM1VFmkPdau0gY0Sjkf3DSAuZuKCdOruLxPPB+uKeSB8zP5/PbBaJXSdTrhhRU0ODzIZQIPjc/khiEpvL+6kFeX7edfl+e0moJ6Dn9MnDk7qz8qGsvh00lQulm6A41+FHpfBzX5oFDjNnfl843FvLuqEIAP1hzi5qEpzDo/szmMxhAF182B2kJw1kvmnvooQJIvzr1zMP9ZlMf+CguX9o7j6r6JHXYTyCtvCBo7GimskMsk09qcqyXT0aOI6QnKs5fFrmp08tDc7QH+Dk//sJdLe8WeMnlkd3l5ZckBDlRYiDNr2VnSwLVvrGHpA6OIMp27UZ8KNEo5MWb5Gev9VGNz8crSAwFj+VVWSuvsjM6MYm//RoakhVNtdTFnQxGT+id2Kvll1qm4pFccQ9MjkAnCcVNknB4vdTY3To+vSUauanVBp1MrGNk1ku9mDkOEDqnW/lawODxUWZ1sKKiha7SRxDBdq3HOZzIqG508vziPZXmVdI8z8dgl2SR2cvpgjFnDB9MH8MyiPDw+HzNGtUi/O02YdUrMOiVxnWmXpzbAeY9D4Uop/hggYzyYT6yM6mi4PMFtBhan57imt2qlLMA7CiRyuDPbduvtbmZ8stmf/Ll8XxUv/bSfv17UvUMI45bEUWmdnRd/3s++skYu6RXL5X0SOux69IricU2Gj0WYXs29YzOYPjQFAYFwveq4BGaYXrq/ju0WhUohC0q6OhU0OoLPfWG1rd1tcFanl6+3lASMLd5djt3lJaSVW0SN1cWWw7V8v7OMYekRDM+ICCLC4kK0PDQhE6+P454bh8vLop1lAOw+0sDD86Qwg+UPjgo61u72sueI9H3OjjPh9Pj40+fb/I9vKKzh5/tbT/Vqie92lAYQqxanh6+3ljAmK4r520pxenw8ML4r9362lVizJsh3Z86GIu4ek95m9c6xKK23M+Wddf7zd9N7G/lmxlB6JZ7cRy0lXBeQZgowJC2CTYfreH91IV6fj4cmZKFRyjFrVfzlom5c2iuOdQU1jO0WRWqk4aRrfZ9PZF1+Nbd8sJHrB6cQY9IwfWgKW1oUudIi9SS2IX0NpG6E9MhAZWB+lZUKi5NvZw7D5vQilwm8uvRgU4CMgmsHJDJlYBIOlxezTsVvYdnsa/JXEhExa5TS5+a0wMGfYcEssNdIc8GlL0t7rhaI0Kt5ZXIuP+ws4/PbB2F3eZn6TnNq58oDVfxw3/Cg16y2SuSnr8XF3S85DPUxpGuIToUpxIts/UvNg9ZK6gq387+1kn/trDlbGdc9hltHdCE3MQQQ+HxjEXa3lz99vpU3pvVjYJcw9hxpYPbKfP58QTdiQ7TEhmipsjiZ+vY6GpqUU16fyH9+zGPObYN5f3UhVqc34D2ewzmcI49+S3hcsP4NiTgCUGggbRS8PVZKwAEsN2/mwzWBLP4Haw9x64i0wIqLIVL6OQaCIJAQquPJK3Kwu72YtcoO9UAYnhGJIOwJWNhc0jMO3dHFo9oI5/8TQlNg3w8Q3w+G39/qez1bICL6q2FHIXnuHKfB/wSwON1MzI0nxqwhRKckOUzPg3O3caTecUaZZZ7D6UOAVlVEgiCgVykI1Sl56vu9xJo1PHF5D9KjOp9gFQThhNVwm8vD8n2VPPD5NqwuL0lhOj64eQAp4a2/N7lcdtZ/b70+kVUHq7ijRVz4dQOSeGRCZtt8ls4ANDikGOfvmzZqUvqghXl3Dm7V+LSjYNQoGd41ku7xJhClTeRvXjk+VYR2gRnroXIv6CIk3yz9iVxVOh5hehUp4ToKq23+sZuGpRB6nPS0CIOat2/ox4Nzt7HlcB19k0N55sqeHZoGdyzyqywcK2xadbAai9PdoWrDigYH17yxxq/C2FJUR6XFxX1jM066Ma61uthfYWHJ3nIGpYbTM8EcpNQJ06mYNiiFJxfu8Y/FmjVBSpij0CjlJ4zwPha6VgxwTxWhOiWhOmVA4tZFObHtboM76pti9zUTZHqVvNW1od3l4c0VB3m9KQVt7qZiLsqJ4V9X5PhVSnU2F+sLavhgzSHizBpmjs0gLkQb5B0nCBBj0lBa36yEV8qFVo3djWolY7Ki+HDtIYamRwS0WINkyr0sr5Ibhpx4nnS4g0lASdErvbe1BTW43B5em5JLiE6FIAS6LJi0Sryn4VX15eaSIOLvk3WHyIk3n1Q5adYpmX1jfx6et53yBgfndYvm6r4J3PjuBgC+3X6Em4d1Ib6J2AnXqxmZGcXIzKgTPW0Aqq2S8k4UJSX07Bv7Y3F4WHTfcFYeqEIuyLiwZ8wJU1gb7G5sLi+CIH1eV+Ym8On6Ig7XSPevrBgjPePNuDwi+ZUWYswaPrx5AF9vLWHygCTeW13INW+sJTPawBOX55AcrvtV5w2Lw8Pa/GoeX7CbBoebqQOTuGlYKmHuGimA6OgJ3PcD/PIcrlGPYkeFuamlTiYTSI00MHlgEl6fjycWBJrle3wiP+ws44rc+ACPoX7JochlMG+TtN8b0CWUq/slBCn2AGSWwDRL4vrgDM1gxuhQksJL+XpLCYt2lbFoVxlzbhtEdpyJH2eN4NttpWhVciKbyOxx3aPRqgKVyD6fGOSB6faKuH2SBcQdI9NaNfI+hz8uzn0bfku47VDcIiEq6yLYMddPHAHgdQcxvu1RouvUinZXTk6EsnoHz1/Tm1eWHsDm9HDtgCRC9SpsLm+zakIfKRFG/W8FlU6Sfp7F0DYl28zf1nye4swaDOq2Lyg9Xh8NDjf1djfXvLHG71WRHmXg6St7njQm9BzOPoQb1Dw4PtO/8APIiTcTY1LzwZpDvNa0OD9S72DaO+tZ2ko19tdGg93DvZ9u9SfjHK6x8eAX23hzWr/jKpXOdtRYXTz+7e6ABf+n6w8zc0z6CeN0zyQ43F4W7SoLGDtcY2tVTdEZCD9DfdtEUaTK4sLu9qJWyDBrlcFEQCek0J0qIo1q5tw+mHdXFZBXZuHqfgkMPon5dWKYjten9sXlkUIETtR+1BFIDgvetOcmh6Lv4E1Gnd0d1L4zZ0MRNwxOPmEKk93t5YO1hTy/WIrGfn15Ptf0S+BvF3UP8I5SyGVc3TeBcL2KuZuKSY3UM2N0+mmnXTrdXmpsLnaVNBAXoiHGrG23WircoOaLOwbz6Ne7OFhpYUJ2DPecl9HuDZ1Jq2TmmHSeWZQHwO0jUrm8Tzzbi+vIiDYSqmv2gGtwePzK96P4bkcZf72oOyE66Zpasa/S3459RZ94Suvt+EQRvVoR0GYZrlfzzFU9mf7eBuQygbRIA5MHJLVKgmlVcu4dm0GdzUW9zUWPOBMX5sQSF6LB7vLy3qrCNhlBX9IrnpeXHPCvsRQygelDU1iyp4LcpBCUMoEpw1KZu7EYBLiufxKfrG9ODL5/XFfe+iWfS3vH0y3GeMqq/S6tJLSlRhra1HKrVSoYmh7B/LuH4fb6mLe5mFs/2Iilqe0rMVTHwUor4Qb1KRGaLSGK+JV3NpeXbUV19Eww89mGIrrHmhidFXVC0+pqi5N/fLuLBduPoFbImTWuK9f0S2DenUMorrUhEwSSw3VSutfs9QxNCycnIYQ5Gw7zxOU9eHXpAb7bIc1VlY1OJr25lvkzhxLViUWOY1FldXLrhxv9c/4rSw+SEKbj2tgqhGOZv/wl7E65madXVjN9SAoDU8MCFNbrCmoJa2X9Hm3ScHW/RErr7GwtqmNAShiPXNiNI3U27hqVxl2jpZS847ahhqaAUgduG47sSezOeZDHvimjzlbMxNwEXp/al9s+3ESXCD1pkQYMGiUGjZK7RqcHPE1rvnlalZyx3aL8xSaASINaSj68e1ir3+Fz+GPjHHn0W0JthG6XQMFy6XdtGDQGVlf0hT9yVe5wPt/UTFRc3Tehw0xoTxc6lZzXlhVx+4hUtEo5P+4uRyUXGJZ2TKVWrvzVq7edBYNG8jowaRT8vLeCrBgjf780u82pELVWF19tKcbh8bG7pCEgCeFAhYWGpqjlc/j9oV9yKIvuG8GC7aWkRxkYmh6BVyQgoQOkjU9+hYWY31jFY3EGRyrvLJEMFX+vEBGps7mCxk/3/1xnkzxoQnWqTk9zkyEQF6IN2HQfr8L/R8LhGhvXz17PoWobepWcZ67qyeisqA5Rh3Q0ok0a7j8/E5fH1+b21c4mjAJfS8mTV/Tg8QW7cbh95MSbefD8zA4vUqlaab0L16tOWkRrsLt5bdnBgLEvNhVLKXDHzK+hehUTc+M5r3s0GoWsQ9r688obufr1Nf729st6xfH3S7PbRbrLZQLpUUZem5qLy+vDqFaelrpLq5QzeWASwzIiKKt3UGd3c8GLv/gff/KKHCbmxqFRSufyWBGIIOD3xamzuZndRC5NG5RMZoyRm97dgNXlJSvGyOwb+xPXlAwskwn0TQ7ll4dGY3V62VZcR3qUAafHx9E9c43VSWG1jbwjjQxKDePvl2YD0lx0x0eb2HOkkQiDiicuz6FXwslbv6wODx/fMoi5m4rweEWu6pdAnc3NdQOSuLp/IgaVgiqrkxd+3o9MgH9e3oPzs/uTX2llcFo4X28pYfaqQj5ed5jlD44mxnxqn/uYrEgyogzsr5DCBJLCdFzRJx6310et1UW93d0U2KBo9TpvdLixOD34fCKNDo9ffWZQK/jTuK68smQ/WTF92k0embVKpgxM4tWlBxnVNRKDWsF1b63zP9470cxb1/dDFKXz13Kd6/WJfLO11L9+sbu9PLlwD0PTwsmON/sJ2CqLk8fm78LrEzlQYWHa4GReXerCoFayeHdFwPspa3BgdXqhE/N0LE43ooifIF2bXx2kDpu/tZQL09MxHfO3rth+LD5oYc3BatYcrOZ/U3IJ1SlJjzZSWmvn1SX7+dfEnszfVkplo2QgnxYpEToWp4deCWauyI2nqMbOtW+s4Ui9gzWPjCE25CREqC4cpn8P3z1A7eA/M+WNvcwck87A1HAqG50kh+uZP2MIUSbtCVVircGoUfKPS7NRyASW5lXSNdrI01fmkBSmRa088+bGc/jtce5b8VtCJoPsK6BqH2x+X0p0GfkQ7PrKf4hx9dM8MuNGhneNZsneCsZ2i2JIWkS7jJlPhFqri7IGBwcqLPRODCFMr2rTgjU10sCALmEU19qbPE4UXNU3sVXZ5e8JkUY1f72oO/eMzUCjlLc5BcrrE1mw/QiPL9jDzDHpNLZiHOjy+oJSNM7h9wGDRklmjJLMmEz/WKPDzYCUUO47L4NokwZBgO+2HyH6DPBuMmoU6FVyrC0UK4PTwtq9UD0bYNQomTwgibdWFvjHMqON7fafsrs85JVbeGLBbursbqYPSeHCnrGEduJGP9yg4j9X9+L6d9a3SB/s1u42l98D6mwuHpq7nUNNrWBWl5dZc7ax4qHRZyR5BFKba2cZ5p8ujBolV+TGM6ZbNB6v5IfWGW1yaoWMK/rE81WTR49cJvDg+MzjfpePJqG6PD58x/C9onh85bYgCB1WtKm1uvj7/F0BvojfbCvlvnFdT0ux2ZHkYIhORYhORYzJwdj/Lg947InvdjO2WxQapQKTRsntI9J48ef9/scv7xOPrklprZALmHVKZAJMzI3nqtfX+E2B95Y18vf5u/jvNb38G3WNUs66ghpuem+D/1xM6p/IIxdIptRPfb+XRbvKuDI3AafXR68EM+lRBgpLrNwyPJWvt5Twy/4qZs3Zys/3j+T91YXIBIFx3aOJMqqDFD3fbCvhsw1FjOsejVwmcPfHWxiaHsHUQUn0TAhBqZBhc3nx+kS8wCPzdhBpUJMSoaNrtIE3VkiKYKfHR2G19ZQ9FSONGj69dRBFtTZ8okhSmJ5Io5odJfVMeWstDQ4PCpnAkxNzuLhnbMC9qM7m4pkf8vhk/WE0Chnf3TuM8dkxVFuchOlVvLzkAG6feFr3CLVSzs3DUkkM0xGhVwe0bwJsLaqnrN6B1eVBKZdhdXqINKjQqZXYXR6W5VUEPeeqg1WkROj9c+ZRPyGQWqgrG13cPiKVSouDpHAdByqaUzoVMsFv4NzRsLs85FdZeeGnfbg8IjPHpJMZY6RrVDBT1SPOjFajgQlPw0+PgccBsb2p6vcAH73b7F35wZpCxnePYWtRHamRBkL0Kv761Q5em5JLYbUVlVxGn6RQbnl/A+dnx1Bvd/PfxVv8f39hTkzbCHeFCuJ6w5Qv2Flg545RadTYXFz52mpAKuR/dtugdismo0wanpqYg83lRSmX/W6V5efQMTgzV0x/JOgj4Lx/wPAHpFKOTAXXfgwrn5Pau8Y+Rtw3M9gAACAASURBVJhWziW94rgoJ7bj02WQKnQvLdnvlybLBHjr+n6Mzow66evpVHLGZ0fz7KI8rC4vtw1P7VSTzjMJWpX8lKt/dTYXn28sAuDnPRXcNTqN5fua0+qMagUDu5yeQsvl8VFrc+HximiUsk71vTiH04exSVp8y/sbyStvRCWXMWtcBsYzQF0YqlPy/k0DuG/OVopr7QzoEsa/Ls9pM1l6NkKrlHPn6DSSwnV8t+MIOfFmbhme2mZl4bGosbq5+vXVuJt8M/769U5MWiWX9Oq86HdBEOidGMKKh0dTUmMj+gxMH/y14fJI8cMBY14fjQ73GWuyf6ZDq1Sg7eTKtFmj5JbhXbisdxyHa2z0TAghQq9q1ShZFEV2lNQz7Z31TB2UzLX9E/lwbbPHyPndoymptaFXyztVpeX2+ahodAaNN7RizP1bwyuKQUWso2QKSOucG5vacxbvLmdIWji5SaH+Vh2jRskjE7LYVVJPlcUZkFoHkkeV3eX1n68qi5O/z98VQOJ9tqGIe8ZmALAuv4b3pw/go7WHmLPhMFkx2czbVMzeskYyogzcMSKVXglmXll6kKIaG4/N3wXAc4vz+P7eEUHXcv+UMF5fns8XG4v9Y93jTLyxPJ8nruhBtEmDUaMg0qj2K0UqLU6GpIezJj8wKbi9SuAIozpADVJlcfKnOVv9BsUen8jfvtrJiIzIAPKo1uryt9A5PD4W76qgyuJk7uZi6mxSOtncOwaf9kY/TK/i2n6JlNU7aI1blckEZs2RvDhNWgWvT+1L/5QwtEo5Q9MjWLG/KuD49CgjVqcbq0v6/xnUCq7tl8hryyUl4KPf7OT96f2IMet4+socpr69Hrtb8kx6aEJWQOur2+ul1uqmotFJqF6FSaNod3JoeaOTy15Z5TcgX7G/kgUzh5EaqWNibjxfbi5pev8Gbh7eBaVWA7nX4+12KXjdNHqVXDN7r7/NT62QMWN0OjJBIK+sgZRwPX+7qDtXvbaaq15fQ2qEnhEZEQDklVs4XFvAD/cOJyPKyIbCGgakhDGhR8ypkda6UBLC5EQYtUxsIo5Aumb/+tVO3pvWk/Dy1VL4Q0TXIHPvE+Foq9tpw2WVAiccDVI6nTZMIr/O4XeDTp31BUGYALwIyIG3RVH89zGP/wm4BfAAlcBNoigeCnqi3ztUOunnKLpdDEmDJWWStjlapjOII5Aid99bXej/3SfCY/N30fMu80nNVassTi5/dbW/tWV9QQ2f3jqIwce2rf2O4PH6qLW5ERExapRo26DCsLu9NNjdCEBCqJYdJfXsPtLAwQoLr03N5cvNJYTpVcwYlUbkafgdWZ0eluyt4C9f7qDR6aFHvIm3ru8XEAV6Dr897C4P1VYXKw9U0TshhNeXH/QnJbm8Pp7+IY+LenYeudBWqBRycpNC+fKuIfh8ImqF/A9RkQrTq5kyMJlLe8ejVcpbbZ1pK9bkV/mJo6P4bMNhRmZGtimuub3QKOXEKOW/eevjmQKNUs6g1HB+3ttcKdepWlGNOi3QWArb54A5GTLHgyH6V363v0O4bFIarChKKayatmUq6dQKukToiTCo6RptQCmXH9cTsMriYtbnW7G7vby/upCvZwymT1IIy/dV0jPBTNdoIze/v5F5dw7pVPIoRKtiUv9E/vPjPv9YhEFFbMiZdy1qlXKGpYez8kC1f6x/SiiaFuqPUL2KIWkRDEmLaPU5UiP0zL97GE63F6VcCLjfDUoN86uUQDr9NTYXcplAt1gjNqeX/CorzqZ49gfHZ/KXr3aw50gjPeJNlNc7yIo1UWNz8fPeCqqtLiYPTCLWrCFMryLWrOFIvYNam5tvtpZw+8i0gPfWOzGEy3rF8U2TR+WorpFkx5l4+oc9NNgzkcsEIvRqPr5lII/N38WBcgsjMyO5Z0wG24pr0ShlONw+bhuRSshxDOtPFT5RJL8q0KDY5fVhP8bcu9IiqXXSIg1EGlW8tuwAD1+Qxdd3DaXG5iI+pP0+WsdCEASiTBpmjkkPSLXLjjNR0eDkSJPJeYPdw92fbOGHe4cTZdJweZ941ubXsDSvApVcxo1DU4gyqvlkfRFv/1KAQi4w67wMbhyaQqRRzbfbSukaY6RLpIGV+6sob3Dw0S0DqbW5CNerWHmgCrvHixHps84rszDpzbVYnB4EAR6ekMWUgUntIpC+2VoakFwnivDeqkKeujKH/7u4O38a1xW3V8Sokby63F4fhbVenlhYTFmdgxev602EXuVvB//zhVl8vbWUeZuKmz7DPfxvci5fzRjCniONJIXpUMhkXP2GRPJMyI5h3uZiVu6vpluskZ/3ljMu+wRzi9smkTA+ryQm0En7qhiThoOVlqBWu6JaG97y3fDptdJAVHe4/ptTIpBOG24b7F0A38wAr1uyZ5n2lRSWdLaFZ5zDcdFp5JEgCHLgVWAcUAxsEARhviiKu1sctgXoJ4qiTRCEO4FngGs76z2dVfgV/YFcXl/QTajK4my1AnEsluytCPJEeXdVAb0Tzb9Ld/4Gh5ufdpfz1MK9WF0erh+czG0j0k44gddaXby/ppA3lucTaVTz2pRcVh+spt7u5vmf9jN9aAr/npiDQa1os9eCzenxT6YhOpVfttzgcHPfnK3+6t/Okgb+uWA3z1zZs10VhRqri/wqC1sP1zEkPYJ4s+asSZw6k5FXbuGq11bj8Yk8NTGH7cX1QcccrrGS1MnR6m2BTCb8quaVZwpkso5pY2ntHCaH61Gdoe1IJ4PXJ1JlcbKhsAa1Qk7vxJMXGc4EmLRK/nVFDpbPtrCuoIaEUC3PX9M7OMGsfCe8ewGITfPa6nTJa+LXXID/3mCrhU3vwopnwOOEHlfBhKck5XUboFMp2tRa6BNF/8aub7KZcLGODYUN6FRyFu8u558LpJac7cV1dI3pOFMVl8dHnc2FIECoToVKIWPywGT0agVfbi4hJVzHgxOyiDyJevHovC6XnTgF83iosbrYXlzHqgNVjM6KoluMKYDsr2x0sresAavTQ5+kUCINakJ0Kp6/tjevLj3I6oNVDOwSzswx6cc37m0FaqWcuBCtlMw2TUr9q7K4GNgljL9d1B2DuvkaM2mVPDw+i+5xJrYV12PUKEgK1RGiVeBw++iZYCY90sCeI430Sw5DLhN4b3UhPzSZ+a4+WM3u0gZuGZHK84v38cKk3ry+LJ+leRVB5AtIZuN/vagbNw/vgtsrsqu0njs/3sR53WJYtKuclQcqeeHa3vxzwW5GdY1kysAkthyu45o31jD7xv4suX8UIKlnOkpxq1HIGZ0ZyU97monsKKM6KHQlJULH+9P7U2V1UVpn54HzM6lqdBIXoiWlA0yMLQ4PtqZ2tFC95MU3tls08+4czBcbi8mOMzEmK4orX1sT8Hc1Vpe/JdOkVXLDkGTuGp2GKMK2olryyhp54afmNsfH5u+mZ0IINwxO5oo+8WiUkmp/QJcwzn9+Bc8t3o9RrcDmlhRvF+fEglEy43543na/QbgowjM/7OWy3nHtIo+iWmnpijFrkAuCv43z2P/n5a+u8rftT3t7PR/dMoAaq5vKRie9Es38fX7zllYUpbbL2Tf2JzlcR0KIlgXbjzAsPYIxWVEkhOq4/cNN2N1eNh+uDUr2C4CjHnH7FwiLH5UImeShcNW7YIwmVK8i3qMlXK/ytwMCXNwjCmP+l83PUbEbitZLgoRTxNFwCVEUMbUWLHE82Oth/j0ScQTgbIQvb4ObFp2bQ39H6Mzd/QDggCiK+QCCIHwGXAb4rzRRFJe2OH4tMLUT388fFtUWJwcrLZTU2RnYJZxwgyrAOFWvUpAeZQjoO762X1Kb2mZaq2rHmrUoZGfnxuhkKKt3BFRlXl+eT0aUkSv7JvjH3F5pIalWSFXtvWUN/on0cI2NxxfsZv7dQylrcBCqUxFhUJ9S9ajG6uLFn/bz2YbDGNQK/nZxN8ZmRWPSKjlS7wiSjW86VIvN7T1l8qjB4ebFn/bxfoto0ccvzWbSgKTTUmL80VFnc/Hkwj3+Ctiu0gYGpYYHVCLlMoHUCMNv9RbPoQORFmlgeEYEvzRJ+yONamaMSj9rfaPKGxxc+NIv1DUZtyaGaZl355CzgmCMMWt4Y1pfnG4fMpmU/hSg6LXXwpInmokjgOoD0s9ZtPB1uL3UO9xYmsx4DZ2Uttpm1B2Cn//R/PuOzyFxAPS7WVJYdxA0CjkjMiJYvq+K+4eGEb71NWK1k3hueWnAcT0TT2603FYcbS16c0U+KoWMB8dnMj47mjC9iusHJXNZ7zjUCvlJW0arLE7++2Me3+04QnKYnqcm5pAZIymt2oJGh5v//pjHx+ukNqe3fingrlFp3D06HZ1aQWWjg0lvruNgpbTOC9Ep+W7mcOJDtUQaNTxyQRYWpwe9WtEmNXVr0KoUDM+IYOE9w/GJrStVNU2tThe/vNJPCrw5rS8frq3m7V/yUcpl3D4yjZ6JIWw6VEt6tIFFnwUmRy7bV8mscV1ZuLOMpXmVfHrrQNYXVHNlbgKtIcqkAQHeWHaQjYdqubZfEuO6R3PLBxtosHtweXz8sr/Kf48GSA7XoVHKqLe7CW1RoOsIHCWyVYpdLM+rJDPGyDNX9Qwi7GSCwKtLD7C+sBaQ1gWf3DKwQ9Zf5Q0O/j5/F7/sryIzxsizV/YkJUKPWaukb3IYfZPDACiutRGqV1LW4PD/bUKo1j9/aZVysuPMPDZ/F4t2lXHb8FR2ljYEvd6Pu8rpkxQa8H3QKuWkR0lE4dHWSZVc5i88e32i36PuKHyipLBvD8Z2iyIxTEtRjUQwRxrUTBmYhCAI+HwiNVYXroYKTEovapUKq0Mb4PdYaXFy72db+eTWgQxOC+dgiz3TUdTb3RyqtjLz0y0sf3AU1w9O4dr+ibi9PmZ+siWA4LygRwy641hfeK3VyBfe3zxwaBWsfB7O+zsoNUQZNXxxx2Aem7+L/EorE3pEc2cfLdr33w58omNCmNoCm9PDpsO1PPbNLqqsTib1T+KOkScukvvhsUv+UC1RWxA4p57DWY/O3AHGA0Utfi9uGjsebga+b+0BQRBuEwRhoyAIGysrK1s75ByOg2qLk5mfbuGaN9Yya842Rj27jP3lgTe8CKOaj24eyLRByfRJDOEvF2Zx73npbVIO9UkKpVtscwUvVKfkthGpKH+n5MIvx/R2AyzYfsQ/mdVYXby5Ip9Jb67l7k83s7+8kf1N7UhHsa6ghpeXHGBAShhdo42nRBz5fCILdxzh/TWFOD0+qq0uZs3Z5u/VjzVrUBzT3jiwS1i74pOtTk+AXwTAf37Mo84enER1Dm2HxycGeF98ubmYibnxnN89GpkgkQtvTutLyO/YV+iPhHCDmhcn9eaHe4cz947BfDdzGHFnYPtKW+D1+Xh/daGfOAIoqrGzPO/smZdDdCqizRoijZrgVnAR8LWyMWltrINRbXGy+XAtC7aXUlpnx9mKiqIt8Hp9HKq2kl9h4ac9Fewta6Sg2oqjnc/XIShcGTy2/0dpo9GBMOuUPHNVLy7uGUuUXoFi82wmd1NyXlYEgiBtVh+9KItoU8f5AG48VMuzi/Kot0tqhIfmbvdvTuVyGWF69UmJI7vbyytLDvDp+iIa7B52lNRz7RtrqLW23SPJ6vTwaYuIeYB3VhbQ0LQ2WZdf4yeOQEpJe3tlvj9FUqOUE9EUz306UMhlRJk0xJi1rbY4O91e/rf0gJ84yo4zUW9389zifTQ4pHbuJxfuIS3SwO7SBrRKOZpjUiJVcplf+aJUCIgiLJo1AqVcOC6xEGXUcNfodC7rE09lo5Np76yjwS4dKxME+iU3W0SE6VW8NKkPd3+yhQte/IWRzy5l3uZiGh0d51kVbdLwzJW9WPrAKN65oT/pUcagFM7KRqefOAKJTPn393upsZ7eGqze7uaRL7fz/c4yLE4PXaMNNDg9LNheyu7SempbPH98iJb/TelLzwSpzbRbrJH3pvcPaB2NNKp58ooerP/LGG4aluI/tiVyk4IJW4Nawf+m5DIoVSKqFDKBxy/PxtRkhq9XKxifHRPwN+F6FSaNkvIGB19uLmbBtlIqGiWywu31UdHgoLjWRmWjE/EYWU+4Xs3ntw/mf1NyefHa3nxz91DC9M1eXL76YuK+m4bhf71QvjWc5MbNXJcbGfAcsSEaP5Fo1ipJiwws8l3VN4Gleyu4YXAKRo0SmUxAq1Jg0qr4zzW9ue+8DAalhvHQhEz+eVmPVtVsjQ431sPbg8Y5tBJc0jUslwmkRhp4ZXIuX88YwoPjs4jwlEl+Q0chV0HX8cHPcxROC9QdhrzvoeoA2OsAqa30xnc3kF9lpcHu4c0V+Xy1pQRvWxJnVXowH0Pipo4Gxdm55jmH1tGZpajWmhtbFegJgjAV6AeMbO1xURTfBN4E6NevX1u6qc6hCeUNDlYfbO5ld3l9/GvhHl6fkhvQfhRj1vDXi7phd3kxaRRtTkuLNKr58KaB5FdZsDi99IgztdtY9mxATnzrk6JaIcPt9fHp+sM8uygPgIOVViYeWs23M4fRQnAHwND0cIR29P9aXR6+3xlcSVhbUE1alAGzRsn/puTy8Lzt1Nrc9EsO5dGLu1Nvd/P68oM43D6mDkoixqw5aWy31ycGJdM43MEtjmcS/DJshaxT06xOB2E6FTcP68KDc6XFgc3l5ZEvd/DRLQP45+U9kAkCYTrl7z6x8I8Cp9tLWYOTFxbvw+H2MrFvAqO6Rv6qseodBZ8oVV+PRbXld0Io60Jh5MPw4eXNY+YEiMw8/t90AGqsTv70+TZ/eIJaIePLO4eQ3cp8czLU2l38sr+KJ75rTk26Y2Qq04emoFH+Rt53yYODx9LGdMqGItqk4d8Tc1A46yC+LxFzLua/w/4P++ihCIiYwyPQaDvm2nN5fHyztSRofPHucnq0cu5qrE6qLC6cbh8xZo0/GanR4fa3ZR2F1eWltN4uqWbaAJHgBbZPFP0L8dau2/IGSal8Ir7I7fXh9PgwdJByzeMTqWpBTvRJDGm1KLepsIaXJvVBq5Tzp3Fd+VeLFLCbhqWwaFcZcpnAW9P68eqyA/y0R/LcuWNUKtOHdml1/jdqlCgEga9bnLMrc+MpqLLyt4u68eT3e1lfUMOdI1OZvaqA3UckBY3T4+NvX+9kVGZku82aW4NBozhhcnJrhK/F6cHu9mBxCO02N3Z6vCxrIvwHpYYxNC2Cif9b5V/vTR6QxEMTMgnRqRAEgS4Ret67cQBun0/yiGqxxm90uNlX3sibK/Ixa5VMGpDEwC5hDE4NZ02+tPeY0COa3BbknMPtpaDKyn9/zMPm8nLXqHSevUqPUi5g1Cj9Kkm9WsEjF2ShlAv8tKectEgD/7oiBxE4//kVfuPqWLOGr2cMpaDKyoyPN1NtdZEcruPdG/uTepTccTRSaReY8NJqIgxSi17Rl3YWzRpBUpiCispyuq9+CEqbktCsVcjnTObPt2/k083SZ2VUK/jrhd3834EIo5pPbh3Imyvy2VVaz/jsGHrEmSmpszGia1SQujjSqObu0elMH9oFvUqO4jhrPJvLixCWiemYcV+XkchUgWSV1Frf9D2I6g5TvoBVL4LKAGMfBf1xFLNeL+Qvh8+nNquCxjwKA+9ga1FDUAfDgm2lTOwTf3LPS30UTPsG5s+QEsRTR8OF/5GMs39l1NvcyGWc9DqpanSyv6IRm8tLTryZSKO6XfuzPxI6kzwqBhJb/J4AlB57kCAI5wF/BUaKohg8u53DaeFomkNL1NlcAaZxR6FRytvVSnFsksTvGelReq7qm8DcJoO8XglmJvWLQ2GvolYw+43zjiJEr8TjE1l4zzCqLC4+XncIuUxgREZka09/UmiUcvokhbKqydxSq5QzpW8Ul6bJwV6HThvC6KxIFt03Ao9PSltzeXxMeGGF/7vw/upCFt03gi6RJ+6Z16kUDE4LZ00L8vGa/gkdtojsaLSUYXeLNfL0lT1JCdd3mtF8eyGTSbHCb0ztyyfrD5McpuOOUWlEGzVnzYRV2ehgV2kDMkGgW6yp3fGwZwJcHi81Vhdbi+uJMWlIDNV2aEJhtdXFFa+u8lfKV+yv4o1pfYMqqr82LA4PZQ0OFu0qIz3KQN/k0JMS/0q5jJuGduGrLSV+Elkll3FRz9hf4R3/SojvC7ctgw3vQGgK9JnS6YbZFY3OgNRNp8fHE9/t4fWpuafsMefyiAF+IyApUKYOSj7u30j+Fk4aHB50KjkGdfsTjVpFaBcpUXb1i5IXRtbFkHMVyDqnddOgUYImEq56Bxb8CfPyv2GO6wOXvkyDXMvh8kaW51WSHW8iM9rY7utdKRfITQplwfbAgk6vxGDiqMriZMbHm1lXICV4JYRK7Z7RJg1quYzUSH1AaxBwSoU4nUrBZb3i+Hpr8zL7ugFJftXTuG7RPLVwb4BH5c3DUk+45itvcDB7ZQF55Y1c3TeBIWkRpx2YoFcruHV4F5Y0GdcX1doZkBIWdFy3OBOZsQa0SgVX90tgeNcINh2qJSfezI7ieh79Zidju0WzrqDG7x3k8vp46ecDnNctulXySKWQcXmfeEZ0jaTR4W5qq1NyycsrUchlvHJdH5QKGV6f6G//a4nDNTYSQn89H8KEUJ3fEPwoJg9I4h/f7EallPHYJdknnHtFUaSi0cmqA1X4RBieEUGkQY1MkNriD1ZauKZfIs8t3hdQKPxk/WHuGp0WUOAIO45J/b7yxgBPpO+2H+GTWwdxRW48D47PRCYTiDGpA66xykYnl76y0m+svvpgNfPuHOxvlWuJSKOaxy6RzKxVChlqhYwXftrvJ44AjtQ7WLy7nKVNhuoAh6ptzPx0Cx/cNIBwjQAlm/iuMJR6uzvgb99dVcCjF3UnXO1DVrwu8MU9Dgy+RhbdN4Jqi5O0KAPhx3z/o00aHp6Qhd3tRa+U4fSK9O8S/P84CoVchll74sKgTIAfCjxcPv55jMv+D5yN+FLH4hs8E5nyBGSyNgQyzoeE/iAoQHMCXzdbFXw3K7CdbNlT0Hsyqa34aXWLNaJpS7q0IEBEOkz6FLwuUOpAcywN1rlosLvZWlTHa8sOolPLuf/8TFIj9K3e6yobnUx+ay37m1oQw/Uqvp05jLiQcyFDJ0Jn7gI3ABmCIHQBSoBJwOSWBwiC0Ad4A5ggimJF8FOcw+kiNUJPmF4VIHO9cUjKGavKONMRplfz6MXdmTWuK16PG33lNsLf7gsqPearP2BkRrN3TaRBzUuT+vDAF9vYWlRHqE7J01f2pF9yKGHtXqzKuGFwMiv2VXKgwsI3N2aSsud1lB98C+FpcOF/UYanBVQr311VEEAiurw+3lmZz98vzT5u5UP6v6p4+bo+zN1UzLr8Gib0iGZc9+gzMu673u7ioXnb/e0zGwprmfr2Or6+e+gZ6cUSolMxvkcMg9PCUClkaDo57rojUd7g4LJXVvk3OolhWubdMaTNFfIzDQVVVi57dRUOt7SIGtk1kueu7UX4KRjGnghr86v9xNFRfLjmEEPSwoM26JWNTn7aU87u0nqu7JtIlyYPis7ApsO13Pjuej8J1Dc5lDen9T3pRjolXM+8O4fwypIDaBQy7juv61lNHgZBY4K4PnDJSx3qx3Mi1LcS4V5jdeFupchzMogiQcbBbm+zirTO5sLl8SETBH/R51CNjWvfWEN5gxNBgHvHZnDT0C4dZhCMLgyGzYL+NzelrekCkmQ7DaZ4uOJNqT1OrsarNrN0xxHu/Wyr/5BLesXxz8uy26UEFASBS3vFsWBHKZsPSS0f47Oj6ZUQXGXfUVLvJ44ASuvsbC2qpWdCCD4fPH1lT255fwN55RYEAe4bm3FKBJ5Zq+TRi7szKjOK5fsqGdc9mkGp4f5iT6RJzbczh/Lc4n3YXF7uHJVGRtTxffUqG51c88Yav+fMsrxKHr24GzcMTjnhuqEtyI4z8/EtkmIjRKfkitx4lu2rYENTi9Z53aLQKeXU2z1olQq/mXFWjAmP10e0SUOoXkVqpJ5/L9wb9PwbD0mfa2twuL3858c8VuyvpHusiSevyGH60BT6JodRZXGRFKYjRCtnSFoEhdXNBJJcJpASfvom1aeCSKOaL+8awuyVheRXWbigRwwuj8iPe8oBKS3y75dkH9fPrLzBycUv/0JVkzI0TK9i4T3DiTFreO6aXkx9ex0mrZIqa3Dd3uH2Um+T7kEhWmWr59zm8vDG8vyAMavLy7qCGn7YWcbmw7WMyYriqYk5VDQ4UCtkmHUqFu8uD0ognb2ykOw4c6sbfK1KgValoKzBwQ87jxCmV5ETb6KwyobF5UEUodbmClLK7yptUtDYa2HTbDyh9wc999FCul5vwBffH1n+kuYHFWpk2lAyTUbg+ESMSiHz+1ApOmApF65Xk5oQy7+39OSGq5eiVYBL0BCriWjbpr1N91ZRIpBawucBr4tYcwRTBib5CdTkcB0zx2acWkur7vgEWmfC6xPZc6SB62ev94+t2FfJkvtHkdhKeMm6gmo/cQRSse/dlQU8fEHWad/nfs/otB2LKIoeQRDuBhYBcmC2KIq7BEF4HNgoiuJ84FnAAHzRVHE/LIripZ31nv6IiDComX/3UF76eT9FtXamDExiWHrEGafGOJtg1ioxiFZse75GW7RCugE3HkH26bU8fONi5m4updHpYeqgJF5bdpCtRdKistbmZsYnm/nloTGn9fqRRg3v3tgfudeBaeXjyDY0GeQ1lMC74+HONWBsVjUIrXSQCoLQemPpMYgwqLl1eCrTBiWjU8nPGGVMrc1FYZWV1QerGZQaRnyIltUHAifC0noHNqf3RHP+b4Y6m4udJfV8tO4wXSL03DA4hRjz2UG+zN1UHFAhL6qxs2hXGdMGp/x2b6qdaLC7eeK7PX7iCGD5vkrK6x0dRh7FtnJe41r4JhxFtcXJ9PfWs7NEapX4cO1hXprUm4t75JRmrQAAIABJREFUxnX4/bra4uSZH/YGtKBuOlRLlcV1UvLIoFGQmxTKy9f1QRBoUwrWWYlfMfShS4SeUJ2S2hZeUtMGJ7eryKOQC1yUE8v8bc0KlGHpEShkAmX1du7/YhurDlSTGqHnhUm9SQrT8Y/5uyhvkDaQoggv/LSfq/smUN7g4IuNxcSHarkgJ+b0iHi1Qfr5taE1A5ISqLrRwZMt2p8Avt1WyiNNLTrtQYRRzVvT+mF1eZEJkrKmtfNWUBkYzf63i7qzraieuz/ZgtsrMqBLKO/fNIBGh2Ra3Z50r3CDmsv7xHNpr+B7hlohJzPGxH+v6Y1PFDGdhJiqtjqDzIrfXVXIpb3iTjtd0aRVMjQ9gp4JZhQyAYvTzaT+STxyQTdkgpQSe++crfw4a0TQ3yrkMqJNGi7MiaW01kbflFCW7Qv0XBvYipIJmotMR1u21ubXMPXtdXx62yAufPEXvznyn8Z15Z6x6ZTW21m+r5JwvYonr8jpNCL/RIg1a3loQibFtXbu/WxLQDLrkr0VPHB+5nHJo6+2lPiJI5AI6S82FTFzTAYZ0Qa+mjEEpUzgmr6JvL2ywH9ccrgOtULO2oIavtpcTJ+kUK7ulxjkzykXBEza4Nc2qBU43F66xRr5v4u788AX27C7vFzcK5bLesUR1YrnWIxZE+T51BK1NhdfbCxiWHoEGw/VcvuINHokmGm0u/3fy0+OUYv1TgxBIRfA64N9i7jkhn/w0i9y/3lWNSlpZTIBlSEM38UvIJtzHZTvAm0o4uWvI2g6t93K4nRjcXjxiSI6lZwQnQqZTCA3KYS0yB6U1NrQh2iJ0rQtcbLNUOqg++Wwc17zWHQPUOoJ1at4cHwmd41Kx+nxYtQoz5oCUXmDg/dWFwaMub0iP+0pZ/rQLsHH1zuCxkrrHXhFsVPVNWc7OvWzEUVxIbDwmLH/a/Hv8zrz9c9BapFJCNXxj8t64PL4OmXyq2x0sudIAxanx9/6cKJJ4GxHZaOTr7dUs2xfFoMTejPp+vuJmHMJ1BehFJ3Mu2sIBVVWukYb+KBFUhlIN7HKRsdpEwXhBjU01sKurwIfsNWAtSqAPJrQI4bnf9rnr26rFTJuGd6lzYl4cplwRqmNbC4P768uDGjNuGNkKvePy+TfPzRXIdUK2RmZaCWKIsv3VQZUv7/ZUsI3dw874ydoURQprQ02uT3SygR8NsDt9bXq19NyE3+66BptpG9yKJsOSVX1EJ2SmWMygr6bNVaXnzg6ihd+2s+QtIgObwsWIYAwOwpPWwwxm3Am3RPOdkTo1cy/exjPL95HUa2N6wYkMTozql3zqFGt4M5RaaRFGdhQUEPPBDOX9IpDrZDx4Nxt/pbn/CorU99Zx8J7hgdUXgGyYowU19qZ9NZaP8H4zsoC5t055Iy/R50IAmB3BfvItNbGfyoIN6gJP8kxo7OieOK73fhEKVgkPcrA4wuavRDXF9TywZpD3Hde19NO0zoR2dzWtnN1K1V3w/+zd97hUZX5F/9M75Nk0gvpFUjovQSQjgU7rgXWgtgLFtZt/nbV1XXdVVfX3rErogiKSO9VOqEmBNJ7prd7f3/cMGFIoYWmnOfh4ZmbmTtzZ+697/ue7/meo1F2aAHpiLLK6xdZsruSOV82t/+1l0QF0qL7ye93MGVgChNyY/lhexlqpZx7h6cTH9Z6y4nbKwS1h4K0UKyxe4JStf7z8x6u653AS9f3wOmVSEGLQX3OlAgqhdSuta2kIWh7VrSp3XOloZVwk3qHtM3m8jHx1VXcPjSFCXmxmHQqlhRUkh5l5Kb+SdTZPby8cC8zxmZT5/BQY3Pj8wtB34NGpeC+ERnM21aOo+n7S4kwMDwrksxoI3GhOqZ+uIHfD0pBRGRRQSV1di839E0MSni2GCQfyPYS7Xx+kbz4EK59fXXges2JNTFjbDYTe8QTYVTzvxt7cs/HmyhtcJEdY+KlSd2lBDuHDhIHELn4Eebf8QIzN9fjFmRMHpgamItrVQqwJOG/aTZyvwuZQo1MZwHlmevSqLN7eH3pft5ZUYhPELkkJ4rnrs6TjOub1FZnrKioNcPY5yA0CfbOl9q1h/0BjJKlhqT2O4X92qsQSjcjHP4FZ8oobNpYtCbLKbe71jk8uLx+FDIZBrWCCqub+TvKSQ430CfZEjQ3srq8zNta1qK1UCajzcLHqC4xPPtjQUAJp1HKeXBkRsAT1ucXqHV4QAS1UobHJ+L1S5YgHWlvcKHh4uzvNwKdSnHaKRqtocrq5oa31gQGAbNOybz7hpDQijzwQkeD00tFo4uXF+4NeBys3AfrDlt4Kf9pwpb/heIGgdFvLCPKpGHywGR6JoayYFdzR6ZKITvtql0AcpXkyeFo9iRCJgNtsN9CpEnDjw8O4ZtNJTi9fq7r3alD02bONqwuH68t2R+07Z0VhSx8OJ9XmlJclHIZT1+Z22pV7Fyj1u5pIfUubXBRXGs/7xdmMpmMmwYk8cn64sCiUi6jzYjk8x1hejU39U/kiW+2B7aZdUrS22nnOFmEG6X0vMN1ThpdXrKiTec8VCBMr2ZafmrAtB0gOVx/wbYeXuiQy2V0suh5+squuJuKPKe6SNdrlESbNeRnRJAWaSDapCXKpMEviAHi6AganT5kwOjO0by7siiw/fLucby0cG+QMq241sHeCut5f49qD2atiimDUnh5YXPhoWu8GZ1KwZ5yK3O3lZEZbaRfanib12iDw4PD60cuk2E6CTVAlEnDR7f149kfCkgI01FS52jxnHWFtTg8PtRncMF6ogjRqxmRFcmiJpWOXAZ/nJBzRu5dZp2KJy/vQq8kC0v2VJKfGcnl3eIIacfYXBDA7vYz9cONTMtPY/LAZPyCiF4tb1NFJpfJSLTogxRVGqW8RSqXKEKD00dMiI4Qzo/UU5VCxqOjs/j3gj34BJFos4a/XNa53YLwpD6JvLOiMLAwVspl3NhP8j7TKOXEhWp5b0URQ9Ij0SrlXJoXi9cv4PL5eXHBXnaUNjJt5ka+mDaA0S8uI8Kg4R9X5TIwPTxw3seF6lg4PZ9le6oI0anolRRGpElLbKiOknonGdEmDtc5+E+g2FfO1sP1zLytH/urbDg8fvISQog8znklCAJvN5EsR7CrzIrTK/Dqon28+/ve5CWEMvueQfgEEbVS3nyu6sPgqjdQLfsXCT/cyuM9JyN2uQK5rqUsXWFqMpi2VcKuOdBYCp0vA0M0qDvWB6eoxs4by5rnggt3VfLd5lImD0w+OwV4YyQMmwH975ZS0tSnuW5z1CLOeQh5wRzkgGnp04jjXmGFbjiX5MSiOck1aHmDi/s/+4V1hbVEGjU8e3Uuc7eWMesXyfC+a7yZ93/fN/A7e7wCFVYXUwYmE6pXMTgjMpAKqFbIqbN7CNWrqLS6WbanCkEUGZoRyY8PDuXpubuINmm4a1gac7aW8cm6Yn4/MIVtJQ389bvt1Dm8XJYXy+/6JXLT2+voHGfmjZt7Ef0bnTOdfyuri7igsPFgbYA4Amky+vqy/fz10i6oTrN6dr5h6+F61Eo587YFm2Mu21eLc3RfzNfN5C8/SYkplVY3768q4s2be1HW6GJ7SSMhOhX/vCYvEEN62jCEw2UvwXvjwG2Vtg15pIU5nUIuIzZEx93D0zvmfc8xRJFAvPAR+AQRpULOoun51Du9mLUqzB0t8+0gyGWyVhVR56NKqjV0CtPzxdQBvLhwDwqZjIdHZ14wLXfHQi6XMa5rLGqFnE/WHSI+VMv0MVkdvkAKN2qOW6WyGNR0jTcHqY8eHJnRolWgI6BoMm2feVtfPl13iMwYEzf06XRBEwO/BkjV5tPfj8WgwWLQ0D2x2fuistFFTqw50EYN0gJSLpNx9/B07B4/c7eWkRCmY3TnGJbvaZmAdZoCnQ6Fw+PD6vJhc/swaZRoVHIcbj9Gbdtm3xqVgt8PTCY90sB3W0rp3imUG/slsuFgHXd8uDHwvF6JYbzyux7I5TJCdMqAJ121zc3jX29l4a5KNEo591+SwY39Ek+o5c3q8rJibxXX9e6EUatoEfENkjqpvfStswmLQc3z13Zjd4WVfRU2hmZFEtmGaXJHINyo4ZYBSVzbOwGdSnHcVl2zTsXdw9K58e21/OsnKeE2TK9i/oMtW92a30PNf67rzk3vrMXh8aOQy/j7xK4cOKal0GJQE6JTUVhtY/72CpIj9PROtpxT0t/m8lFj9/DFnQPwCSJOj4//LtrLk5d3bfNzxYRomXv/EP63ZD+IIvcOT8ekVTJ3axlrC2t4dEwWtXYvt3+wnhv7JzE0IwKtSsEjX25hT4U0r7d7/JQ3uDColVTZ3Ez9aAMrHh+B2yfgbPoOQ3Vqru+T2OL9VU0ttH/4ZlvQ9sW7q3B5/QxKjzihYxdFEblcRu/kMNYX1QapZh0eH/Uuye9IIZe1XQAxRsOov4HbikxtRNYeUWKrhA8uhSrpvGLhk3D7z2BJbVGcPR1saPL4Ohor9lUzqW+nszd3VWoCaqPThseGrGBO0CbziqeJGduXBpeXqJOY49pcXp6au5N1TT5xVTY3d83cxOd39uebzVJgx/aSRkrrnajkMtRKOVa3D41SgacpIXLKe+vQqRTcPTwdn19gU3Edf7uiK5f/d2UgfTJUr2Lu/UN4aVJ37G4/l/13BbGhWkJ1Kqptbu79dFOgiDJ7cylRZi3jcmP4dnMpL/y0m/+7vAu683Cdcabx2zvii+hQVLfS8lFldeMTBFT8esijIxO/6/skolMpgiTOKoUMuTmGBnksawqXBLZXWd38cfY23r6lD6IoeVGE6VWolR1IEkRmw70boOEwGCKlga0DB7fzEQaNgond4wPVB4DxXWMwaBSE6NTnTj3hrAOPHQS/FJNqaL2RIcyg5g/js7n+jdWBxVj3TiHEXCAVDKNWSZ8UC6/d2AuZjA5NZRIEkRq7G0GUFrZnI84+zKDm6l4JXJITjVopP2ftWOFGDe9N6dtsmN0zgZRI4xnzpwvVqxmcEUmfZAtKhfxX3Wp8EaBQyHhifDb3f7qZ8kYXWpWcv1zaGb8gEmuUEo2mj8pE3hTF/eDIDNa8VROYOMeH6siMOQeeRa3A6fXx865KHvliCx6/gFmr5LWbevHuigMYtSpmjM0mto20nDCDmsu7xzMyJxqNUk6tw8O/5u8Jes7G4jrqHB5ufHstj4/NZkJeLDqVgs/XH2Jhk5LY7RN4fv5uRmRHEapXI4piu2qxXWVWXjtKcfrAJRn87fIu/Oun3djcPi7Ni2VSn04n3E5+NhBu1DDQqGFg2okt8k8X8pNskc+ND+Hruwby7opCos0abhuS2iaR4vUJIJPUCkseGUaN3UOYXo1Jq8Tp9TNlYDI/bC8jNdLI36/oSp3dwy+H6uiZFIbXL/DBykKmDEo5Z60qHr/IOysKeecob6KEMF0L1dTR0KoUZEabeO7qXERRMsH+w6xt/LBdKnJ+uPogD43K4J7h6Xh8AsnhBv48e3uAOAJJzG4xqAMm/III+yqtzNpUwuzNpWiUcqaPzuL63gktkiHD9Oom/6SW5/SJjjd1dg+LCiqZvbmEnBgzn93Rn/s/20xxrYNIo4ZOFj2D0yMwKzzgk0lkSBuw+pWoteGBlqQ2UVXQTByBZCS9+GnJIyhjNBijTuizHw8D0lrOEUfmRLXdJWKrhMLlUL0XukyUAgHaS1Q72xBatgTjc6FWnvzcwuH1s+ZAsFLW4xeotXvQH7UGq2h08fGag9wyMJmJr66kZ2IY4UY1by2XrhOXV+Dpubv48Na+vLuiiF+K67EY1AHyqN7h5dO1B3lkTDYbCmv53009JRsWlw+zTsXInGgW7KwIfIbV+2u4vHsc324uZePBOmxu/0Xy6CIu4mQxPCsKjVIelCZ02+DUX93F5PEJ9EgM47P1h7hrWHqg0gUwLT8Nk04asO4dnn6UPBemDEghwqhpuy9dFMFeJf2vMZ28bFShkvyNTOc29vtswqRV8adLc+iTYmFxQSVDMyMY1zW2XYn7GYe9GvHHGci2fQmAmDgA2XUftjnJ6BJnZtEjw1iws4Jki54eSWEXXP90hyUxNcHt9fPLoXoe/nwzpQ0uBqaF85/ru58VWbBMJjvtCOqOQKRJww19W1ZwzyROVkr+W4AgiNQ5PKiV8o6NrD+DqHd4KK51sL6ojr7JYXSy6IPJVxE+XVvMP67KDYQffLmhmBHZ0j1Krw5WanaOMzPv/iF8vPYgCWF6ruoRf94kVzY6fDz21ZZA7Hyjy8efZ2/ngZEZPPDZZiqtbl6e1L3dFvEjJsMenxAUX38EXr+IWiFnxqxtDEqPQNCJrNjXUo1V2ehCp1Lw4eoidCoFv+uXRIxZg+IY/5Zd5cF+Zi8t3MsfxmUz/6GhyGUy9GrFcc81m9uLyyu1NbbnD/NbgUmrJDlczxPjs9GoFKgU8hZku8fnp7TexZvLDuD1C0wdmkpCmC6oyGTQKHl8XDZ3D0tDrZQjAw7VOZm1qYQNB+swaZQ8NjabRqf3nI3T4QY1KREGCpvSfMP0Kl79XQ9cXoHDdQ4MamWbY9gRsqTW7gkQR0fw1rJCfn54KJFG6Zx9bGw2G4ul8ISROVE8cEkGaqWcu4al8f7KImxuH5EmbWA/bp/AM/N2MSwrMog8qrK6OVwnETyPjM7iwc+bPR5HZEWekPeW2+fn/VVFvNTUZrp8bzWLd1fy/DV5/LC9nKt6xONx1PN0j0bk390pFVCHPAzmTqBoHtfqHB5W76/hs3XFJEcYmJaf1n4Uu7cVD0evE2wVsOxfMOr/QHX6LWwJYTpmjMvmpZ/34vELXNkjnrFdY1onoW1V8Mn1ULpJerzsWbjxa0i/5LQ/R4dBY4T4nlCyKbDJ0fsuqrx6Mk5yHNWqFPRKDGNXuZUamxu7x49SLiPcoMbRRGTGh+owaJSYdWr+u2gfXr9IbkIIq/bXtNjfuqJasmJM7CxrJC5Ux+4Ka+BvDU4vgiCQEmlk8nvrAm2tLy/ay4e39mPLoXoqrRLZ1CXOzMGma3BgWsR5oxQ92/htHvVFdBgijGq+v28w/16wB5vbx7T8NLJjzyMmvIPg9Pq595Nf8AkiM8ZmM/O2fhSUN9IvxUKCRR+olk0ZlMzYrrHsKG2ge6fQIOKoRWXS64DDG2HuQ2CtgG43QP5jYDg7Vb4LGRaDhkl9OjGxezxalfycp8AJZduQNxFHALLi1Qhbv0De/+5WU5v0aiXJ4UruGJJ6Nj/meY16p5cp760LSNJX7a/hb3N28tzVuRgvkAX8RZw8qqxuVu2v5mCNgwl5scSYtefUjLvO7uHHHeV8vPYgUSYtT4zPJinccF4v1h1uH+8fEyIwfVQmtw1JCRBC4UYNtw9N5YY319Do8qGQy/jrZZ3bJCxMWhU5sSqemph7Vo6hPUiKRA+CKKJRynH5/C0M3w9U2wPqzdX7a4IKWm3B7vahViqYPCCZJ+fsCGxPizQSoldR3xQycbDWTv+UcIZmRLL6qIVJuEFNXKiO0f9ZFiCgPlx9kAUPDyUmJHhxeUl2NP/8cXfQtmizltiQ4y9CRVHkcJ2TZ38oYG+llUvz4rixX+IFV3DoaBTXOrj29dVUWt3IZHDn0FSm5acFkaaVVjdjXlwWOB+++aWE+Q8OJe0YX7ujfUGrrS7eXVHIhqaQA6vbx1++287i6cPOzoG1ggiThs+m9uej1QcpKG/kTxM688dvtrGy6XzMz4zkheu6tdta15pGSWhqCTtCdiZHGJj3wBBcHj87Shu59YMN1Nk9TMiL5Z3JvdlZ1sim4jrcPgGNUs7w7CjCDWqKqu1kRktz/8pGF9e+sZryBheiCH++NId59w9h4a4KOseZ6d4ptN1ijSCIVNvduL0CH64uCvrb3kobkSYN00dn4vUJhHm3IvvgsuYn7PgG7lkH5lhAim6ft7WMP86WfA2X7a1m/o5yvr9vcNvkcmyeRETZjzJX730rrHoFvHZw2zqEPArVq5kyMJkre8SDCHpNOwSyraKZOAKp4LzwbxCbh1URSqPLR63NTZRZ2/EdDicKQyTc8DnCls+Ql2zAnnUVnvj+dNdZTrhI5fH5qXN4aXR6+NOlndlQVEdsqJbd5VbC9Co0Sjnju8YSH6pjfG4Mj361lUtyovA3yfiLaxxkx5iC1EIA2dEm5mwp5fFx2czaeDiwXSGXcUPfRORyOQXljUF+aC6vwCdrD3JZt1jeWVFElzgzv+uXyO/eWsvQzAjuvyT9jHgJXwi4SB5dxGlBo1KQEW3iX9d2QxDFC6ZKe7LYX2kLGPU9+2MBYXoVQzIimZAbQ5heTY3NTVmDC7vbR0qkgSt7xCOTyRBFkfIGF59vKKba6ubmAckBthxHLXw0UZLEAqx7Q7r5Dn4IFBcvzeNBJpOhayeN5WxCOLyhRZOm/NAahN63Ij9dE8LfCKpt7hYLwpX7q3F4/BfJo18pqm1uJr+7jp1lkirjxZ/38NnUAfRNaT1q+0xDEETm7yznD7OOeHQ0svZADQunDzuvfb2s7pYhAq8s3sd1fYK9MzKjTfz8cD51Di8hOiVGjer8S83z2MFaLpnVhiUjJA5ka52Kez/9hcN1TgamhfOva7sRY9ZS3tisEBicHsHWpjSqSKMGmUxGo9NLeaOLDUW15MaHkhCmCyxaq6xunv2hgOJaO09fmcsrN/Tgp50VJIbrmZAby+bietw+AZkMUiKMKBVyru2dwJZD9czfWY5GKedf13bjvVWFQcolq9vHvG3l3Do4OBY6xqzhvzf04LkfC7C7fUwemMzgE/R8qbZ5uPb11YHj/feCPVidXqaPybpgvPI6GlaXl79/vzOgCBBFeH3pAa7vE+xBNfuXkgBx1DnWzKV5sRTV2EmJMLTZEiyIUuvi0RBFOFznJDnCcIaO6PiINmt5cFQGPr/Ad1vKAsQRwNI9VazeX8Nl3eLafL1BrWBUTjQLdjUvrO/MT8V81PiqkMuIMmk5VOvg7k+a/V6+3VxKSoSB2wan8M6KQtIiDbxwbTfm76igrMGFWaeiwenFrFUyf0c5T4zPwaRVIpfJqGx0UVLn4L5LMk7oOA/WOpj05mr+OD4Hk1bVIv00oAh1NcKqF4Nf7G6E4lXQ9WpAUh0dHQYAUNHo5nCds23yyBgNU5fCmtfBWiLtq3yrRN70nCKZS3cQtCrFiV3DR9YJR8MvJeB9uvEQ//hhF6Io/cafTO1Pt4TQDvuMJwVjFPIB94LgwaDUcrLf1M4yK8/P38WN/ZK5/9NfAuuuu/JTubx7HGF6Nc9elcuXGw9x/ZtrcPsEfILIXy/rzMJdFSwqqOSOoams3l8TIH8ndo8nPkzHO5P7oFcr+PC2vry6eD9+QeTmAUkBRW1rSZw2t4/7RqQztmssTo+fWLOOnx8eilalOCu2CucrzrNZw0VcqDjvJqAdjMTw4FtgncOLKIroVEqqm0wENx2UjEgjTRq+vWcQcaE6qqxuLv3v8oA31Mdri/n23sHkxodA+baWA8Kub6H3FIlEOg/gb/Kg8fpFNAp5h0eGdyQcbh8NTi97K20khesJ06s7vLWqLXhSRqJc8lTQNlvGFQh+JeY2XnMRwQg3aFDKZUFpKrnxIWhU56fiw+v3U9Ho5tN1xShkMq7vk0iUWXNeK1TON5TUOQPEEUiLtn/+WMBbk3sTdg4mZvVOD5+sLQ7aZvf42VnWcF6TR4Iotmi98vgFhGP8UFQKOVFm7TlP1XN5/YH00gijBrNW1Sz/L9sK748HUToeeWw35MPe5XCdE5AUiR+sKmLm7X159Mut7CxrZFBaBPddks60mRtRKWQ8NbELIVolszeX8qfZzUmKd+Wncs/wdGQyGc/+UMDXm6QK9Es/7+W+S9JJitBj0qg4UGVjxqythOpVPDWxK6FN40iEUcNz1+TyV09n5DIZZp2S9UW1vDypO3GhOuQyGQXlVmStaDxC9GrG58bSL8WCiOQH017M+tGoc3iCiDKAr38p4Y6hqRckeeQThNP2dnJ5/ew/xugaoLzBScpRBM8R8nTywGQGpYXz7spCFu+uRK2Q0z0xtNWCp1GjpF+KJUiFIJGI574QpJTLUcrlbCyqbfG3DQfr2iWPQvVqnr06lwl7Y1lzoIYJebF0jQtp9RzaXtLAsXZKiwoquWVAMjf1T2J4VhT3fLIpcF3O3lzC6zf1YlTnKPqkWHjo883sKpNag3olhfHUxK4ndHwNTg9/nr2NikY3X208zP2XpPPoV1sDn2VCbgyCIOLx+VHLlaBphSQ5yvfTL4ithtQY2rPWkMkgJB6GPQalm+HHGVCxHRJ6w/AZLewlnB4/Tq8fs1aJ8kyN/+Y4ybC79qik3sHTaZSH8NyPGwPfj93jZ8bXW5l5W79zp0yUy0F+8mNMtc3NjK+3Mi0/jefn7w6aC76+7AA39k8iVKfCpFMxpksMPZMsgMjaA7XU2lzMu38IH64uYkNRLS/f0AO/IKnq5MBn64t5c1khchncMzydx8dmIZfJUKvkhDZZXgxIi8CkUWJ1N6/Lru+TyJ0zNwWCoe4elsZDIzN/dYFQJ4tf94r/Ii6ig2AxqJk+KpMXF+7FL4ikRhh4fFw2oQY1S3dXBogjkCqaby47wBPjc1hfVBtkKi6I8N9Fe/nPdd0xhKW0fKPoLqA6d5Wto+HzC2wvaWDazE2UN7pIizTy9i29SYk8/c9XY3PjF0RMOtVpyT6PTEL9gsj6olpu/WBDQL76+Ngsbu6ffFZ6kn2mBKyjX8C04hnwuXD1nIorYTAzVxYxdWjqeZn6dr7BpFXy/LV5PDFrO06vn+RwPU9fmXtuvazaQUWDm1H/WRYwEn1nRSE/PZRPfFjHxvleiLC7fSekRG3Na8bjF9o1gT2TUCvkRJtbTrgjjeeGbPEJAl6feFyFpV6tYGyXmCA/k0tzY9tfIJ0jCILI5kP1TH53HW6fgFwGT1+Zy8Tu8eh8DVKJqKIjAAAgAElEQVSykXjUeVG2hURFbZDS6JO1xUwdmso7U/rgEwQQJe+if1/XnUSLHoNGgcPj57kfCoLe+63lhUwemIxcJmPBzubvau62MubvKGfBw/kkRxgI1atY8sgw5DIZoce0gITo1BzdaXbzgCSmfbSRLYcl1dOwrEievSqv1WNvNw2qHbT2O8aYtRecyX29w0NBuZXP1x9iQJqFwemRiKKISiEnzKA+KeI9RKdmbNeYIMWdRiknJSK4HW1CXiyfrDvIuK4x3PDWmsAi++Z31zHn3kHktqLQ0GuUTB+dxYEqe8Dz6O8Tu55XY9Fl3eL4fMPhoG2X5sUe93XhRg0Te8QzsUd8u887tq0PIC8hhBq7mwU7KuidHBYgjo7glcV7GZgezrI9VQHiCGDjwTp2V1jJiT1+Kc3tEwKG3cv2VpMVY+bzqQPYUdpAbIgOr19g4qurmPfAYGJC9FLU/J55kicRQGQWxORRZ/ewdE8V64tqeWhUJre+vz5ARgxOjyDCdAK/pcYECb3gxq+kQq9K18JWoqzByYs/76WgrJHxubFc2zsBi+EMkDbGKPj9D/DLx1C1C3r9HqK7UG/zBea8R1BU7Wixrd7h4XCdk3VFtfRNtpAQpjvvlDNCU3uuxaCmvCGYLBdFSTGmVcrxi/DoV1tZtb+GYVmR/PWyLjQ6vWjVCh4dk02oXhVkZbFoVwUvLdwXePzP+bvpnWxpoXCONKqZ98AQXluyn3qnh1sGJLN0d1VQovjyvdXcPiQVi/L8+u7ONs6/mcVFXMR5iBCdit8PTuba3p1w+/ySSZtWSbXVzYHqltWv4loHHr+AvBUvHqVMhkyGNBj0vwfW/k+6M4Ylw/A/nbxp9hlCrd3DrR9soNYukV/7q2zc88kmPrqt7ylXNNxePwXlVp74ZhtlDS6u6B7HvcPTT3p/tXY3K/fVsHBXJcOyIumXYmHGrG1BA+YLP+3hyh7xZ4U8UhhCOZx8FYqY4SjkMmp8Wrbvc/H60v38rl/ir5M88jikCl0H9P6DpF4c2zWGgWkRuH0COpXivI6O/3hdcYA4Aqni9+XGQzw4MrPV53t8An7h+ERAh8LrlGT8Sh1oz7wGzunxUVjt4D8/78brE7l3RDpZMaY2SaTkcAPxoTpK6psXIfcMTz8zk+8TgJTUlcPq/bXYmqqP+ZmRxIWeffKostHFR2sOUlBu5dpeCfRJtrTpExKiU/PUxK70SbawbG8VwzKjuKJ73FlTXp4MauweHvlyS6CVSBDhye92MDwrCp1SAJ+7xWtUopt3pvTmqe93sfpADV3jQ6SI8GMWPwmW5rGzotEVMFY9Ap8g4hdArZKRGmlk86Hmok+f5LCm8A//CS+qRFFk7tayAHEEsGR3FTtKO1apZtQomDIwmfdXFQESyfn3iV0uKM8jvyCycFcl07/cQieLjpv6JzHlvXXsqbBhMah5aVJ3+iafuDeKWinn9sEp2F0+vt1SSlyolqevzCVMH3zORxo1fDVtIP9bsr+FkubjtcU8ExeCXC6j1i61TSvlMiwGNdFmLW/e0iuwLfQklGJnGvUOD15B5KGRGby3qggZcPfwdNI6oLB3BFEmDfeNSOd/S6T2npxYE7cOSuGKV1aiUsrJimnpbapWKBAEIYg4OoI95S23HYtGlxenx8/wrCg+33AIgLeWH2D2LyV8dHtfbv9gQ4Cw2lHaKPmKhSUj3LMB396fcapCcUT2xOXUs6eiOmDS7fEJfHXXQHaWNpASYSAj2nTiY4xKL/1rBVVWN5PeXBNQqG053ECV1c30MVlnxgvHFCMZggs+KSwHMPpcRJo0VFmb75tjukQHdYM4PD4+WnOQF35qTpWcPjqTm/sn4fD4OVBtIzFMClg4l2OGUaNkQl4sy/dWc2m3WL48ihztZNHh8vrx+kWe+7GAVftriDZruHd4Ote+vipQpL+2VwJPjM8JjJWCIDJ3W1lgPyaNkqGZkRTX2oPII5fXjyCKdLLouXd4Gh+tPYhWKee1pcHt4P1SLBg0F57as6PxK1zRXMRFnBkYNSqMmuYb6+7yRq57YzXvTenbot3mpv5JGDVKeiWHBVVMeyWGMmNctjQJUVsQ8x+DAXcj87qkKocp+qwfV1twev0B4ugIdpY14vWfuiqgzunlujdWBxYO760swqBW8sAlGScsA7W5vPxr/m4+WSdNLmZvLuH7+wYHvA+OwCeIeE7ANLUjYNCoCDfrmVPYgEYpZ/6OwyzdUyX5KnBhVYePC7cdavfD8n+BTAH5j0JoCqhPn0TSqZToVL+uYcnvFyhtkIjEapuH24ekkN0OoXIq+6+xe3D5/GiVCiwGtSSdt1XC0udg7wKIyYOxz0BoByS5+TySeee2L6RJdeeJkkeEXE6l1c3lr6wI3AuX7q3i+/sG0yUupNVdRZo0zLp7IJ+uK6aoxs6N/ZLIij63gQtJ4XoWTs+noKyRcKOG2FAt4WeZzKpuWpQcKUws2FnBk5d15qYBSW22+4QbNUwemMz1faQCx54KK4t3VzIgNZzchFAs50GaIEiEy9FkIUhqA7fPD+ZwGPQQfHlL8x9DEihVxDHpjTV8dFtfHvt6K89enXtcgsegVjCxe3ygNQ2gf6olQN7OGJfNnR9txOry8uL13XF4/Dz61RbSI41MG5Z2QkbWXr8YREAdwdbDDVyS03FjeYhezYMjM7ipfxIldQ4yY0yn1dZZ7/BQ5/BQbfOQZNE33zPOIOocHl5dLFX/bx2Uwj9/LAgoTGrtHqZ+uJEljw4j+jiLbr8g0uD0oFYqCDdq+MP4HO4dkY5CLmtBptU0xXFbmpLKjkWiRY9cLqO03sm0mRvZeriBcIOaf1/fjX4p4eeMxD4e7G4/t76/nqt6xPPCtd0QkdQVPqHjFJuhejVTh6ZyY78kPH4BlVzG7R9ukFp6mqZanWPNgbZjmQweHZOFKMoYmRPFN7+UBO1vfG77qii/ILJ0dxV/mLWN93/fB4fHx087K0gK1/OXy7rwwk97gpROgRRWpZoVVRpe3pCJze2joHwbWpWcL+8cgEohw+sX+XLjYeZsLWXu/UNIi2ypqDpV2NzeoNZGgC82HGJqfuqZM1KWyQLEEUCEQcPnU/vzx2+2s6/SxiU5UUwfnRlEHjW6fLy17AAD0sJxevxsPlTPlkP1dI41M/WjjYGi6xPjc7ixX+I5syHRq5U8OiaLN5ce4LpenbDo1SzeXUlmlInbh6SgUcnZVtLA6gOS19fVPRN4a3lhUHfHlxsPc/uQ1AB5JJfLGJAWztebShjVOZq78tP4fmspB6rslNQ5sRhUlDW4+HlnBT5RZHB6OAlhekZkRbOvysYjozP576J9uH0CfVMsTB6YzJwtpfRPDSfCqEEUweXzE6JVtemh9mvEr2uWfhEXcZZgdXl57sfdNDh9zFx7kLdu6c0by/Zjdfm4Y0gqPRMlKXSUSct39w5i3rYychNCqGx089TcXeTEmrmhbydW7LOyqKCSy/Li6JcaxrmxiW0dOpWCMH2wWWF2jAml4tRvkIVVthYpOPO2lTFlYBIRJxgDbXf7+eIYufbPuyoYnxvDnC3NFYa0SCO6U1T8eP0C1TY3S3ZXYdYq6ZtiaTf2GaSqW7XNzauLpUqFSiHjmSu7Em48N4s2r1+gzuEBUVL1dNiEoPEwvJnf3FpSMEdKN7H8tpLjbuybyPsriwLqI4NawbW9OrV4XrXdw4SXl9PokpQs83eU8/nU/vRLDT/tz+AXRLaXNnL7BxuosrmJMKp5e3IfciOVKOY9CjtnS0+sPwiVO+DW+ZLi8Qg8dnBbQa488ZTHxhJ4bUBzm8Cy52HaSjDH8u3m0qAFjCjC+yuL+MfVuW2SHtFmLfePyMDf1L5yrqFUyIk2a5sXJ+cANXZPC0Xr2ysKmZAX2+59SCGXIZfJ+GDVQebvKCcn1sy/F+yhc1wIfxifHWSMezTsbi8VjW5+3lVJaqQhkBR6JqBVKRieFcmiguYko6RwvaTOlMkgNR+mzIX1b+M0JVPfdTL3fnkIq9vHot2VfDltYKseJsfCqFXxxPhsusSZWVhQQb+UcH7XNxGLQU2l1cX7Kwt54+ZemDRKVu6v5pl5Uovbyn01LNhZwbf3Djr+PV8p58oe8Xy/tSxo++guHV8ECtWrCdWrSW+lnehkUO/w8NyPBXzaVHwxapTMuntgICnrTOLI3CE9ysgvxcGkm9Prx+5uxRT4KNTZPczdVsYXGw4RH6bj8THZdLLoW7QCWl1e1hbW8p8FexBEkQcuyWBEVhSpEYbAdRUfquPqXgk0Or38afY2tjapx2qaiKxljw0/b/2kBFFEFOHrTSV8vUkiaXp0CkUURWxub1CR83Rg0qoCRY4qq4tDtc1EyR+/2c5Lk7pTWu/kYK2Dy/LiiAnRUlRjp9rm4U8TcvhgdREquZypQ1OJPM79pNbu5vn5u7G5fdz6wXpuGZDMW7f0lgpwMlhX2OzxNDInKqBKtrm8vLu8ORkPpJSsDQfr6BIXEiB3XV6h9bi504CmlUSzcKMGGTLcPsnXTYbkb3amyFm5XFJRvnZTTzw+AZNW2WLeK0Pkg1v7smJfNSatij9OyMHh9vHY11uD1PrPzy/g8m6x59TDNsKo4eHRmTS6vNwyIInMGCN7K2ys2FfNztJGsmJM5MaHUNFYSbRZy+LdlS32UdbgDFLGjciK4vWbepIdY6bG7ibCqOHlRXv5YFUR8x8ais3tw+H14/T48fklMrtPioXMGCN+v8i1vTvh8Uk2Hle/topKq5tuCSG8dEMPXl28j/2Vdq7uGc+43NjzpkhzpnGRPLqIizgF+ASR+iZSZdamEgqr7PxxQg4RJsn09+gCUJRZy039k/hgdRF//34XAD/trGDutjIeH5vNvG3lzNtWzn0j0rlnePp5M2EJM6h5e3Jvps3cRJXVTXK4nld/1/O0FhWtSflTIw0nLFUHQEZTO2Dzl/zBqiJ+eGAosWYdCwsqyYsP4dGxWafc9lRS52T8y8txNKUvJFr0fH3XgHYXE2adijuGpHJ1zwQO1znJiDK26L0+W2h0eZm/vZxn5u3C7vZzXZ8EHhqVefoKClGEdW8Fe5L4vbD5Yxjx59Pb9wWG6BANCx4e2sIw+1isPVAbII6O4LWl++kSZz7tFLlau4dpMzdS1VRhr7Z5mPbRRr67uy9RBXOOefIBiSw6AluVFPW7c7akSLrsZYjpCsp2zhHBB2tebSaOABw1sHsu9Lm91eOPNmuOq76TTC1/O1W746E1Lxu9WnFC95JGl5eMKCOJ4amsL6zl+j6JRJs1ONy+NsmjzYcauOmdtYG2nj7JYbx+U69Taouqd3iwu/2AiF6jbKGQMetUPHtVHv/4oYAVe6vpEm/m71d0bb5X60IheTBL7EnM3lrJj28UBFIYPT6BkJNoqziixrqmVwJ6tSKwgAvVqemVZGFtYS3ju8bw0ZqDQa8rbXBRaXUflzwC6JkYxoxx2by57ABqhZxHx2TRKaxlm4sgiFRa3czadJgGp5dJfROJDdGe9fG+zuEJEEcgpQn99bsdvH5jT0LOoAdKuEHNo2OyuOPDjeytsNEzKZQ1B5oJAb1agbGdRavfL/DN5hL+NmcnIKm7Vu2rYcFDQ1uQR8W1Dm7/YEPg8bSZm/jh/iF8fucACqvt+AWR9CgjkSYNlY0uNhQFJ6u5fQJ1dg/RZi31Dg9Ojx+ZTIZJ24FFmNOAocnQe20ToXLn0FTysyJ5/KttKBUyHhqZSWqUoUNVvGadimn5afxz/m4Ayhtd/HfRXl69sVfQNRlh1PDMvF3kZ0by8KgsBEHkUJ0d/XFafUSkghdAo9PHK4skldrC6flsPlTHO5N70+DwEh+mo9HlpdHpJdqsRamQtzrP6xSmD7QeA4zIimyz7fdUYdAouKV/Eh823T8Uchl/u6ILGqWMN5ce4K3lB9AoFUwfncm43JgT8sxyef1YXd6Aqf6JFlRaVWLaq8FtJVyUs6XSzlvLDtHo8pFo0fPx7f2CWt1AUlJ6fNIgUGt3U2V10+D0khxuIMKoOWvKmiMJdC6vnwGpERjUSjKjTczaVMKGg3W8cXMvimsdrC2sYXTnmKA2SY1STvYxLZUi8N2WUqbN3IRMBld0i+elST2486ONfLOphP1VNmZvLgXg/VVFfDltAG6vP+j32lHawF0fbwo8fmxsNpPeWBPoKtlUXEedw8PUoWnnTXvrmcS5vwtexEVcgAjTq7l1cDKbPpEmHQ+OzODVxfsDLPjQzEj+fV23ANFSa/fwzvLCoH3sq7Rh1CibfBYE3l1RyM0Dks4b8kilkNM9IZS59w/G6xPQKBWEG9X4mlQ5c7aU4RdFLu8WR5RJc0KVlTC9mjuGpPDW8kIUchkWvZo/X9r5pFp4jBolvx+UzBvLmlMnrugWh1EjDdJ3DE1Fr1ac8iTP7fXz6uJ9AeIIpMno+qK640qvj1SHUztQGn0qqGx0U1Tj4O3JfRBFkT0VNhbtquDqnp1ObwIgk4G+FX2c/gRVK78iqBQKEsL0PDomu93nmVpRSZi0yg4xu/X4BcqOMZYsb3ThFWRgTpAUR0egUDUTQ16n1Hb4y4fS44rt8MGlcP8mMLVzjotIbWvHomnbiOwoOll0HKqVyKUIo5qb+if9puTcpwOHx8eWQ/U0OL0MSg9n5T5Jni+TwR/G5RDezuKn0eml1u5BpZCxsbiO95riqT9bf4jLu8XROa51z6tauxRZf7QfzPqiOqpt7pMmj2psbmZ8vS0QBT4iO4rnr8lrsZ8os5anJnbF7vahVSla9dlIiw3nh0+3B5SqGqWc3/VLOqnPA9KC7tj9q5VyLusWx1+/206EUU2ITsUhglvpTrTtRK9RcEX3OPqnWkCE+DAdhlZ8zapsbsa/vDzQCv7uykLm3T8Ei0HdIeERJ4oaW8vrt6TO2ap5fUdCJpPRPzWcHx4YwvK9VTxzZS73fLKJXWVWIo0aXpzUvV1isM7p5dNjkhAbnF4Ka+wtyKNZm4KVyQAfriniH1fltSAatCoFPZLCWLq7WQmnVsgJNaiptrl5/OutLNxViUoh486hadw2OKXDSYiThcWg5tUbezJ3axkGtYKsWBOXv7IycA0v2V3Fzw/nkxzRcUs8jVLBDX0T6RofwrebS+ibYmFkTnSL38ysVfLmLb2Y/sUWftpZQc/EMF69scdx53gWvZo7h6bx5JwdgW1d4swYNUq+2lhCeqSRsV1j+N+S/ejVCm4bnILXL6BVKbjvkgzm7ygPFGm6xJnJSwjh/Sl9WHWghuRwA2mRhg5XhYTo1Dw0KpMb+iVSWG0nLyEEi17Nin3VvLDgiL+QjxmzttE1PoSQ+Pbfv9bu4Z0VB3hvZREapZzHxmYz/gRJpxawVcKnk6BkI0pgRNoYPpr0DFe8v5viWgcNTi9jusbww7bm4ICMKCN6tYIam5tHv9zCoqZrIkyv4tt7BpMYfnb8WOscHjw+yTM2NkRLXGgsbq+fETlRvL28kEe+3MKDIzOJNWtJsOgQRJGvNx4m2qzl/67o0qJgsWxvFfOajlMUJauLQenh5MSaEBCJDdXyzJW5aJRyftpZzsdrDvJ/VwSnA9pcPsZ0iWZSn0SMGiUmrTJAdh7BJ2uLub5P4nnt1dlRuEgeXcRFnCKGpEfw1i29WLG3mkqrO0g+uWxPFUt2V3JNUxuLTCZr1ShXqZAFZKPnI1utUMiJOqb6WmVzMebFZTQ6pYH6lUX7mP/g0BNKmQptmiBMHpiM3e3HrFMSdZILFINGybT8NPKzIlm6u4rB6RF0iW9WcUSe5gRcEMUWShGQpPAXCuxuH3a3j+veWI1fEOmfauFPEzpj9/hO32un1xRY/7akOAHJxLHLxNP+zAAIAjiqpBFeqZVUCBc4usaHkBZpCMRKa5RyHrwk85RbKo+GRiEnOVxP0VG+C8nhetQqJVz+Cnx8laQMA7jkSdA0EQiuRiiYG7wzrwPqitsnjxRKGHCvpDQTmq4RjQk6XwFIbbqz7hrE9pIGPH6BHp1CfxMTqY5CncPLze+sQ69R8O/rujMtPw23VyAj2ojFoG5TeeTy+vh2cwl//nYHPzwwhE/WFtMlzkznWDP7q2zM2VrK42MlktPt89Po9KJTKTBqVQgCQcbvR3Bse/GJYNX+mgBxBFK09/K9VUzskdDiucdrpY02a/jpoaG8t7IIQRS5bXAK0W2cS40uL3V2Dweq7GREGwnVqdsNSrC5vDwzbyfzd1RQ0ejmvhEZ3P3xpsBYPCI76oRNs0vrpPHwCPli1ir56aGhkpnvUVi2pyrIQ9DrF/nfkv10suh4d0URN/TpxF3D0864z06iRd8ijvqqnvFnJUnMpFWRE6siO8bE5uJ6pg5JJS5Mh93tp7jWTm5CCBqVgganF5fXjwxJsaRQyFEpZESYNOw9KvkIIKyVz50e1bIFry0vNbNOxdMTu3LHhxvYVWalX4qF/7u8CyqFjK83HmbhLmle5/WLvLJ4H6O7RJ8WeVTv8FBYbWdRQSW9k8LoGh9ySgq/iCZV3f4KK28sLwwif32CyKxfSnh4VOvhDaeKMIOaoZmRDE6PaLMgoFMrGZQWwbz7h+D1i/gEgSUFVaREGsiMNrZ5fisVcib2iCMlUs/XG0voGm/myh4JWPQqJuTGkmjRB6kj52wp5efp+cSG6IgP0bLg4Xw2HqxD2xS9vq6oloFpEVzXu2UreUcizKAmzKAOJMl5fALfbSlt8bwFOyvoGt+6998RrNpfHbA9cHj8/GHWNvISQk7+2hRF2P4VlGwMbFLun09C59/ROTacnWWNFFbb+NvlXYk1a1myu4q8hBAeG5tNhEnD5kN1AeIIpHHp3wt288yVuejPsPKuvMHFA5/9wtrCWhLCdLw0qTu58dJ9YVp+GtVWN99vLeO5Hwt49qpcQvQq7h+RwS0DkqSC9DHnlyCIrNhb3eJ9tpU00DlGOsc2F9fx2tL9OD1+buibSE6cuUXYUUqEnkuyo5n+5RbqHB6GZUby5i29ueWdtdibCs0Wo5rfSp3sInl0ERdxigjRqxnVOYZB6RE83yTlPRprD9Rydc8EZDIZEUY1M8blcMeHzVLqoRkRHKyxBzxCHhmddVommG3B5ZV6rwVRRKdSnHY85zebSgLEEUiy90/WHuTRse0rMAAaHF7eXVnIa0ul5JMYs5Yvpg0g0XJyFY0wg5qBaREMTOt4xYtOrWRafirzdzRXZAxqBUMzIzv8vc4U/KIYSOYBWHOglvk7yrl3ePrp79wYA3etgsLlIFdA0qBgH51ThdcNpZvgmzuhoRhSR8DE/0nk1HmOGpubKpsbUZRMoI9u7Yw0afj0jv6sL6qj0upiRHZUq2qkU0F4k8fRXTM3srfSRkaUkddu6iW9v6YPPLAV6orAHC8RcZomRZxSAxGZ0HAoeIcn8l2HdIK718Da10Gph353SIbZRx3v8OwOOB9+g9h6qB6fIDb5zamxurz4RUFKgmmHy2lw+vhHUyy91SkZQDe6fKwvqmVij3juG5GBQgbVNjdvLTvA/B3lZMWY+NOEzsSFaJk6NIXHvtoW2F8ni47YU0gLO9qX5AjWHKhtlTw6HtRKBUnhBv5yaWdERBRteGY5PX5mbTzMk03tTDIZvDypB2O6RKNuxZMEpIXZ4ibPpc2H6llUUMkXdw5gT4WVtEjjCasUfH6Bt1ccCFLtNLp8/LC9nN8PSjnu6wVRpMHpw+b28daKQuLD9NzctAg6UzDrVHx990D+b84OSuqcTOwRz839kzqseCWKIjU2D26fH5VSTrheIn+ORo3Nw0NfbA4ivWUyGJYZhcvj59Gvt7J0dxVRJg3/vCaPvikWQnRqnr0ql9m/lPDdllL2V9kZ3TmaiFYIxZE50XwQU0RBU8JXepSRCU0x9na3DxExyBcoIUzPzNv64fWLVFhdPPzFFkZ2jmLroYYW+954sI68hFMrarh9fr7aeJin5u4KbLuyRzxPXtb5lFoGq21uPlt/qEXCHEBMKy3EHYXjKUmVCjlhBjWzN5Xw2KytAcLnml4J/GlCTptz0FC9mvzMKAamRaCUywJk+fjcGJ78bmcQQWb3+Pl5ZwXX9EpAp1aiUshYWFDB2gO1AWPt2wYl88iYrA4p1JwoVAoZPRPDWvigdevUPnHk8vqDPDuPYHFBVZuBE21C8MLhDS0266q3Ehc6jsN1DvokhxNp0vDY2GzuGpaGXt1M5pfVu1q89lCdE7df4ExqjxqdXv74zbZAO+bhOieT313Pwun5RJsVRBg1PDWxK09MyEGGjHCDOnAuttViLJfLGNMlJuANdgT5mZHkJoTQ4PDywOebA+fWP34o4O1bere4H3oFmDFrK7EhOuLizKzcV0NcqI6reibw0ZqDqBQy/nrZhZWAeTq4SB5dxEWcJvRqJeO6xgTaBI5gTNcYfIKISiENggNSLfz8cD6LCyrJijGSFW1mX5WVh0ZmMCI7mkSLvsMNYxudXuZsKZW8bzx+hmRE8O/rup2Ql0NbaE3e3l6VWjJx9KFVKqhzePjfkuboy/JGF0/P3cm/ru3WYelTHp8Q+M5PFRlRRr65eyBvLjtAiF7FXflpZ8xA9kxgR0lji22biuvw+IWT85dqDXK5RDLkXXt6+zkWrjqYeZWkgAHYvxB+fAIuf0lSt5ynqLa6mfL+OrY3fedZ0SZm3t4vSHFTWG3njaX70aoVPPtDARPyYvnLpZ1Pm8iVyWSkRxn5bGp/vH4BpULefJ6qddI/c1zLF+pCYfzz8N44KTlNJof8GaA9gUmqWgcRGTDueelxG4v6izh5JDW1BbxwXTc0SjmfbCmlqMbBqJxoLsmJwthGu6NfEANttjUOD2sLawPk8VcbD3NpXix/npDD8/N38/l6iTAsqnGwvaSR2fcMZHTnGKJv1fLJ2kNkRBm5eUDSKY0R43Nb+gddmtfK+XcSkBYHbd/LG53eAFsYdY0AACAASURBVHEGUtH9z99up2+KhWhz6/c6lUJORrSJTcVS2/nn6w/x/dZSlj46jAijdNwurx+lQtam0TtwlP/esZtbbhuaGYnFoA6oj9QKGXcNS8Pu9nNpXix7K2ws3l3BxB5xp31faA3ephbXt5YdQKuS8/TEXLQqORaDpkNVzweq7Nz6wXoO1jiIMml4/aZe5CaEBM1tBEQqGoP9VqTUIoHXluwLtJBVWt3c/sEGlj02nN3lVl76eS/I4Lmr87AY1IToVa2SfJEmDTNv74fN5UMuk35vnUrOztJGXly4B59f5P5L0smIMgUWzOFGDRWNLm58ay02t4+YEC29ksNYsqcqaN99k0891qTB6ZWO4Sh880sJj47JIuQUVuWCKPLTzgpeuqEHszaVBLzvEsJ0jOzAtL9TQbXNTWqUgS/vHEBRjZ2/f7+LrzYe5uFRmYQedaxev586u6SO1WsUGDWqwLni9PixuiWVZGvx6D5BZO7WMkZ1icHh9vP1xmCCYObaYu7MTzsueWR3+7C6vHj9Inq1IpgAcNSBqx6c9dJYaohsd8yTyWRc3i2OudvK2Nhk4j22azTdjkM4qhVy+iSHBRUtAbp3Cn6dzy9QZXMzf3s5CrmM0V1iiDzWj0ihhrzrYfvXwa/NHE8WRv56WRcim4JcjvgLBb1nYmjATuMIJvXpROhJ+M2dClxeP6v21wRtszX9NkcCLIxa1Ul7RfZOtnDHkFQ+XF2ETAZTh6bRMzGMMIOabzaVBJGSAF9tOszgjIig7+VgtZ3Xb+qFTxApb3DRIzGUOVtKubZ3AulRRvISQqi2uvE1zcN+7bhIHl3ERXQAEi16po/K5K0VBxAFmDwoGbvbR53dE+jHN2pVpGtVQWkp0SFaBqWfOUVLrd3DH2dvDzxevreaN5cd4JExWa0mRZwIrumZwOtL9wdMTDVKOTcPaN2Los7uYdHuSr7ZVELv5DB6J7WceO2tsOHy+k+bPKqze1h9oIa5W8vom2JhQl7sKRM+Rq2KHolh/Pu67ijktFnBPl/RL7Xl9zwqJ1pKNDpfYatsJo6O4MAiyeT5PCaPFu+uDBBHALsrrMzdWsqUJuVBtc3NX7/bEaiCg2Sy/9DIzA5bJJ5MtavK6sbp9WPQxBN25zLkrkZQG6TvWNu6L06rOAHSyOsTqHd60ankp20O/ltAbIiOm/sn0ilMz6Q31wT8rDYerMPm9nLr4JRW2z50KgUD08JZtb+GML2aT47xhjkSzvDd5uB2ipJ6Jza3n5QILfmZUfRNDkelPA5h0g6yY8zMGJfNq4v2IQJ3DUujSxteSx0FnyC0KF40OL0tFgRHI8yg5p/X5HLDm2upsrlRKWQ8MS4HrUpJvcPD9pIGZq4tJjlcz5SBKa0GPQAo5XJuH5LCFxsOBT5DiE7F2K4tFXyRRg3z7h/CVxsP0eD0ccuAJD5bd4g3l+/H6xfpm2LhqSu6ttre3hGotroZ9+KyQIvFOysK+f6+IS3a604HNTY393yyKRBfXml1c9sH65n/YLCptVGt5Moe8Xyyrvk87WTRoVXKAz5fR+ATRA7WOLjv002BSO5le6pY8FB+uwEQKrmMlfuqef6n3bi9ArcMSKJnYhg/7ZDaKhfvruTHB4aQFdN8flZZ3QGT5SW7K7ltcAqX5cUyd1sZGqWCB0dmnFB7fpsQwduKhPBUQ8DCdGpJzTN7G6/f3Is9FVY0SjkD0yIwaJSUNzhxeQUMGiURRqnttcbmxuGRiFGDWtmq39jpotrqZtpHG9nSlGA3MC2c/97Qg1veXReU7mV1efl5VwV/m7MTq8vHlT3jmTE2m3Cjhiqrixd+2sOyPVX0Sw3nvhHpfLu5NECSx4VoyUsI5ZrXV7Eo2YJWKUcmI+i616kVrfLOdrcPm0tSoCkVcmb/UsI/f9yNxy+QGx/C25N7S2SFowYWPNnsDagPh9t/Pm6ybIRJw5s398Lu8aOQSQXm47U6yuUyJvaIZ/6OctY3Gbhf0T2OnLjguU9Fo5uxLy4LtJ3+5+e9zLt/SMt7VEIfGPU3WPmSpDQe/if0UWk82CkE1XHIYsv/s3fe4VHV+Rr/zJzpPTPplSQkJJQAoYSOKGABFBVR7AUFe0FdV91Vr2Xd9e7a1rV3REVsqIgFVKr0TugkEEghkza93z9OcmBICAkExb15n4eHJ5OZyZQzZ37f9/cWnYrPbhnCE18XY3f5uLIog9H5Cae8/EWpkNMzxSQ9fxBJtfauHY5sS9arBAZl27h7dA5Th4trMpNGiSCXEQiGWmyv7JZgRHlUq3SXWD0zZm9g+R679Ljeu2EgK/fW8tGqfTz5jYt4k5o+6ZaT2pz/o+A0niQ60Yk/DoLhCCV2Fy9c1hcZ8M2mCv7z0y6WPnDm7/q4iiuaK1CW7bbj9AZRG1pepPqCIercYuaATiVg00fvasSb1Hx/90jeWbqXYDjC9UMzSWyh1tofDDNr5T7J0rdsdzVf3Dq02Y7GOT1PMBDwCHgCIV5fvEdSNX2zqZzvt1Tw4uWFJxWSeKoW8h5/kGqnn8U7q0mzaslPMnWosinRpOHJiT35+/xtuP0hLixMYULv5FNqhzhp6GNFG1z4iPyVpN5i9tGphM8J9WWwcTbYsiBnbLtseNuPIIWaUFzeQCQSQSaTEY5EsLuah9S2lDPTUbA7ffhDYRRyuTQ0gBj8fvWbKyixu9GpBP52US9G52edkgYhu9PHW0v3Mn9zBbkJRh48L5/UGO3v0j74R0GMXsWMsd0oq/U0C0L/dO0BphwjMDpGr+L5y/rw6i97UAriEHUkZIi2oGSLRsreApDLRPK/CSd7vovRq7huaBcuKkxBhmiROtFNirZCq1LQO9UsDaogVjNrlXIikQjVTj/+YAilIMdmUOPwBthV5WT9/jo+umkQIOYvGTUKdCqBuRsqufOj9dJ9zV1/kC9vG3rMgSDJrOHHe0Yye/V+tEqBCwtTWsz5kstlJJo13HZmDiCeI176eZf0+5V7a/hi/QHuGt2xOTVN+LG4SiKOAMIReHXRbv5xccHJq1EbEQhHokhyEPNSjj7X6dQKZozNJc6oZv7mCvKTjNx3Th5mrYKCVDMH6g6Hl8tkEKNXSu22A7rEMCQ7lm3lDWS3MPg1YX+tJ2rj7NVFe/ifC3rQPyOG1aW1RCLw3rJSHp/YU1rfxOhVEgERjsC099fwyIR8/nxePoJchlmrPKlCE6NGybVDuvDKL4fLPkbkxqE7wftUKuRcMSiDGL2Kv80rZlCWjfP7JOPxB5m7QSREguEIKRYtH95YhFYlMPXd1Wwoq0cmg2uHdOGOM3M6JADc5QtS7wlQ6/azYk9N1Odx2W474wuSmNw/Lap1rdrp4+6PN0g/f7K6jK5xBi4fmM5Dn2/m+60i0ff5ugMoBRnf3zWCLzccRKOU0zcthgcaLXH77C76ZsRwaf80Plp12Ip9/9ndsBy1tqxx+Xn1l928tXQv4YiY93VuzyRJUb/pQD0vLtjJQ+O7o3UeOkwcgUgmff8XmPgKaFrf0LIZ1Nja+RrGGtS8elV/XL4gglyGThUdMxGJRJi1opSbBiVwXjcj/mCYT4tdLN9dzYWFR1mDdVYouhkKLmv8ORaF0LbjTK0U6JFs5pUrCwmEIsToVb/J2jFGp+Ifk3pz1ZsrKKv1oFcJPH1xAVsP1rOzwkH3ZFObNsrK671RRHlqjJbPbhlCgkmDLxDiQJ1HjM4IR7h7TDcGZVml5scuNh1XFKU3s0nXNG5ON8EfCvP8gp2clRcvtb2ZNMoWlaj/jegkjzrRiQ6AVimwvdLBp2+vki4ryrT+7s1p+YnNd32HZNuOGSbq8QdZvLOauz5ej9sfItGkYebUgVEBlCqFQLpVx8PjugPH9r/Xuf28t7xE+jkcgVd+2c37NxTx1y83c7DOw/l9krlhWOZJy+Yd3kAz2+DS3Xbc/mCHN2x0BLZVOLjkleVS3tXALjG8fILV2C3BpFVySf80xnRPIIKY2XTaKz/UJpjwInxzDwS9ENMFxj936kOzD66D9yYc3rKMy4NrvmozgXRhYQpvLIluUpw8IF0iSSxaFVMGpvPCgsN2hRSL9pTkmwGU2l3cPHMtW8sbSLfq+M8VheQnGnH6gjz42UYpZ8TtDzFj9gaW/GlUh5NHHn+QZ3/cwcxfRWXB7kMu1u+v48vbhjYL4O9ENCw6FbUtkI1WvQp1K3L4OKOG+87phsMT4Lqh0QPqhX1TUCvkPHhePjfPXCsNSjcMy+rwgE9Bdti09VsspK16Fa9d3Z/nf9zBmtI6huXEMn1kNmadil1VTqa+u4oSu5tEk4ZZNxaxeGc1j8wVG52e+KaYEblxPHdpH/RqBXanj9eOaPEEOFjvZV+N+5jkkUohkGbVMWNst3Y97uLy5hs7K/fW4PYHUSk6/tzQku1Hr1Z06HuklMvonmRi6xHPzaZXtdgiZzOouXVUV64anNFoSxLPQX8Z353dh5zsqHSiUcp5ZEIPKut9hCIRnplUgD8Y5tvNFVQ2eOmTEUOyWdMiIf3LUXYzgKW77PRKNbO60U4UZ4reGDNpFPz53Hye/raYcAQ0SjmF6VaSLR2jztKqBG4akU3vVAvzNpVTlGXj3J6JJ0XeWPUqcuL1jMqLp6Ley5TXfuX1q/vz1LzDVs4DdR7mb66gzhOQSJ1IBN5eWsKFfVOkv1/v9uP0h/AGQpg0yhZJ0EAwTDAcjrKCBUNhlu6qZvrMNVw6IA2Pv7m6qsTu5uFx+VFKp3X76ppd78fiSs7vncyPRwTvA8xeXcbdo3OJ0SmZs+YAT3xTTCQitinmJBgxaZTcf04eFxWmsmG/eB5ItmiarS23Vziimno/WV1Gj2SzRCoCrN1Xh9cfRNvQPPiamj3i+oRTo4a26lXHXLNGInB5Lz1xq19B9cFMUOp44IyHKY09j7JaN1adSgq09gRCODxhVIqYE1Y4n0gOlwRXtbgRqFC3aw3Xxabj81uG4PaHCEfg+R938sV60Y7YdK5ubU0fCIZ59ZfdUUR5Wa2HpbvsXNg3hYoGL+c8t1j6Dvx5+yG+uG0o3kAYfzBMnFHd4nHv9DUv0alz+6XNEUEu4y/j8zszjzrRiU60HTaDmtev6s+T84pZU1rLoCwbD5ybd8oGxLbCqlfxxMSePDWvGLc/xLCuNm4akXXM3eAGT5A7PlonWdIqGrzc9fF63r1uYLOT4vFCE+VyGSaNMirbYN6mCv46vgczpxYRDkcwahQdFmaoVMjwHFWIdjruAtS6/Tw1r1gijgBWltRS2eDt0C8elULerML4tIbaAD0uhOwzxcWZSi/mC5xKuGtg4ePRWvdD26C29JjkkdsflGrRbXo1yWYtr17Zj3/9sINQJMIdZ3ala7xeur5KIefaIRnY9Cq+XH+QnAQDd56V0+ICxe70sbW8gV1VTs7oFk+8Ud2M2Klz+/H4Q8hkTYoJZdTtb50lEkcmrYJzeiZyoNZDrEGFQi5j01FZWMFwhFp3oEOtKwAOb5Av10UvvMvrvTi8QVooQurEUbDoVUwoSOarjeJrqJDL+Ov47i2GAx8JtUJAbRS4fmgmg7NtLNxWxZCsWPqmW4gAX284yMfTBrG/xk2iWcua0hrJBtIRqHP7+XpjOS8s2EkkAred2ZUL+pyaDJ8jkWDS8JfxPcQ2SbUCtVKg2unjlg/WSGRpRYOXUrs7isQF0QLl8ombDIJchkYpkGLRMijLit0lqkNPhXrq6CwTgFF58a22xLUVYoZLUFQPqwXiDGqGdY0lyayRFG1apcC0EVnHtbC0BzaDmpcuL2Tqe6vYfchFklnDy1ceW/2rUsibKW6TLVpm3TgIjz+ESpBj1CpweINc1DeFOk+AJ48Im15QXMXc24di0SqbrSNaen17JBsl8iTOoOayAelRvzdqlFw+MI3zeyfh8ocwahTEdnD7nVWv4txeSYzuntDujMs6t586T4BDDh/pVh1WvRJvIMy/f9rN4sZGKYtOKWUfHQmFIGPd/uZkzZaDDRSkWqh1+fnXD9t5v5HwT43RMnvaYIk4C4cjVDR4efWXPZTXe7h2aBd6JpsxaZXUuP08+PkmwhFYW1rHLaOypYG/CRN6JzezyOUlNv8yKEyPQaWQk2zRSsHXINqEZDIx42fF3ho2lNURb1Lzt4t6SVk8Vr2KgZlWBmYeO5dq8c7mpOLa0lpyE4wSeTQyNxa9WgnxeaDUQuDw46DXZNDGHPP+OxqBYJhAOIxOpUAug8TyBQjr3hZ/GapHMf8+TFf2Y9zL23h2ch+Gdo2l2unjxQU7mb+lgqxYA49P7ElmrP63UZ6Hw2DfCZ9Ph8pNkDkSzn+x5ezFI59nKEyty4/TF0SnElWgV7yxgh2Vh9sVF+04RJ3b3yp5FCZCQwvNyE1tyXPWlEXltla7/Ly+eA+PTujRqio6K06PTa+KUpFfM7gLfdIt/P3iXgzJjsVmOP02qk8VOsmjTnSig5Bk0fL0Rb1wB0LoVa3XEP9WMGmVTOqXypjuCYTCEbQqoVVCyx0ISsRRE7YebIjyqbcVNr2Kv4zvzrVvr6Tp5uf2TEStkHeITPpIWLQq7hmdKzXuAEzsk4zuFNnOTgbhcASHt/kuRkcOcX9YqHTiv98MkcOV81EXt/xe+AIhftxaxT2z1xMMR1Ar5Lx97QBG58fTr4u4oLTqVM2IVatezZWDMji/dzIapdCiPajG5efu2RtY1Lhj/j9fb+Xd6wZGtfzZnT4e+nwz87eIYZlXD8rg9rNypMVUMBxh84EGrHoVb1zdn/eWl/Lwl5vpnmjksQt6ckm/FN5YUiLdnxiY2/ELniaLjuOIWm2ZjBYVCJ1ojhidiscu6M6NIzIptbspTLdgPc7C1OUTSc2yOg8pFi3dk0zkJ5pQyGVoVALhcIQwcPHLy4gzqqlzBzBplVzc7/hNaIccPtz+IGqFgEEjRDVVHYldVU4ePsIq9MjcLeQlGinKaq+Bo+1weALsq3VzsM5LQapZGpACoXDU4AHi5yPcQhhSqPEyi07F3y7qxYFaD99tqaBvmoV7x3YjxdIxJPwhh4+NZXU4fUGKMm08fVEvnppXjNMXZFyvJC4bkHbCeVNNcHoDfLb2AI9/s5VAKEKSWcOHNw6iS6yeL28dyqKd1Ti9ATFo19jxn/3MOD0f3zQYX0gsrrDp1e0eWo8mlHQqBfeMyeX6d6IbpA45fWwsq2flXjs3Ds+Oyn3pkWxizvTB1LoDzNtUTnmdh0v7p9M9qZ5J/VLplx7TIoF/IoG8J4L2Ekf1bj8vLtzFm40qV51KYM70weTEG8mK1UvkUb0nQLxR3SweID/JRCAUYflRgcT9MmKoqvfiDgQl4ghEtca/ftjB4405XNUuHxNeXCINz99vreSNq/szunsCkQjS5dsrHbj9Ie47uxvvLitBKci5Z0xui426SRYtN4/M4rXFewmFI/RJs3DDsEzRvnRxAde+vQp/KIxMhqha0ijQqRU8ObEnD43LR4b43dqe42tYTmxUaQvAsK6xfLelArlMLLq5YViWqFjS2eD672DevdBwEHpfAYVXgSCu7evcftxNGzkdnB8ViUQorxfJuoP1Hq4Z3IVeSTrM279udl31/iVkxxbx6NwtfHjTIP71/Q4pT6yywcfkV5cz/67hv43q13UI3rsAHI3Ncbt+FImkye+2Srptq3Bw5RsrqPcEUCvkPHNJASNy45qdwwOh1mcRtUJU9329sVzaE9QqBSlAXt0CWd6WdUmsXs0Xtw7l3wt3sa/WzZQBaYzIjcOiU5HXgsPjvx2//3TbiU78F+G3Wni0By21KRwLepUCi+5wvgCINrcTsZXJZDL6ZcTw071nsGy3na7xBrJi9R1GHDm8ATz+EBqlgEmrZGLfFAozYlhQXEW/DAs9ks2nfMf7RBCjUzF1eCb3frJRuizeqJaaljrxG0Jng5F/glmTD19myThmIGadJ8ADn22UVGO+YJh7Zm9g7m1Dj6vyEuSyVo/9OrdfIo5AFEM9Na+YHo0+/0gkwndbKpjf2MYSCkd4e1kJ5/RMlIZzQS4jJ97ABX1S+M/Pu/ixuAqAXxw+rnxzBbOnDWbLQQfL99gpyozhtYu7YApVQoNKlJYrO0aBFGsQd4Qvf32FtMs3fUQ2htOAUG9CUx6ONxBCpZBj0Z36fJ72wKpXY9Wr21QL7g+GWbitijs/Wke40crx5MSeLN5ZzQ9bK3l+Sh/OzIvn4XHd0SgFFhZXUZgRw5MTex5XWVFW6+aKN1ZQancjyGXcOzaXy4syMLcwKM3d0Nzm8cX6A6eEPLI7fawuqWXZnmoGZdmodfk565/rmHvbMLLiDGKjWryBnVVH7lxXMX1kdlQ726AsK4ojhs99djdT3ztMUny5/iAfTxt80o/3kMPHpa8uZ0+1mDll0ij44e4RjMqLhwho1QKmDlg7NHiDPPLVFmlwKq/38vAXm3jp8kLiTRomtYEsPFkcTyF3ItCrFZhbqKTXKgU+WV3Gir01kkK6zu1n7vqDvLBwJ+EI3HJGNn8+N494k4aEIwgmjz9EgzdAOBJBqxROy/VCExzeoEQcgbjZ9PAXm3nzmgFMH5nNd1sqqWjwEomICo33bxjIA59uYn+tm7HdE0mxaAmGIlw6II3P1x7AqFFw5+gcZMDwZ37i7xcXcHFhSlSl+fYKB55AEK1KYOvBhmbZfa8u2k3/LjFolHLO7BbPgm3i982Dn29i2ogsvrh1KEpBhlWnQmiBLIvRqbh1VFeuHtKFYCiCTi1IIeg9kk0svHcku6qcJFu0mBuJIzi5dXZeoompwzN5d1kJoXCEC/okM7JbHCO7iZs02sb1JCBarpJ6w5SPIBQArZWQTEF1g5fdVU4EQcaBWg+PfLmZ8b1TuO/s3BYLDY6FSCSCyxdErRSakYmHHNFk3Q9bK3n1qn6MGvEgnpSRmEu+g5LFAPgS+rJvhRtfMIQvEOabTeVR91Xj8lPrCrRKHoXCEewuHy5fCK1SwKxToFWewPd1wHWYOGrC3l8g2FwN14Rqh4+7PlpPfaN1wBcMc/+cjXx9+zDeWHz4mM+M1WPUKKj3+FvNSc2M1TP31qG88stuDGolt4zKlojy83ol8fbSEul1NTdusB8vi9HtD7J2Xy0mjYJBWTZWNzpM/r/i9FnJdaITnfjdEaNX8f71Rdzx0Tr2VrsoyrTyj0m9T3hRpVeLCqwMm/74V24Hyus8PDJ3C6tKaihMj+HxiT1Jtmix6FRtGrZ+T8jlMkbnJ/DaVf2YtXIfXWx6bhqR1aGB2Z1oB9IHwY0/weo3wZoNfS4/pmXNHww3U4hVNHg5AWFeMxzdGAXg8gclpYQ/FJZ2l4/Er3vs0nAe22gbafAG+NcP26OuV1brwR8M8/KVhQRCYayhaoQPJ0HlFlDq4LxnoPsFHdZs1zPFzKL7z2BXlZOUGB0xOuUpafY5UZTWuLnmrZWU2t0Y1Ar+95ICRnaLO7EF8++MWrefhxptIyAOAk99W8y/pxTyzaZy7v9kIz/OGEmCScMj47szY0xuI2HW+nnd6Q3w1LxiqT0rFI7w9/nbGdcrqUXyqG+6hfeWl0ZdVph+xG6z1wmR4EnnmNW5/TwydwtfbxSHlHeXlXLnWTmc1yuZZ77fzjOTehNrUPPylf2iMo8uLEzF4Qnw7yl9+WXnIXITjPRMNkvkUY3Tz/NH2dr2VLsoq3W3qFJpD1butUvEEYgkz4s/7eKR8T061Dpmd/qaNc1tq3C0eH75rVHj8hMMh1HIZe0askFUhT10Xj6TXlkmqQ8GZ9lo8ARo8AbZfKBBCubeVeXkr425ViBmW3VPNkUR/PVuP7PXlPHP77fjDYQ5My+OZyb1BsRzpd3lF4l7varDq7d9wRAObxCdUpAIkeOhvgUrzv5aD4FQmCSLlq9uH8bBOk9j1bwKlSDw2AU9kMtkrC6podYd4IFPNzJ1eBYf3TSIWrefT9eU0TPZjC8Y5oHPNvL+9UVR5NG4giSJ0GypqVWvUiDIZRg1Sp6+uBcvLNjFkl3V9E23cM2QLiS1wQ59LCKoxO7mopeXYtIoG+3O6laD69sKs1bJmPwExnZPRCaD5bvtXPSfpXx+ayt5fLrDJMG+ahcXvLSEBo+oWD4zL57HJ/biro/XM74giaFdo4/rUDhCjUv8TGpVgmQzr3H5+WFrBd9sLKcgzcI1gzOintu2Ckdzsu6XPQhnZPHmzgFc2vNMRhaWoi35iY3eOA7U7eH2EemoArVk2HRsPCKwXCYD43HssLsPObnijRUccvhE5c+k3ozuHt/+hl6FVlxPHNmcG5sDsmN/hsKRCLsPRSuMvIEwcpmMV6/sxydr9pNh03NJvxR2H3Ji1atw+URb6ZG2/UMOH7VuP2qFnNQYHf+c3Ae5LLot2axV8M51A1i+p4ZwOMLQrjYsmuPPN3WeAHd9vD7q3BoIhfnr+B6nrFjndMYfb5XUiU504pRBKcjplWrmk2mDCUVEW87pthtX4/Jz8wdrWd/o31+wrYryd1fz/g3Nc5lOV1h0Ksb2SGRIVxsqQTjpwPBOnAQ0ZkgphKQ+x62f1yoFsuP0UY1Vg7KsqJUn//7FGtR0semkjBaA64dmSmoltUKUXn+7uSLqdsNzonOhusYbqGjwkhqjY1/N4ftSCXI0ysbPs9cB8x4UiSMQF3pzb4esMzqMPNIoBRLN2g7PU+oI1Ln9/PmzTRIp4vQFufOj9Sy6f9TvRh5VO33sqHCwv9bN0K6xYtBwGxfuoXCEhqOssA2eoKQ4dfiC+BvJA51a0eaB1RMIs/Vg82DnsjoP6S1sCAzPiWNIto1ljdaYokyrqKwJeKl2ejhYXY/HHyQrMUysToFMe2Jyf7c/JBFHTXhryV5ev7o/zy/YSSAYBjVkx+mZM30Ivsa2NatexZrSWp7+dhs9UswsLK6iwROgZ0qj0lAWaTFAvCOy82pczYd/u9NPMBKhIynVqUA3xAAAIABJREFUBJMGrVKIajg7o1vHZCmdDPbZXdz18QbW7qulb5qFZy/rQ5dWNpXq3X4C4UiUDbhbopGf7x3F0t3VGNQKlIJMUvCqFXLJ8nf0sQGigmxIdiz+xjbZaqcvKj9p4bZDHKjz8PS326Tj16BWMPe2oWTFHbvVrb2odoih7Au3V1GQYua+s7uR1IZA7jiDmhidktojVOET+6RIhHxLQb/dk0x8teEgo/LiqXP7eX9qEQu2VbF2Xy39MmLITzKyZJe4IeENhDFpFWTHGah2+pjcL5XJ/VMl4iwrTh8Vhq4S5Nx/TjeMGiUOb4BwGG4dlc2dZ3UVzzEnkWXp8AZ49scdhMJIz/dgvZdNBxo4M+/kyKNat5+/frmF7ZXRrYAl1e7j2rqc3gB/m1csEUcAC7dVcc3gDGJ0SlbstTO0a6z0O7cvyK97a/jzZxupdvo5r2cij5zfA4NaweuL9vDyL6J9btHOan7aVsW71w8kRqeiwetvMXJBrxbYWu5g+W47y3fbeWxCPv0LCnn9u708fnYa45LqsH5xG38b/xGT39oghUbfdVZOq6pfu9PHjNkbOOQQ1UG+YJj75mxg0X2j2v0+OuUGZOe9iP6bW0S1kTYG9/hXkKttHOvVVSnkDM+JjdocizeqMWoUFGVZ2Wt3sb/GjScQ5sHPN7G/xsPZPRK4d2w3fthaSaJJQ1acnucX7CTDqsflD1Lr8nP3mNxmM4HNoCEcgcJ0C5FIhESzpk1ZRZX1XuQymWRxBrHgwOkLdpJHnehEJzoBp0Z23lHwBkIScdSEreUNzbKa/gg4VnZIJ34HtCFrJNao5p3rBvLQF5vYWFbP4Cwbj0zo0SHB+HFGNR9PG8y7y0rYVuFgcv80irKsURkoo/LimDIwjU9Wl6EQZNx6RlcyY6MHMLlcRpJZwz8v6c2Vb67AFwwjl8HD4/MP22ICbji4JvoBRMJQfwDMp97W8nvBHwxR6w6wr8bNfWO7sWy3nX/9sJ1wRFwwO7wBEn6HkHm708etH6xlxV6xLlgpyJgzfQi9Wwj9bQkapUDfNEtUIG6/jBhqXD5pEX4ieVNGjYIz8+J564gmS6Uga3bMNSHWoObflxfi8gWJRMCgEbDq1VTXO5j6wWbWl4mDZ7xRzZfTB5B0grxiS0K/UCSC1aDify7ogUIQyQaZTNbsu6x3moW3rhvA7ionqY2KuKbda6tezYyx3bj6rZXS9XPiDaTEnDwBelZ+PE98E51Dc9PwrA7PAbPolHwwtYj75mygxO5mbPcE7j+n20kN8yeLaoePG99bIw3s6/bXccM7q/l42qBmiltfMMTOSidPflNMrdvPNUO6cE7PRGJ0KjHMPEbLRX1TWLKzmuvfXSWp7f58br6khitMt/DOsujH0DQsbjpQz9PfbmNM98So38cb1didfok4ApFUfub77fzvpN4tZli6fUEavEHc/iAGtQKbvmV7VhMc3gCPfnVYMberysmmA/V8eOOg4665bAY1n948hMe+2sLeajfjC5K4YVhmq5EENoOaiwpTeeyrLVw1uAsXv7xMImNsehVzbh7C+BdE61OsQUWMXsXH0wYRDkcwaZVR9x1rUPPeDQNZt6+O8noPZ+bFE2tQY28k4b7ccBCNQs49Y3OZVJgGJ/uV2MKHPNJCXll7oZDLsLRgf2xNmeP0BvCHwkQicLDe0+z3VQ4fZq2SM3KjFct1ngA3vrdaygz9amM5yRYt1w/LjGoiBjG43OkL8s2Gg3y67gCPTuhBj2QTWxrJe6Ug48bhWTz21WFF3Xu/7uOc6wt5JX8jpv0LkS/6HiJhclc+zE/3vEC5I4DNoMKoaV31G4pE2FYRvUngC4Zx+1vIgzwO6gICr+7K4KarlqMOe2iIaPjHz9U8cVHgmMeqRafimUkFPPj5JpbstJOXZOSfl/TGpldT7fTxwoKdXDukC68u2sP+Gg/pVh3XDslk/ItLpPNp3zQLT19cwEOfb8KkVTJ1eCZVjpZLaOKMGuKMGpy+IIccPr7dXEpugpGceAPhcIQfiiupcfmZ2DcFrVKgxuVHqZDz3Z3DeXJeMT9tF+MFijJtp5UV/7fE/89n3YlOdOIPC1HyrqLmCEmvSSvuQnbivwPhcOS4bX5Hwu0LUu8JUFbrISVGi0mjPGU77WlWHS9OKcQXCEXJ0DsCCSYN94zJxRcMtzisWPVqHjovnztH5yIDTBpli7teMpmMglQzi+4fRUW9lzijWgobBcRmuy4jYMOswzeSK8CS1mHP5XREcbmDy177VVJlTBuRxW1nduWFBbvQd/B72R5UOnwScQRiKOiT84p57ap+bVJ+WvUqXr6ykKfmFbO6pJaBmVbuGZPLwm1V/POS3mTHG05oQ0CjFLjljK7UuMQWtSSLhr9fVCC1Gx3rsRwdwr5hX41EHIE4bL25tIQ/nZ2LUt1+YkanEjgzL56FjRkrAFcNyuC95aXM/LWU5y/rw7k9k1pUdGqUAklm7TEtNX3TLcy/czhz1pSRHW9gdH58h1iKYw0q5t0xnOcX7MThDXLP2FxiDSr+89MuKht8XF6UTmqM9qSLNlQKgcKMGD6+abCY5fM7HtdN8IfCzZQeuw858R2hjqp3+2nwBqly+IhEIghyGdsqHPz5s03oVAIX9EmRrqsQ5AzIjGHxn85kV5WDzFhDY+OaeC4cnB3LiJw4FjU2aw3OslKUZaOqwcc9szeQG2/grLx4eqWYWba7mneXlYgKGl9zdVhlvQ9/MMzRLju3L8h3Wyv405xN+ENhrHoVH0wtIj/p2Go6jz/UTDm6s8qJO3D8sgxBLiMrziB+9wRDmLWqNimWPYEQ7kCI+ZvLo1RLdpeYCzUoy0Z5vZd/Tu4t9kdEIsToVS0Gesca1IzpniD9HApH+GrDQT5bJ1rdXP4Qj39dzJDs2BbzqdoKo0bJXaNzWLTzkEQOJpk19Eo1n/B9NsGiU/HwuHwufnm5lMc3PCeW+BbOj6FQmNIaN09/u43yei93j8lhcv80Nh84TOBolQL5SSaevbQPiWYNNS6fZMncUeloVjazYFsV1wzpglGjjKqT16sEFDIZaTY9VxRl8PyCnfxlfHcc3iDl9R5G5MTx7I87olTPZq0KlSyEZeH9UX9DeXAl8Qon8WkJtAVqhcDwnFgWbjucuWjRKdGfwBpKkMl4f00V7685fG42aRRwnOVcolnLc5f2xRsMRdla9WoFE3onk2bVMb/xszOxbzKvLdoTRcSv219Hqd3Fvho3VQ4fS3dVM++O4cf8e5FIhJV7a7jh3VWoBFH5NKCLlRSLhgc/F0sfijJtyOXw0k+7qXb6mNgnhb9O6M6OypWkWbXcNTrn/6XqCDrJo050ohN/MMToVfzzkt5Me38N/sZGl39cXNDiblIn/lg45PAxb1M5mw7Uc0lhMt3itFhMrVsGAqEwy3bbmT5zDcFwBJkM/nFxARMam81OBcxaJXRgfk+d20+dO4Dd5SctRttqA1pbw0LVSoEEpdCykkalh9GPgOMg7PlZzHg6/9+gOb3zwk4GdqePP3+2KcrO89riPXx+8xA+XXOA5y7tQ8zvdA5xtdC+2OAJtKvlMtGs5amLCnB6g+w55OSCl5ZKw+ItZ2Rzy6jsE1I6xhrVPDGxJw+ely8qeQyq44aLHo39dc3DUkvrAgQiwglZtmIad6oXbqvi1z12hmTHIshlzPhkAwB//XILg7Nsxw2xbwlGjZK8JCUPj+9+Ao/s2FApBLLjDfz94l6EIhHc/hATXlxCZYP42rz/awmf3TKEPmkdUwN+OqmHFXIZ8UY1VY7Dx0Gs4TBBUe/x85+fd/Pqoj2AOGy+clU/yuu97D7k5MOV+zgjNz6KkNCrlejVSlJasHw5vAEm9E7irtE5AByo81DnDlDidjGhIIm8JBPXvL2Sinov5/ZM5I1rBvDOsr30y7CiUwlRuXaT+qW0OCA6vEEe+HSTREDUuPzc+8kG3rv+2PZ5mUx83k3vOYiKElU7MpVEBUnbPzUyIEarxOVrTlD5giH+dWlvnN4gv+w4hFopUOvyU5BqpiDVgkYpEAyFafAG0CoVzV4Hjz8YReA2YeXemmYk2iGHj++3VlBa7ebifikkW7Stkpo5CUa+u2sEs1buI8ms4YI+Kce0lYVCYWrcAeRypMDt1pCbaOTn+85g5d4aUmK0ZMXqW3zP7C4/E19aKlmCp767mnl3DOfRCd2ZtXIf8UYND43LR6cUmD5zDcUVDvqkWXjhsr6k23TkJ5oYkm1j5d4aqWSjINWMRavg4fH53DZrHdAY+j59CC8s3Mm3mypItWp54Jw8zBoFdW4/WqVAKBymd6qZL9eLpQRKQcbD4/OJUQvQewps+FB80DIZnP030MU1ez7Hglmr5KkLe3H/pxtZvLOarnEG/jW59wmpanQqgYsKU/jsiOyse8bkYmkl4LoJJq0S01HHtl6t4L6zu7F8l50RuXHsqXahVymkcO0jUe8JiOS7w4cvGGZ1aQ1uf5BEs7aZpdPu8vPkN1vpm2bhrxN68MPWSqocPs7KT2BCQRKrSmqIN6k59/nF0vlgY1k9enUvvrljKJFI6wUo/+3oJI860YlO/KGgFOQMyrKy6P5R2J0+bAZRVaE6jZqSOtF+2J0+rntnJZsPiAqFOWvK+Nv4bCbnyhAsqSLh0QJq3X7+9OnhBrRIRKwIH5Ebd8rIo45EndvPM99t54MVYrWuUa3gs1uGkJPQMdlDx4QxESa9A0GPGGapi5UqiP8bEQpH2H9EBhTQGGKq4Itbh2DTq9uldutIZNh0xBnUHHIeHiqvb6ysbg8MagVuX5Ab31sdtav92qI9XD24Cwa1kkAoTIMngE4ltDlT6WRbRM/snswT3+6SPqMAVw5MRdeGoNJjwWZQc0n/NM7Ki+eqt1ZK9g6gsUGr/ffp9AVRCfJTmkHX9Jov310TRSKEI/Dcjzv595S+p11j68nCplfx78v7csM7q3H4RIvXi1P6SiR5gycoEUcghok/9+NOpgxM44lvikmL0bX4ngRCog3VGwijVcqx6dX4Q2FeWLiLL9YdiLru0xf1osTu4pJ+aZz93CLpWPxqYzkJJg1PXdgTu8vP29cO4LXFe7A7/VzQJxmDWkGDt7nlxuUPNgsh317hiMpEORpWvZq/XdiLG99fIxHD94zp1qplyu70sa/GzYE6D4XpMdgMqna1QsboVQzrGkesUc2HK/dJz1spyJg8IA0i4iC99WADP+84RHacgT5pFpy+AC5fkI9X7WftvlrGdk9gdH4C1iNIFq1SYHB2LIuOKnLomx69CVHt8HHZa79Kochz1u5nzvQhlNd78QfDJJg0zYZ7vVpBToKRRyb0aPX51bn9fLOxnDeX7MWgUfDQefn0SjW3atNUKwSMja1ZwDE/7zurnFFZctcO6YIvGKYg1cyZef3RqgQEmYy9djePnN8DlSDngxWlvL54N9NGZvPNxnJG5cVz/znd+OuXW/D4Q9w3ths6tZKRuXEsmDGSZbuqGZxtY9aKfcxeXQaICtlpM9cwe9pgXliwE7NWxaNzt/De9QP5+vZh7Kh0UJRpw6pXgkoBY5+A/tdD5WbIHAn6+DbZ8I+EWadkxphu3HJGVw7UeXh07hbuHpPL4Cxbq1bM5vej4uHz8rmwbwprS2sZlRdPurXlz29bEWtQM7ZHAgOzrDh9AZbsqmZy/1TW7quVrmPSKsiKM1BiP6zMMmmU3PHRegS5jA9vHBR1jIUjEdy+EP+8pDfXvb1S2mh5f3kpH0wtQi6TsbGsvllByser9pMZq+/wEqA/Gv57V4qd6EQnOgTeQIh6j7iQ0KsVxOiUvztRo1Up0KoUJJp/+3ySTpwa1LkDEnHUhJeWHmS0OUycQgnWrBZvFw7TrJXE7Q8RCLUxAysUAvchsO8SCRRDXFS7yqlGrTsgEUcghhs/MncLL19Z2GodbYdAFwN0jNLhdIdBrWBcQRIfrdovXRZnVGPVK0+6wedkEWdU8/Xtw1i3v5ZwOEK8SUPXeMMJkVkRwHvUUBsMRwhHItidPmat2Mf8LRXkJZmYMSaX5DaE9Z4sZDI5H91YxP/+sAOXL8TUYV1ItOg66M5pptw4Ky++xcDZY6HW7Wf5bjuzV++nW4KR64ZmolcLKAR5h2cSNeFUBXOfjhAEOX3SLCyYMRKXP4hOJa4jmsKYa93+ZrfZZ3eTYNJg1au446zm9hB/MMSa0lpu/mAtde4ASWYN71w3kAybDn+wucomHIEJvZM5WO+JIjFBDD2eNjILtUJgxicbuLBvCmatkoXbqnD5QgzPba7iMKgVzezzI3Jj0bSyNhLkMgZl2Vh8/yh2VjrIsOmx6lXHtCrWuPzc/+lGFhSL6h6VIGfOzYPb1SirFOQMz42lwRPg81uG8uaSPcjlMqaPzCbBqMbpDfLushKpZa2s1kNxeQOf3zKEVxftwaZXMWVgOvO3VHCg3suUAWlSCYIgyLmkfyq/7qnmlx3VKAUZN43IIi0m+rO9r8Yd1ab17OQ+/OnTjawqEYf/dKuOT6YPPqG8uRV7anjoi83Sz5e/sYKFM0aSYTv2eFvj9PO/32/j40ay5tL+adw7thvWo4KTj1QAn9MzkZwEIxP/s1Rq3HrhMtGqdv07q3H6gqgVcp68sCcFKWbG/GuRpHK16VXMvX0YaoVcssAaNWLWWnacgSqHl++3Vkb9bW8gjNMb5MYRWZTVerjv7G4s3V3N1YO60DPlKPuePlb8lzaw1dfK4Q3g8bdst2/wBKMs3QAzPtnAV7cPO26Q+NGwGtQMz4lrVuZxMmhSUj92fk/c/iDhCLx+dT/eXVZKoknDbWd25bGvtkjvTa8UMzqVwN7GhsuVe+2MK0iW7s+iVXH/Od34dW9NlJ3THwrz8er9JJk1JLUwX8QZNfy8/RDJFiej8+NRK4UOybz8o6GTPOpEJzpxTARCIVbstTP9/bV4AiEMagVvXtOf/l2sCL/TLn0n/jvR0twkyGUQDsG2eTDkthZvp1HKoxqeAHokm9o+9NXugTfOAm9jtW33C2HcP0H/2xBIdmdzS09ZrUdqx+pEx0CnVnDv2d3QKgW+31pJ13g9j57fs002h1ONcDiCyx9kzpoyDtZ5mdw/lewTbHjSqxRc0DtZyiEBGJETi0qQ8dyPO3j/V5Go3HKwgdUlNcyZPuSka+iPh++3VjJ71X6uKEpHpxb4eHUZGqXAi1P6nnTGj1oh5x+TCnhjyV42ldUzINPKNYMzUCvkuBqz0PZUO8mw6rEcEY7tC4ZQyuWEIxG+XHeQRxuDaH/efohvNpXz7KV9+GT1fu44K4dks7bDVWkFqWaSzRoO1nsB8Vx31+icY6uOwiFwVUMkBAoN6Kwd+nhONVQKgXhTy+fkRJMGk1YR1WI1riCJ3AQD8+8c3mLmVK07wLSZa6TblNd7uW3WWj68aRC3nNGV+ZsrJPWZWauke5IRfzDcYsNbjxQTWpUCtSLCxD7JvLhwFyCqQD+ZPrjF4dCmVzHrxiJmzN7A9goHI3JjeeqiglaDieFw22FbSNtqp08ijkAcbB//eiuvXd2/XQNrE1Fh1Qe5/cyu/FhcxaNztzCpXypFmVa+2xJNXFQ5fLj8IUrtLnqnWrjh3dXS775Yd4BPpw+RbJGxBjXPX9YXtz+EXCbDoFE0szuFj1Bj5SUaqXT4JOIIRHJp5q+l3Dk6J6og4nhw+oJRmwEgKkx/2XGIqwc3f5+dvgBuX4gqh5cftlZJ6q9ZK/cxKi+uWYh6gknN6Px4fiyu4tL+acz4ZENUVbtaKXD3xxtw+sRj0BcM89jcrXx006AoEsbu8vPTtkquHNSlxeehVgh0jTdQVhsdxq1XK/jT26I18gVhJ7NvGownEGTxhkO4AyFG5MQRZ2g9pL0J5XUeHv1qC6tKahnQJYZHJ/SIavnzB8NRjxmgssFHMHTyIeUdCb1aIX1njOmeSFGWDZUgRynIefriAjYfqBfjlWQy7p2zUbpdZYOPkmonnkCYOKOaWIOa0fkJfLaurIW/EqFrvIEks4Zh2bEs2S0q64xqBTcMy+SOD9eRGafHoFbg9AU5u0fiKf8OPd3QSR51ohOdOCZqXAHu/Gi99KXi9AW546N1fH37sN99t74T/10wa5UM6BITtai8Z3gCts2PQb+rj3k7i07Fc5f24R/fbWf5bjt90iw8PC7/mLkTUfA2wPcPHyaOALZ+DkPvaLRynXpVTppVh1GtwOE7PDhd2DelTRkBIBIPNY079x0R7PtHQNNzFmTtyx2INaj507l53DwqG41COO6g91vh6GyNR7/aSrpNR/ckE75gGJ1K0ebFqUGj4KFx+RSkmlm4rYpB2TYm908jQkRSFzSh1O7G6Que8oVvz2QTj1c6+Ovcw0GzM8bmolGevD3M4Q1xySvLGd87mUv6p1Jc7uCSV5Yx744RbCirY/rMNRKJ8D8X9GBcLzHP4sv1B+mTZmF8QRJvLd0bdZ9ltR7cviDzNlWwoLiKb+8a3u7d9+Mhzqjh81uH8s3GcioavFw6II2kYykvAl44sAo+mwYNByBjKFz8BpiSo67m8YvtXw2eACatEotWibqJRA+HwVkB62eJ57v+14ExCZSnXnl2PFj1Kj6dPoS/fLmZfXY34wqSmT4yq9VzuDcQiiKbQLQZhcIRMm06Zk8bzMer9mPQiGTqk/OKKUg1M2NsN+47uxv/+mGHeN1YPQ+cmy8RHjcOz+bSAel4/MHGEO0gB+s8GNSKqPOFIMjJSzTx3vUDCUUip+R84mghC63GFSDUVlXtUahs8DHm2UXS52HZbjvf3TWC1Bgt2yoOB5rLZGJ2zbheybyzrCTqPkrtbvbXuqMytSw6Fa0JCTNsejJsOkrtbuKMaspq3c2us6PSSSAYQdEOEYdakJMdr+en7dGXZ7XQBllR7+XJeVtZsaeGPukWXru6H3d9vJ5Su/hYftp2qBl5ZNWr+cekAuo9ARRyOXVHKeQsOiUH6qIJH4cv2KJltrU2YLNWyaMTejD54HKqHD5kMrj9zK4s2VUtZWoFwxHUSjkXv7xc+ptGtYJv7xxOqrV1FWeN08e0mWvYWCauc77bUkl5vZe3rxsgbZ5olQLZcYYohVhTXpNcBiNy49pU3vBbwR8MYXf5WbGnhgSTmtwEIwkmDQkmDRv213HBS0ul66oEOf0yYjjn+cV4A2EuLkzh3rHdUCsEzumZxLM/7qSuUX2kFGRMH9mVLrE6FHI5z0/pQ6ndzZ5qJ9lxBv73++1UNHgZnhtLSbWLeJOa95aXcMdZOS2GzP+3opM86kQnOnFMBEJh6aTahNNxN6ITf3zYDGpevrIfS3dWsaXMzoRcPRmVPyJ3VUHqgFZvG2/S8D/n98DpD6JTCm3PDAn5oH5/88urd0BVMfS+VGwhO4Ww6VV8essQHpm7hbJaNxf2TeWaIRko25ARUO8JsHBbFS/9tAuFXMa9Z3ejKNPavnYlTx2E/KCNAeHkhx+700eVw0c4HCHBpOnw4F6nN8CCbVX856fdGDQKHjwvn/wkY5uryDVK4bTLwtpT7SLDpmfKwDSsejW+YIhSu5ubZ67FFwyTYdPx/g1FpB9nSGiCzaAWq7n7paJTCgiCnEMOH/FGNSX2w4ObTCYqd041chIMUSGqvVPNXDYgDaGduRwtIRyJUOcJMPPXUukyQS4jFInw5882RQ1yT35TTFGmlekz1wKiXSkn3tBiMKxaKRAIhXH6gpRUuzucPAKxXfH6YZnHv6K3Dj64BAKNg2rpUph3H0x8GTRiMLE/GGLpLju3zhKPGa1S4M1r+lOUaRWVCc5KeGUouBtb/Va8DNOXQly3Dn9e7YVCkJOTYOSVK/vhD4Uxa44gvY4BrVJolhNWkGpGIZeh1yjZV+NGkMuocfm54o0VuPwhrizKQKdScM2QDC4qTMHfAjFr1ikx65SU2l1c8NJSKeR7+sgspo/MbjZAt2mTohUEQ2GqHD5mr95POBxh8oA0EkxqlIJAmlWLTa+KsmVfNSij3TaZUDhCvTvAvE3lzYiNT9eW8eiE7lz7ziqJ4Jg2IguZ7PDreTTaa6+MM6r5ZNpgvtxwkPI6D+MLRHXXkSqeKQPT2t1cpVTImTosi283VUiEytCuNvKOCuuucfm4bdZaVpeKG1Pfb6nkQK2HO87KYcZsMWS/f5eYqKa0JoTCsLa0jjijmrHdE5h/hEqrqsFH/4wY6X5BzK+z6JQo5DLJHqlXCZzXK6nF51Dr8tPgDSCXRfjy1qG4/CH0KoEat58JLy6RrleYHsOKvTVRZJXDF+T1JXv4y7ju1DcWLLRkSfMGwxJx1ISNZfX4jiC0Yo1q3r1+AI98uYUNZXUMzLRy4/Asps9cQ2WDj39P6cv43tFk9e+Jkmo3E/69RMod65tu4fWr+xNrUJMZp+f9Gwby8s+70avFxtA5a/Yjl8mYNiKLnilmaVPhL+PymXfHcD5Zsx+nN8QVRekkmjWSAs5mUCOTwYer9nHfnI1EIhBvVHP5wHR+LK5k3b469tW4cftDmLWd5FEnOtGJTqBRCGTH6aPqQXummFB1wI5xJzpxNGINai7om8YFeUao2QPGIdBvEuiP751vsgO0Cxor9LkCvnvw8GUqvZiv9NlNkDMaDG2ruz1RKAQ5uQlGXr6ikEAojEWrahNxBLCtooG7P14v/Tz13dXMv2s4eYltIIFCQajZBd8+IBJovadAv+tOyq5X7fRxw7ur2LBfXKhmxer5aNqgDhm8a1w+dlW5WLevll6pZs7tlchzP+7k0leX89O9Z6Cz/nGXM4lmDfeMyeV/v99OZYOXD6YO4tznDysESu1u/vLFJl6YUig2/bUBglwWNUTEGlQ8MbEn17y9SrJr3DAs86RtY22BVa/mr+O7M2NsN0LhCHqVcNJDdxN0KoERubEs2nE4tHdinxSRODhKKeALhiU1x+T+aVw2II3KBi8PnJtzrTWkAAAgAElEQVTHtW+vlF7voV1tHKzzSINJa4HGvwUirmpkgWiFAyWLIeCWyKNad4B7PlkvPWZPIMRdH6/n6zsaM0t2fn+YOAIIBWDp8zD+WVCcHorFtigbQqEwdpefcCTCW9f257YP11Fqd9Mj2cSLU/pKx9WInDje/7WUdfvqACjKtDI0JxYAg1rZavOgwxvg8a+3RrXDvfLLHi4bkN7h6osqh4+xzy6SrE+vL97LD3ePINUqhuh/cetQnv9xJyV2F5cNSOOs/IR2BRiLf8PL7bPWcUn/tGa/k8tk7Dzk4MOpg4jIRDXLgVoPoXCELjYdd4/J4Zq3V0lET26CgZSY9qvV4k0abhyeRaSxafD9G4p4+ttiPP4wN43IpE/aiTV9Jpo1fHrzECrqPY35M8pmClxfIBxF8IBo202L0aIUZFzSLw21QqDBE4wij6qdPq5441d2VDoxa5W8cU1/Mmx6Fu08RGF6DIOybPTLiOHPn23k1z01FKSaeWZSb2INSubfNYI3l+xBqxS4bmhmi+pOu9PHfXM2So11XeMNzJpaRLxJQyAcxqpXUe0Uz2EapbxFK3uDJ0B5vZfpM9ewq8rJqG7xPHZBj6j8KEEuw6JTRm0Em7XKZsRgaoyOZy/tQ3m9h7kbyrn+nVVSHtC7y0sYlhN7WqiPHN4AT3+7LSqwft2+OvbZ3cQa1Jg0SobnxInZYJEIlQ4f/TKsTOidjEWnYtwLiwk0boBPfu1X5t42lDvPyj3m37Pq1fzp7DyuHdKFinovBrWCn7dXcVFhKpFIBIVcTvD/WczAH3e11YlOdOKUI9ao5q1rBzBj9gY2lNXRP8PKM5cUnBY5IZ34/VDl8LLlQANymYzuyaaOt71oLZBS2LH32RIEAQoug3AQ1n8AxmQYfg/88neRRJL9diRpexdlwXCYj1Y2V019teEgeYmmFm5xFNzV8MYY8DWGlC98XPx/6J0nrEBatqtaIo5AVNR8uuYA00dmtbve/UjUuwM8NW8bc9Yczid47PwenNMzkfmbK1i04xBXDMo47v14AyFqXX62VThIs2qJNahPi8WwSpAzfeYafMEwBrWCslp3M4XA5gMN+AIhaIU8CoXCuAMhdCpFs0w6mUxGYUYMi+8fxZaD9XSx6Ykzqo9NRvnd4CiHLZ+DORWyRx2XSA2FwlQ5fcxdf5BwBC7ok0y8UY1CkB/X2nKisOhU/GtyHz5ZXcave+ycmRfP+IIkFHIZ4wqSSI8R7X97ql2s2ltDVYOPAV1iOKNbHJe8upxQOMKVgzKYe9sw1pTWkmHTEQxFuOcTkZQd1jWWeJN4fgs2EherSmqwaJXkJZl+E6toWGtFEJQi4dN0WXJfgjIlTUev2KIXbXOqcvgkovDYOP2yC+vcfryBMHKZaGlrCtYOhEKs31fPLbPWcsjh47yeicy8oQhFY939kYRkrFHNG1f3x+ENIpOJds62rlu8gVDUhlkTKhq8dGnBEnUy+HRtmUQcgUj6zVxRygPn5iOTyUiz6nh8Yk98wRBmrfKEzqOfriljdWktd5yVQ2G6hbWNhFqKRcu1QzL4fmsl3mCYBcWVLN5ZTbdEI/ef3Q2NSkFhegzz7xzO5+sOkBVrYFRe/Ekd8zKZDL1awbCusbx73UAiEbER7kQzNGtdfp79YQffbiknGIpgM6j46MZBpBwR2i3IZc3CzY1qBfFGDTOnFvHL9kPMmL2eRX8axSGHF5cvhFYp0OANUOXwcfXgDKx6Fc/+sIMh2TbeumYAFr1KylV8YUpffIEwSoVcUoV1jVfy+MSeyOCYCsut5Q0ScQSwq8rJzBWl3HFWDvFKH19O7cUby8s56AxxbV8LqcmJPPvjDkkhJpPB9cOyuOn91RSXi7bD+VsqkMngH5MKpM2DGJ2SZyb15pYP1hAIRVAKMp6ZVIBF1/zcb9Iq2VHl4KWfdkVdHmfU/Ka2LI8/SK07wKYD9WRYdSSYNJJFPRgS1aZH4+jgfbNWyYb9dUx+dblENF01KJ0ZY7vx9LfbpOvNWrGPXinmVj9bsUa1+M+gos4dZHC2DYc3yBNfb6W0xs2Y/ATuOCvn/02JTyd51IlOdKJVZNj0vH51fwKhMCqFvEOGrWqnaGsxahRtrovuxOmBygYv5/97iVQznRqj5bNbhpwSW8dvAr0N+l4Ntq5waBt8dSfUlsCVn7VJ8fR7QSGXk5dobHZ5bkLzy1pEzZ7DxFETNnwIhVeDIb7Vm1Y7fFQ5fSjkMmx6lTS07axyUpRp5fzeySgEOd9uLhfrq8MRFMKJD6lNYdJH4sWFO/nbRQXM31xBuq1trMTGsjqueGOFtOt4/dAu3Dk6t81qnlOFkmqXtLh1+oLE6FSoFfKondUROXGtKuuqnT4+Wb2fpbvsDM+NZVJhajN1j06lQKdqW1gvh4rhzTFiUDNAbC5c+02rx0alw8c5zy2Sspte+mkX39014oSUCu1BrEHNTcMzuWpwOjqlQgq3fujcfJ6aV8wna8rolWLmyQt7UWJ3cumANCnzBmDWilJq3T4ePDefvdUusuP0PHZ+D1IsOrLj9BLpcKDOw7gXlkjDfn6SkfdvKDrlBFJ1QI323P9g+v5u8DvBlo191D+QRQzENl5HVAlHZ5b0SbMcrnXPGSuGbDepjwQlDL2LdoXM/AaoavBy75wNLNpRTZxBzd8v7sWgbBs6lYJaV4Cp762mvnFwnLe5gtIaN+9dPzDqWA+EQlTW+5i18v/YO+/wqMq8/X+m90nvvdMTeu8IggURRIqCWNaCq+iq66s/d1dfdy2rr666NrA3FBVRFBUbvUPoPQkJ6X0yvZ3fHycZMiSEJAREnc91cXHl5EzJmTPPOc/9fL/3XYgUmDU4EWMHqseCNEou7RXNK78c921TyaVdLhwBfq1bTZyu92mUsjO2dLk9Xl91SOgZRJimceSej3P557TeaJUyJBLRvDrCoOay3jE8ueoQyxrH2MPlDew5Wcey24YSYVCTFa3gwcntWJBoxOMVqGxwsPZoJXKphBHp4UQYVC0m511RfVhSZ+Pj7acWUaw1Nv7z41Eevqy7L600RKfk6el9uO39Hbi9AjKphP+9qhf/+eEIy3NLAHjsyp402N1ct2QLpfV2VHIpj03txbJbh/La2jyOV9ZweZ9YQrRiS2XzQI4gjRJaGeLOZv59pJnPVBMHSky43F5kDcXEvTOFh7pdhTsyHM3ab7H3mstnt13HmxsKsLk8YhulRu4Tjpr4+XAFNqfHJx4p5TKGp4ex7oFxVDbYiTCoMGrOnJqcHKZjUHIIWxv9J/UqOfdNzLwgVapN7DlZz9wlW3ytf3MGJfLApVkEa5XIZRJmDohnZ+GpajKjRk56pH/IRI3FwcNf7PW7jr63uZDv7xnFwORQ3F4vaw5XEqZX+p2bdVYnHq9AiFbZIighyqghROvFYJb7Xes+3FqIVAL3Tcq6KBakzjeBWVuAAAHOSkdMadvC4fawr7iehz7fR0mdjStzYrn3kswua2EIcP5Ztr3IJxyBaC777b4y5g1N/vXe1LmiDYH4QaDQgVIPGZeA7vy2q7WFy+2l1iYaQrf13bi6XxyfbD/pmzDmJAQxPD38jPv7oWtlv6AEkLX9Xa8w2Zm9eLNvZb5/UgivXd+fcL2KGf3FlLDX1+bh9HiZNzSJYWlhvsqBztJa9YTF4UGtkDI4JYTuMWef2FSZHTy8fJ9POAJ4c0MBN49M/dXFo9NXK99Yn88rc/vxty/3U1xnY3RmBA9O6daqNw+I3lcPfb7XF/e8/lgVuYV1PDm9t28C1SHs9fDT46eEIxB9wKqOtCkefbqjyHczDaIQ9tG2Qu6beP59dWQyKfpm51md1clflu32pTD+dKhCTHW6aRBJYTr++fVBAORSCS/P7cexCjMLP9xFYqiWBcOTGZsZQXCzShW7y8MLPx71qxI5WNrA/uJ6Rme1LbaeK4JSx5N5Kdw8aw1qqZuTZvhiu4O/XnpqYqOQSXnu2myeWHWI3UV1DEwO5YFLs061puijRI8jP8Psi8fDBMDqcPPv7w/7WhArzQ7+9N4O1v91LFqlHKvL4xOOJBK4cXgKk3tFY7KLJsVNFbDl9aIxdFPQx5sbC1h9z+izipg1Fif7iuvZcLSKuUMTsTjcrMgtIS5Ywz+n9SLkPIwT0/vF89qa41ic4ntVK6Rc344qShDP8S92lfDqmuMo5BLun5jF6KzIFuPZzAEJvL42j2qLk9ve30GYTskXC4f5Qk+8gsCXu0v8HlNQbcXi8BDRzrWI5pSb7Ez+zzrfZxVpUPHVn0f4tVKdjsXhotbq4mCpidQIPWE6Zbsm4c3F0iaOVZgx292+sU8hkzIsPYz1fx1Lab2daKMarUrGkNRQZg5MIDZYg0YhY+GHOyltTD90uL08vHwvn90+zLdwseFYNU9e3Zvg045vRYOdbfk1ON1ehqWHE65XtauSakxWJI9/c9BPQJzeLx6NUo6zrhAcJhS736Xp1dQHP6FQPZZbRqaSFKZDo5RRVm/381cCyIg0tFisaVo4aE9lTHij/+SJGivVZgd94oMJ66I5QHuoMjv424r9fn/Th1sLuX1MGnqVHJvTQ7BWydMz+rAit5hwvYp5Q5P9xmYQTcbLGj/P5jTYXdzw5jbsbg/XDkjw3bs6XB4OlTfwxDcHMdnc3DgimQndo1qch0q5lLJ6u9+1DsRU0dvHtPRF+z0SEI8CBAhwRuqsTsrq7RwsM5GTEEK4XtkxM97TqLU4mbN4i28l4IMthQRpFCyakInyAhi3Bjg3BEHw3Vw1p7UL9G8OfQTox0DamF/1bdRYnLy7qYCPthYSqlPyjyt60ichCI2i5eU6wqDm41uHUGGyI5NKCdcr2y/EasNFv6fcD8SfVUaY/KTYMngGvF6BT7YX+bV07DhRy7aCGib3isHe6LPSxN9W7GfpLUNIP8e5tVYpIzs+iN3NTD+vG5JEUqiWl+f2b9ff7PUKlDe0PE9tTk8re19YQnVKbhqRwhvrxdSvrQU1/L/Lu7P8juF4BQG1XEpQGzekZruL1Qf947a/3V/G/7usB0GdKfoRvOB2tNze2rZmuFoJUnB3MhnqXHG4vD7hqIljFWZcHtHIfdbARF5Zc5wrsmPZfbLe16aRW1THprxqPrt9qJ945PZ4qTb7t0UAfmbG5wujWs6oHvFMfWcPDQ436ZF63r5hoJ8waHa6ueODncwflswtI1M5XGbi5ne2s/yOYWIKmFQqprONuu+8v9/OYna62XjM/zNzewWKamxEB2nQKmQ+75ZF4zMAmL14My6PQFqEnvduGkRssIYPtxb6xY5bnR4+2V7EPZec2dfEbHfx4o9HeasxXezdzSf494ze3D4mrUVLXFcSaVTx/T2j+WhbIR6vwJxBiUQZ2/dae07W84+vTiUY3rU0l2/uGkGQJshvvyijip/vG81nO4upMDm4aUSKX6WwBAmRRhVFNad8taTtMNOvNjs4VmHmWKWZEY2iiUYh473NJ3zCEYjtk9/tK2PesORWn8fj8bLhWDW3vr/DJ6Tce0kmN45IOaNg3kROQohokN9MaBiTFdnC1PuUeHJqQAzS4Pu5wmTn0GkVPG6vgNnh9hNn3tt8gkt6RPnOhwqTnan/3eC7LwrWKvjmrpHtqu6MMqpYfP0Anlh1EIvDw40jUhiSKnoOymKzxYUcz6nxxZw5jf01MLCHyleJZlDLeXxaLx75QlwYCdWJ3nYHSxvIjBI6nYocplf9aou6Xq/gZ4TfhNnh5s31+Ww4Xs3tY9J4Y30eI9LDqbe5ePb7w7wwq6/f/ka1gqty4liy/lSaZoRBhd3l9aXbvr+lkBEZ4UTWqalssJMVbUSnlLE5r4b7lu3h8zuGkhKuRxAEVHIpukavtDB9y+txcrjuggRQXAwExKMAAQK0itnuYsm6fF5q1vv83MxsLs+OQSHrXFpRXqXFr4QUYNW+MhYMT+70Ra41bE7POXkEBGgdiUTC9UOS+GR7ERO6R5GTEMzJWhvXDIj/td/a7wKPV+DrPSU8/8NRQEw2nLtkC2vuH0NcSOuX63C9qnNtM9pQmPg4jFgElirRJFzbdtWS2ytwuJVS+6PlZib3gpV7Slv8bum2IgYkh5xT9VGYXsWS+QNYurWInYV1XN4nhrHdIgntwGqoQa1get843tp4KpUrLliDUf3rJ68Fa5XcNT6dG4cnY3F6CNYqiNC3bPNoC6XMv83tnG5iNSF4RtyH7MSpuGMM0Xgie9LW0bp2QAKL1+X5PDlUcilzBreviqJT2GpFQUupB5V/y4JUKiHSoPIzPdYoZCjlUtQKGbeMEk1sE0O1fhNwgMoGB7UWF4mhp7bp1QpuGpnCL0cq/Z5vaFrnDebbi1YpZ1y3KH74y2hcHi9quaxFiqFcKqHK7PBVVIHYytHRZKxfE61CRk5iECX1Np+IIJFAbGPFUIhOyRvzB7Jo6S6Gp4cz49VNvscerzTzxKqDPHF1H1r7k1vbVm12UFJno97mJi1Cx/6SU+K0zeXhnk92s+6BcV02iba7PJhsLlQKma86SCGTEhei6XB1nsvjbdHKC+L9VI9Yf/GozuZif0kD3aKNXDsgiMjTKoBCdUqemNabG97a5hNJ7hibjr6NVr8ai5O/fraHHw6Knj1SCbx74yCGpYVTb20pqJrsLT1qfM9ldfHwF/v8KnBe+PEoMwcknFU8Usjg1ev689S3h6ixOJnWN45+icHIOtgmrVHKGJkZzjd7y3zb9Co5SrnUrwImSKPwcwlbfbDcb0Gtzuri3U0neGBSVouWp9PRqxWM7x5JTkIwAqLw1OQrJNOF453/NdJV94O5DE/O9Uhz5rBAEex3PupUcq7oE8uYzEgaHC6qzU6eWHWQzXk1JIVp+ez2oYTrfzuWAhaHG0EQmN4vjsXrTok+ccEaVHIpT3x7CEEQP4eHpnQnt6iOzCgDt45KazEmqhUybh+Thk4lZ+WeUlIjtCwan8nDX+zz2++HgxVIgGU7ThKqU7L8jmHsLNzA7aPTCNEq+e9Px6g0O7imfzwZUQaijGoMajm3j0nztbYaNXIeu7In4b9V+4YOEhCPAgQI0CoNDjevrDnut+2xlQcYnhFOpKFzE67WVmMyo/RdFp0tCALFdTaeXy2mk1wzIJ6JPaK7rO0ugJjI8fN9Y/hsRzHf7iujR6zxoos+/61isrtYvsu/fcDtFdhVVOdnANplaEPFf+FnXpFvjlIu5dqBCXx1mkg0uVc0ABmneQ4AZEUb2izhrzI72FNUR2GtlXHdogjXK9G24oMWYVBz+9g0HC5vo2dHBycHXit39lcTrIhj1WETmREaHhgVQYTMwumGFW6PlzqrC7lMcsFK0IM0ys61mCEKRzePSOG/zTxa/jQqFWUnfabMDjebzQn0nb2KkH1v49DHUt9zHiarjsw2OgSbqije2ZiPV4AFw1KIbmcVRXNMdhc2pweJBMK0Sl+6lNcriBMyQRB9yVYugrK9kDoOJj0Ohmjfc4RqFTw7M5v3N50gM9pAfpWFsd0iMWrEcytUp2L+0CQqzQ7CdEpO1vqnmbU2ac2OD+adGwexeG0ewVoF916SSXgrK9DnA6Vc2mbbj1Gt4MFLu/sJYf+4oudvqoXC7vZy74Qs/jQqjf3F9Ty7+ggPTMry+RUpZFJyEoJZfscwDrYiYu89WU+91cnsQYm8taEAa2NVoU4pa5E0VmV2sPCDHWzJF31TQrQK3pg/kJvf3e4zVhY1g7MZjrePKrODV34+xrf7y0lt9NRKDtOdVWA4E3KphD7xQS3azXrG+n9By012pr60gTKTKHBEG9WsuHO437kklZ4y0z9U1kBSmJZQXdtV5vU2p084AvFYPf71QT68ZTALhqfw8faTvmoglVzK1Jy4Mz6XIAh+ZtYgXvdc7ahaXHu0iuz4YP5xRQ9cHoH8KgvBGgX6M3hENWGyuag0O9hdVEfPWCPRRjV/v6InVqeHNUcqSQ7T8ew12Xy779S1TimT8peJmX4tYc0TzJqosTjxIiBthxm9RCJpIXoAoFAjSRiIY9YyJIIHNMFoVRpauwvQqeQoZFL+8+NRPtpaCNDo29aLo+VmSuvsxARrLoi5/7kgCAI7TtTyp/e289YNAwnVKflmbxmpETpuGJbMlvxqbh+dxsu/HOfL3SV8f6CMN+YPYPG6fJLCdMhlLdv8w/Qq5g1NYmByCF4BCqot5BbV+e3TJz6IL3YVA+Jn99aGAhZNyGBctyimv7LRtwCxIreExfMGMDZLSahOxa2jUpk9KJFai5Moo4qIi/z4diUB8ShAgACt4vYILbxGTHZ3qwaP7SVEq+SOMWm8suY4giDeyDx8WY9zaoVrTqXZwbT/bvSVvG4/UUuD3c0Nw5PPal4YoH3IpPD62jze3SRWcOwqqmNzXg0f3zrkor85+TXxeAWqzQ4sDjcapRyjWt7CAFktl5EeqfMzggRICu16o9bO0isuiKen9+LVNfko5VIeGBdHjEq88R+WHk5OQhC5jYlrqeE6ZvSPO6PQU2V2cMu7231x2o+vPMiy24bSNzGk1f3lUilyVSe/xy4LYe9N4I70SVw3dCxqUx66pW/C/JV+/k81FifLthexdFsRkQYVf7uiBxmR+jOai14MBOuUXNU3jkEpoewpric7PpiYIHWnRXOX28t/N1ZQbXEyNuN2aqq9rH7tMC/O1pLZikl7E0q5jMRQLQ9P6QHQqYlxVYODR77cx3f7ygjXq3h2ZjZZ0Qa+21fG7pP1TO8Xx8AIN/J3p0JdYxXZvmWi+fvVr/vaLmUyKd2jjQxODeOnQxUMSglhZHq4X/unxelBAJ6dmc1Dn+9ja4FoJj2ld0yrBu9GjYLRmRH0TQxGLpW0KnL+WmiUMq7uF8eYrAiOVpjpFm0gRKu4qNrBBUE441hQYbIz782tHGoUhSb2iOLrP48gSKvw+8xkUgnhBjXpXqGF18uwtHA+2lrI/GHJrL5nNJ9sL0IigWsGJBB52gT9eIXZJxwB1FpdvL/lBFdmx/J2Y+vazAHxXWISbHN6eOGHo7y7WTxfi+tsXPPqJlYtGtnpoAmJRMLUnDiW7ypmf4kYfDAiPZwByaF++63ILfYJRyAmxq3ILeZPo9L89mtq64ppj5k+tKggB2iwu/F4BeKCNaz88whe+eUYSpmUO8amtzj+zdEoZVzRJ4Yvck8JYd2iDWc0CW9OaoSeGa9u4poB8fSJD8bscLP+eBVZbfjgOd1evt5Twv8sP1WB8peJmdw0PIUXZvXF7vLgEQSqGxwMSg2jT3wwZSY7/ZNC+G5fGYkhWt96w5XZsfznh6M4Pc0S0LrgftPqcLOzsJaHv9hPZYOD6f3iWDQhE7VC1lhV72+O7hUEpBL475x+RBtVRAWpmfX6Zp8o3iPGyLs3DmpdqLpIqDY7+fuX+7G7vOwrrsfu8jBrYAJyqYT//HCENUer+Pz2Yby65jhegcYKVwndog2oFVLqbS4ExGpsl8eLTCJBKpXwyfYi3lifzwuz+yKVSrimfzyf7RSr9q7MiSM+ROtLIASx8nRyz2gOlJr8KlcB3lifR5/4IKKM6sYEUSWJoedhYe8i5+K58gUIEOCiQquUkZMQ7KfST82ORdeOC/qZCNIquG10GtcNSRLTIDTyLlXri2ttLXql3998gqk5cV0fJ/8Hxexws2y7f7n88UozZoc7IB61QV6lmdmLN1NldqKQSXhsai+uzI71m5xolDLunpDJ+qNVlDSWwl+VE3ve06o6QrBgYnrVq4wdNwyp10nYjidhfS3M/5JwfQRvzB9IpVmMCI8yqts8J0rrbD7hCMTV5idXHeK16/t3fcWEVAHhaSj2LSVs39LGbXJQn5pkeLwCX+0u4YnGGN/8KgtXv7yRNfeP8fPKuNhQyKQkhmoJ0SpIj9SjlEsxqhWdbhUM1iqYPTiRBz7dwztbrIDYotU77sx+WE1UmOzsKa5HECA7vmWLTFs4XB5eWXOcVY2tIxUNDuptLm55Z7vP7+rTHSc5sCgTed0J/wcf+x7cpybJZruLp749lSC1/lgVm/NqeGlOX0J1KspNdv762R5flcHTM/pQb3Uik0qptTrxthFxb+yixY6uxqhRYNQozksq2LlQZ3Wyv9jEF7uL6Z8YwoQeUX7jgsfr5aNtRT7hCETz2XlDkxmR0XorbZBGwRvzB/Dg53spN9mZ2DOaaf3imP/mVtIiDUzrG9emx1Fr3n2l9XbmD0vGZHcxvlsUQ9NCu2Rhq8Hu4qs9/hVC1RYntRbXOaWURhhUvHvjIOptLmRSCQa1okUrb2t+hOWmc/coDNOJk+bCGqtv2w3DkwnRKpHLpHSPMfL0jGwkgOoslckGtYL/d3kP4kO0/HSoguyEIO4en9mu+4nUcB0Tukfy1oYCALKiDLx306A2Y+XrrE7+9c0hv20v/niMa/onEB2kxu0VeGLlfq4dkMgz3x1mwfBkUsJ1fLKtiOI6G8pmf0+kUcU3d4/gxZ+O4XB7WTg2nYQuEBNqbS7mv7XNt4D73uZCIgxqtEoZK3JLmN4vjitz4nyfd1OL1p/e3UFimJaUMJ1fNeWBUhMbjle1WQH2a+MVBKot4v17bLCW4jobCaFafj5cwZhuUfxpdBpmhxuNQobF6eGKPjGoFVK0SjmTnl+LyyNw38RMRmVG8M7GAiIMopG2IAhUmZ18t7+cMZnhDEoJZf6wZAxqOTKphCn/Wef3PuYPSyLKoMbVyjVAKZOiPMcAkN8DAfEoQIAArRKmV7F4Xn8Wr8tnx4laxneL5NqBCejP8Waq6Qb3fNDajV6oTnUqcaaduDweai0uXB4BlUIaEEVOI0zv3+YhkRC4oLZBjcXJA5/uoarRcNflEXjki32MzYposbIdF6zhizuHU2NxolXIMKgVF1fbpduObMvLRPCy/3aXOCHpiNGmtRWzaovTjaeV8sYai5MT1Rb2l5gYkhpGlFLLSmUAACAASURBVFHVsYmdLgym/hfevhwslWJU+eRnRKPwRuqszhY+Ig63l/0lpotaPAJxgna2SVp7kUgkjOsWyT+n9eLDLYVE6FU8OLkbYfq2j3e5yc5Vzcxjo4wqvryz7ZSl5jTY3aw7WsW07CguS1dRYRVIDNH6GaUD1LlkaOWqUwbe4ZnUjHwUt9eAwuokRKvE4vTweWMrQhMbj1djc3ppkLn4x1f7+eWw6F+UX2Xhhje38sHNg7npne1kJwQz5iwJama7C6vTg1wm7ZD31h8Np9vLsh0nfV5My7afZEhuMS/P7e87bk63WGlwOgdLTWcUj7RKOYNTw/jPrBwEATbn13DzO9uxOj00tOGv08SglFBUcn+fsOsGJ5EdH8wzM7I73U7WGjKphIRQLbXWU3+jRCKaHXeWWouTBrsbp8dLsEZxxoqSOYMTeXtjAU3zYKkEZg9K7PTrNhFhUPPJrUN5Y30+h8tMzOgfz8iMCD/BuiPt7OF6FXeNz2DB8GS0Snm7qo5AvN7848qe3D8pC5dXQK+Sn/V+zSuI15nmOD1e33WnpM7G8l0lzBqYyN+v6MG/vztCWb2Ny/rE8sTV6X5pdiq5jPRIA09N74MgCGi6qBrxQEl9i8r/7/aXMaN/PHuL69lbXI/d7eXmESnIZVLcXtED60Cpib6JwZTU21o8Z0GVpcW2iwmjRsGsgYm8vjaPepuTUJ2SeW9u9f2+X2IwL87px5PT+xCmV+LyeDGoFfzf6iOA2KrXPcbI9W9sYdGETHrHBVFWb2da33j+8+NR3tlYwDX94zHZ3Px4sJz1R6t4dGpPXp7bn7c25mNzepgzKBGVXIZBIyddoSctQu9L9JNJJdx7SdbFdT/2KxEQjwIECHBGIgxq7puYhdXpRq+Sn3Pk9vkmVKdkYo8oX2S1Uibl71f06NBgb3d52JJXzd0f51JndZEZpeeN+QO7ZDXp90CYTsVjU3tx8zvbfDekNwxLPqux5R8Zt9fLkfKWSS4NdjfRQS33jzSoz2lF+rwilYMuQhRgmtCEiGJMB0kK07YwNb5peAqhp1Ud1ducPP3tIZZuK/Jte2FWX6b0ju7YmBSWIcaVOxpAqQVVEKhOVWmoFDLiQzXsPW0i2554498bxXU2fjpYwYz+8ZhsLv75zUGem5lDeBt+d1/tLvGr6Cg3Ofh8ZzG3j0k742Oao1XJePXqZKKOL0O35SMwxuHK/BfjM0P58UiNb7/P9jewcPIzSL9ehBDZi/xL3+WelSfZs/QXBiaH8n8zs1HKpGgVMl+qDog+MTKp2Ea0vjEOvgmL04NEIuGVuf1Ii9S3KQhVmOz878oD/HSogml947htTBrrjlahkksZkR5+xmorp9tLXaOZsE4l75KWqIudepuTl5uFbgBszqvB4nD7jrFGKeeqnFhWH/BPDByTFdHmc6sVMjRKOVe+tN7XTq9RyJjQPeqs7ytMp2T5HcN5YtVBaq1OFgxLYXi6aH7elcIRiALHv6b1ZuZrm3yC+cKx6Z2+ZlabHTy0fC/f7RePV1qEng9vGdyqSBsTpOGLhcN9IQx3j88gpouE8OggNQ9MysLh9pzzoiKIvl6dMSdvah9qL1qljCm9Y/wCHoakhqJtFLtK621i2pxCxqzXN/kCABavyyNEq+BPo1JbXHc66/vodHupszlBEMXEJvEpKaxl9WBGpAGPx8s9EzIw2d2sPlDO1JxYYoI0ON1e9pysp0eMkTmDEqm2OFnRrA1QIoHL+sS2eM5qswOn2yv6BelUXX7udwS1QsZto9OINqqJMqr51zcH/X6/s7CO8no7TzeaoxvUCp6e0cf3+0k9o1m6rZDXrh/Aa2vyePSrA8ilEuYNTeK7RaN5c30ehTVW7v44F61Sxoj0ML7eW8ZXu0u4MicWpUzKq2uPExesIT1ST4hWyQc3D2ZrfjU1ViejMyPavRDye+f3f+UKECDAOaGUS1HKfxtKe6hOyRPTe3PH2HSKaqz0Twrp8Kpwvc3Fre/v8N0wHCk388Cne3jlun6/KfPR84VUKmFwSihr7h/L7pN1pEXoiQ5Sn7dqst8DGoWMMVmRfL331M2qUSP3W8H8zaANF71lls4Blw3kapj2Gmg7njplsrl5/fr+fLqzmHKTncsavWbqbS6/75rF4fETjgD+9+sDDE0L7VhKo1QGhijxXyvoVXL+emk3Nh+vprbRCHVKr2hi/mDikcnu4pnvDrPuaBU/Hjplinu80tymZ0a5qWW8ckdaZLQySD75BdK1j4kbqo6ieGsiT96wgUFHa3wCQWxEGPScBunjqfJomL8k1xczvjW/hjs+2Mk7CwbywKVZPLLilIH0TSPF6G+XR6BbjIFtBac8b+RSCQqZhGe/P8aiSzIpqLKgUsiIDdb4XUMa7C7+/uV+Vu0rw6CSM6N/PJOfX+cTqaKNar68c3gLAaneKk7mnvn+MHaXl1mDElg0IYNQ3cVd1Vrd2IIapFF0urKtPYlvw9LDeWBSFm9uyEejlPE/k7u3S7RNCdexYuFwXl1zHINKwe1j0ogwnP06rVLI6BFr5KU5/XB7vITqlOc1mTUzSs/P942huNZGuEFFkEbe6WvmkfIGn3AE4vfynY0F3HtJZgtRQ6eS0yc+mBdm5QB0icjTHIVciuIC+mrVWJxYnW5kEgk6VeeOoVGj4NEre9I9xsDPhyoZnBrKDcNSfIuMveOCSQ7TUVRj8d0HNrEit4SZAxO6pBq93ubi6z0lPPXtYewuD3MHJ3LnuAxCdUoiDSpuHpnCG+vzEQRxoeXOcekcKKnn4+1FhOlU/O3yHr70S61SzrScWBJCtSx4exs3Dk/h6Rl9eGdjASq5lPsnZRGkllNusiOXisbSJ6ot3Pb+Dg6WNhAfouG/c/rRM9Z4TovENWYHB8sa2HOyjjFZkcQGaQjStv8zcnm8WJ0uQnVKPz+zJuxuDxUNDhxuL3a3l8Qwrc/7zOURyI4PZmt+DT8fFq9bbq/AmxsKmNI7hocv685LPx3n1ev6o1fJkUnFirflO0/y0k+nBO5JPaPZV2xi47ETDEsLExcTLC50Snmgwr6RgHgUIECA3xVhOhVhOhU5CWf352iNBru7xQ3DrqJanK0YRP5RaVo1D1RjtQ+DWsHfr+iBxyvw46Fy0iP1PHNN9m+z/Fkmh8RhcFeuGJWuDhZNijtReVRrdXLj29uY3DuGlHAdi9flATA01V+Iau0msj2tKZ0hIUTLd4tGUVRrI0yvRKuQ4fEK2F2eP0yqoNcrtDre2c8yBs4amMAb6/P8WmTmDu5Ai4ytFunuD/23Oc2E2gp4/br+bC2o4YrsWJLCtEjVSlAbsNdYfcJRE3tOii0dV+bEMSgljK351eQkBBMfqkUmlWB1enj8ql7c8NY2SuvtqORSHpzcjaXbilh7tIptBbV8cPNgLn9xPZf0iOSp6dmigORxY7M7+KlRUJvQI4rPdhb7VTeVmez8eKiiRWtQSb2dv315Ssh6d9MJesUFcU3/+PMqWnQWh9vDgRITj6zYR7nJwYx+8dw8KoWwDopdwVoliyZk+Il4ozMjUCuklJnsmG0ujBoFIToFt4xMZcaAeCRICNMp21UFoW8UR56dmYNMQoeN7S+UgK+Uy4gyyrqkcuFwecukuQOlJuxuL/pmk9uKBjvbC2qpsTgZ3z3yomi/t7s81NlclNXbiDSIi07trcCqMju488OdbM6rQSKBuYMSuXdiZqcE2DC9iltHpTF3cBJapdzPWD5Up+Dluf3wttI+nRSm7TIBoaTOxkPNTLvf3FBA9xgjM/rHE6xVcte4DG4anoLD7UUll7K/tJ67lub69v/5UAWr7x3l+3lMt0g+2lpIRYMDm8tDbJCa20enISAQrFHwwdZCnv/hKD1jjbwwqy//+fEoB0vFc+lkrY0Fb2/j23Mwca+zOnls5QGf8flT3x7m6Rl9uLpvXLsEqQa7i380CvO7T5qYPzSZx1Ye8P2+R4wRs93tazWNNqoxqOQsmT+A//l8L6v2lvD2jYN4ctWhFs+940QtA5JDuWZAPAs/3OWrLu4WbWDJ/AFc/uJ6vAL0jgvist4xbDpezRPTe/PkqkOsPSpWqRo1clYsHE5KeMtU2T8aAfEoQIAAF5waixOb04NcKkGvvrjK9w1qORqFDJvrlB/LgKSQiyq1JsBvj0ijmn9f0weby4NM0jJS9jeFQg2KaL9o9M6QEq5Dq5L7+Qw9PyunRbWgTimjV5yRfcUm37brBiehV3X9xE8mlRBpVBOmV1FQbeHeT3LJr7IyuXc0t49O+21/bu0kWKtk4dh0tuSf8puIMKjo3kbSGkBMkJoVC4fz3A9HEQRYNCGDuHamNwEgV0FQAlT4tyvIDFFckhbNJT1bnm8quRSjRo7JdkrAiQvWIJdKCNIoCNIoyGp834IgsCW/huvf2EL3GCP/nNabSIMKlVzKmxvy+WirWN1mc3motjgwauSsPlDBfRPt4jlZX4jsxAHSIoI4UGpCrZD6XSeaaE3YXH+0qsW2b/eVcUWfmC7zSelKai0uZr2+2TdRe2XNcQxqeastO22hkEm5IjuWnrFBrNxTQt/EEIakhrKtoIa7l+bi8ggYVHLeu3kQ2fHBnZ64an4FYdfrFXB6vBdcVB6VEYFEgl/y7fR+8X4iTFm9jeI6seqve4yRx77cz0OX9fhVF3w8XoHtBTXc+PZ2nB4vUgk8Nb0Pl2fH+CXqnemxn+44yeY8sX1VEOD9LYVMzYkjNKVzY7JcJm21mlwpl9Etxkh+lZmZA+L5pDEgJFSn5N6JmXi8XbOQuO5oZYtt3+4vY1LPaJ83aFNlVbXZwZJ1+X77Njjc5BbVcWljG6JBrcDi8JAYqqVPfBDXvXFq/JZJJXx0yxDeXJ/P/hITt7y7nXsvyeTL3ada25ruyzuL1enxS8wDeGrVIcZmRbYrsMbm9LDmiHhMVh8oZ0L3SL6+awQIog9fpFHJqn1lpEXouWNsKoNTwiitt5MaoefdGwdRa3FS2eBgbFYkPxys8HvuoWnigtTm/BpCtAr+PaMPUomEr/eWsjmvho0PjsfscOMVBJZuK2JAcghqhcwnHIFYKf3Md4d5ekb2RTVn+TX4Y//1AQIEuOBUNti588NdbMmvQSGTsHBsOjcMS75oWsKCNQqWzB/AoqW5VJod9Iw18uT0PhfN+wvw28WgVpzV5LnB7sLu8hKkubhits8HEQYVKxYOZ/HaPE7UWLl+SBJ9E4NbVGKE6VW8dcNA3t10gtyiOqb0jmFSz+h2m6p2hmqLgxmvbPS1ry1Zl4/LLfDglG6/ykS1K/B4xTQbi8ODViHDqFGc8RjmJAbz+e3DeGdTAXHBGuYNTT7rBECrktM7PpgXZueA0IkWGbURJv0LiraAvdF3qvc1oD+zeXWwVsGLs/ty+/s7sTo9GDVyXpzdt9UKmWqzk//5fC8uj8Cek/Xc+PY2pBL46s8jfMIRiP4gYToVVoc4kaq1usQWzV+eJqxiP89MeYdZH1r5+VAl/3dtNp/vPOmrtlLJpUzpHdPitfsm+lfCRhhUPHxZd3acqKXG4mJAcggRBlWbKVEXkkNlphZx7F/uLuHagQkdFlCDtUr6JSnplxQCiK2M936yG5dHPGgNDjf3fLybZbcOvaijxJtTbXawck8pG49Xc0mPSMZ1i7xgLYgRBhVL5g3gX98cpMHuZsHwZEaknzIWr7c5WbwunzfWi2KDVinj1ev6syK3mFtHpV3QNrPm1Fgc3Ldsjy/W3ivAIyv2MSoz4qzikcPtYVtBTYvtuUV1DEwJPS/vVyGTMiAplJkDEqi3udCr5JTV20gI6RoBrldsS8PD7PgghFYqntQKGUlhWnISggnXq9iUV83PhyoIaXZfWl5vZ0xWBLUWp5+fE4hj/8+HKhiQHMpPhyrIq7IQe5qwb9TIz0kIPd3gG0QhvrXtrSGXScmKMrCrqI5QnZLMKAOPrzzIprxqIg0qnp2ZzdV947m8dywmu4s5i7f40v6uH5JIVrSRR1bs490Fg5jeL44VuSUo5VLuGpdBYqNoGqpVMLl3DK+uyUMQBOYPSyYuWMOz3x9m2Y6T9Igx8sLsvry/uYDq05KbrxkQz+yBop+Uw+256FuOzycB8ShAgAAXDKfby1sbCtiSL94EuDwCz/9wlEt7Rl804oxKIWNwSihf3zUCt1dA1UkTxwB/HMwOFzanB73qzJPxs+HxChTWWHl85QEKqi1ckR3LvCFJhP6Ozz2JREJssIaHpnTH6fG2uZoXYVBz1/gM7C4PepX8vLf6VJudPuGoiZV7Slg4Nu03Kx4drzQzZ/FmqsxOlDIpT07vzaW9okEQo8OtTjdKmRSDRkG4XkW/pBB6xwchk0g6ZKR6ThVhIamwcCtUHxeN2XXhoD3z5FAplzEkNYyf7xuD1elGp5QTolO0+n69CJSelkLkFcTEpCbjdqlENDNec6QSd6PXT2q4DrwusFVB2R4yNt7HD/Mepd6rxRCi5Ks/j+C1Nccb47LTiWxFAEmN0HP9kCQ+2HICrwDv3zSIu5fu8lXT6ZQyvrxzBGmRF0dLxOkTSxCNmbuiysbu8rRoDc+vsrTaJnQxUmcV0zOb/MC+21/G3MGJPDSl+wWpSDCoFYzrFkl2fDBeBII1Sr+Fhga72yccgVgR8tzqI9w5Lh2B83uMnW4PdVaXryKreaucVxDbOptjd3lbiJStoVHIuLRnND+eVlEyPL31NL6uoLjWxgOf7UEpk6JWSDHZ3WTHB/HWguAu+Zz1jZ5pn+08iSDAwOQQxnePoqLBTtBp98MahYw7RqexMa8GCTA1O5Ybhib7xguHy8ObG/IpqbPx53HpLZImQRQdtzYKcJEGFREGFfEhGk7W2gjVKXl5bj9COuBPdDpalYz+iSHsKDzlJTd7UCKVDXYi9EpkZxHG9UoZ/3tVLxa8tY1rByWweF0em/KqAahocHDzO9v5+b4xCILAf3486hOOAN7bXMjXfx7B9UOS2HC8ioVj07nnkkwUMilBGoVv3Ao3qLn53R2+x/39y/18dMtgZI2XiwOlJlbtK2X+0GQUjZ+73eVtrDpWct0bW7A6PfRLDOaV6/r/YQ20A+JRgAABLhg2p7vV1aP9JSa6xRhbecSvg1wmPWNiToAAzSmps/HEqoPsLqpnREY4iyZkdKr1otrsYPorG6mxiGlMz/9wFKfby90TMlB10Mfjt0Z7TVcVMukFq8yINKgYlCK21zTNaRNCtRd94uSZqLE4+Msnu6kyi+eX0+Plwc/2MiYzggaHmzsbfSB0ShkPTenOxJ5RRBjUHTreLo+XCpODj7cV4hEEZg9KJMqoQiGTUWNxUGt14XR7CderzlzFJJOJ7ZAdaIlUNfrJnA29Ss7UnDg+bma+nhCqwaiW8/VdI2iwu1ErZBTWWHjim0NM7h3NXyd1ExcPpGoYshCOrkaR/yOR+T8SqTLCwi1Ex8by9IxspG147oTqlNw/KYs7xqQhkcDRCrNfG6bF6eG5H47w1NW90bVRsWVxuDHb3QiNf4/+HOLe2yLCoGLu4EQ+2FIIiN+Hv07u1iWTZq1STkyQ2i+Zb2RGeIcNuT1eAavTjUYpQy69cN9Lq9PjZyQP8Mn2Iu4an3HB2lkkEskZq7RMtpZtkydrbaRF6DvsCdURrE43649Wcd+nuzHZ3HSPMbBk3kDiQsQ0MKVMysiMcNY1awVKi9D5Us5Op9rsoLzBgcPlIT5Ey/juUcwfmszSbYWoFFLumZBJqO78eVY1CXJOj9dXLaWUS9tlAN9eUsN1fHbbMLyCQF6VhW0FNUzu1bJysdbqoNbmZmt+DcV1Ni7tGU1KuI5gjYIKk53dJ+s4Xmnmh4MV7DlZz5L5A1i+q9gXYpAWoadPQhD/+/UBgrUKXrmuH0a1jE9uHYogCChkUkJ0ynO6vobpVPx3bl8+3FrI4bIGRqRHEGFQcdv7O/j8juFnFVqqLE5e/PEIz87MJilMy3VLtvj93uEWU2uDNQqOlptbPP5EjZWEEA17TtZz2QvreeTy7swZnOS3z1e7S1o8bvmuYvonhrC0sT1xX7GJuYMSqbO5ePfGQby25jiX9opm6n83+B6zs7COZ78/zKNX9jqvFdAXKwHxKECAABcMnVrO2KxIv5QbaFnSHyDAb4GqBgcL3trmMzD9cEshpfU2nr82hyBNxyrpKhocPuGoic93FnPDsGQi2zExDtA1WBxuyk12vsgt4fI+Mdw/KYt7Ps6l1uLkX9N6dTi9sbO4PB5qLS7cXgG1QnrOJfJur8CR04x2nR5x1f/f3x72GYhanB4eWbGPkRkdX9GvMDmY+NwaLI2+GW+uL2D1vaPQKmTc/XGub9KYFKblk1uHXvBVW61SzgOTsgjXK/lufzndYwz89dJuvoWCiEZLp2ijmrcWDEQpl/mb+cb2heuWw6aXQBMCY/5HrI6ifVHdzT1MNhyrbvH7GosTi8tzRvGoxuLktTXHeXNDPl4BpveL46+Tu3XYxLo9hGhFseu20WmYHW7C9EoiuqgKMkwnRmDf/+keDpSYGJkRzmNTe3XIvLra7ODL3SX8eLCCwamhzB6U2CFDaKfbQ7nJwWc7T6JRyJiaE0ekoX1R5VKJBKkEmnfjXCzthgDhBhWhOqXf9eTy7JjzPnaZbKII3SS0HCxtYOWeEsZkRfD62jzC9Sqemt6Hp789xIbj1WTHB/GPK3u2KoJVNTi45b3t7CqsIyZIzR1j0hjfPYrbRqcypXc0dpfor7N4bR5fLGyZbtgVJIRq6RZt4FCZOG5KJXD/pG7trpKvtTqRQosqoiaig9R4BYE5Szbj8ghc1juGhWPTWx1LLE4vt7yzncrGVqqt+TU8MCmLaKOK69/YhlIuZf6wJH44WMGJGit3Ld3FS7P7YXV50CikpITrkCDhl/vGoJJLqbE6WbyugIk9o6i1OEmN0GN3ec75PLa5vBwqbSAhVMuK3GK2n6hFJpXgbWfrWphehUEt50i5mZfm9KXB7sbmEr+rH24tJDlMR2GNlUt6RPquWSB6OvWIMbLzRC12txevIJAZ1dKjL72Vys6MKD3HK0+JUdP6xhKqV/nG60ev7MnRCkuLx+04UUu9zYlG2QFfv98JAfEoQIAAFwy5VMq1AxM4VGZi5Z5S9Co5D03p/pvxOQgQoDlOt7dF8s0vhysbPYs69lytRQ7HBnes8uNsVJsdlNbbabC7SIvQE65v32Tpj8ShsgaueXWjb2KYFqHjw1uGoJJLz+sqd3OsTjcbj1Vz/6e7qbW6yEkI5pW5/YjpiPn0aajlMkZmhPsZiQZrFbi9AruK6vz29QpipUJimK5Dr/HJ9iKfcASi38VHWwq5vE+sX7XBiWrrGaPFW8VaA5YKqD0B0b1AEwqKzh2LML2KReMzWTAsBbVS1mrSk1QqaV2s0wRD+jiIHwBSOSg7730yKCUUnVLmd7zmDE4kpA3R+VCZidfW5vl+/mT7SUakh3NlTlyn30dbBGuV56WdXCqVkBqhZ8m8Abg8XtRKGcYO+GM12F3865tDfLZTrBRYf6yKzXnVvDi7X7sFkpI6O5OeX+trmXp1zXG+XTSqXYKmTiVj3pAk3t50wrftrvEZFyy57WyE6VR8ettQHv1qP3lVFi7rHcMtI1M7FWvfEWosDp9wBBChV9E3MZgpL6z3+d6syC3mi4UjkEpo83PfUVjLrsI6UsJ1/N/MbJ5bfYT9JfWo5DLeaXbcQbzmzhyYILpo22qAxjFFG3JOf0+4XsX7Nw1mw/EqCqqtXNEnpl3nh8nmYseJWl76+RhKuZT7J2XRLcqA9rSxpqjWigRYdfcopBKxkq6s3taqwFFusvuEoyY+3XGSK7JjfPcgLo/Aw5d1Z+nWIhQyKW6vl4FJIX6vG46K4lobT35ziJkDE5j+ykZcHgGJBB69oicz+se3eJ8dQSmXUlBt4fsD5b5tk3tF057CwDC9gim9Y7j2tc0oZBLeWjCIFbklfH+gnOQwLY9P7YVEAtEGFVf1jaOiwcmXucWE61U8cGkWSrkEp9tLZpSBv0zMJKqVeYXY7hnE7pOi8NQjxsDUnDjyKy1MbDQq1yplnKi2iFWEAmwtqKVvYkgLk/ohqWEoLmDF48VEQDwKEKATVJsdeASBILWiw6XWf3TC9Cr+Oa03D1/WAwniDerv3Rg4wO+HqgYHPxws53B5A9P6xnHvJRn83+qjvt+H61V0pqrdqJZz/ZBE3tsstomoFVIem9qLkC5aLa42O7jjg50+v7EQrYIv7xzxq6bvXGzUW1088/1hv4qC45UWyurtDDpPpqytYbK5uf2DHT5D4dyiOh796gD/vqbPWQ3Xz4RRo+Cf03ojCHv55UglGZF6np2ZjVouZWBKKMXNPDJkUkmXnhen+5yAGDfu9HjPLh7ZauGXJ2HXe9ROfIE6pQOzxEx0qJRwvbJT3lcKufTcFizU595ibVDJ+fjWobzyy3FqrU5mDohnYFJom+2ba4+0TGf64WAFU3rH/CbbKTs7tompTv6eLhuOVbeafNcaLo+X19Ye9/PaqbW6WH2gnOuGJLXxSBGDWsFdEzKY3DuG7SdqGZEeTlKY9oKnrp0JWaM49+LsfjjcHowaxQVpfQ7Ti8mFTcd1TLcIPt9Z7GeYXGZysHxXMbePSWvzuQqqxEqPP49L5+Hl+zhQamLu4EQaHO4W+9bZnODxUG0ysflIOVtKnMzoE0ZEmIptBXUo5RL6JYV0qp08XKdgaqYG0IIMaIewcrTCzIK3t/l+vubVTfxw72hSTnvszhN1/Pv7I/z7+yO+beO6RZKTGIJWKcficNNgd+PxejG20p4aolMia7b489DyvYzvFsld49MZmBzaqm8ZwLaCGuYMTuLRr/aTGWWgd1wQJ6qtPP71QSb2jD4n8UivlPHctTksXpvPgdJ6hqeHM2tgAkb12b/rDXYPj351AKfHy3VDkvl0x0mW3VRS3gAAIABJREFUNSax7j5Zz/w3t/LN3SPZX2biSFkDNwxLYt7QJCRAucnG3pMmVh8sp7Tezifbilh51whcbq/fmBqiVfDy3H5UNDjwCoKYEJpbwvOrj+D0eJnRP55LekRz49vb6BZt4OkZfXhs5X6+/vNIHp/ai6e+O4TJ5mZ4ehjzhyajVvz2xt2uICAeBQjQARwuDwfLTPy/L/ZRbnIwvV8ct4xKPS9l4xctLrt4Q+9oAJVBXN2Rt3FR9rhB5j/UtCd1KkCAi40qs4N5b27lQKnoVfLWhgJemt2XoWlhbDpejUwq4amrexPWidX6YK2Sv0zM4obhKZTX20mL1J+TeeXpHK80+4QjECdLL/50lEen9vrNGkB3NQICbk9L81ZXK9vOJxUNdp9w1MS2ghpsTs85jZtRRjXPXZuD3eVBKpUQrldRY3Zwz4QMSutsbGmMMX78ql7IO1GRNnNAAkvW5fmqaTQKGbMHJeIWhBartjMHJKBtT0S9wwxbX6Pmqg/4+74IvvrsICB68nx++7BfXfx0e7xUmh38dKgClVzGqIxwIgyqFqKW1ytQ0WBn2Y6TmGxu5gxOJD5Ew9+v6IHT48Wgkp+xvaWJkRkRvLomz2/b2G4Rv6pwVG9zUVRj5bv9ZfSKC6J/UkiH2sc6gwTQKmR+QoJcKvGZ3raF6Mtlx+1p2UbT3lQogFCdisGpKganhrX7MRcasdLowt1nBWkUvH59f/6yTPRWizGqsbYS/a5rh0fMxJ7RPPXtIeJCNL7r7U+HKvj3jGyW7yr2jSVN6YZ1ZjMPf3WEbw9UoVXKuHpAMlNeWO8LPYgL1rD8jmHtam/zegWxItdpFZMfv7obGkqh9wyY8BjoI874WJfHy3ubC/y2ebwCX+8p4c5xGX7bh6W1PHcm9ohCo5BRb3OxdGshz34vihpvzB/AuG6R/NTotaWQSXjksu7oVQqm9Y3zHZMfDlYwo398mxVSyWFanG4vD03pjs3lYdPxasZ1j+TOcennfK0L0ipxewVm9I/D6owW210N6nb5Ark8XsoafdD6JYXw6JcH/H7f4HBT3mDH7vQwqVc0V7+8EZNdHANGZYTz0JTuvoXoSrODXw5XUtlg54rsWGKDNShkUipMDh78fA+X9YlFoxD9q/759UHfa3y0tYj0SD1DU8PYlFfN8l3FTO+XQG5RHZvyqnlpdj/UChn7S+p5aPleHpvak58OVTCpZzTRQeo/zLwmIB4FCNABaq0urn1tc7NS5zz0Kjm3jU77Ta78tYoggKUSBA/IVP5JNx4XFG6EpXPBZQWFFmZ9BMkjWghEWGugZBfs/gji+kGvGW1GLgcIcLFT2eDw3cg28dLPx1g8bwDFdTaSQrUEaRRnTRU5E01tImkRXZ+4VFxna7HtZK0Nl9sbEI8aCdYq+fO4DOa9udW3LSZITWbUhU3AijSokUsluJtNZvsnhXSJMWdz3x0QqxRsTg83j0wRhQy3KIY4OzGJiDSq+P6e0Xy8rRAvMGtgAlFGFU63wDsLBvGvbw5icbq5aXhq+yu5XFbQhlGqyeKrfadW6CsbHDz7/WH+Na13p1fK621OHC6vaD7cySqmMpOdyc+v8wkZUUYVX905osUktdLsYMoL630+NG9tyGfV3SPJaMWX40x0jzFy04gU3tlYgFcQmNYvnlGZZ57Inm88Hi+rD5Rx37I9vm1jsyJ4dmbOefXXCdIquH9SFn/7cr9v259GpbbLPLzG4mTOki08PaMPX+QW+0Rao1rOpJ7tN2nvDFaHm/IGByt3lxAbrGFUZjgRZ6iGqbU4sbk8SCUSDGr5BTPiPhfUChnD0sP55q6RuL0CGoUMi9PNx9uKfN+PCL2KSb3OfpwjDSo+uHkwEiQ+/6bSejvfHyjjnQWDWLq1ELVCxp3jxHTDynoP3x4QW2MndI/iy9xiv7TM4jobPx2qYNagxDO+Zo3ZQYPDze6TdaSE6YjQK4n+ahHUNbbJ5X4I+mgY8yDIWxdIZRIJCSEtBe34kJZVQPEhGh65vDvPrT6Kw+1hRv94JvaMQiKRUGNx8MSqQ759716ay9sLBrJwbDona60MTA4lVKdErZDxyOU9mDskkUOlDQxPCyPCoPKrSALRf8nq9CABYoI1lNbZ2HuyntfXiWL08l3FjMmK4F/TelNjcXb6++v2eCk32Vm5pxSlXIrL4+XOsRnQjg5ohVTClD4xfLytiLJ6O6kROr9WPYkEFFLxOV/95bhPOAJYe7SKu50eLM0EZZfHyzd7y3j5l+Osvmc0cSEajlWamdY3niXr8/B6xXHjgUlZPP3dYd/jtuTV0CPWyKa8ao6WmxmYHEKUUc3KPaWs3FPq2++qvrF8vquYJevyeeb7IyyZP4Dx3SLPexLsxcDFPxoFCHARcbjM1CJW9KvdpczqoFnjRYvHBWX74PObxKjk5BEw7XUIavRUsFbDZzeLN/Qg/v/5zXDbev90HI8L9nwC3/5V/HnvMvHnuct8BqMBAvzWEFqJkhYE0CjFuPCLhab32fwmZnBKmF9LAcDcwUnn3Qfjt0bfxGBWLBzOe5sLSAzVcu3AxDNO8M4XRrWcl+b05YHP9mCyuekVZ+QfV/Y8L6uaTo/A/648wMyBCZgdHgRB4IeDFYTrVSR10PNIIZMSF6Lh3olZp22HUZkR9Ig1Ighi60C7F1s0wRDZk6K6lq1v+VUW0RwVNw02FzUWJ2F6ZaNvRdu3t+UmOw98toe1RypJCtXy3LU59Iw1diiNyuP18tb6Ar8KmHKT2NZ6esrP2iOVfgbGbq/Ay78c58mre7e79T1Up+SeSzK4ZWQqIKBVyTvkFdTV1FhdPPPdEb9tPx+uxOJwd3jy6fUKVFnE0ACDWoFBJT/j2KSSy5jaN5bBqWFsza8mJyGY+BAtetXZj0VepZkT1VY+2FzIh7cMYUVuCRqFlPnDkonQn19D6aMVZq5+ZaOvwqnJT+30KpEqs4N7P85l7dEqFDIJd4xJZ8Hw5E77Tzka2/laO8+aWqMEQUCjlPleo8rs4HBZAxIJpITpCNUr29X6ppBJCdMrkTV6wRjUclbfO5rVB8pQyqWMyYoksh0tozqVnL6JIRwqrefJq3vz54924XB7+XhbEZf2jGZstwjC9SrC9UrxO9vsWqdTyfyEhSaqTwukaI7b4+VAqYkFb2/zCYpzBydy14zlRC3pe2rHw9/AkDvOWH0klUqYOzCOZdtP+tp1MyL1DE9t6b8UpFVy3eAkLu8T63vfTefw6WliZoebv63Yzwc3D6J/kv9zheqUhOpCGZB0SpD3egWqzA52FNaikEqJNKpYtDSXvCoLV+XE8sCl3Xj3tAqpXw5XUtXg4G9f7uffM/qQGqFvIUKdjRqrk3lvbvWlegIcqzDz+vUDztqmKpdJmT0wAb1KzrqjVTw4uRs3vr2NWqsLiQTuHp/BkfIGnB6BMpOjxePzq8wEaRRUmZ1EGlR0jzH6FvtWHyjnhuHJGNRybnjrVEvhX5btZvG8ASSEaiiqERfYesUFsatQ9AFcMCyZEL0SnVL2/9k77/Amy/3/v7J3mrRNJx10UyirjLKXgogTHKCiqAhO3Ntzjuecr9vzc++tiJshilum7FH2bCmldO/s8SS/P9KGhqbQIipqXtfFdendJ0mTPnme+37fn8/7zUfXFXD7J1uobHbSM0HPVUNSefzbPYzJjmFrWSNPfruHvkmGv8Za8ASExaMwYbpAqB7itBjNX6fv1VYHcy/0t6UBlKyCL2+Gi97xT+IFt/+YtlhrwHtMNKy9Hn55JnisfAs4msPiUZg/LTF6JdmxuiCT7FvPyCTqd0rgOhFuwUtVk4MP1h7CJXi5akgq8RFKFDIJUVo5828cyqNLdtNoc3P1sFSGZZw+gtfpgk4po0+SgZ6JvZGIRH/ILqJaIWVsTgw/3D4Kj+BPW4v6jSakRrWMEVkmbv24MDAWpZFz55lZp/y1TmpSrY2FC16it12KXFIWVBE1uX831HIJuyqa8Qg+imstZMboqDG76BGv61Cgsjg8PLx4J8v3+j2ESupsXPHmOpbeNbpLyYZeH5id7WPRLSF8WQBy4nRc0C8RpUzCD7sqT8obTauQdUok+X3w4fG2r1DzhhDZT0RJnZWLX10TWODfMDqd60emddjKF6GSE6GSkx3X+cotOHoOfrm1nJX7axiVFUN8hBapSHTSFaOdodnu91Nr2xpXVGNl6+FG+iUbAgK1R/Ayb10pK1oM5t2Cj+d+2s+EnrFdFo8cboHD9TZeXlaED7hxdDpJRhWqFmG1werijZXFvLGyGLfg44wesTwxJQ8f8OjXu7hySCofbzhMRZODSwYkMSwj6ri/Q43ZwaLCcnZVNHPJgCRy4nQY1HLiIpRMH5Lapd8d/JVMCQY1mw818vWcETTb3USoZBQebuTuz7cD8POdo9Cr5KjlUs7IieHHPdUs21vDUxf14YvNZYH2NrlEzHl9Ejp8rWqzk/9+tTuoXfjDdaXMHjEKRGLwtZzncb2Pb5QveIjb+jKLL5vE/iYRcqmYVLmZ6KL50H96u8MVMgmxIUS9HvH6dq2+o7Ki0XTyu1/V7GDSC0crHZMiVTx7aT8uenU1CwvLmTMuE6lYDAR/fz1eH4WHG5n2xlq+uXVElzdObE4hSDgC2FDS0Ml2OB9GjRyFVMz43FgOVJtZeNMwbC4BtVzCjiNNlNRaOSM3FvB7AbaikkkY3D2K/ZUWLh4g54wesdz28ZbAz+VS/8X2m+2V7V71x11VDO4exeH6MkZlRTMsI4q3Vhbz1pUDqLE4ue2TQsxOD+NyYlh40zAErw+fz294fkHfRErrbFw3sjuFpY2cxKXvT0lYPAoTpgtE6xRcPjiZD9f5TW1NOgX3n5VzGk3mfiVOy1HhqJWDy8HTovLLlBCTC9VtepFje4E0hDGfJMQkQ/QXEdnC/C2J1iqYO3Mw32yvYE+lmUsGJpEWrTltypRrzE4mPLsi4Dnz4dpSvr99JKnRGhRSCT0TInj5snw8Xi9GtTyctHYcpH9wiopcKiG2C0LGySKViLl0QBIauYTPN5WREqXmrvE5p9fuqSGZSLmNT2cN5t9f7abG4mTaoGTO7ZNAs93N6gO1PN1iOisSwSMX5BFvUBCtDb3wsbk8rNpXGzRmdQk02NxdivyWScTMHJ7G55vKAibrSpmYSXnx7Y4dmRVNlFbBa8uLsLo8TBuYzMgs0586cCNCJWfWyHQeXXLUM6RfsiFkgt3xaLa7+ffinUGVIa8sK2LawKQT+kB1lSitgvP7JrCosJwGm5ufdlcxbVASr60o4q4JOae0PUwQvDTY3cglYrw+Hy5P+wW02enhqe/28tCkXPQqGTa3wJriunbHbS1rIjcholOva3F4qGy24/R4ueClXwKCyFdby/n+9pGktbRFH6qz8vKyosDjftxdxcLCSEZnxXDpwGRmfbCJarN/7rd8Xw1PTMnj4vykkPeNWrOTK95cH9hYmb/5CE9f1JsL+3frcvVKW+RSMX2TjXy1tZy+yQbcgpcHFmwP/PxAtYU0kxajVsnjU/JYsa+WtQfr0cjFfHHDUF5ZVoRcIuLWM7IwHafiyeeDKnP76ka7x+tvUXPbITINzvgXyI9TkSkCLFWY3h2KyZDs33A1V8DEp7r0vo1qOc9P7cc/F+2gye5mQs84rh2e1nG4jLXOv4kr1+KVaXh/zaGgSsfD9XY2HWpgQIqRDSUN7Kpo5obR6TzVpl3r7Lw4NpX65/+1FhcWhwdT17RZVHJJuxTJrFjtCecaRxrt3PzhZsxOD3dPyCbdpEUhFbNyv1/gf2DBjsCxi7dW8O41g1DKJMxbV4pJK+eeiTl8tvEwZY12DtRYqG52ctngZB5YsIOECCUjMk2U1FpDJtllx2m5oF8it52RiQh/O/+bMwZgUMu59v2NgeN+2lNN1uoS7jgzmzqri2d/3B/wkXxleRGvXNGfSPXfQ1b5e7zLMGFOEUa1nLsnZHP9qHQsTo/fDE6r8Pv7uG1+cUShB8Xv65FxylBo/ebXnjY30bg+IG6Z4GpMMO1jWHQTlK2HpMFw/kugiQ5+HnU0jH0I5s86OpY2xv/ZhAnzJ8akU3Dl0NQ/+tcIyaLC8qBJm0vw8u7qEv55Tm5g8hZxCk24w5xanG7Bb578O7ciGTVyLhucwqTeCSik4tPSX0WpVtM3Rc3bMwbi8XqJUPlTOo802Hjh5wOB43w+ePK7PYzK7rjCVS4VkxOvY0PJ0Y0SqdjvLdNVuhlVLJkzgleXF6GUSbh+VHrIRarT7eO69zcGKk8ePLKD968Z9Icbfv8a5FIxF+d3IzNWy4LNR+iXbODc3gldrpJzeASKaqztxqvMTpK72Dp5IiI1cm4Zm8HUgcnUWZzERSh55sd9HGmwc+OYjFN27jdYXSwqPMJH6w9j0il45IKe3Dw2g3VvHfVTi9UrSDKquWvTVu4an41eJUMjkzAm28SaomABqV+yodOvvf1IIx+uKyVGpwiqpPF4fcxbV8pD5+QCsPFQQ7vHrtpfx8hMEw02d0A4auXtVSWM6xEbUlius7qCKnLB7wc4OjvmpJMNnW6BTzeWBYmTk/snMmdcJk99txeTTk5eYgTf7KigqNrC+J5xOAQBwevl3vnb8Xh9vHHlABIilIFqq44wqqVc0DeRd1eXBMbiI5T+lLNbNvvnxHLtiX07xVIYciMUfgCN/k1mVEbocU6HD/G2XBPaCixapZSzesUyuHskPvyVNSHbOAUP1B2AL2+Cmr2QOQFh4v+osbQXwhptrsBGd1yEkpxYHWkmDRtLGsiN16NXSQMVqDKJ6ISfWSiMajkvXtafWz7agsXpIUan4Plp/Y67GdFoc3HXp1vZ0lJJNPuDTehVUuZeMxiZRMxrK46GBPRK1DM0PRqXx8ukXnEMSjWiV8lYXFjO823uAwCfzi7g8cl5DEg14nQLNDs8DM+MpmeCnp3l/na2zBgt5/ZJIFKjwOG2M+bpZTg9XjJjtFwZolpu1YE6zurVhEouDQogAXjmh30MTI0kWvvn3RDoLKffDCFMmNOcVlNbaClPt9bAguuh6Cf/jWPYrTDk5mCj6T+AQGJEV1BEwOQ3YOH14LKCPgEufDVYHDKmwCUfgOD078io2vdyI5ZA5gSYvQJ2LYL4vpA8BDThNpkwYX4rQnVdnExq1q+hutnBmuI6XB4vI7P8vhS/Zuf574DP56OiycHLyw5QWmfjssHJjMiIDvh2yKWnpm3N5/P7YNhdAgqZhAiVLBAvLhGLflOT41PFsb4ZXh/tfAib7G46POM8LnRCI49fkMv0dzZR3uRAIRVz38Scjh9zHNQKKTnxep6Y0huRSNRhZcBPe6rapXnNXXuIganGk1qknS4YNXLGZMcwPCMa2Um2fUUoZUzKiw9aJKpkEpJ/I2FNLZcy64PVqGSSgEBy5ZAUtKdItBW8Pr7eXsHDi/0V2nurzJz13CqW3jWKBTcO5f01h4jWKpjUO54H5m8nNUqDuKV6VSIRM7l/N7YfaeLrbRWo5VJuGJ2O1enB7vagkgWfKzanh2aHB6vTg04pRSYV89R3+zBqZCGFsESDima7G4dbYFyPWJ7/aX+QP9DYHBPRWnnAr6ctepW0w2t5qGGpRMxJfalaaLK7ef6n/UFjC7Yc4YvrhxKtlTNvZgE3ztsc8Kf53w/7eO7Svhyqs7GvxTPosSW7eW5qv3bPfSweL1w1NIUIlYzvdlaSYdJyx/gsf2WgpuN2t5Dou+G9pZA6sx2nRINcpSFKreJYScEjeKkyO/lgTQnNdjdXD+tOokEVCACQSSQnbqO11cK7Zx+1k9jxObLoTGYMnskXm4+m0skkIs7oEcvnm8q4f2IOGSYtbsHL+2tK6JUQQfdoNTPe3YDNJSAVi/jv+b38wlkXkUvFDE2P4ue7RiEIPqRiEZEnuHe5BS/rDgaLpc12DzKpmP7JxsC59d/ze6FRSFiyvYL3Vpdwfr8E7vtiO2f1imVNcX27591fZWFCrzhsLg8PLtjByv21xOmVPD+tL2q5FJHIn0DaKmytOlAbuJdUNDlCBmX0STLw+aYyJvfv1u5nDrc3ZFrrX5E/7x0rTJg/kAabi3XF9RRXN3Ot6EsURT/5f+D1wMr/QY9z/zDxqNrsYOGWIxRVW5g2KJnuJi0RnTXFlasg80y4eRN47CDThPYoUocQjI5FZfD/i+/TtTcQJkyYk+K8Pgm8tLSIJrvfh0Ulk3DV0NTfrT2tutnBeS/+Elh4RKhkfHPriJBecWGOUmN2cv6LvwSSZQakRhKtVXD//O0cqrNxRo8Y/nluT+Iifp1x98FaK9PfWs+RRjtquYSnLurD2B6mdgvSPxNqhYR+SYbArjXAuJwYNIoOFl1VO5C8dy7do7JYOPkxrLo83GIFb/9yiOEZ0aEf0wlO1H4WqsIoJUqD4PPvvJ+sGfLpwskKR+D/7GaNTMPh9rJ4WzndjCoevTAP429UJWlQyXj20r7cN387IpH/fLllbMYpS51ssrv4ZMPhoDG7W2BXeTND0qO4bHAy768u4dLX1iCTiJk7c1BQdY7P66N3ooErClJwe3x8ubWcF37ez/K7xwR9V21OD4u3lfPQwh24BR8GtYwPZw4mJUrN97squfPMbOatKw20Aw5KNTKmRwy3fbKFneXNjMw0Mf/GYVz19noqmuyc3zeRs/PiMajlZJi0DO4eGaiukIpFPHB2D4wdnKeRGjn9kg0BIQdgzrhM5JJfd+851ivH54NorZwvbx6OyyMEvZ7PB6+tKGbaoORAVZVSJgkpbB2Lwy0w+eXVnN83gTvPzOJIo51LX1vL3JmDidR0UbiXKdhv13Hth3soa7Bj0il4fXo+vRMjgny1ai0uJj63gma7X7z7ZGMZX98ynJz4jiv0G6wu3F4vEUqZ/5rjNLf3IbXVk1K3nM+m9+bFdQ0opSLmjOxGtEbgq1uGE6GWBczPn5/an82HGmh2ePj21pEIXh9ikQijWoZELMLidHfZlsPmFqizuNhT2Uy/JCNKl+e41bQSsYi8xAi2ljUFxgalRtJsd/Piz/uZOSKNr7aW4/X5uOPTrYFjvtpeznNT+/HmymKGpkW1q9brbtKw80gTB+tsrGzxEKtsdnDJa2t5fmpfzuubGHR82+ooi9PD+pJ67j0rm+d+2o/D7aUgLZLJ/RKZ8c56Zo5IIyNGy4Hqo8bmVw5J+d036/4o/rwzhjBh/iAEwcvXW8t5aNFO7h2TiKL6l/YHlW2EhKO7HXa3gEwi6thHw1Ljr/SRyPytY8rj97a7BIGaZhfz1vsjRKcNTCY2QkGTzcOlr63lYK2/BPyTjWW8Pj2f8V2JoJWp/P/ChAnzp8KkU/LdbSNYVFiOW/ByYb9uxOh/v0Xp97uqgnasm+xu3l9Twj0TcsL+SsfhUJ0tKJL4wn6JTHh2BbaWFsQlOypRySX885zck/aAqbe6uOuzrRxp9CfK2FwCd3xayLK7R6OK+PNOBaM0Cl6dns8LP+1n46EGRmSamD0yjQhViM/JWgOLbgSXBXHFZmI+mgBiCeUzNvDTnmruGH/qTcJb6ZtkoG9SBIWH/QukGJ2Cq4ak8MD8bVQ2O7l6aCpD0o9vSPxXJkqr4P6zc7hpTDpSiajrC/YuoFZIGZ1lYsmcEXh9vo5bgk4SuURMgkHJ9iNNQeOxLe1TufF6HpyUyy3jMjGoZBiOEckEHzzSplWrlWOFlGaHJyAcATTa3Nz92TZevrwfVw1JYVd5I59dP4QNJX4BaESmiWlvrOVQnT8t97NNZTTYXHxxwxBAhEomxuP14XALxBtUvHhZP/ZWmjncYGd4RjTRx0mji9IqePWKfH7cVUVRjYXR2TFsOtTA7vJm5pyReUJhrs7ixOHxImupgJRKxGgVUq4YnMxbv5QEjhuVZWLZvhqe/2k/L1/enxGZ0QFhAPxViK1Cplwi5tZxmZ2q7PO3sup5d/UhnB4v5/dN5JUr+qNXdf3aWGt2csPcTZQ1+K+1NWYns97fxNdzhgd5qi3fVx0QjsBfsfbK8iKevKh3u2Q7tyBwoNrKQwt3UN5o5/y+CVw3Io0oucbf8eBtY9IvlqJr2s+AnU/yYo9LEAkuNAs/Rhj7L7boRhPrUWJQy5CIRLgFL0atjHi9ijkfbWHjoQaSI9U8c2kftpQ2supALVcP607fJEOnNqHNDjevLisKqiJ8YVo/JvaK6zDAIFKj4JlL+3Ll2+spa7CjV0r5xzm53L9gGzuONJOfGskDZ/cIEo7An2zZYHOx/UgTM4Z256L+iSwsLEetkHDL2Ew2lDQgxkdJy/nelq2HG4PEo2a7m8wYbVBL2xsri/nypmEM7h5FhErG2uI6Zs/dhM/n92h6ckpvftxdxaE6G2fmxuLxeoPaRP/K/HlnDGHC/EHU29yBm9mmShfNqWPRF/0cfFDKEMC/o7jpUAOfbjxMVqyOKwpS2sWyYq6AuRdB1Q6/Z9KQW2D4bcetXKppdnHmM8sDi4u3V5Xww+0jqbe5AsJRK8//vJ/8FONvltYTJkyY0wOJWERchIrZo9L/kNdvsrePQm60ufHiQ/xr+hf+4mjatAfE6hVUm52Ba3sry/fVYHF6Tlo8cnqEwKT46JgXs8NDfOd8eE9bYvVKHjwnF5vTg1Yp7ThS3OuF+uJjxgQ0IhefzR5C9K8QLOwuDyKRKNAGeCwGlYyXL8+npM6KzSWQG6/n5nmb2dxSObH+YD2vTc9nQlc2ev5iKGWSDj+/ruD1+qixOFm+z2+2OyrLhEmrCBKwJRLxcQ2Ufw1apYx7z8phTXFdQBw4MzeG+Aj/ppxGIUWjkHZYSaiUiRmZFc2KNqbuPRP07QQYm8vTbrFa3mhHIhZz5TvrabZ7EItgdLaJxyf3psHmCghHrfy8pxqxSIRELOLd1SV8v6uK3AQ9d5yRRbxB1eW0rW5GNQO7R7LtcBPzt5RRa3Zx9fANQ9iVAAAgAElEQVTU44pHZfU2Zn2wiV0VzZi0Cp6b2pf8FCNqhZSbxmbSJ8nItzsr6J1ooG+ygdkfbKLJ7uaGuZt5bXo+eyrMAfF99sg04vQK7puYw6S8eGL0nfsbG9RyHp+cx9I91dhcAle/swG7W2B4RhTPXNqvS+eK2+ul+Jh5eI3F2a69NtRmslwS+k5Zb3Vz0SurA56Gry4vRiIWcfvIRKRnPQHf3gNeAZQGyBzvr/rf/hnaFf8BwJeYz351Hy56dQ0AT17Um+xYHZNfWc09E7J5fv+BQLVWab2Nq9/ZwOtXDuD/vt7Nsr01vHnlgEDK2fGwOD28sTL4GvvvxTspSIs87rnUPVrDghuHYncJSFsM5utaUtue/XE/0RoFann7c0glk+Bwe5nz8Wa+uXUEd5+VQ1Wzg7dWHWRRYTk94nXcfkYW28qamJgXh9cHX2+rYEIvf6iB3eWhqMbKk9/uQSkT8/zUflSZHTTZ3PRKjODOz7ay/mA9n10/hP/3w75AFZ9ELGL23I3kp0QSq1fy2ooihmdGc27vLrY4/kkJi0dhwnQRsYhASfzPe2o4MnwSqp7bkO3+wp86NuYh0HdDELx8ta2Chxb6UwK+21nF4q3lfHb90KM3IrcDVv4/v3AE/jjQ1c9Bn6nHFY8+2VAatLiwuwU+Wl/KJQOT2h37R8VNhwkT5u/FeX0Sef6nA4FJslgEVw/r/ocnl53uxOoUgRaROouTaK28XUxzVqwO+a9oDRIjoiAtCpfgpV+SgSONdlYfqEUTYkL+Z0Qlk5y47UimhpxzYMcXR8d0cWj0RiIiTmzMLHh91Fmc7KpoRqeUkhKlQSWTUFxjYd76UmQSMVcOSSXJqGrXxlZrcTHhmRXIpGJ6JeoZlxMbEI5aeXd1CQVpUZ1vMw8Tkiqzg7OfW0mDzd++G6mRs2TOiF/d9tkVUiLV/Hj7KIpqLERq5Jh0ik57ihnUcp6+qA/P/riPlQdq6Z9s5L6zctptAGoVUqI08qCUuhtGp/PR+tKAaOX1+eepH60vZVyPWOQSMa42FUwJBhU+Hzz9/V4+Wu9vtdtZ3symkgY+mT2k06KJIHipMTv5z1e7KKqxkJ9i5Pmp/XiwTUpWKBptLu7+fBu7KvzCdo3Fycz3N7LsrtHEyCREauSc1zeBoelR3PFpIU98tydwXayzuohQyXh2al8UUjE+n4/MWB0uj5esWD0quaRjITkEKVEahmeaOOP/LQ+MrTpQx5sri7lzfHbHSWfHIBOLyYzRsr9NS1OsXoFCFvz4EZnRmHQKalp8txRSMbNHpSEP8TuX1tuCwjDAnzo2Y2gqpj6XQs7Z4GgEjwt+fBgaD8HEJwEfPqWBUnEyNo+Cj2cVIBGL+GhdKSmRagSvj54JEUGpa+CvaotQSvhoWncW7rXz9i8HGZhqPOHmhUfwcYy1G0129wkj7EUiUZC41GR3MblfIi+1pAHOW1/KXROyg0IH+icbSIvW8MG1g9CrZBjVcuRSCXaXwPc7qwDYXWEmWivnX+f15M0VxYjFIp6Y0pt0k/96X2NxccFLv+Bpec7vd1Xz3tUD+aWoFrPTw/qWts2yehsfXjeYN1YUkxylIU6vZN7MAv771S6W7qnm7Lx4ZgxN/VOnZ3aFsHgUJkwXidIqePDsHlz+5jq8PrjovX08fd7djB//byRisV/5lympNzt48xgFvqTORmWLQadeJfMntJVvbv8i1bshNrdrv5jIn3SQHasLSr24c3z2n8IINUyYMH9uYnQKlswZwUtLD+D0CNw4JoOkyHAL7ImI0ip46fL+7Ksyc7jehlzi9xd54ps9eLw+YvUK/nN+L0wniJF3uAWsTg9ahbTdJFanlPLohb34cXc1S/dUkxmr5Ysbh6GS/Y2EPaUOznrMv8mz/1sw9aBx3JN8vLmZ8/tHBCpDOqK80c65L66isUWUOKOHifsm9sDqEhieYUIuFVHWYEMjlxB/jM/X0r3VmJ0ecPq9p6JC3JNjdIpf7RETBj7beDggHIG/ZXPBliPcMPr3q8iUSMTE6JVBbUpdIUav5B/n5GJxelDJpWhDmF9HauR8dF0Bd32+lX1VZkZmmpjQM5Y3Vh5sd6zdLbCltIE7xmfxxLd+AUYhFfP0xX2QSUXM33wk6PgBqZG4PAL7q8xEtLTWhRI1WqmzuZjxznpqW6pFNh1q4NElu/m/C3phCNVC2oJL8LLpmNQ3m0vwJ3W1GROJ/G1KbUWIWL0CsUiE4PWx7mA9F+d3Y+neah7+chfNDjfjc2N55MK84yZ9HcveyuZ2Y2uK66hqdqCUSTolpkXr/C18sz7YSFGNlW5GFa9ekU/UMZWNBpWMj2cV8M32SmwuD2f0iOWTDYeZPSq93e8c6nVTotT+v4lCCQodaONg9QtQvNR/wIcXgTIC1+VfsrvBx+2frMPuFlDJJDx1cW/0SikmnQKL019lU9jGN04pExOhEBNpkHBvPxeNikQknbg2qeUSeiXq2XHk6Oc4uX+3LqcYOj1eBqRGcs8EKT/uriIlSkOSUcX3t43kmx0VZMfpMahlXPjyaixOD/dOzGFK/27IpRISjUqW3z2aAzUWNHIJMomYKa+uCZw7y/fV8MPtI4nSKvhuR2VAOGrl041lxEcoyYrRIhWLkEnEJBhVTHt9LQ+f1xOn28s5z6/CoJFx85gMCtKiWL63hn8s2s7/Lu57SltgT1fC4lGYMCdB32QDS+8azfJ9NaRFa+gRr0dyzMVeJBKhCrGra3V5+GFXFef2SUCu1EP2JL9H0tEHQmL+cV//0oHJvLXqYGAnQi2XMG1QMnqVjLkzB7N0bzVF1RYu7J9It7BZbZgwYX4HFDIJ6TFaHpuchxdOmQHtqUTw+mh2uFGdohaZU0W0VuFfMKT7/RfSotV8OnsIbq8Xl8fLiX7VGrODl5cWse5gPUPSo7h+VFrQTq5YLGLe+lJeWurfyV22r4ZfDtTx/jWDfsu3dfqhjcUz4Qkq+9/F6kMWXvrY71kxb8MRvrhhSIetFQ63wItLDwSEI4CECDWCF+74pJDyJr/XV06cjhemtU93anuuHa63o1ZIuXVcJvkpRhQyMYWljUzsFferk9c8ghebS0AjlwSZ8/6daOsjExhzuEMceXqjkkuPez5IJWIyY7XcNzEHt8dLYVkTM9/byCOT8/hkw+HAolghFTM+N47pb63jioIUvrhhKD6fj0SjGoNKhtnhwaRTBDx6zu+bQL9kA2OeXo5L8KKRS3jvmkH+5KsOvOtsTiEgHLWyoaSBeIPyuBU7comYfsmGoNhzlUzSTmyI0vq9zWZ/sJF9VRaSI9X8v0v78N+vdrLxUCPXDEvF6vRw+ydHfXG+21lFuknLbWdkdbpqKDehfQ9vfoqR537az8aSeuZdV9CpAIj0GC2fzBqCS/Aik4iI1iradQA0Otxc9sZaMmK0KGUS3l1dgs0lcPnglHbikUEl45phqbzdYpkRqZbz4oVpRNiPQE2lPwVZFQV9p8GuhUc3pVNH0qjL4MF319AnKYLMGB37q838a9FOlt7Ul68viUBT+y0Zk89nxvuFlDXY0SqkPDG5Fy8uL+HjDYc5u6eJhyco0HbifhmlVfD2VQN5fUUxWw43cmZuLBfnd1080silfLWtnEa7m/E946hqdnD1u+t57+pBDM2IxuESuO+L7YGqu/8s3sXoLBMRKhkOt5fiGiuvLS9mbLaJvVWWINFR8Pr4YnMZd0/IIVrXXtiM1imot7mYu66UV6fn894vJVQ0OjA7PCRHqpnyymq8PjA7Pdz7xXbO65PARfmJJBiScbiFsHgUJkyYo/h8PmrMzkBf8IAUI9MLUjpsCYvWKrhvYg9mvLM+cOEqSIukqtnBf7/exYisaGJ0Snz9p0PjIUSF8/ytahOfOmGkfYxewfe3j+LTjYfx+XxcOjA5YIxr0im4ZED79rUwYcKE+T04XUu3660uFhUeYfHWCnrE67h5bMYJq03+CMwOD9e+tylobFD3SF6fnh/SULnB5mLOx4WBtJldFc3sqzLzwrR+geObHW4+WHMo6HG7KpqxujxEc3r54dWandjcAnKJGJ1SGnLh0WhzUdXsZF+VmT7dIojUKNB2Mlq63i3lvPcOUN+m3ae03kaT3YNJF/oxbsFLZVNwfHmaScOiwiMB4QhgT6WZwsONZMYGP9Gw9Cji9MqAoXxxjYUYvYKbPtyM1eVhYl48U0LEP3eFWouTeetKWVNcx5hsE1P6d/tbeh1eXpDCu6tLAuKJTCLi0hAt/X92fD4fdVYXbsHHS8uKAi02n244zBc3DOX9NSVIxSKmDkrmtRXFWF0Cr60opsnuJjdBT0qUBqVMglwi5pELenHNe/6WoGmDkrnm3Q2B9jarS+C2TwpZcOPQDsVVlVyCRi4Jaq3KjtWdMIXPoJbz1MV9mPneBvZV+Vv8npvat52JOPh9ceZdV4DTLWB3C9z92bZAyuLGkgZy4tt/eVfsr+Ha4d0xqOXUWZ043V4UMjFRanlIcTVKK+f/LujFY0t2Y3UJjMoyMSkvniveWofD7eXJb/fwyIV5nRJDok9QpSTCbyvxy4HglDBJCIHOoJYze2QaUwcmU2t1khcFovLNVGq7YxdMaKoridY3IzZlw+WfgtMCYgnItQhOMf+7pA/FNVY2HWrgzNxYHpiYg7ZoAfqvbwcgPf49Fkx7HZs6HqlYzOPf7mXxtgoAvtpRQ0aUgptGqZGpO7hAtiFGr+Ses3KwufxVsB0ZZR8PjULKvRNzeHDBdp78dg+p0RrmXlvAZxsPs3hbBfERSv5zfk/eXHmQpXurAf+1N82kZX+VhalvrAX8FVRp0VpEIugRp8fr87Gn0hzwns1LjAjq1jBpFVzYL5HL31iL1SVwUX4iT1zUG6/PR4zeL7Ae25a3ubSBEZnRHGm0U5D2x6Rs/96ExaMwYTpJtdnJuS+sorqlP9mkU/DVLcPbG2C3IT/FyPe3jWTxtnKSI9VEaRTc/mkhFofHvwNud/HtLjse4/WMmnE7kRoFMn00UunxlWuZREyiUcXtZ/526TBhwoQJ81fB4RZ4fUURry73txJvLm1g1YFaPm/rQXea0GBrbzx+sMYa5FXSFrtLaBdTvHJ/LXaXgKElIV6ECI1CSrMjuCrjdPOjqmi0M/3t9RyotiAVi7hzfBaXDU4J8gGyONy8vqKYl1v8MEQiePGy/kzIje3UQkUsFmFUy4PEI/AvNDpCp5Rx5ZCUgAkz+NvYKpud7Y49VmQC/4Lqy5uH8fPeapwuL0MzojjzmRWBn3+9rYIecTquH5V+UoutBquLOz4tDJgsrymqY1tZE49emPe32AlvS5xewTe3juCV5UWIgetHZxB3ku1jpyvNdjdri+t47qf9AFw7vDuDukfy4s8H+Hp7BXeNz+axyb0RifxCa0KEkoGpRoZlRJOfYmTW+5uIUMo4v18iYrGIgamRrLh7NEU1VhIilO0M+8sa7BwvSMqolvPCZf2Z89EWf8uZTsFz0/p2qmUsOVLNvOsKcLgFZBIxkRo5Monfw6jZ4UEpFQc2JLwtY3sqm7l+dDoewceiwiOc2ych5Fx8QEokGoWEvZXNXPPuRiqbHZh0Ct68cgC9EvRBAlKz3c3hehsGtYyv5gzH54Nle2uY/cEmHG7/tXdneTN2t3Bc8ajVsH1jST0KmYTe3SKICSG6Rarl3H1WdlC11NhsU8jnrrU4mfHuBg5UW1DJJHx/Y19+rEng4bn78Xh9mHQKPpqRSIatHjQm/78WpB4HC7ccYWFhOQBfb69gcr9EHk70oG85RlSxBdM7g+C2nSwuFgLCUSvLii1cNVyCscN3HUyT3YXXB16f+6STE2N0Sv53cV//eSEWM3f9oYAHUmm9jeve38jcawezbF81Ph9kxmhxuAXe/uUg5/aOZ3zPONyCl/wUAxN6xbG9rAmJWERugo4ko//GqJZLeXBSDyxOD1KxiJQoDfd9sQ2rS+B/F/dhZ3kzM97ZwISecfzf+b2I1ikQiwgSkPJTjOyrsrBkewWXD05B+9e61IQkLB6FCdNJFm45EhCOwB+/OX/z8fvotQop0Vo5ZruH11cUs6/Kb6B3Qd8Elu2twev1EaGSceuCgwhef2Ts0rtGExfx95rshQnzZ8flEWi0ubE4PWgUUiJUstOqLervTrPdzccbDgeNHaqzYXa4TzvxKEanQKeQ+j1yWpjYKw6dIvR9QSIWoZZLghZ8WoU0qMUkUiPnoUk9uGnelsDYBX0TAuEPpwNWp4cnv93LgRajWY/XxxPf7uXsvPhg8cjpCYqC9vng4UU7GZQa2am/ZZRGzn/O78mVb68PmK9eMqBbSF+ZtuSnGHn58v68ufIgEWoplw5Mpt7m4sut5YFjxCKY1Ds+5ONj9EqmDkwGYP7msnY/X7a3hisKUkJWl50Iu1sISucCWLK9gocm5f7txCOVXEpmrI7HLsxDJOK4Xj1/Vg7WWpn1wdHqxDs+3cqns4f4K9EHJBOllQdatYxqOWkmLUaNnB1Hmnjh5wMIXl9QIphaIcXqEpBJRBysszL/hqE8sGA7eyr9FRmDu0eiPF77mVTMsPQofrpzFI4WX52uVL0dKzI1WF18v6uS+ZuPkBmj5aaxGcgkYs574RcePi+XqmYnb63cg1QiYvaodHLidfyws4rbzsjklWVFOD1e+icbmD0qDbNDYPbcTYGqvxqzk+ve38hXtwwPeFIJXh8/76nmtk8KAZCKRSy6eRiPLtkd5IlzZm4sEcrjf58qmx1Mev6oYXtSpIovbhjaTkCSSMSMzYllyZzhfLezirxuEfRLMoT0KK1udrC7wv+3EOHFI1Hxz28PBUSMGrOT+xcf4MWpfYhVBz/W6/MFXaMAFhYe4Z6CUQHxyP+mlbh9InoktJeIBqQaUatO/PcUBC97qszcMm8LxbVW+icbeH5aP7oZ1Sd8bCj0Khl6lYxai5OFW4Lfg80lUNZgI8OkYdqgFHz4kIpFXDu8O6sO1PLYkt2o5FLuPSubXeXNPNsitMZHKFl40zDAf1+M1ipYVFiO1+dlekEKj0/Jw+L0oJRJmPT8KgAWFZZzpMHOIxf04tlL+/LQoh002z0MSDEyY2gqM97ZQFKkig66Ov9yhMWjMGE6Sdt+7kSDiqxYHYI39E5wW4waBTeOSUcll2BQyylIi6QgLYrr3tuI1SVw+xmZTOwVx1fbKrC7BXYcafpdU0HChAnz6xC8PrYebuLqdze0TDrEvHx5PsMzon7zhUuDzUVpnY21xXUMToskJVKDMWyQ3w6xSESkWh7kWQN0KY3n90ItlzB35mD+vXgnB2utnJkbG7iHhCJCJeOhST14oE2y0UOTemBoIxpIxCJGZpn46Y5RrDxQQ258BBkxmpMSKn4rbC6BbUea2o2X1FlJiTqahuYWfAHRp5VGuwvfiSJ9WhCJRPRLMrD87tFsPtRImklDgkEZ+Cy8Xh9NdjdyqTioCsCglnN2XjxD0qOQikXolDJMdjdvXDmAl5YeQC4Vc/eE7E5VufRM0LcbG5wWifokPY/EIlG7JC2VTMLfOWj1dG2fPRaLw7/pACI0Cgm6E4gTAJ8cI4QDfLujggcm9WhXTSiViMmO03FxS0w7+Kv1zmkjctaYHVzy2loOtghKcXolb88YwGVvriM/2cgjF+ad8FqhkEmIPQWfucvjZd760kAC2LqD9Wwoqef16QPoHq3B6hJ4/Js9geMf/nInC28axtx1JYzPjeeDawcjEkFZgw05XpyC32esLdVmZyAVFPwtzU9/fzRxrEe8ntI6G4tvGc5/v9rFhpJ6zu+TyDXDuyM7jogmeL28v6YkyLD9cL2dZXtrQtpJRKhk6BR6onUKrE4Bt+DD2rIB1Za2lzaRCJocQrv2qb1VZmweX8vxfpuN3RXNpERrkIhFeNuUjknEIpBrA/9vHXgz9X1voLDEQ7rJw9Lbh3Luy2uxOP0i3NSByUg6cTGps7q48q31AS+izaWN3PpxIW9eOaDT8xKv1+c3ipdJAp+1XComKVJFUY0l6NjMWB3/Pq8XpfVWNHIZK/bVYHcL/O/7fYFjZn2wiY9nFRCxuoQmu5uKJgdLtldw9bDuKGUSchP0PHxeLo02F8/+uI9eiQZMOgVquTQo9XTjoQbu+nwb710ziO9uHUmd1cXWw43c+OFmrE4P/zqn59+mTTgsHoUJ00mmDUri3dUH+fd5PYnWKth0qIF+yUbqrc4TlmWadEpuOyOLsgYbT3y7l5eXFgV2M77YfIRbz8jkq5Yy0Rj9qb/4VJsdFJY2IhaL6NMtosO+9TBhwnSdequTOR9vaVkAgMPt5baPt/DDHaOI1f92Cxib08N7q0t49sf9gbE54zK5fmQa6i4aVJ7umO1umh0e6qxOTFpFy8565z/bKK2cf5/fk6veXh+YdE8dmHRaVd60YnZ6uG/+NqYOTCYuQsn6g/X8Z/FOHp/SJ2QViVIm4ZzeCQzLiGZvpZnsOB2RGnmIxDUZOqWM9Bhtu+c4HdArpYzNMQUtECRiEZkxwT4barmEngl6dpYfTfS5sG9il0xZ1QopaoW03Y64v+Khik82lNLNqOLO8dl0M6qDfEiMbRbRepWMM3NjyU8xIhbRaTEuVq/kjjOzePHnA7gELwVpkcwY2v24xr7NdjdOj9+Q9VjRU6eUctOYdJ5pcy24a0J2UMVWmNOPeqt/wfrhulIALs7vxj1nZZ9wTpkZ2/47nGBQsXJfDX2TjO0W6lmxWl6+vD8vLT2AVCzi7gk5QX5vP++pCQhH4K+e+WFXFcvuHIVYLP5dq9cabS7mrj3qz3bz2AxGZESz9mAd903ModbiRCIWBQnIP+6q5Pax3bl7/h7eXV0CwPMXphEh1VDtVpIWrQmqtEo0qIK+0z58uFuE1znjMsiK0fH+mkMopGLum5hDnF6JRhHaf60tXh9BHQqt1FnatyK3UlJnZdoba6lqdiIVi/jnOblM7p+Ito2IGKtXkhGj5UC1BafHi0LmT+CztKlOHZVpoqzeTvdoLVXNDs578ReqzU5mjUzjioIU3mkx2waYXpCCRquDC17FW3+QdTFXMPPFrYF744yCbvwwZxhlZg8Ha608tmQ3T1/c54QCkM0lBISjVjYdagh8tiei3uri2x2VLN5WTq8EPTNHpBGrV6JXyvjnOblsKV1Nk90vzF2U3w2nW8AleBnUPYozn1nOtEHJHK63tXve1UW15CVGsOqAvzqzujm4tVinlOERvFyUn8ST3+6l2eHmyiGpPH1RH+787Ghb4bCMKLQKacv9VYzHG8G9Z+UwMDWSSO3f51r715pdhgnzGxIXoeSH20fx+aaywA7vayuKmTE0lWuGp/LuLyXERSg5v29iyN5ruVSMD/huZ2XQuFEtw9LiQzE6y0TiKU5H899EVlHV4s3QWrJ5PK+mMGHCnJhmuxury+9fNnVgEi+3lMsDNDs8uDwnnjC5BS/1VhcHqi1EaxWYdIqQZeuhMDs9vNLiAdDKa8uLuGxw8l9KPDI73CzYcoSHF+/E6/OLBx9cO5j8lM46MPirTfJTjKy4ZwybDzWSHqMhPkJ1WlXetFJrdrK7wsy/vtwZGIvSyI+b5NJa3t+2QufPhkImYfbIdCqbHCzZUYlJq+CxyXlBFVTQkugzYyCvLCti6+FGzsiNYerA5C4n+hyLIHhZvLWcf7Z87ptLG1mxv5bvbht5wvtlZ7+zrRjUcq4d3p1LBiQh+HyoZOIOBQOv10dpvY2HF++kuMbKxF5xzBqZFrTLrVFIuWpoKmf2jGPr4UbyU4zE6hV/+dZZh1vA7HB3GGd/urP1cCPvtzGy/3jDYUZmmTg7L3TrYyuTesczd20pRTUWFFIxadEa+iQZuOS1NTwxpTcX53cLCnOJUMmZ2CuOwd0jEYlod66VNbRfcB9ptKNTyZCE8EVrtLkoqrHyw65K+icbyU8xnrKqC4lYRIRKRkWTg3N6xxOtVXDp62sDP581Io3ZI9MCnmcAeYl6hsiL6HlNFrurbfTvpiO6fjNSSQJSr4jHpuTxwPwdFNVYSI1S8+jkPNq+LaNazvWj0nl3dQm9uxmY+d7RBORVB2r56Y4RxEhtwPENkWUSMTOGpjJ/85E2YyIm5sWFPL7R5uLBBTsC83OP18fDi3dyZm5skHgUrVPw0XWD+WpbBXsrzcglYt6eMZB/LNxBca2FsTmxzBjWHZHIf71YsLmMByf1oJtRjVjk/71GZ5n4paiOPt0MODwCFq8MXd9p1Daa+edrG4Iqmd5bV8Z1I9MD1WrXDEtF3UHla1s6Mk4PZQJ+LE63wFurigOJoGuK6li6t4aPrysgWqfAoJbxyawCSuttRGkVmHRyVDIpqdEiXvz5ADaXQFWzI+Q9MCVKw5Lt/rWXVCzinD4J7Y6xOAWueGs9UrEIqVjEv77cyTOX9mVEZjQr99cyJtvEzOFpAYE/UqMgUqOgb5LhhO/tr8af70obJswfhFouRSX38Oaq4qDxD9Ye4pze8YEIzXd+KWHRzcOC+pub7W7cghejWs743Fi+31UF+C9iD03KRSoRsWSO33z7VJc9zt9cFrgxAVQ0OVi8tZyZI9JO6euECfN3ot7q5LEle/iixbtkcv9uPDe1H9fP9ftQpEapO7VwO1hr5cKXfglMts7tHc9/zu/VqRJvn492Jsouwdvp9p0/C2aHh/9+vSswubW5BO75fBtzZw7qUlqaWi5FLW9fbXK6EaNXopCKg9oqhmVEof6dq6S8Xh+NdhcyibhTrTSngmidgkcn5/GPc3IRiUREauQhFx6xeiX3T8zB5hLQKU8u0edYGuxu5q4LTqRrtLkpqbV2KB65BYEas4vFW8tRyiSc1SsOk1bRYaR5WzpTyQBQa3Vy8atrqLH47+OvrSjG7ha4f2KPoFZGg1qOQS0nN759S9xfkRqzkxd/3s/yfTX07hbBfRN7dCpG/XSirQF7K9YSKXwAACAASURBVD/vqWZir7gOk3zBbyb8+ewCzE4PjXY3WoWUXw7UIhWLmLeulDN7xAbdQ5rsbqxOD06PN6TIdmG/RF5aeiBIQJhekBJSOHJ5vCzYcoR/L94VGJvYK84v9HZCjHd5vDTY/G2mPp/fhFomFZFkVOP2+Ig3KPnXublc8dZ6pvTvxu2fFgY9/q1fDrLghqEB8WhUlon81Cj0Hg+5Pz9KrqMBzKkw4g5QRiB2O3ln1UFuHZdBrF5JjcXJ26uKeWxy78BzyiRiLuyXyJC0KF5ZHrwh4/H6+HpTETdKFsLgG0AXe9z3Z3cLvHHlAOatK0UuFXPV0BRsTk/IY10ebyDpqxWvD+ptLuKPOZdNOiVXD+uOz+dDJBKhV8m4d2IOcomYzaX1LN1TzTXDuyP4fIzOieWB+dsDaXSjs03cP7EHWoWUp77bQ0WTgxX3jGl5ZlG7yiifz7+xlRuvRyIWcf2o9E61gRpUMl64rB+3flSI2ekhVq/g2al9O7WuaXK4AxV4rRyotmB2etCrZLy16iAvLS0iSivnn+fksrm0gS8LyzHpFNw0JoMDNRZ+2FXFx7MK+HlPdaCCdWSWif5JBrpHa0g3aZlekBJUPdrKuoN1PDEljySjGodbQCQS8c32Cp6+uA/els98R3kTxTVWxvWIwaRV/KU26brC3/NdhwnzK/AcEzkheH1BN/mKJgfby5oY10OJwy1QVG3h0W9202z3MHtkGv+9oBfXj06ntM7GwFQjkRo5qpP0OegMVSHSYKpDjIUJE6bzrCuu57NNR01vP99UxrD0KPp0i0AqEfO/i/sQrT3+RLrJ5uY/i3cF7dIt3lbBnHGZIcUjQfBSZ3VRbXZiUMtQSsWc1yeeRYVHk1Em5cWftG/K6YrN5feCaEtJnbWDo//8RKhkvD1jIHd+upXKZgdD06N4cFIu2g4Ms38LGmwufthVxdy1h4jRKbhvYg4pUZoTRm+fClrb61qpszjZWtbIrnIzZ+bGkmBQolPKUMgkXfa1abK7Kau38f2uKvokRdCnmyGwsJFJRP7/rgr21QgVG95KZZOT8c+swO72f4ef/2k/S24dcUorextt7oBw1MqXW8u5eUxGhz5Yf3Wa7W7+sXAH37ZUcpfU2dhdYeb9awa1W3SfzozJNgXarFo5o0fMcYWjVsxOD1NeXUNNS5vUtEFJPDgplzVFtcikRx/fYHXx7E/7ea/ldVKj1Hx0XUHQ5xQXoWT+DUN5+vt9eLxe5ozNJDU6dBVjo93FMz/uCxr7ZkclD03KDaQ7doTd5WHl/loeWriD168cwMz3NgT8RM/Ji+PO8dmU1ttIi9aw9K7RON1CoDK/FcHrQ6eUsuDGoSikEvQqKfh8WJXxeMc9itdpQ6zSIZVrUOEXpO+d2IOb521mZ3kz43Ji+Me5PduZdBvUcnRKKYNSI9l0qIGyhqM+SQk6CexaBU4LjP8vyEKfY26PQGFpI0v31pCfYsQjeLnn821M7p9IbkJEu+M1Cimjs0zM33K0Ukkjl2A6jtjSem4Y1HL6JxuwuQQyYjRoFVK0Shk+n49VB2oDwhH4zfinDkxixb4aSups3D8xG4lIxI+7qkgxSLkkP4731h79HdJNWmQiH29eNQCFVNzpTe0Gm4uV+2t57cp8JCIRNpfAN9vLidcrMJygFVOEv+LsWF9CmUREk93Ntzv83/We8XpqLU4e+Xp34Ji1xXV8OHMwK/bVcOvHhTx8Xk8SDEqUUglahQSL08M5efGIRJBkVBEVYn41IMXIw1/uYlmLoNvNqOLtGQMxquWYHW6ufW8DhYf9nnyPLNnNp7MLyE85fiXaX5W/1gwzTJjfGK1Swl3js3jmx/2BXeHxubFsKW0IeXy91cWFL68OVAfc/NEWXp+ez/iecfRP7nzLxa/h8sHJvL+mJLCjJBGLuHRge+O+MGHCdJ6le6vbjW053Mj71w7C66VTlUMuwUtFiFjvOquLzBDHH6yzMuWVNYGe/xtHp/PAxB4MSIlk2b4aRmWZmHRMMtXpjsMt0GR3I3h9KGWSkO0/armEOL0ykJYDMC4nBulfNNpEKZNQkBbF4luG4fWCQib+XdvrfD4fP+2u4p7PtwXGVhfV8fOdo3/3MIcGq4u7PtvK0r3+Cf3T3+/l5cv7c1bPuE5V97TFI3j5bmdl0Pua0DOWx6f0xqiWE6HyJ9JNfnl14P4+NtvUYdy4x+vlzZXFAeEI/N/dH3ZVckVB6gl/H7tboNnuxuvzJ6129DcOVSnSzajqVCvIb4HP56PW4q8c0f9BqZJ2t8D3u4ItAPZXW6hqdiCTiIk+zRIUOyKvWwTXDEvlg7WH8Png0oFJDOoedcLHWRxuHlmyOyAcAXy0/jCfzCpgXLYJn88vuhpUMqrMjoBwBH6h7dmf9vPwuT0D4qNaLqVvspGXLu8P+IhQHf96Iwjtq1t9nLjitdnh4ZaPtnBWrzgWFR4JCEeDu0dyycBkpr+9nrIGO+kmLa9Pz8fp9nJO7wQWFh4VNvonG9h2pIluRhU7y5v433f7UMjF3D0+m21Hmnh9RTEyiYh3rx7EkLQoxGIR3aM1fDhzMDaXwJ7KZvZXmZGIRGhagmzEYhEWh4caiwPB5+PBs3sg+Hzc8/k24iOUDEuUwPcbwNnsF5BCiEd1FidbDjfSaHMze2Qa+6rMPNZi7D0iwxTy89AopNx3dg4Oj5cfdlWSGqXh6Yv7HFewbou/2jB4zOP1sa2NcNTKzvJmbhmbQYxeSaxeEajkGZBs4JXL+5Col/PN7gZ6xam5YUwGi7dXM70gpUvVNXa3l3d+KQnyV5KIRUwblMKJmruiNP6KopnvbwyYVE/pn4hWIUUqFpFh0lJUY2VElonFWyuCHmtzCVQ2OZg6KBmnWyAtWkOiURXY7IjWQXyE6rjpixVNjoBwBFDWYOej9aU8MLEH5Y32gHAEfoHP6fGycn8NxTVWRmWZMOnkaH7HDZ4/krB4FCZMJ6m1ONlT0YxeJePrOSNYtrcatVzCyCwTk55bGTguNUpN/2QDdpeHneVN7dpK5q49xJD0qN+tDSDRoGLBjcN47qf9iERw27hM4sNpbmHC/CrOzI3l043Bcdtjc2JOOOlui1Et45IB3QITTPCbBqeF2PFttLl4aOGOgHAE8PKyIqYNSubywSlM6d8NpUzS5QX1qaZ1QQz+Re/x2nLMDjdLtlcEqq8GtEShxxxTtRGllfHeNYN4ePFO9laaGZ4RzX0Tc/7Sxv8SsahL78/u9tBk8xuKR2sV6JXSk65obbS5+XBtcPuAzfXHJIGaHe6AcNTK49/sYWCqsct//wabK5Dg1Mp3O6v4xzkejGo5guClrN7Gx7MK2F3RTIxeidvjxXtsrFErPoJaC1txuE/sddZkd/H5pjKe+m4vDreXsTkmnpzSJ6TooVFIuWF0esDfTCkT88gFeX9Iso/V6WHToQYe/nIn9TYX0wYmc93ItC57Pv1aRIBJpwiqrJZLxHi8PjYeauCsXqE9Zk43IjUK7hifzexR6fh8oFVIgrxuOsLh9lJU07760unx4gNu/6SQ8kYHN41Jp3+L/1WrIfPZefGMyjK1eEUFL6Q7s/EQoZQxa1Qaz/xw1Jx9eEZUpypezQ43To8XnVIW1Cp1/ah07vpsa8BsuqjGwg0fbuKNK/O5cUw6KVEqVhfV0T/FyNQBSTQ53HxZWI5RI+eV6f2567Ot3PzRFj6ZVcDHG0pptnu4+7OtLLp5eMt54qDJ7uaadzcEKopi9Qpenz4Ai1Ogm1HFuoN1QcLF2XlxfHn9AAz2w0QvmOofTBkG8vb35wari/vnbw9YUryyvIiHJvXg/D7xJEWqyThOSEGMTskTU/L493n+Vt3/z959R0dVpg8c/96ZO30mvSekESD03hKKqFhQxC5gQ6yra1nbqr/Vtayrru6qq64FV13byoIUxQYqCkrvEEoIARKSENLL9HJ/f0wyMCQhgwQS8f2c4zlM5Rpy2/M+pa1gdag0ahWT+ify+ZbgAMuZ2XEMblq0PlTv4N8/7QVgXVEteyoddIsy8/SF0RxqdHLTBxt5ZdqQ4y7L0qglzsqO5fqcDHSyihqbm49X7wshrAgqlcTIzGh+uP8MNhfXkhptJDXKSIRRi8vj456JPdl8oI4aq4u4Vo6TSREG7pvYA1mlwqCVqbG5kJCINvmDg+1lqe6rbNn3q+BQIw6Pt8Ux/c8X9eX1H/awfLe/AbdKgvdnjmBMj9aDhKcbETwShBBUNTr53YfrWbvPn2GkUUvMvS2HASnh2FxePr09h49XF9ErwcLYHrHMWr6XgkONXDY0hWcu7c8j87cGTkhHRsNPBaNOZmC3CP45dRBInNLSB0E4XQ1Ni2JGTjofrd6PhMR1OWkMSDm+xomyWsUVw7qhUknMXXeApEg9f5rUp9WUapfX1+rFTZXVRbcoY5eova+x+qfk/OuHPXh9ClePTOXOs3q0eWNZa3Pzx0+3Bh6v21/Di9/m89iFfYNuanSyTEaMkRevHIjbq6DXqE74Avt04vJ4+Wl3Fbd/tB63V0GrVvH6NUMY1zMGjfr4s0I0ssofJDpqGnhnZHN4WgncONxeFPyBDJvLg0UfWvaLotBqE/vmv6LG5uaFxfkUVlrJjDEFysU+uWUUsa2UoclqFTeNzWDu+gOB7TRp1e02OwZ/6fhTiw6XXXy/s4IPV+/njglZLa4Pwg0abh2XydTh3QINYSNDzEzoaNVWFzPePTyx8PUf95AQrueaUWmnNBMq2qTlmUsHcPP76wJTt35/ZhaLtpTRLfLXU7YG/iD78Tb7DjNouHBAYtCkTZ2sIivOzKSXl6HTqPnn1MHkldbzzk/7eOvaYdTZXehkNcsLKnnhm10khOt5fHJfMmJDK0d1uL3U2lzsr7JxxdBu9EsKZ9GWMkZkRDGxT3xIAUSLXoNRq2ZZfgWPX9SXzzaXAv7s0qOnlOWXN+LyKnh9CteOSuPqkWlo1RIbi2uZ+Z/DQZ7/rSvm+csHMvWtVazaW03fxHBWFlZxsN6BoihUNTp57+e9mPWaoFK08non3+QdJNKoYfLAZJ5atJ0j2wV+ufUgj0zMIGb2ZHA1QOpoGP9H0LaszbO6PIHAUbM3lxWy8I5cIgyads/PR5fqhsru8gYGKTTvf26vD7Ne5s4zs/hw1X60sopbx3VvUf4nq1SA/3h4/9wtvHDFQPY3uKi1wdvXD2+37L41Bo2aa0alc/cnG6mxuekWZeDNa4YSE2JwWaOW0Mn+83usWYfT42NjUQ1RJi2FFY387fIBmLQyFw9KZuWeKhqaekmNzYpBr1Ez8711/GFiT3aU1fPuz/swatU8dH42uVkx7f58c7OiUUkE9f26YmgKFr2G9BhTIPtZJ6tIiTQEAkfg/8xfvtjBRzeFdUpQ/1Tr/KtNQfgVOFjvCASOANxehWe+2sEb1wwlwqgl2qTl5nGZ+Hxw1VsrKa72n6AWby/n0Qt6M7G3v0l2lEnLHROyOiXNO5TVrJPB4/VRZ3ej16hPeBrOKWetApUaDL+9aQrCsUWZtNx/bi9uO6M7Eu1n2Rzre27ISeeSwcno5LYbE4fpNVzQP4F/H5EObtHJJHWhLMKCikb+vuRwL4x3V+xjaHokFw5oOdmk+f1HW7O3BqvT02JFXCurSTiO5ti/JbU2N/fP2RzoC+Xy+rh/zma+vmcc8WHHf64x62QeOLcXP+2uDFycj8mK6ZSb8jCDht6JFnaUHW4qe8u4TCTg4Xlb2FZSz4TsOH53Rvd2A4oRRi23jMsMyj4akhaBqakRuUatIi5MhyRBTvcYqq0uFm8/SNRR5WROtxeVSkKjVpEcYeCbe8bx758LMcgyM3LTiQ0hyLblQF2L537aXcmMnPRWy9eam2F39jS99ftrODqe9/nmUi4alNRqE9qTRa1WMSojiu/vG8/GotrAzdxHq/fz3b1nnLLt6CxaWcW1o9KwubzM23CAhHA9f7m4PzU2F7V2D29dPpAnF20nr7QegFnLC/nn1EGkRmkYkhrBdzvKWbGnikv+9TPf339Guz26FEVhY1EN17+zNpBN//zlA3j64r4Yj2NBMsKg4d0Zw7ln9ibW76/hzWuH8v7Kff5SQ7M2UMYG0D3WxI7Seu6evYmXrhrE2KwY7G4vb/+0NyjIU1xtp7zeQbcoA91jTMxrGmJxbt8E9Fo19XY3e6tsrU4yrra60KolFEUJGnvfzIkG7lwLPi/IBjC1XlLYWnKiy+NDVksnbWGntNbOS0vyyT/UyOSBSVwyOJkokxaNWsXBOgdldQ6ev2IgHq/Cwk0lZCdaAp8NN2j4/YQsnv3an/XcXKL11JR+hBk0VFud5Jc3UtnopHdiWOB72+PxKdz1342B80ZxtZ0H5m7h/ZkjiA7hvmdbSR3T3lpNWrSRxy/qy60frA/8u8zMTSfGrOM/K/fx6rTBzLs9h22ldcSYdHSLMvLq9wWoJImyOgfPfX34GH/bhxv49g/j2g0exVh0fHjTSJ7+Ygd1djczctIZ25RJFGvRseCOXN79eS9ldQ70rZS+NTo9+E6zYSVt+ZXdyQlC5zg6Yg/+CUBen39V465PNrL1QB0vTx0cCBw1+2h1EW9fP4zrc9LpEW8mpp2mcaeTqkYn/1t3gM83l9I91sSD52WTEmkIqRlkp7LXQOGPsOJl0Fpg4hMQm91mk0Tht+mXrBi3Rla3n0mj16i5fUIWPmDRljJSo4w8fXFoU9maNfcqsTo9GDRqwgyaDm24u3Rnyz5Qi/PKObdvQqsXnhnRJiSJoBuB4emRyOoufnzoYtw+hXqHm7E9YugRZya/vJGf91QGMjJ+idQoI9/eN54dZfVEm7QkRRg6ZUU1xqzj/ZkjmbOumK0ldVw2NIX+yeFMn7Wa3Yf8wcfCn/ZSXu/gmUv7H/MGQSurmD4ilZ7xFhZuKmFIaiQXDUwiuumcHG7U8Mwl/dl5sIEFm0roFmlk4R1jAjfWjQ43eyqsvP1TIdEmHTePzSQhXE/3ODNPTumHBK1Op2rNgJSWzXNzs2K6/AJL99iW5Te9E8MwdMKCmFEnE+FTiDBoeO7rnchqFXNvyyE27NSW0HWWaLOOeyf25KaxGcgqiSiTjvzyBiw6Gb1GHQgcNXtzWSHTR6SSEWPiofOzWbmnijd+LKSworHd4NHBOgcPzdsa1IbhoXlbGdsj5riCRzqNmmHpUSy8IxefAgatitGZ0YDCW9cO49YP11PR4CQl0sBfLu7PX77wZwM9/lker04fwsai2lYDNYrin7oWY9Hh9SlcMzKVu8/uSZheQ4PdTV5JHTfkpvPein2B46IkwUUDkyits6PXqrlqWDde++HwpLXusWZ/4MfSfiahSatmaFok6/cfXmS+ZVwmEcdRxn48DtU7uPLNlYFMqk3FtVQ1OrlxTDpGrcyZ2XH8tLuSm99fh1qSuD4nneyEw8EjnUbNVSO6MSw9kiXbyxmREcWgbhGEGTRUNTqD+syZtGoW/j6XrDhLq9tyJLvLGwgcNcsrrQ/pXFTZ6OThpt+x6SNT+ceS/KCA3js/72Pp/ePpnWDBoJVZs7ead1fso9rqv6b55JZRfLm1rNXrkO93HSIr/tjbb9TK5HSP4f2ZI/ApCpFGbdAUz4RwPQ+c2wu3V6HO7iYt2sj+qsPZ4NeNTvtV9Zs8EV37LCUIXURGjIlYsy5o4snM3AwijVpW7Kni54IqjFo1WrnlhaNBqybcoCGzlYuu05nT7eXt5XsDY0+3l9WzZl81n985hriu3qukZD3Muf7w439PhDs3QERq522T0GXVN41BVvCn37fV+Lba6qS83kmd3U1mjImYEEd6N4s26/jjedn87ozuaNSq417p31dl4+pZqyitc6BVq3jy4r5cOCCpQwJgAKMyowPjk5uN6RHT5oqlzeXhiYv68sI3u6h3eMjpHs30kaknFPT4LTLIKubcOpp1+2vYWFTL2B4x3HN2D3StnI9CJatVxIfpO3Rq2C8Va9Fx6/juuL0+9Bo1RdW2QOCo2VfbDvLYhX3aXV2ONGmZ2Cee8T1j0ailoIUMRVHYVFzLXZ8cHg2+aEsZ82/PATTsKm/gstdXBl6bt/EAS/4wnvgwfVMJSOjiwnT86YLevLDY3/NoQq9Yrh2ddkIl7XU2FxWNTraX1tM/JZxok46wDr6ZSYk0cNWwbsxe569pTI82cvuE7p2STQ3+DIozsuMY0C0CtYrj6jl3OtBr1EE/+1izjnP7JrSaAeH2+lCpJOZvKkFCYlL/BBZtKQupBNjtUyittQeyd0pq7Xh9Skj9vY6mVkkt+toBDEyR+eLOMbi9PlxeHw0OD1cN78Y/luRTa3ejUatYsr2cP57Xi1WFVYdbQUQYGJ4eyZisGPQaFfN+l4NFf3hhxKSTuXV8JlWNTj6+eSSv/7AHn0/hhtwMUiIN9E4Mw+3xMaBbBH+e3IelOw+RGWvm4kFJ2I+YhHos0WYdb147lEWbS9lQVMuUQUkMSY1s9Z6gI9TYXEEleACz1xYzZVAyRq2PlEgDT13cj4cmZQcyo4+uPog0ahmWHsWw9Chw28FWAQU7OagfHNRnzury8tcvd/Ly1EHtHl8NWjURxuCJaYO6RYS0IOTzKZTV+odixFp0FFe3LNPfX2Xj9//diNXl5aKBSczMzeCR+f7S9x1lDXh8CpmxwdmZ0SYtZ2bHU1RtQ8JfGldS68Dj9ZEZa26RKXr0IonD7cXt9ffpktUqZLU/6+vlqwaxYFMp+6tsTOwTT4RRQ53dTazl9J+AKYJHghCCWIuOhb/P5V8/FHCg2s70kamMyIhCpZICI6NtLi/VVhcjMqJYs7ca8DdRe2RS719VDWxVo5P1TTch5/SNJyPG9Ism/dTZ3cxdH9xQuLzeSY3V3bWDRy4rrJkV/JzXDbuXwPAbO2ebhC6rutHJX77cwfyNJSgKXNA/gSen9Guxz1c1Orn3f5v5sWmaR6RRw8I7xpAa3c5s46McfbMQqlqbi4fnbaG0abqby+vj/+ZvY3yP2A4LHvVLDmPaiFRmry3Cp8B5feM5KzuuzfdHm3VsKa7ltauHoJPVbC+rZ1NxLX2Swjpke34pl8dHnd2FrFIdV2ZXZ5HVKt5fuY/PmibQfJN3kIsHJfHklH6du2EdSK2SUKv8v/datQpZJQX1Q4qz+MvNQtXaTV1lo5M3lxUGPVdSa2d/tQ2TTm4RGK23e1hdWM1Fg1ovyzyWcIOWq0emMXlgUrvT1kJhc3n4ZG1xUPP9Zy7tz6VDktG1MV3ol4g0aXl4UjZ3nZUVaHwcSpneyXaqG3Z3VZEmLY9c0Bub00P3WDN7jigNnpGTzpdby+ifHM6eCiufbS7l9xOyQgoe1dtdzPtdbuB6N9qs5dWlBeg1HRccUatVyGoV3+SVYXV6qba5Kau18+a1Q5m1rJANRTVUNjrRyBIf3zSSL7ceJDlSz4X9k7A6PchqFWa9JhAkac5IkST/VGS3T6He7uGxC/uw5UAdz3y1gwnZcdw3sRcOt5dP1hThcPsYkhZJWZ2dG95by9f3jAt5+2PMOq7PSefqUUrIQeC6poUn8PesCvVeobV9Osasw6covPp9AQ+c24sYS4jBY0WBopXw0eUQnkrV2I9avKW83tFqv7ijScBLVw3i/+Zvo6TWTu9EC49f1KfplWMz62QmD0zi4zVFrC6s5pw+8Xy4+vDghgijPyBobQrofba5lKkjumFqei45Us9L3+7izWuHsXRnBbvKG5AkeG/mCB7+dAtrm7LCxmTFcMu4TK57Zw0pkQbm/S6HuDA9iqJQXu9k7vpiqqwubsjJAPw/z4P1DmbkZjAkNYIIoxZJgmmzVnN+/wSyEyzMXX8Am8vDRzeNbP/nfRoQwSNBCIEkSSRFGHj0wj64Pb6gCP64HjGoVRJen8KjC7fx4pWDuHFMBgeqbZzZO544S9sXNY0OD41OD26vD4NW3elNYGtsLh6Zv5Vv8g5PjHjyor5MHZF63Cso/tWl4GwtINBfostSaVrPMArvduq3RQiJ16dQZXXidPvQyf4b/lPVlH59UQ3zNhweI/zF1oNM7JPAxYOTg95XVG0LBI7A35z3xW938ddL+v/iqVjHw+XxBfWNAf/PrdbuJrGVXhC/RJRJF7ixVJRjZ2H536/hxrGZPP5ZHmV1Dq4YlsLVI9OOO4ujI1VbXXy0ej+z1xYTZ9Hx54v6kh1vaXdSS2eyuTzU2Nx8cOMItGoVLq+PN3/cg83l6fDMk67Aope5/9xePNsUKFGrJJ69tD9RJ1gS7vUqrd6UqVUSKglMreynxhMo+zRo1R1WNtpg9/CPI/qNAfz1ix2cmR33i/peHUtz/yWha4oyaYkyafnklpHM31hKfnkD5/SJp7DSSsGhRu47pxdXvrGSG8emM6l/YkjHiGiTjiuP6OeZGmXkk1tGdXhmYr3djU+R+G7nIeIsem7ITWd/lZUnpvRjcd5BxveMQaNS4fX6GJIaQVachfmbSoiz6BmdGRX4nspGJ7//eAOrCqvJ6R7NTWMzubupF49Jq+aV6YNJjzaxoqCKW8e5iTLpePqS/tz+0QZeW1pArFnHK9MGH3cZkiRJaEIsuz5U72DBplJe+W43To+PS4ckc+/Enq1mZR1NK6u4eFAyCzb5rz1klcT95/ZkX5WVRVtKufvsHqFvtLUCFt3r7+tUu49eCSbMOjmoZOzqkakhZTo3Oj28trSARy/sQ6TR36D8vv9t4cMbR7T7WaNO5r5zehJukPlhVwXPXT4AvUbNl1vLSIsxce/EnqwqrOL5ywdQZXUxZ10xlQ1OLHoNE7Lj6BVv4R9XDkIvq/nPzOFYXV7MOpkl2w8GAkcAPxVUcm7fBAamhLP5QB2fbS7lprGZ1NvdTJ+1isJKK5IEkwcmMePdNdTb/T+HZbsreeOaIZzXL5EIo5bz+yWQFmUkLkxPeYODSwYn/6oSBU6ECB4JQZL17gAAIABJREFUwnHQyeoWF5exFj0f3zSSp7/cQaPDQ2mtnckDkwjre+xRsXU2Fx+s2s9L3+7G41PonWjh3RkjTvko5CPZnN5A4KjZi9/mc17/hOPOFoo263hySl+mvbU6UCc/fURqh2U5nDSyFnLvhrz5/pMqQNIQSBrUudsltEpRFHYdrOeG99ZSXu8kyqTlrWuHNqVKn9wgRL3DzYo9VS2e/6mgkimDkoJKYprTsY9UXG3H6fFxopUW9Q43DpcXvVZNmF5Do8M/hUonqwlvmspk1KoZ3zMmkJ3S/FxHr9iH6TWEhdicX6NW0zsxjDevHYrb6yPcoD1paf6h8Hp9LNhYwt8X+2/CD9TYufKNlfzwwBkkduFm3Wq1xA25Gdz9ySaqrS6iTVpeuHJgpwbhTiaTTmbaiFTO75dAcbWNzFgzEUbNCU/7Mutl7pjQnZvfXxfoq9I/OZw4iw6DVuaus3rwTd5BnE0r8GnRRgZ2a9m7qDN4FSWwXc0aXR5+I/1bf3MURaGiwcm6/TWoVRKDUyNaXKPFWvTcMi6TOpubPRUNONxeXpo6iD/O3UKYQea60ekhB5e/3FYW1M+zqNrGN3kHuSE3o8P+n3w+hZ8LKvnzZ3mB55YXVPDfm0ex62ADn28upU9SOBFGLdU2F5EmLZf86+dABmL/5HDevn4Y8WF6FucdZFWhvwLghtwMHp63JdCLx+ryct//NvPRTSOZv7Ek0GcsKcLAOzOG43R7Uasloo1a1CfxGqKszsFfvzw8cfGTtcX0TQpj+ojUdv9es07mutFpXDEshQM1NnonhiEhcf+czSSE64/vWKgo0Hgw8GdZUvHuDcN588c9lNc7mTwwiZzuMSGV2GtlFfsqbdz24frAcyMzokLOCo0waJiRm8GlQ1Iw6/zH3FvHZyKrVFRZXdhdXl5dWkBSuIGnpvQjI9bEf28ZSYRBS6RJ22Kohs+nsLGotsXfU1DRSHKkAbVKxdgesbz6/W7q7B7+dvkA3l+5n20ldRQcaqTe7iHapMWslymqtvH28r2MzIwm3KDhjjOz+MsX2ymqsnHhgER6J7TfE+p00cXv4gSha3F7fdTYXKglKRBhNmjVjMyM5r0bRuDzKUSatCEduKusLl5YfHilcEdZAy9/13JM9amkKApn94ri3txowjQKxQ0Kzy9veXMcqr5J4fz4wBnsOFhPSoSRWIvu17FiGZYMt/0MFTtBa/ZnIpljO3urhFZUNrr43UcbKK/3Z7hVW13c+sF6vrp7bEgreL+E2+uj2urig1X7GJMVw7tHTEADmNArtkVT+MFpEehkVdAN3tQR3U64wWJprZ3HFm5j3f4ahqVF8ufJfZm1rJAFm0vonxzOXy/pT1q0CbNewx/P602Dw8sP+YdIjzbxl4v7nVBfnI7SVY4JdQ438zYGl9o6PT7ySuu7dPDI64WHPt1CtdU/qajK6uKReVubevX8+tXaXFRbXZTU2ukRZyHSpCHc4P+vI6ePmfUasmLNzL51ND/mV5AUrqdfcnjg5rJbpIHv7xvvn5xq1JKTFdMlSrbAX846KjMqcMMM/lKdE8mMErqu8nonF76yPDCdLClcz4I7cls954UbNQxJiyIt2sm2knruO6cng7pFHNfvblGVveVzrfSkORG1dhefrC0Oeq7e7qGkxs7XeQfZUFTLhqJaSmts/PH8bF74ZldQ6erWkjpKa+3EmnWsOyLTJEwvB64PmtXY/BOAbxmXGbQg3NpiSlWjE69PIcyg6dDeXj8VVLZ4bumuCi4amER4O+fEMIOGlEgDm4praXR4UHywu6KewspG/nPDCDbur2FwWmRTOW879yM6MwyYCuvfhejubK5W8+jnm7h0SDK5WVp+zK9geX4Fr109pN1go0at4p/TBvH4Z9vZVd7AqMwo/u+CPiEHswoqGpn61ipqbG5klcSfJ/chwqghxqxlQ1FtoHR4f5WNLQdq+e7+M8iICe4n2xxY3XGwgYxoE5MHJvHpEdnh4C9d+8sX23l56mCuemtloEfTeyv28uFNI3nis+1EGbW8Nn0IBq2aaquTzBgz3+0sR6OSqLY6ueKNlYFz7svfFeDyKk29Bk//Y64IHglCiGqsLj5ZW8SHq4qIMGp47MI+9E8Jx9iUyt7eCr5/0pETm8uLXlZTZ3O1eM+m4lpsrpZjqk+VcJ2Pl0bZMC+8BqyVpMT05IPLP0bTygmjweE/2B6rgZ5eoyYxwtBhZTGnjCSBJd7/n9CleXy+oIkX4L95PnoVvqNUNDj5YdchqqwuCiusjM2K5dZxmfxn5T4UBaaPTCXOoqeywYFWow5k4WhUKt6ZMZx//VBAVaOLiwcnMyI96oQmD1ZZndz6wXq2lvjHfn+745C/Nj8nnfdX7efngique2cNc2/LQa2SeGT+VkZlRnHr+EwO1Tv4x5J8Xpk2mIjja7t02tLJatKjTWwrCZ5S1NqI567E6/NxqCH45qiszoH3NMg6qbO7eXVpAW8v3wv4+4L89+ZRDEmLPCl/X1KkHr1WzTm947HoZcKN2kC5hk6jJjnS2KHZFh0lyqTllWlDeHt5IWv2VjO2Z0yLzJKKBgcbi2qxOj2M7h5DrPnkZlYIJ4eiKPx3TVHQWHtJkth9qPGYJdvRZh3je/2yRbBpI7rx/qp9gUw2SYKpwzu2lF+jVhHdynV0tFkXKPmOMWuJDdMTbdLSWjzC7vaiUklMGZQUKCc/UGOnT2IY28sOH9czY0zoZBWxx8iod3q85JXW8+iCbRysc3DpkBRuG5/ZYaVJQ1s5hg1NiwwpO7/a6uSe2ZuCMp//ceVAlj84gWqrC51GzYKNJVw8OLn90kKtCc78P7AkQG0RqNSU1Np55fuCwFvG94wNCtS1xevzoZIkfn9mFnEWHcU1NhSfgiqE65xqq5MH526hpimQ4/EpPPH5dubcNpodZQ3M31ga9H6ry8veikYSmvoVVTQ42VNhxahVU9Ho5IE5mxmaFsl95/Tk3ok9+c+KfahUEneemYXN5WFcj1i2HKgNau7t9irMWVfMQ+f3IjXKxMPzt7Ky6Wds0cnMvyMHs17DvipbIHDUbP6GEm7ISSeug8uEuyIRPBKEECiKwpId5Tz39S7A30Rz+turWfbAGYHgEfgDTG6fD61a1WI1fX+1jatnraak1o5OVvHnyX2YmZvOO0dkLUzoFRdyyYfX50NCOq5pTe2x+Bph/nXgamqyWJmP6YvbYeonIEcD/v4au8sbeXFJPj5F4e6ze9ArIazNE57V6WlqZiidcE8KQTiaVq2iV7yFXeWH+/kkhus7tJFns2qri99/vIHkSANatYq1e2u4emQadreXd2YMR0Li2x3lWJ0epry2ghvHZjB1WDeMOpm80nqeXJTHZUNSCDNo+GHXIVbtqeKV6YNxe32U1NgpqbUzMCWCKJO2zR47Hq+PGpsbSfL3MWoOHDXbVlLP4NRIZt8yCq+i8J8V+7C7vehlFVsO1Ab1XQJ/yVsSXTs4cqqYdDIPnpvNqsKqwI3ZlIFJXWLi2LH4g15G9h0RRO0ea0J3GgQGGp2eQOAI/Jlgf1qwjQ9uHHFS+kto1Griw9Rd/t+8NbEWHfed0wur04NJJweVgFY0OLj8jZWBQHuYXubLu8aSEiUix782igKVRwSLrx2Vxjl945mzrpivtx3k5nGZJIbrO7TvX3Kkgf/ePIoXl+QjSfCHs3uS3MGrDha9hocn9WbV3qrAFLeczGhqbC6qGl1cNDCJa0alMXf9AV76djePXdiXFxbvYvF2f6uFWLOOrDh/FsqA5Aj+eF4v3vixkI9W7+elqwbxp4XbWLevmkHdInhySr9ASXdbaqwupr21KrAQNWt5IWa9zO1N005PVGaMiWtGpfLxav+AiZzu0Vw+NCWkgG693dOiZP7Fb/OJNPbjhvfWopJg6vBUqhqdoR3LTLEw9j5wNpBp05EaZQxklqkkuGlsBqEkKaskFa9+v5vrctIBkFUq/vFtPi9cPrDdz3q8Sospmr0TwzDpZCx6meQIAwVHvd7cJ7a01sFFr/5EVVNAZ2haJC9cMZBv8sp5e/levD549rL++BTYUFRNr/h4HjyvF59vDg5IgX//2lthRa9RBwJHAA1OD39fks/zlw9sNQMrKaJj97muTASPBCEE9XYPnx41OeyGnHQcbh+v/1BAUoSBERlRPPHZdr7dUc6wdP+BKyXSf3L1TzraSkmtP/XX6fHx6MI8lvxhHIu2lFFldXF+vwSuz0lH084R2ur0UFxt490V+4gxablmVBrxYfqOCSK5Gg8HjpodWAe+w43zymodXPKvnwM9IZYXVPLV3WPJTmg5Iamywclz3+zkm7yDZESbePayAWTFmX8zB1jh5Is263jj2qH87sP17DzYQGaMideuHkL0SQhU2l0eVu+tJqXWwOMX9eWTtcX8sKuCERlRvPCNP5h6Q046G4prKKm189xXO5nULxGjTsanKOypsPK3b3YFvm9sjxjsbi+PLcjj6zx/zwGdrGLubaPpnxLR4u+vsblYtLmUN5cVopNVvHXtMCKNmsBKHfgnkpTXOZj+9mosOplnLuuPXlZh0ctM6p/IR0dML4k0ajq855HL46PW7gIFLAYNhi7caLo1KZEGvrx7LGW1DsIMGiIMmlM2cc3nU/AqoU/qaRZt1vLv64dz+0cb2FXeQHaChX9dPYSYLlJSdSJsRzRtbVZa5x8TLrSklVVo5Za/ryv2VAVlaNY7PLy1vJBHL+jT7jWH0LWoVBLX5aTz8doikiMMTOwTz3XvrAlkBc3bcIBv7xvfoaW2Fr2GUZnRvHXtUIBjllV5vD6cHl+g3LM9nqYy8Dq7m0ijzPf3ncHm4lriwnSkRBpZnl9JhFHDtaPTmD5rFe6mlMo56w/w1d1j0coq4iw6bhqbSWxTMCHSpOXcPglM7JPQNCVM4dELe/sXXCVICjdg1h07eJRf3tgig/mLLaVcPTK1Q4bbxIXpuf+cXtw2vjuKAgaNipgQe4v6Wmlm5vEqgcltPgU+XlPEBQMSQ98gtQaMUZh9Tl6eOiiwiHJO33i0KhVhITRnDDPITBmUzO8+3IDHp2DUqpsC/e1/1qhVc2Z2HIu2lCFJ8NxlA1BJEn9fnM/AlHAemZTNxuKaQAPry4emEGPW4XR7eW1pQSBwpJL85/HkCAOTByZid3m45YMNLNhUQp/EMJ66uB/7qqyU1zk4o1dc0DWURi1x5fBuvPBNfquLE+V1DtweH0atmqtHpgaupwwaNY9f1PdXMZ21I4jgkSCEQKdRkRVnZvVefz+BcT1jmNQ/kXNeWha4iO0Zb+apKf34uqlR360frOf9mf7VUZfHx86y4FIIr0+hvN7BM5f2x6STySupQx1CaueeikamvPZz4ELh4zVFfH3PuI5ZKdWaQGcB5xFTmbqN8J9UmsxZf4Ajr9sVBT5atZ8np/QLKsGxOT08v3gXc9b5g26bD9Rx1Zsr+fbe8SetF43w25QRY+Kjm0bi8vrQqFQn7aZZrfKPCD9QY2d3eQNPX9yPd1fso6zOzhMX9fGvTC3OZ31TvwWnx4e7qVl8v+QwEsP1lNX5G2f7V297UG/3BAJHzZ954vPtvH39sBbZi5uLa3l04eFmos99vZO/XTaAOz7e6P9/V0s8PrkP/1m5D/CvlD0yfyuL7xmPQSvzh4k9Uaskvsk7SGaMmacu7tuhQbZam4tPN5Tw8rf5uL0KN45JZ+aYzC4zRrvR4aGi0cmKPZX0ireQGWtqkQ2pUknEWfTHPSDgRB2qdzB7XTF7Dlm5elQqPeMtIffDkiSJ7nFmPr55JG6fgkYldcmpL1WNTnwKRBk1IZdLRRi1xIfpgnqWXDI4GctpOEXuZDqyNKNZtdWFDxGE+zVKiTSw4PZctpbUMmddcVBjdKvLy7fby8mINdHo8DA0LfKY5VnHo71ePOX1Dt5fuY/tpQ1cNiSZ3KyYdm+o88sbmTZrFXV2N2qVxJOT+3DJ0BSMWpkaq4sGp5u5t43mw1VFgcAR+M+VCzeV8vzlA1BJoNME39Ka9TJn/f1HBnQLZ0RGNCogPcbIOX0TQupLk9RKuXJWnLlDs5p/6eTCcIOGfslhQSXWN+Sm89W2g0Hv215aT25WzHF9d6RBg9Wk9S8A6WUcLi/ZqaE1gzZqZSYNSCQnKxqPT0GnVhNp0oRUnm/W+9uBKArIKv/xqXmi5jd5Byk41MBXd41l58EGYsw6YixaiquthBm1HKg5HBh/4YqBFFfbmPHuWoxaNQ+el82LVw3koU+38NdL+3HL++sDZd5n9Ixh0Z1jmLexhHq7h/P7JVBwqIEJvWKb2pKosbm8ge++ZHAyCj7cHoUBKRFMHpjEoXoHKZFGvt/h7yV5Ok44PZoIHglCCPQaNXdMyOKHXRWU1Nq5+6ye/GNJftDqZ355I26vL3CDmFda37TiAUadmnE9Y1m46XCKpEGjRiurmTZrNTpZxYc3jmw3Om9zeXh1aUHQhUKNzc2qwiqmDEpu+4OhMkTBtNnw6UxoOAjxfeGSN8F4eARqYpieG0clclU/C5IEn+Y1EhFmaHFyaHR6WLI9eHJbvcNDpdUlgkdChzsVN8tmvcztE7rzz+8KeO7rXYzrEcPfrxhIYoQek0bNfXM2Ex+m44Fze7G30sqeQ42BhrWxFn9D03kbDlBaa+fqUWmkRBrZfUS5XbMqqyvoIhnA5fEGArHNFm8v5+LBySx7cAJVVieRRi0vLskPmphYb/fg9PgvfmLMOh6e1JvfT8hCK7csrT1ReyutPLVoe+Dxq0v3MCAlgnPamTwZiqpG/2ShDftrOKdvAt1jTce1/T6fwqrCKm7+YF3g+HnRwCSenNK30xt2VzQ4ueyNFYFpRgs2lfD61UM4r1/CcfXE6uh9oM7mxu72IEkSkcZfPgnP6vSwubiWv361A6vTy81jM5jUPzGkn3uMWcuc23J45ssd7D7UyKT+CVw/Ov1Xl9F2ourtbhocbqqsLhLC9MfsbdOas3vH88xXOwLlQAA3j838TTR3PR2ZdDIDu0XQPdZEXml9i9c9PoV/LM5nQ1EtKZEG5t2ec9ID4pUNTqbPWs2eCn/2+tJdh3jo/Gxm5ma0eeyoanTywNzN1Nn9wU2vT+HPn2/nrD7xGLUykSYtPeMtvLWssNVsH62s4r0V+6h3eLh+dHrQtOJIk5Y5t43mkfnb+HDlfi4YkMj0kakh/87HmLXMyEnnvRX7AIiz6Hjo/N7tZiydCtFmHe/OGM7nm8vYcqCOy4cmE2bQ8ExTsKVZTlb0cX+3Wq0iLdrEjNwM3D5fyK00wH+ePVjn4IG5W9hRVs+YrBievLgfCSH2AYoL0/PcZQOos7u46q1VQa/N21jKpUO68ejCbVRbXZh1Mq9dPYTHZ2/imlFp7K2ycvXINOLD9bz07W5Gd4/G6fHyh9mbmHPraH58YAJ5pfVBwaAf8iuZs+4AiRF6zukTj83l5aeCKsw6NQdqbLw7YzhvLiukstHJxYOSSQzXM3d9KcvyD/HnyX39Zf8RBg41OFlVWMX0kakieCQIwmFJEQYW3JFDRaOLML0cuCE7ksvjC1zQxYfpkNX+C3+zTsP/TepNo8PD97sOkRpl5O9XDCQ5Qs/823NIijAQYWg/Oi8hoWmlPE3bUWVgsg66jYJbloHP7X9sCm6wOLW/CWXNx+hnvwIo3DPsNqQhd7T4Ko2sIjPGFNRUTpL8ozgF4dfIrJOZmZvB+f0S2VZSx5DUSGItusDFwhNT+vHfNUV8v/MQg7qF8/o1Q4Ju6OPD9PzujKyg70yOMBBt0gZSrsHfdDvSFLyfqCSJHvFm2HrURikKCeF6EsL1VFtd5B8VjIoP0wU14Ddo1CftxvvoYDHAoi1lTMiOa/NGt7LByZp91RRV2Ti3XwLxYbqgPnLg7z3xyPytgaDYm8sKeXxyH6aPTAs5oFFtdfHUF9uDAu+fbS7lwfN6dXrw6ECNLWgMNsCrSwsYkRHVaRlEFQ1OHvp0C9/tPIRFJ/Po5D6c3y/hmAMSjvVd1/x7dSBj9ZH524iz6Dm7T8uBBC6Pl2qrm00HakkI09Mt0kBqlJHnLx+A3e0j3KD5xUGsX6t6u5v3VuzjH0v801nNOpn/3TqKPknhIX9HrEXLl3eN5Z/f7abR6eH2CVl0j+24SXVC5zDrNdw2vjsLNpZid/uvSRPD9QxIieDJpkD+gRo73+04xIUDErHoNVRbnf6sEFndZnajzeWh3u7B4/Nh0KgDx6E6uwuXx98U+ehjU63dHQgcNXvnp71cOiS5zcCV16e0+IzHp1Dv8PDtjv1kxproEWfmrjN7YHN7+XDVfuod/rKlCKOG3KwYrnxjJS6vj0/XH+CLu8YEsqw0ahXZiWH8e8Yw3F4fFv3xlVFHGLX84ewe3DQ2A6vTS6RJEyiL6wpiLXpmjsnA4/Uhq1VUW51MG5HKnHXF6GU1953T84SGPRi0agwc37VCpdXJ1W+vDmRYL95ejsPj5ZVpQ0LOpDXrZRweb6v/VhpZorLBhcvrw+F2Udng4kCNnaRwA/+4chAfrNxPWZ2d92eOYHHeQSoaXSy8IxcFhTeXFSKrJD64cQQvfbs70P+xyupEp/Evpk2btYxqqz8D7sph3bhvzmYuHJBEuEHDj/kV5HSPZuWeKnolhLFyTxUvfbcbo1aNVi3xyrQhIZdq/tr9Nv4vBaGDxFr0xFr0VFudXDMyjbX7ao54TUdWvIWiahtmncwr0wYHlUTEhel58apBONzephOvFkmSSDiOunSDVs3dZ/Vk8fbyQGZCUrieYekdOHlGrT7mlDFd1Q746bnAY/3KFyEjB8LOCXpfpFHLM5f258o3V1Jjc6OS4MHzsrHoxWFH+PVqTjPvnRjc46vR4eHZr3YEJoKs31/DxqI63r5uKFHHuOCMMetYcEcuf1+8i/1VNq4YlsL5/RKRVcE3yD5F4dy+CXyxpSzQVHJ0ZjQZsYfH1EaZtLw6fQh3/ncjm4pryYoz8+r0wSel/1NrWjsOjcqMajtw1Ojk+nfXBFbO//bNTmbfOprh6VFB77O5vEHZVAAvfbebSQMSQ15N96HQ4GjZP6e5rLAzyW0sCJzIJL4T4fb4eOenQr7beQjwlz8+OHcLIzOiflHwaOmuQxzdouiTtUXkZEW3CBQWVli5+F8/BzJkJvSK5e9XDiTKpMP8G01YbXR6ePHb/KDHD8/byrs3DA95CIVWVpMZa+aZSwfgU5TfzE3Ob0FShJ7v7hvP4ryDmPUy/ZLDueu/G4MC5Qdq7Hy97SADu0XwwJzNbC/zlzM9e2n/FtegdXY3c9cX87evd+H0+BiYEs5b1w0DBR6ct4Xl+RX0SrDw4lWDyIo1Izcd37Xqlscrs05GRdvHMYNWzdm941m0pSzwXJRJS0WDkz8t2AbAGT1jefay/rz7QyFzbsvhx/xDqCSJ0d2jeXRBHq6mY/ihBie7DzW2KNGLPIHFgeYyPZ2sJtIYWvnVqdb8848y6XhkUm/uPqsHEhBu1JzyzEK7yxsIHDVbll+J0+2FEIJHDQ431VYXHp/Cq9OH8NC8LWwsqgXgzOy4wNTaaquTj1YXEWnUkBShx+HxMmPW2sD3zN9Ywn9uGMEN763h/H4JTJt1uPH5x6uLWHBHLrndo9leVsct47rz1bYy/reumH9fP5xFW0rZXtrArOWF/PWS/rz07W4qGp1MHd6NiX3iGZIWSZRJy8o9VbwybTDl9Q4yYkx8t7OcGTldbxLnyXBSzx6SJJ0HvAyogbcVRXn2qNd1wPvAUKAKuEpRlH0nc5sEoSOE6zX0Tgpj1nVD+XxzGTFmLdfnpGPRqvj+vvGYdDKRRg3qo24KwgyaE05pTI028t29Z7BwUwlRZi0Te8d3WD17SHZ+2fK57Quhx0R/atERMmJMfHPPOGrtbiw6GbNe/kU3H4LQ1VldHj7bXBb03IaiGmxuL1FtfAb8PXa6RRn56yX9cXr8mRWtNb/Xymrq7S4ePC8bk06NWiVRWutoccHeLcrIOzOG4fYqqFVShzT2DNXAlAguGpjEZ00TTMZmRXPuMUrWSmrsQSUXPgX+9vVOZl0X3O9JaaUvi/c459CHGzRcOyqNl7/bHXguK86MpQuUICRGGIJGSUsSPHher07rFdXgdLO8oLLF89vL6kmLPv5sldYyXLLizC0yZuvtbv7yRXBp1dJdFZTXO3/TkzobHB6O7o+7r8qG5zj3ASAoC1E4PWjUapIiDMzI9d+4bi+tC5papVWrOCs7DqvTw7X/Xh3oH/bDrgrun7OZV6cPCTre1lhdPLVoR+Dx5gN1vPzdbnrGmflxlz9bY0dZA1fPWs1Xd48NtCEw6zWc0yc+MP1MkuCRSb2P2Y7Botfw2OQ+qCT4fmcFPeLMPDypNy8sPjxY4of8Crw+BZWkwufz4fEqJEfqeebLnWwoqgn6Pn0HZtW6vV72HLLyxKLtlNc5uGJYClcNT+0yPfxaY9bJbU4+PhU0ahU6WRXUaDw9OrSpfF6fQmWji8cWbmP57koyY0w8f8UAiqtt6GQ1g1MjeParXXy1rYyEcD1/uqA3qVEGzs6O54NV+4O+q97uYVNxLdeMTGPBppKg7bG6vE0tRBTuPacXl76+goqmHkivLS1gwe25LA+vZHhaJAXljdw6PpPSWgeHGuxUNjq546P1fHDjSDYV1wYCnDpZxazrhuHpAotRp8JJ+w2TJEkNvAZMBA4AayVJ+kxRlO1HvO1GoEZRlCxJkqYCzwFXnaxtEoSOolarSI82EmXS0jcpHL1GhVEro9eoiTS3//kTodeoSY02cudZPU7uX9SW9DGw+vXg5zLHtwgcgX9FJC5ML3ocCac9Cf+FW3PvBvBnlLSWVdIao07G2M79ca+EML7cepDnvt6LTpa4d2KvVvetzrrRjjbreHJKXx46PxufomDUyse80HZ5Wl5oOdw+fEc9bdLK5HRvAtUNAAARtklEQVSPDhpNfMv4zJDT4MG/cnx9TjopkQY+21xKn6QwZuZmdImJZDFmHe/PHMHPBZXsrbJy4YCkoN4dp5pJJzMyIzqoGStAr/jQmqYerW9SOKMzo1hZ6B84kRJpYEZORmDFvJnL66PK6mzx+Vqbq8VzvyWRRk2LqYoX9E8UWbxCq1KjTcy/PZfXlhagVau4dnQa7/y8l2tHpwU1ngf4qaCqxXG44KgyMoAN+2ta7P9VVhdW1+FsziiTP9t8Rm46uw42ML5nLLEWXbvZOnEWPX+9pD82lxevT+GPn25hTdNwmmYNDjd3ndWDWpsbnUbFv5bu4Y/nZ7OysCrQe7R3ooXUqNACFaGotrq59PUVgR45z329C1mt4oac9BbHLsFPkuBPF/ThyUV5uL0KFp3MY5P7hnQdVNXo5OkvtrN8t3/horDSyox31vLVPWM5WOdg1rJCFmwqAWB/lY3bP9rAknvHMyIzip0HW/aONGjVuL0KqtZ+/yRweRS+ySsPBI7Af/3xzs/7UKvg74t3sfCOMdz9ycbA99fYPJyZHY+sVjH3iAncTo+PF5fk82bTNMLT3ck884wAChRFKQSQJOkTYApwZPBoCvB405/nAq9KkiQpSiszCAWhi9HKamLMv8FVvNRR0P8K2DrH/zj7Iuh+ZudukyB0sgijlkcv7M39c7YEnrt9QnfMHXiDF2HUctWwFCb2iUeSINqk7XJp9P6yvtDemxZjJClcT+kRae6/O6M7UUetVEeatPxz2mCWbC9nzd5qLhqUxKCUiONOyY8yabl8aArn9fNP2+lKvXNiLDqmDO6AoQcdQCeruXV8JltL6liztxqdrOLB83r94v5L0WYdr04fQrXVhdPjIz5MT2wrQbtIo5arR6YFVnPBnzHWPfYkr8h0cdFmHXNuG82jC/LYU9HIeX0TuOvsHhi0IngktGTWyQzqFsF9E3syd8MB/jB7E2V1Dq4bnY5eowrK7Osea2pxc52d4B+GcuSd2LiesVQ1BgeedLIK41ETzqLNOnLMOnK6H9+EL7Neg1mvwePzMSE7jmW7D2c+pkQaiDb7jxk+n0KfxDDSY4x8ve0gs28Zxc97KsmMMTO6e3SHZtrmlzcENVcGmLvuAJcMTj6lGb2/JooCO8rqmX3LaJweHyoVvL9iH/2Sw9r9rMen8HNBVdBzDU5PoNx8aVPWWzO3V2FfpZVBqeHMHJPBkh3lgQyj1CgjGTEmnl60gw9uGsnstcWBnmBhepmze8fz98W7CDe0bCju8vj8U+bcPl5bWkBO9+hA8GjD/houG5pMeb2jxeeOLtc7nZ3MM08yUHzE4wPAyLbeoyiKR5KkOiAaCMqXliTpFuAWgNTU1JO1vYIghMIUA5NegLOfABTQmsDQgT2XBOFXSCurOKdPAkvvj2RjUS19EsNICNd3+GQWtVrV6o33r1GcRc/823N5f9U+9lXauHZ0Gr0TWr/IjDHrmDYilSuHpaBW/fKgjyRJonQ2BHEWPW9cMwSH24daJRGm15xQyVO0Wddu8EmtkrigfyJaWcUna4pIijBw/7m/PGh1ulCrJLLiLLx+zRBcXh8W3Yn9Wwi/DfFheix6fzasUaumstHB85cP5P45mwMl0i9dNbhF9mWEQcs/pw7msYXbqLW7Obt3HDePzaTK6uTD1UVUW13oZBXPXz6QMGPH3kbKKhUXD/I32J6zrpiseDM3jckMnPNiLDpKa+3kdI+hb1IYGrXEVcNST0qmZmv99LpFGdB1oUWHrsakk/EpCpe+vgKV5C9Ff/rifkQY2i/108kqeieGBZUiatQSeo2KFQW1ZCeEUVhpDfpMWpSRCIMOrWznk1tGsSy/gmizjjN6xbIk7yB3n92DKKN/6t5XW8vQyirG94rj2a92sH5/DfdN7MnrOplGpz9ApVZJXDk8hXtnbwb8jeN18uGeYINTI9he2kB2QliLQSeXDU3u9OEbp4p0spJ8JEm6AjhXUZSbmh5fC4xQFOXOI96T1/SeA02P9zS9p6q17wQYNmyYsm7dupOyzYIgCIIgnFpeny8w/UcQFEWh1uZGK6tEY2dBOAEOt5d6h7/cMUyvwacoNNg9WF0ezDqZSJO21YEGbq+XGqsbRQG91j+Vzev1UWVzYXV6MGpkLAa5RcP7jtTocKOT1WiOCta4vT5qrC4cHh96jYpok65Ff9GOUG118cRneSxs6uEXZpBZcHsumb/xTMj2VFtd7C5vYFNxLWN7xJIcoQ80Hm9PwaFGrnl7NQfrHehkFX+9pD+7DzXw2aZSPrxpJNe/u4biajsqCe48swczx6QTbtBSb3ezo6yOZbur0MkSUwYlkxxhQFarKK93cNWbK+kZb+GP52Vz20fr2V3uL82cPCCRB87L5v0V+2hwerhkcDLzN5Ywe60/9+Xjm0by9Jc7yCutZ0xWNPed04vps1Zz+dBkZuZm8OzXO9lbaWXKoGSmDu92Wi10SJK0XlGUYa2+dhKDR6OBxxVFObfp8cMAiqI8c8R7vml6z0pJkmTgIBB7rLI1ETwSBEEQBEEQBEEQTpYaq4tqq4sqq4v0aCPRJi1q0e/opPH5FKqsThqdHgwa/2AQm8uLTlYTbpBpdHqxujzoZFXTEJ7gLOJGpxtZpWrROP1Qg4PtpfUYtTLdogzsq7Th9Sn0SrAEyiE9Xh+VjU7eWFZItdXFTWMzSY824vT48PoUdLIKn6Lg8SnoZTWRJi2NDjcOj48Ig+a064PVWcEjGcgHzgJKgLXAdEVR8o54zx1Af0VRbmtqmH2poihXHut7RfBIEARBEARBEARBEISO4vb48CpKh07u+zU6VvDopOUbNvUw+j3wDaAG3lEUJU+SpCeBdYqifAb8G/hAkqQCoBqYerK2RxAEQRAEQRAEQRAE4WgaWYXoinhsJ7WYXFGUL4Evj3rusSP+7ACuOJnbIAiCIAiCIAiCIAiCIPxyp1eBniAIgiAIgiAIgiAIgtChRPBIEARBEARBEARBEARBaJMIHgmCIAiCIAiCIAiCIAhtEsEjQRAEQRAEQRAEQRAEoU0ieCQIgiAIgiAIgiAIgiC0SQSPBEEQBEEQBEEQBEEQhDaJ4JEgCIIgCIIgCIIgCILQJhE8EgRBEARBEARBEARBENokgkeCIAiCIAiCIAiCIAhCm0TwSBAEQRAEQRAEQRAEQWiTCB4JgiAIgiAIgiAIgiAIbRLBI0EQBEEQBEEQBEEQBKFNIngkCIIgCIIgCIIgCIIgtEkEjwRBEARBEARBEARBEIQ2ieCRIAiCIAiCIAiCIAiC0CYRPBIEQRAEQRAEQRAEQRDaJIJHgiAIgiAIgiAIgiAIQptE8EgQBEEQBEEQBEEQBEFokwgeCYIgCIIgCIIgCIIgCG2SFEXp7G04LpIkVQD7O3s7OkgMUNnZGyEIvwJiXxGE0Ih9RRBCI/YVQWif2E8EITSn076SpihKbGsv/OqCR6cTSZLWKYoyrLO3QxC6OrGvCEJoxL4iCKER+4ogtE/sJ4IQmt/KviLK1gRBEARBEARBEARBEIQ2ieCRIAiCIAiCIAiCIAiC0CYRPOpcb3X2BgjCr4TYVwQhNGJfEYTQiH1FENon9hNBCM1vYl8RPY8EQRAEQRAEQRAEQRCENonMI0EQBEEQBEEQBEEQBKFNIngkCIIgCIIgCIIgCIIgtEkEj04BSZLOkyRplyRJBZIkPdTK6zpJkmY3vb5akqT0U7+VgtC5QthP7pUkabskSVskSfpOkqS0zthOQehs7e0rR7zvckmSFEmSTvvRsYLQmlD2FUmSrmw6t+RJkvTxqd5GQegKQrgGS5UkaakkSRubrsMmdcZ2CkJnkyTpHUmSDkmStK2N1yVJkv7ZtC9tkSRpyKnexpNJBI9OMkmS1MBrwPlAH2CaJEl9jnrbjUCNoihZwIvAc6d2KwWhc4W4n2wEhimKMgCYC/zt1G6lIHS+EPcVJEmyAHcBq0/tFgpC1xDKviJJUg/gYSBXUZS+wD2nfEMFoZOFeF75E/A/RVEGA1OBf53arRSELuM94LxjvH4+0KPpv1uA10/BNp0yInh08o0AChRFKVQUxQV8Akw56j1TgP80/XkucJYkSdIp3EZB6Gzt7ieKoixVFMXW9HAVkHKKt1EQuoJQzikAT+EPsDpO5cYJQhcSyr5yM/Caoig1AIqiHDrF2ygIXUEo+4oChDX9ORwoPYXbJwhdhqIoy4DqY7xlCvC+4rcKiJAkKfHUbN3JJ4JHJ18yUHzE4wNNz7X6HkVRPEAdEH1Ktk4Quob/b+/eQuWq7jiOf39JaiNGKZhSEAPJQ4W2QaokJVZBoyG9IKHQ2KYQajQvpago2icxal7FFiGml7QS6ENqb9iDKCmlDTZeE9TWRiiIDRrwQUM8oFXx8vdhT2QYz+Tsk2Rmzjnz/Tydvfdaa//3w5/Z85+11mmTJ922Ao8ONCJpdpo2V5JcBCyrqoeHGZg0y7T5XLkAuCDJ40meSnKiX5Ol+apNrtwFbE5yBHgEuHE4oUlzzky/08wpi0YdwBiYagZRnUQbaT5rnQNJNgOrgMsHGpE0O50wV5IsoFn+vGVYAUmzVJvPlUU0SwuuoJnN+s8kK6vqzQHHJs0mbXLlB8Duqro3ySXAbzu58tHgw5PmlHn9vd6ZR4N3BFjWdXw+n57q+UmbJItopoOeaDqcNN+0yROSrANuBzZU1XtDik2aTabLlbOBlcC+JIeBNcCEm2ZrDLV9//pLVb1fVf8D/ktTTJLGSZtc2Qr8HqCqngQWA0uHEp00t7T6TjNXWTwavAPAF5OsSHIGzSZzEz1tJoBrO39vBP5eVfOmQim1MG2edJbi/JKmcOS+FBpXJ8yVqpqsqqVVtbyqltPsD7ahqg6OJlxpZNq8fz0ErAVIspRmGdvLQ41SGr02ufIKcBVAki/RFI9eH2qU0twwAfyw81/X1gCTVfXaqIM6XVy2NmBV9UGSG4C9wELggao6lGQ7cLCqJoDf0Ez/fIlmxtGm0UUsDV/LPLkHWAL8obOf/CtVtWFkQUsj0DJXpLHXMlf2AuuTvAh8CPykqo6OLmpp+Frmyq3AriS30CzB2eIP3RpHSfbQLHVe2tkD7E7gMwBV9QuaPcG+DbwE/B+4bjSRDkbMe0mSJEmSJPXjsjVJkiRJkiT1ZfFIkiRJkiRJfVk8kiRJkiRJUl8WjyRJkiRJktSXxSNJkiRJkiT1ZfFIkiSNpST7knyj59zNSXbOYIztSda1uM+qKc5vSbJjBvc6N8k/krw1k36SJEmnyuKRJEkaV3uATT3nNnXOTyvJwqraVlV/O+2RTe1d4A7gtiHdT5IkCbB4JEmSxtcfgauTfBYgyXLgPGB/kp8nOZjkUJK7j3dIcjjJtiT7gWuS7E6ysXNtW5IDSf6T5FdJ0nWvzUme6Fz7Wm8gST6f5E+d/geSXNrbpqrerqr9NEUkSZKkobF4JEmSxlJVHQWeAb7ZObUJeLCqCri9qlYBFwKXJ7mwq+u7VXVZVf2uZ8gdVbW6qlYCZwJXd107q6q+DvwYeGCKcO4DflZVq4HvAr8+1eeTJEk6XSweSZKkcda9dK17ydr3kjwLPAd8BfhyV58H+4y1NsnTSV4Aruz0674PVfUYcE6Sz/X0XQfsSPI8MNFpc/ZJPpMkSdJptWjUAUiSJI3QQ8BPk1wMnFlVzyZZQbOv0OqqOpZkN7C4q8/bvYMkWQzsBFZV1atJ7urpUz1deo8XAJdU1Tun9DSSJEkD4MwjSZI0tqrqLWAfzVKy47OOzqEpEE0m+QLwrRZDHS8UvZFkCbCx5/r3AZJcBkxW1WTP9b8CNxw/SPLVGTyGJEnSQDnzSJIkjbs9wJ/pLF+rqn8leQ44BLwMPD7dAFX1ZpJdwAvAYeBAT5NjSZ6gKUxdP8UQNwH3J/k3zfvZY8CPehslOdwZ44wk3wHWV9WLLZ5RkiTppKXZE1KSJEmSJEn6NJetSZIkSZIkqS+LR5IkSZIkSerL4pEkSZIkSZL6sngkSZIkSZKkviweSZIkSZIkqS+LR5IkSZIkSerL4pEkSZIkSZL6+hhuIxU3K/y5fQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -959,34 +596,45 @@ } ], "source": [ - "plt.figure(figsize=(10,10))\n", + "plt.figure(figsize=(20,10))\n", "sbs.scatterplot(x=X_train[:,0],\n", " y=X_train[:,1], \n", " hue=y_train)\n", "\n", - "plt.title('n=' + str(len(X_train)))\n", - "plt.savefig(os.path.join(out_dir, 'scatter_plot.png'), dpi=300)\n", - "plt.show()" + "plt.title('training-data scaled with {0}; n_train={1}; n_tot={2}'.format(str(scaler).rsplit('(')[0], len(X_train), len(X_scaled)))\n", + "plt.xlabel('Variable 1')\n", + "plt.ylabel('Variable 2')\n", + "plt.savefig(os.path.join(out_dir, 'scatter_plot_scaled_traindata_{}.png'.format(str(scaler).rsplit('(')[0])), dpi=300)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A brief look at the statistics of the data of our scaled and standardized variables." ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(array([-4.71003707e-17, 6.39219317e-17]), array([1., 1.]))" + "(array([0.50001379, 0.50000215, 0.49999846, 0.49997511, 0.50000012,\n", + " 0.49999594, 0.50000184, 0.50001759, 0.50001759]),\n", + " array([0.28874004, 0.28872487, 0.28872706, 0.28875994, 0.28872483,\n", + " 0.28872383, 0.28872317, 0.28880775, 0.28880775]))" ] }, - "execution_count": 28, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "preprocessing.scale(X).mean(axis=0), preprocessing.scale(X).std(axis=0)" + "X_scaled.mean(axis=0), X_scaled.std(axis=0)" ] }, { @@ -1002,103 +650,93 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Create Support Vector Classification (SVC) model with balanced weight since data is unbalanced (e.g. many negative and few positive)" + "Create Support Vector Classification (SVC) model with balanced weight since data is unbalanced (e.g. many negative and few positive).\n", + "\n", + "Note that there are many many settings in the svm.SVC class to be altered. At the moment, we stick to defaults besides the class_weight: since we have an **imbalanced problem**, we try to add extra weight on all classes 1 by specifing this class-weight explicitely." ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ - "clf = svm.SVC(class_weight='balanced', C=0.9)" + "class_weight = {1: 100}" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 23, "metadata": {}, + "outputs": [], "source": [ - "Fit the model with the scaled training data and the boolean conflict data" + "# clf = svm.SVC(class_weight='balanced')\n", + "clf1 = svm.SVC(class_weight=class_weight, kernel='rbf', random_state=42, probability=True)" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 24, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=0.9, break_ties=False, cache_size=200, class_weight='balanced', coef0=0.0,\n", - " decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "clf.fit(X_train, y_train)" + "clf2 = svm.NuSVC(nu=0.1, kernel='rbf', class_weight=class_weight, random_state=42, probability=True)" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 35, "metadata": {}, + "outputs": [], "source": [ - "Predict something with the scaled predition data" + "clf3 = svm.LinearSVC(class_weight=class_weight, random_state=42, max_iter=10000000)" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 56, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 0, ..., 0, 1, 0])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\n", - "y_pred" + "clf4 = tree.DecisionTreeClassifier(class_weight=class_weight, random_state=42)" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 57, "metadata": {}, + "outputs": [], "source": [ - "No clue right now what this does... look it up!" + "clfs = [\n", + " clf1,\n", + " clf2,\n", + " clf3,\n", + " clf4\n", + "]" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 58, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-0.60452387, -1.03416277, -0.95833466, ..., -0.6758252 ,\n", - " 1.07185603, -1.04955169])" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "y_score = clf.decision_function(X_test)\n", - "y_score" + "predictions = []\n", + "scores = []\n", + "\n", + "for clf in clfs:\n", + " # Fit the model with the scaled training data and the boolean conflict data\n", + " clf.fit(X_train, y_train)\n", + " # Predict with the scaled prediction data\n", + " y_pred = clf.predict(X_test)\n", + " # Determine score\n", + " try:\n", + " y_score = clf.decision_function(X_test)\n", + " except:\n", + " pass\n", + " # Append\n", + " predictions.append(y_pred)\n", + " scores.append(y_score)" ] }, { @@ -1120,24 +758,10 @@ ] }, { - "cell_type": "code", - "execution_count": 38, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.6604666892120392\n", - "Precision: 0.09620721554116558\n", - "Recall: 0.7938931297709924\n" - ] - } - ], "source": [ - "print(\"Accuracy:\", metrics.accuracy_score(y_test, y_pred))\n", - "print(\"Precision:\", metrics.precision_score(y_test, y_pred))\n", - "print(\"Recall:\", metrics.recall_score(y_test, y_pred))" + "The main classification metrics are nicely summarized in the **classification report**:" ] }, { @@ -1152,34 +776,120 @@ ] }, { - "cell_type": "code", - "execution_count": 39, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average precision-recall score: 0.12\n" - ] - } - ], "source": [ - "average_precision = metrics.average_precision_score(y_test, y_score)\n", - "\n", - "print('Average precision-recall score: {0:0.2f}'.format(average_precision))" + "Another nice way to vizualize the accuracy of our results is the **confusion matrix**. The confusion_matrix function evaluates classification accuracy by computing the confusion matrix with each row corresponding to the true class. https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yet another metric is the **Brier score** (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html#sklearn.metrics.brier_score_loss). The smaller the Brier score, the better, hence the naming with “loss”. Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Last but not least, the **F1 score**, also known as balanced F-score or F-measure. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html?highlight=f1%20score#sklearn.metrics.f1_score)" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 59, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXwV1f3/8dcneyBhXyXIjsgmairuCyoFF6zVKlSrVOtSS/utbf3Wrm71V+u3td/2W9tKxUqrQql1QetSFVRAQFABBUUia1g0hC1sIcvn98dM4iULuQFuQjLv5+NxH7kzc+65n3OT3M/MOTNzzN0REZHoSmrsAEREpHEpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEkETZ2bjzWx2Y8dxOJnZVWb2nzjK/dnMftYQMTUEM1ttZueFz+80s8caOyaJBiWCRmBm6WY2yczWmFmRmb1nZqMbO654hF9We8xsp5l9amZ/NbOsw/ke7v64u4+Mo9zN7n7P4XzvCmbmZrYrbOd6M3vAzJIT8V7NnZk9amalZnZUlfV3mllJ+BlvM7O3zOyUg6j/q+H/0i4ze8bM2h2g7EQzW25m5WY2vsq2a83sHTPbYWb5Zna/maXUN56mSImgcaQA64CzgNbAz4BpZtazEWOqj4vdPQs4AfgC8NOqBZrJP9BxYTvPAq4ErmvkeA6rhvgdmVlL4DJgO3BVDUX+EX7GHYHZwFNmZvWofxDwEPA1oDOwG/jjAV6yGLgFeLeGbS2A7wIdgOHAucAP4o2lKVMiaATuvsvd73T31e5e7u7PA6uAE2t7jZl1N7OnzKzAzArN7A+1lPudma0L92reMbMzYradZGYLw22fmtkD4foMM3ssrHebmS0ws85xtGM98CIwOKzHzexbZrYCWBGuu8jMFsXs8Q2tq02x3V0W+K2ZfWZm281siZlVvN+jZvaLmPpuMLM8M9tiZtNj90DD2G42sxVmttXMHoz3C8fd84A5wLCY+g6mXX3MbEa4brOZPW5mbeKJoSozuyR8/x1m9omZjQrXV3YvhcuVXUxm1jP8HK43s7XADDN7ycwmVKl7sZl9OXw+wMxeCT/T5WZ2RT1DvQzYBtwNXFtbIXcvASYDXYD29aj/KuA5d3/T3XcS7FR92cyya3mfB939NWBvDdv+5O6z3H1f+Lf9OHBaPWJpspQIjgDhl25/YGkt25OB54E1QE+gGzC1luoWEHxhtQOeAP5pZhnhtt8Bv3P3VkAfYFq4/lqCI5PuBP+ENwN74oi7O3AB8F7M6i8R7E0NNLMTgEeAm8J6HwKmW9A1Fm+bRgJnEnw+bQj2zAtriGUE8EvgCqBrWG/V+i4iOII5Liz3xbraGNY9ADgDyAuXD7ZdFsZ4FHAswed9ZzwxVInnJOBvwG0En8mZwOp6VHFW+P5fJPgbGRdT90CgB/DvcG/+lbBMp7DcH8O98IoumSV1vNe1wBSCz2BA+NnV1KZ0YDyQ7+6bzez0MMnW9jg9fOkggr18ANz9E2Afwd/LoTqTWv4nmx1316MRH0Aq8Crw0AHKnAIUACk1bBsPzD7Aa7cSdHEAvAncBXSoUuY64C1gaBzxrgZ2EuzlrSE4DM8MtzkwIqbsn4B7qrx+OcEXUVxtAkYAHwMnA0lVyj0K/CJ8Pgm4P2ZbFlAC9IyJ7fSY7dOA2w/QTgd2ALvC51OA9ENpVw3v8SXgvSqf7Xnh8zuBx2p53UPAbw/w+zkvZrmyHoLE5EDvmO3ZYRt7hMv3Ao+Ez68EZtXw3nfE+bd9NFAODAuXXybYEYmNbV/4t/QZMAM4sZ7/P68BN1dZtx44u47XzQbGH2D714F8qvyvNNeHjggakZklAX8n+GeYELP+RQsG0Haa2VUEe45r3L00jjq/b2Yfht0o2wj29DuEm68n2FP6KOz+uShc/3eCf9KpZrbBgkGy1AO8zZfcvY2793D3W9w99uhhXczzHsD3Y/fkwrYcFW+b3H0G8AfgQeBTCwb7WtVQ9CiCxFTxup0ERw7dYspsinm+myBZYGZLYz7vM2LKnBCWuZLgKKflobTLzDqZ2VQLBp93AI/x+e+mProDnxzE6ypU/o7cvQj4NzA2XDWWoEsEgnYOr9LOqwi6b+LxNeBDd18ULj8OfLXK39a08G+pk7uPcPd36tmWnUDVv4dWQFE966lkZl8C7gNGu/vmg62nKVEiaCRh//QkggGuyzzoIwXA3Ue7e1b4eJzgH/doq2NwL/wS+yFBt0dbd29DMEhnYb0r3H0cwWH+r4Anzaylu5e4+13uPhA4laAL5ZqDbFrs7WzXAfeG/+gVjxbuPiXeNoVx/97dTyToBuhP0CVS1QaCLy6gcpCyPcHeYV31D4r5vGdV2ebuPg2YC/z8ENv1S4LPZ6gH3XNXE/5u6mkdQddeTXYRDHpWqOlLu+oth6cA4yw4YycTmBnzPm9UaWeWu38zzjivAXqb2SYz2wQ8QJD46jxDzszOiEnONT0qEvZSgq6+itf1BtIJjiLrLRxr+QvBCRHvH0wdTZESQeP5E0E/7cVV9qhr8jawEbjPzFpaMLhb0yBWNlBK2DVhZj8nZm/JzK42s47uXk5wOA5QZmbnmNmQsH97B0GXStkhtS7wF+BmMxtugZZmdmE4kBdXm8zsC+HrUwm+5PbWEtsTwNfNbFjY3/z/gPnuvvowtAOCPcQbzazLIbQrm7Bbzcy6UXNCi8ckgraea2ZJZtYtHMcAWASMNbNUM8sFLo+jvhcIkujdBGfxlIfrnwf6m9nXwvpSw9/HsXVVGCaVPsBJBGNWwwhOKniCAwwaV/Bg0DbrAI+KhP04cHGYOFqGbXgqPNKpKa40C8bMDEgNfz9J4bYRYX2XufvbdcXYnCgRNAIz60Ew0DgM2FSlG6gady8DLgb6AmsJ+i6vrKHoywRn8XxM0E2yl/27akYBS81sJ8HA8Vh330uw1/gkQRL4EHiDoNvikLj7QuAGgq6drQSDrePr2aZWBF+8W8M2FQK/ruG9XiM4Y+RfBF/Effi8u+OQhXuHbwC3HUK77iLobtpO0B3z1EHG8jZBH/Zvw7re4POjoZ8RtH1r+H5PxFFfcRjLebHlwy/TkQSf4waCrrVfEexxV1z4V9tg6rXAs+7+vrtvqngQ/N1dZAc4178+3H0pwckNjxOMM2QTnB5KGOOLZvbjmJf8h+BEiFOBieHzM8NtPyPoSn0h5n/yxcMR55HO3DUxjYhIlOmIQEQk4pQIREQiTolARCTilAhERCKuyd0YrEOHDt6zZ8/GDkNEpEl55513Nrt7x5q2NblE0LNnTxYuXNjYYYiINClmtqa2beoaEhGJOCUCEZGIUyIQEYk4JQIRkYhTIhARibiEJQIze8SC6QU/qGW7mdnvLZhacInVMnORiIgkViKPCB4luNtlbUYD/cLHjQS3ZRYRkQaWsETg7m8CWw5Q5BLgb+HEH/OANmbWNVHxLFi9hQf+s5x9peV1FxYRiZDGHCPoxv73ys9n/2kFK5nZjWa20MwWFhQUHNSbvbtmK7+fkUdpuRKBiEisxkwENU3RV+PkCO4+0d1z3T23Y8car5AWEZGD1JiJIJ9gEu4KOQSzIImISANqzEQwHbgmPHvoZGC7u29sxHhERCIpYTedM7MpwNlABzPLB+4AUgHc/c8EE2ZfQDDf626COVhFRKSBJSwRuPu4OrY78K1Evb+IiMRHVxaLiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiERcQhOBmY0ys+Vmlmdmt9ew/Wgzm2lm75nZEjO7IJHxiIhIdQlLBGaWDDwIjAYGAuPMbGCVYj8Fprn78cBY4I+JikdERGqWyCOCk4A8d1/p7vuAqcAlVco40Cp83hrYkMB4RESkBolMBN2AdTHL+eG6WHcCV5tZPvAC8O2aKjKzG81soZktLCgoSESsIiKRlchEYDWs8yrL44BH3T0HuAD4u5lVi8ndJ7p7rrvnduzYMQGhiohEVyITQT7QPWY5h+pdP9cD0wDcfS6QAXRIYEwiIlJFIhPBAqCfmfUyszSCweDpVcqsBc4FMLNjCRKB+n5ERBpQwhKBu5cCE4CXgQ8Jzg5aamZ3m9mYsNj3gRvMbDEwBRjv7lW7j0REJIFSElm5u79AMAgcu+7nMc+XAaclMgYRETkwXVksIhJxSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIiIRp0QgIhJxSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIiIRp0QgIhJxSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIiIRp0QgIhJxSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIiIRp0QgIhJxSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIiIRl9BEYGajzGy5meWZ2e21lLnCzJaZ2VIzeyKR8YiISHUpiarYzJKBB4HzgXxggZlNd/dlMWX6AT8CTnP3rWbWKVHxiIhIzRJ5RHASkOfuK919HzAVuKRKmRuAB919K4C7f5bAeEREpAaJTATdgHUxy/nhulj9gf5mNsfM5pnZqJoqMrMbzWyhmS0sKChIULgiItEUVyIws9PM7BUz+9jMVprZKjNbWdfLaljnVZZTgH7A2cA44GEza1PtRe4T3T3X3XM7duwYT8giIhKneMcIJgG3Au8AZXG+Jh/oHrOcA2yoocw8dy8BVpnZcoLEsCDO9xARkUMUb9fQdnd/0d0/c/fCikcdr1kA9DOzXmaWBowFplcp8wxwDoCZdSDoKqrrSENERA6jeI8IZprZ/wBPAcUVK9393dpe4O6lZjYBeBlIBh5x96Vmdjew0N2nh9tGmtkygiON2+JIMCIichjFmwiGhz9zY9Y5MOJAL3L3F4AXqqz7ecxzB74XPkREpBHElQjc/ZxEByIiIo0j3rOGWpvZAxWncJrZb8ysdaKDExGRxIt3sPgRoAi4InzsAP6aqKBERKThxDtG0MfdL4tZvsvMFiUiIBERaVjxHhHsMbPTKxbM7DRgT2JCEhGRhhTvEcE3gcnhuIABW4DxiQpKREQaTrxnDS0CjjOzVuHyjoRGJSIiDeaAicDMrnb3x8zse1XWA+DuDyQwNhERaQB1HRG0DH9mJzoQERFpHAdMBO7+UPjzroYJR0REGlq8F5Tdb2atzCzVzF4zs81mdnWigxMRkcSL9/TRkeEA8UUEt47uD9yWsKhERKTBxJsIUsOfFwBT3H1LguIREZEGFu91BM+Z2UcEF5HdYmYdgb2JC0tERBpKXEcE7n47cAqQG84mtovqE9GLiEgTVNd1BCPcfYaZfTlmXWyRpxIVmIiINIy6uobOAmYAF9ewzVEiEBFp8uq6juCO8OfXGyYcERFpaPFeR/D/zKxNzHJbM/tF4sISEZGGEu/po6PdfVvFgrtvJTiVVEREmrh4E0GymaVXLJhZJpB+gPIiItJExHsdwWPAa2b2V4JB4uuAyQmLSkREGky88xHcb2ZLgPMIJqa5x91fTmhkIiLSIOI9IgD4ECh191fNrIWZZbt7UaICExGRhhHvWUM3AE8CD4WrugHPJCooERFpOPEOFn8LOA3YAeDuK4BOiQpKREQaTryJoNjd91UsmFkKwaCxiIg0cfEmgjfM7MdAppmdD/wTeC5xYYmISEOJNxH8ECgA3gduAl4AfpqooEREpOHUedaQmSUBS9x9MPCXxIckIiINqc4jAncvBxab2dENEI+IiDSweLuGugJLw4nrp1c86nqRmY0ys+Vmlmdmtx+g3OVm5maWG2/gIiJyeMR7Qdld9a3YzJKBB4HzCSa8X2Bm0919WZVy2cB3gPn1fQ8RETl0dc1QlgHcDPQlGCie5O6lcdZ9EpDn7ivDuqYSTG+5rEq5e4D7gR/UI24RETlM6uoamgzkEiSB0cBv6lF3N2BdzHJ+uK6SmR0PdHf35w9UkZndaGYLzWxhQUFBPUIQEZG61NU1NNDdhwCY2STg7XrUbTWsq7wILTwb6bfA+LoqcveJwESA3NxcXcgmInIY1XVEUFLxpB5dQhXyge4xyznAhpjlbGAw8LqZrQZOBqZrwFhEpGHVdURwnJntCJ8bwZXFO8Ln7u6tDvDaBUA/M+sFrAfGAl+t2Oju24EOFctm9jrwA3dfWO9WiIjIQatr8vrkg63Y3UvNbALwMpAMPOLuS83sbmChu9d5+qmIiCRefeYjqDd3f4HgdhSx635eS9mzExmLiIjULN4LykREpJlSIhARiTglAhGRiFMiEBGJOCUCEZGIUyIQEYm4yCSCZRuD6+KumfQ235i8gLWFuxs5IhGRI0NkEsHsFZsB+KyomFc//IwFq7c0ckQiIkeGyCSCCv87dlhjhyAickSJXCIQEZH9KRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQpEYiIRJwSgYhIxCkRiIhEnBKBiEjEKRGIiEScEoGISMQlNBGY2SgzW25meWZ2ew3bv2dmy8xsiZm9ZmY9EhmPiIhUl7BEYGbJwIPAaGAgMM7MBlYp9h6Q6+5DgSeB+xMVj4iI1CyRRwQnAXnuvtLd9wFTgUtiC7j7THffHS7OA3ISGM9+nnovn3+9k0/+1t11FxYRacYSmQi6AetilvPDdbW5Hnixpg1mdqOZLTSzhQUFBYcU1Kfb9wIwJ6+Q7/9zMb988aNDqk9EpKlLSWDdVsM6r7Gg2dVALnBWTdvdfSIwESA3N7fGOuK1r6wcgAFdsiktd4pLyg+lOhGRJi+RRwT5QPeY5RxgQ9VCZnYe8BNgjLsXJzCe/bTPSiMtWSdNiYgk8ptwAdDPzHqZWRowFpgeW8DMjgceIkgCnyUwFhERqUXCuobcvdTMJgAvA8nAI+6+1MzuBha6+3Tgf4As4J9mBrDW3cckKqbalJaV8+HGIsrcSU9JYkCXbCbNXsWbKzYDQTfSjy84tqHDEhFpEIkcI8DdXwBeqLLu5zHPz0vk+8fr7/PWcNdzyyqXJ193ElPeXkvhrn1s213Cmx8XsGdfGZlpyXzrnL60zkxtxGhFRA4vdZIDRXtLAfjxBQMAuPaRt/mkYBfbdpdUlnlm0XomvrmSt1dtaZQYRUQSRYkgRtfWmbVum3LDyQC4H9JJSyIiRxwlghqMHtyl1m3zV21h3spCdhWXNmBEIiKJo0QQpzWFwRXIk2avYuzEefzqJV2IJiLNQ0IHi5uyId1ac2KPtqzdspsZH31WeQQwNKc1S/K387e5a9i6u4SPNxVx8XFdyUxL4arhR5ORmrxfPWsLd/OlP85hV3EpZnDHxYMYd9LRAJSVO299spnd+8pIMuPk3u3ISk+pHJvISE0mM23/+qRh7Sou5ZOCnZQ7bC4qplOrdFKSgjPLkpJqumayuu17Sigvd1KSjewMnWggRx4lglo89+3T91uetiC4W8YxnbNZkr89KLM4uD5u+X+KKred3q8DEJySunLzLhat3caWXfu4+LijeHnpJpZvKqqsc+HqLXxt0tu1xpCWksSbt51Dl9YZlevKyoMxCoO4v4ikZovWbWPDtj28u2Yr67ftYdvuEhas3kJSkrGv9MBXnF97Sg+6tM5k4/Y9ZKYmU7CzmCtzu/PKsk/p2iaTF97fSFm5s2jdtlrrOK1ve/p2zOKuSwYf7qaJ1EukE8GyjTtYtnEH768P/lkrTgtt06L6XltqioU/q/emTbvpFK54aC5l7mzdtY/12/bw21c+5rWPPr9G7vrTe/Hc4g08+tZqHn1rNQAdstIBeOCK4/jetMX71fnlE7rx1Lvr+cuslbRIS6Z/52wenr2KxTFfLP837njyt+6hc6t0pr69joVrttCrQ0vaZ6Xzt+tOqnZ00tzs2FvCvtJynl+8gU07inl9+Wd8tKmIk3u3Y97KLZWf+Yk92jJvZSHb9pRwoLH+JINyhzFDujI9TPLnHduZti1SaZeVxkNvrOTeSwfzk6c/YPLcNdVe/9S762ut+zsj+vL7GXn07tCSlZt3AcH9rubkFTJ57hoyUpP4502nMiSn9aF9KCIHIdKJoMKxXVtx0dAszuzfkW+e3Yf/OrdftTJjjuvGw7NWcfvoATwxf+1+25Jj9sy/8tBc8j7bWbn8x6tOoGV6CkO7Vf8HP7NfB7IyUrhgSFe+N20xZ/TrwMCurXhzxWbSU4Iv8UmzV1V7XUZqEntLyvn2lPeqbctKT+HtVVsoKCqme7sW8X8INfj40yLeW7sVgG5tWlQe7QB8sH575d5uj/YtOKNfx2qvL9xZzCvLPqXcYf223ZzRryOL1m2jrNwpLi2noGgvw3u159lF6zmxR1te/fAzctpmUu7OyoJdnNW/I4/PX8vlJ+bwyrJPObZrK7bv2ceyDTvo3q4FH8UcXcWatzI4xbfis3vxg02kJhspScZRbTJZU7ibK3JzmLYwn198aTBpyUl0aZ3Bmf0/b8Pvxx1frd4fjT4Wd+cnT3/Ad87tR4u0ZE7u3Z6ycueyP73FE98YzsOzV/GziwbSJjOVNi1SCS+UBOB7I48BPj/z7A8z8vjNKx9XxvLlP82hpMzJSk9hcLdWFBQV851z+5GSlMSZ/TuQkpSkrkJJCGtqp0Pm5ub6woUL6/26E+95hcJd+/jd2GH819RFnNa3PXPyCgFYfd+F9arrtPtmMHJQZy4Y0pUX39/EyEGdGTtxHgO6ZPPRpiI6ZqdTUFRcre6et/8bgLTkJPaVlR/wfR945WN+/9oKfv2V4/jBP4OjhbFf6E52RgpJScZDb6zkpxceyy/+/SGdstM5o19HWqYnY1C5t9o6M5U7xwykY1YGH27cgRkU7Cxm5MDOpCQlMbhba3bsKWH5p0W4w+59pRzVJpOfPP0+mWnJlZ9PhaNaZ7AhvHtrVX/46vHc/dwyBnRtxZsfH9odYuPRvV0m23aX8I3Te9M+K40vDgrO9CraW0K3tpn8z0vL+elFA5m2YB2n9etAtza1nxrc2D5Yv52L/m92XGW/d35/vlPDjopIXczsHXfPrWmbjggOwpzbR1Q+/0LPdpV7nhV7qAVFxSz/xSj27tu/n/npW04lp20LOmSlHbCLAuDW8/oxsGs2owZ3pXVmKsO6t6FjdtCV5O58cVAXTji6LVef3IO05KTK8YJvTA6SZJ+OLfmkYBe3/mNxtbofemNlXO084eg2nNGvI0++k8/6bXsoLd8/6AuGdOHFDzbhDhOeCI5OPiv6PAlcMuwoOrfKYMxxR3HR/83mv0cdw9PvrufKL3THHX7zynKevuU0vv7XBbz03TN49K3VnNqnA+7O3JWFfHtEP+6Y/gF3jxnMX99azfBe7Widmcr6bXs4uXf7GmOu+Ix+elEwB9IVX+heY7kjyeBurXn7J+fSKTuD4tIyks3IK9jJY/PWcOnxOVz2p7e4IjeHFz/YxNotmj9DDj8dEVD/I4KqHp61kl/8+0OuP70XXx1+NO1bptGmRdoh1Xmwtu8u4df/Wc7towcw6I6XK9enpyRx1fAePDJnFT8aPaDaPAxDurXm/fXbuf/yobzw/kZ+e8Uw2rZMq6xz3qpCvjioC0s3bOfYLq0qE8/f567mZ88uZfqE03h+yUZu++IxbN29j4zUZFrpDJnDquKI8qSe7di+p4Qbz+zNk+/kk9uzLe5wzoBOdG+byYbte0lJMlqmp9CrQ8tGjlqOFDoiSLCKvvORAzvTp2NWo8bSukUq93wpOAvl9R+czVFtMkmLGeD++cXBnvKMjz7j3ksH07dTdrU6rsjdfy+6dYvUyq6XQUftP9bxtVN68rVTegIwNKcNAJ2yM5DEeXt1MAby/bDLcO7KYIfmDzPzqpU955iO9O+SzSXHdaN3x5b7HT2KVIhcIjipVzsAbh91LBf/Ib5+2boM6NLqkI8qEqHnAfYG/3HTKQ0YiRwOFX9jyzcV8cyi9Vx2Qg7LNxVx4dCujPrfN3GHnLaZ5G/dQ/8u2Ty3eAMzlxcwc3lBZXfgKb3bM+XGkxuzGXIEilwiSE1OOiK/tEXidUyXbH44KrhBYt9OwRHoS989s1q5b4/oS//O2Zx076tkpiWzpnA3c1cW8v1pi8nOSOH20QOa/SnGEp/IJQKRqOjfOej2e/snwd3e+//kRfaVlfOvd/MBKq9nqZCZmsz/jh3Gui27GdKtNZ8WFdM5O53te0rYtruENi1Sadcyjdye7dizr4yi4hKKS8rZvqeE0nJnSf422rZIY/G6bfTvks2qzbso2ltCy7QUZnz0GaMGd2F23mY6Zafz+vICstJTGNA1mzl5hYwY0Im5nxTSuVU6qwv3HxCPPVuta+sMvnFGb64/vVeCP71oiXQiqLhQSyQKPr53NABL8rcx5g9zKi+8a5WRwo69pewpKeOmv7+TsPdfMSMYw0hNNkrKnOLSfZUnbKzavIuO2em0qmGujz6dstiwfS/HdM5m+adF3PP8Mu55Ppg/5OxjOrK7uIzvj+yPmVFaVo6ZkWRwVJtM9pWV0zIt+Jrr3Cp9v+s65HORTgTL7h7V2CGINLihOW2qdY8uyd/GrBWbOalXO+6cvpQfX3AsD87M4+xjOlJS5qQkGa0yU/nRU+9z9clH89i8tXz5hG5s311CSrIxanAXPtxYxBW5OUxfvJEz+3WgtNzp3CqDDllp7Nhbeliu5Tj+7v+wNWaekNeXB6crXzlxXlyvz0xNJqdtJo+M/wJFe0vJSE1iV3EZGalJlHtwX6iW6cm4Q6fsdAp2FlNcWk5ZuVNa5rTPSiMrPYWjjuDrUg5G5E4fXfjT8ypv7SAiTZu7M/K3b3LNKT1YumEHvTq0pLi0nGcWrefGM3pz+1PvV154WXEkcji0a5nGll37gODOBF/o2ZYffPEY0pKTjthxlwOdPqpEICKR8dYnm7nvxZJYKGUAAA5QSURBVI/46klH84t/f8idYwbxr3fy6d85i7SUJDZs28vIQZ35r6mLuGvMIObkbSa3Z1u27i5hZcFOerRvycQ3V1beRaAm157Sg06tMrjshJz9bhjZ2JQIUCIQkcT458J1PDgzj3Kn2pXf7VumMXpIF37xpSGNFN3ndEGZiEiCfCW3O18JL8Is2ltCZmoyj761mtWFu3h9eQGPzVtL7N1ZSkrLGd67PUe3a0HfTlm0a9k4dyGI1SyOCEpKSsjPz2fv3ppviAawcdseyjw4/SxZV1Ye0TIyMsjJySE1VbeokKZt4puf8Oc3VpIUnq1UVl6+32B3n44tmXzdSQC4B9c5Jao7qdl3Da1atYrs7Gzat29f6+lhyzbsoLS8nGO7tiI1WTN0HqncncLCQoqKiujVS+eKS/OT99lOPt2xlwlPvLtfUojVKiMFd9hXVk5xaTn9OmWRkpzEhHP6cuHQrgf1vs2+a2jv3r307NlT5wg3A2ZG+/btKShI/K2sRRpD305Z9O2UxdO3nMb8VYUYFkw5CMxesZm24TwWZrBh2x527yurPBOpZXpizkhqFokAUBJoRvS7lCjo2aFltfuBVb3hY0NRH4mISMQpERwm9957L4MGDWLo0KEMGzaM+fPnc+edd/KjH/1ov3KLFi3i2GOPBWDnzp3cdNNN9OnTh0GDBnHmmWcyf/78anW7OyNGjGDHjh2V655++mnMjI8++nxegdWrV5OZmcmwYcMYOHAgN998M+XlB56EvS7FxcVceeWV9O3bl+HDh7N69eoay1133XV06tSJwYP3n4j9tttuY8CAAQwdOpRLL72UbduC6S3ff/99xo8ff0ixicjhoURwGMydO5fnn3+ed999lyVLlvDqq6/SvXt3xo0bxz/+8Y/9yk6dOpWvfvWrAHzjG9+gXbt2rFixgqVLl/Loo4+yefPmavW/8MILHHfccbRq1apy3ZQpUzj99NOZOnXqfmX79OnDokWLWLJkCcuWLeOZZ545pLZNmjSJtm3bkpeXx6233soPf/jDGsuNHz+el156qdr6888/nw8++IAlS5bQv39/fvnLXwIwZMgQ8vPzWbt2bbXXiEjDajZjBBXuem4pyzbsqLZ+974y3J0W6SnUtwd64FGtuOPiQbVu37hxIx06dCA9PbhQrUOHzyd5b9OmDfPnz2f48OEATJs2jZdffplPPvmE+fPn8/jjj5OUFOTj3r1707t372r1P/7449x4442Vyzt37mTOnDnMnDmTMWPGcOedd1Z7TUpKCqeeeip5edUnK6mPZ599trL+yy+/nAkTJuDu1frxzzzzzBqPFkaOHFn5/OSTT+bJJ5+sXL744ouZOnUq//3f/31IMYrIodERwWEwcuRI1q1bR//+/bnlllt44403KreNGzeucq993rx5tG/fnn79+rF06VKGDRtGcnLdZwHMmTOHE088sXL5mWeeYdSoUfTv35927drx7rvvVnvN7t27ee211xgypPoVjWeccQbDhg2r9nj11VerlV2/fj3duwcDWCkpKbRu3ZrCwsJq5eLxyCOPMHr06Mrl3NxcZs2adVB1icjh0+yOCGrbc0/kdQRZWVm88847zJo1i5kzZ3LllVdy3333MX78eMaOHcupp57Kb37zG6ZOncq4cePqXf+WLVvIzv78dtlTpkzhu9/9LgBjx45lypQpnHDCCQB88sknDBs2DDPjkksu2e+Lt0J9vnxrus7kYM7quffee0lJSeGqq66qXNepUyc2bNhQ77pE5PBKaCIws1HA74Bk4GF3v6/K9nTgb8CJQCFwpbuvTmRMiZKcnMzZZ5/N2WefzZAhQ5g8eTLjx4+ne/fu9OzZkzfeeIN//etfzJ07F4BBgwaxePFiysvLK7uGapOSklJZrrCwkBkzZvDBBx9gZpSVlWFm3H///cDnYwQHcsYZZ1BUVP2GWb/+9a8577zz9luXk5PDunXryMnJobS0lO3bt9OuXbv6fDRMnjyZ559/ntdee22/JLJ3714yM5vX7XxFmqKEdQ2ZWTLwIDAaGAiMM7OBVYpdD2x1977Ab4FfJSqeRFq+fDkrVqyoXF60aBE9evSoXB43bhy33norffr0IScnBwi+sHNzc7njjjsq97pXrFjBs88+W63+Y445hpUrgzlnn3zySa655hrWrFnD6tWrWbduHb169WL27PjnX541axaLFi2q9qiaBADGjBnD5MmTK997xIgR9ToieOmll/jVr37F9OnTadGixX7bPv7442pnGYlIw0vkGMFJQJ67r3T3fcBU4JIqZS4BJofPnwTOtQRfTZSIynfu3Mm1117LwIEDGTp0KMuWLdtvAPcrX/kKS5cuZezYsfu97uGHH2bTpk307duXIUOGcMMNN3DUUUdVq//CCy/k9ddfB4JuoUsvvXS/7ZdddhlPPPHEYW8XwPXXX09hYSF9+/blgQce4L77goO6DRs2cMEFF1SWGzduHKeccgrLly8nJyeHSZMmATBhwgSKioo4//zzGTZsGDfffHPla2bOnMmFF2r+aJHGlrB7DZnZ5cAod/9GuPw1YLi7T4gp80FYJj9c/iQss7lKXTcCNwIcffTRJ65Zs2a/9/rwww8rz82vTdHeEtYW7mZQt9aH3LaGtnHjRq655hpeeeWVxg7lsCkuLuass85i9uzZpKRU76GM53cqIvE70L2GEnlEUNPOd9WsE08Z3H2iu+e6e27Hjh0PKpjsjNQmmQQAunbtyg033LDfBWVN3dq1a7nvvvtqTAIi0rAS+V+YD8TeOCMHqHqKSEWZfDNLAVoDWxIYU5N1xRVXNHYIh1W/fv3o169fY4chIiT2iGAB0M/MeplZGjAWmF6lzHTg2vD55cAMP8i+qqZ2O22pnX6XIg0rYYnA3UuBCcDLwIfANHdfamZ3m9mYsNgkoL2Z5QHfA24/mPfKyMigsLBQXyDNQMV8BBkZR85cryLNXbOYmCaeGcqk6dAMZSKHX7OfmCY1NVWzWYmIHCTda0hEJOKUCEREIk6JQEQk4prcYLGZFQBr6ixYsw5A9Zlfmje1ORrU5mg4lDb3cPcar8htcongUJjZwtpGzZsrtTka1OZoSFSb1TUkIhJxSgQiIhEXtUQwsbEDaARqczSozdGQkDZHaoxARESqi9oRgYiIVKFEICIScc0yEZjZKDNbbmZ5ZlbtjqZmlm5m/wi3zzezng0f5eEVR5u/Z2bLzGyJmb1mZj1qqqcpqavNMeUuNzM3syZ/qmE8bTazK8Lf9VIzS8wcpg0ojr/to81sppm9F/59X1BTPU2FmT1iZp+FMzjWtN3M7Pfh57HEzE445Dd192b1AJKBT4DeQBqwGBhYpcwtwJ/D52OBfzR23A3Q5nOAFuHzb0ahzWG5bOBNYB6Q29hxN8DvuR/wHtA2XO7U2HE3QJsnAt8Mnw8EVjd23IfY5jOBE4APatl+AfAiwQyPJwPzD/U9m+MRwUlAnruvdPd9wFTgkiplLgEmh8+fBM41s0TMa99Q6myzu890993h4jyCGeOasnh+zwD3APcDzeEe5fG0+QbgQXffCuDunzVwjIdbPG12oFX4vDXVZ0JsUtz9TQ48U+MlwN88MA9oY2ZdD+U9m2Mi6Aasi1nOD9fVWMaDCXS2A+0bJLrEiKfNsa4n2KNoyupss5kdD3R39+cbMrAEiuf33B/ob2ZzzGyemY1qsOgSI5423wlcbWb5wAvAtxsmtEZT3//3OjWL+QiqqGnPvuo5svGUaUribo+ZXQ3kAmclNKLEO2CbzSwJ+C0wvqECagDx/J5TCLqHziY46ptlZoPdfVuCY0uUeNo8DnjU3X9jZqcAfw/bXJ748BrFYf/+ao5HBPlA95jlHKofKlaWMbMUgsPJAx2KHeniaTNmdh7wE2CMuxc3UGyJUlebs4HBwOtmtpqgL3V6Ex8wjvdv+1l3L3H3VcBygsTQVMXT5uuBaQDuPhfIILg5W3MV1/97fTTHRLAA6GdmvcwsjWAweHqVMtOBa8PnlwMzPByFaaLqbHPYTfIQQRJo6v3GUEeb3X27u3dw957u3pNgXGSMuy+subomIZ6/7WcITgzAzDoQdBWtbNAoD6942rwWOBfAzI4lSAQFDRplw5oOXBOePXQysN3dNx5Khc2ua8jdS81sAvAywRkHj7j7UjO7G1jo7tOBSQSHj3kERwJjGy/iQxdnm/8HyAL+GY6Lr3X3MY0W9CGKs83NSpxtfhkYaWbLgDLgNncvbLyoD02cbf4+8Bczu5Wgi2R8U96xM7MpBF17HcJxjzuAVAB3/zPBOMgFQB6wG/j6Ib9nE/68RETkMGiOXUMiIlIPSgQiIhGnRCAiEnFKBCIiEadEICIScUoEIjUwszIzW2RmH5jZc2bW5jDXvzo8zx8z23k46xapLyUCkZrtcfdh7j6Y4FqTbzV2QCKJokQgUre5hDf1MrM+ZvaSmb1jZrPMbEC4vrOZPW1mi8PHqeH6Z8KyS83sxkZsg0itmt2VxSKHk5klE9y+YFK4aiJws7uvMLPhwB+BEcDvgTfc/dLwNVlh+evcfYuZZQILzOxfTflKX2melAhEapZpZouAnsA7wCtmlgWcyue36QBID3+OAK4BcPcyglubA3zHzC4Nn3cnuAGcEoEcUZQIRGq2x92HmVlr4HmCMYJHgW3uPiyeCszsbOA84BR3321mrxPcEE3kiKIxApEDcPftwHeAHwB7gFVm9hWonDv2uLDoawRTgGJmyWbWiuD25lvDJDCA4FbYIkccJQKROrj7ewRz5Y4FrgKuN7PFwFI+nzbxv4BzzOx9gq6kQcBLQIqZLSGYMnNeQ8cuEg/dfVREJOJ0RCAiEnFKBCIiEadEICIScUoEIiIRp0QgIhJxSgQiIhGnRCAiEnH/H9KW4F4inRhCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJcCAYAAABwj4S5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde7xuVV0v/s8XwTQFUdl1ELlYaompVCRxtLQyE1PxZHnBS3bxUpmno3niWF6wOpW3yl9W2DFTEa95EhUzTcE0RFERA/OIooKQglxVvDZ+f4y52M9ee42919rs51lrL97v12u/9nrmnM+cY17Xmp85xpjVWgsAAAAArGSv9S4AAAAAABuX8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgGsg6p6bFW9d73LsTtV1SOr6p9WMd1fV9UzFlGmRaiqz1TVfaafn11VJ613meahqs6tqnvvYPxpVfWrCyzSbrX8+K2qVlW3X88yrVZV/bequrCqvlxVP7je5VmkjXbOVdV3VNV5VfVfdjLdYdMxtveiynZ9rfYaP007999xVXWvqvr3qrqmqm4zz2XtDlX15qq6tKqet8K4B1XVa9ajXACrJTwCWKXppuClVfXZ6Y/Vj1TVMetdrtWYAo5rp5vLL1TVy6rq5rtzGa21V7XW7ruK6Z7YWvv93bnsJdPN2Fem9fx8Vb2wqm40j2Xd0LTW7txaOy3ZPTfsVbV/Vf1VVf1HVX21qj5WVb+4Wwq782Vvd+O+2uN32XweOR1rX57Or/+c+fzl3V/yoecneVJr7eattY8scLkbXlU9vaoumPbJRVX12mn4iVX1ihWmv2tVfb2qbjV9vmNVvb6qLquqq6rqnKp6yg6uK49P8p7W2n/Mb63Wx66cIyO7KWx+cpK3tdb2ba1dPM33xlX1hul3XttR4D0o10Or6l+na9JpK4w/oqo+NI3/UFUdMTOuqupPqupL07/nVlUtjW+tPTDJTyT57araf3a+rbVTkvxAVd11LeUFWCThEcDq7Z3kwiT3SnKLJM9I8rqqOmwdy7QWD2yt3TzJDyX5kSS/t3yCPekp+A7cbVrPeyV5WJJfXufy7FabYR9V1Y2TvDPJoUmOTj+fnpbkuVX15PUs21pMN9M3n463Y5JcvPR5GnadOYeYhyY5d1e+OM9yTTfT6/a35hRGPjrJfab9cWSSf55G/12Sn6uqmy372mOSvKW1dnlVfW+SM9Ov+3dprd0iyS9M89l3sNgnJHnlbl0RRm6VlY/79yZ5VJJdCfAuT/JnSf54+YjpuvWmJCcluWWSlyd50zQ86cHhg5PcLcldkzwg/Xi4Tmvt36Yfb73Csl89zQNgQxIeAaxSa+0rrbVnt9Y+01r7z9baW5JckOSHR9+pqoOr6o1TVfUvVdVfDKb78+rNTq6enmb+2My4u1fVWdO4L1TVC6fhN6mqk6b5XllVH6yq717Fenw+yduS/MA0n1ZVv1FVn0zyyWnYA6rq7Gm+/zr7NHS0TjXTTGG6afzTqvrizNP6peX9XVX9wcz8HldV51fV5VV1Ss00P5jK9sSq+mRVXVFVL559kruT9Tw/yfuSzD4Z3pX1+t6qetc07LKqetXyp8arVVXHTsu/uqo+VVX3m4Zf1/Rt+nxdzZ7aWkvmV6rqc0neVVX/WFVPWjbvj1bVz00/f39VvWPapp+oqocOyvMTVfWxmc/vrKoPzHx+b1U9eLaMU5mfnuRh1WtzfHRmlodW1fuq18z7p6o6YLApHp3kkCS/0Fq7oLX2zdbaP6bXJPiDqtp3WuY2Tcdmj52qumVVvWXaX1dMP992ZtrTqur3B+V5z/T/ldM6HF07aGZTvdbh86vqc9M5+NdVddPBus2W9a+q6tSq+kqSn6iqn61eY/Hq6uf7s2emX9rPvzgt57Kq+t2Z8dtdB6ZyfTnJjZJ8tKo+NU17p2n9r6ze3PBBOynXZ6rqadXP069Ur2H53VX1tmnbvbOqbjkzjx+dzp8rp+Pu3su2+x9W1fuSfDXJ96ywbY6fjv9rqjfx+m8z4x47HXfPn/brBTVTw7OqbldVp0/ffUeS0TGW9JD87a21TyVJa+0/WmsvmX4+I8nnkzxkZt43SnJceiiQJCck+dfW2lNaa5dM3/tEa+241tqVK6zXIUmWAqelYTetqhdUr7F61bRu2x07VfVLVfXxab0+XVVPmBl3wHR8X1n9nP6XmkK5qvqd6rUsr6l+rv/UCvO+3fTdpe/8n6r64sz4k6rqt6afbzHt/0um+f7BtF22a4pWVfedlnlVVf3ltF9+ddmyt9uPVfWHSX4syV9UP/9W/L24Cnsn+c/ZAa21b7TW/qy19t4k317rDFtr72ytvS7JxSuMvve0zD9rrX29tfaiJJXkJ6fxv5jkBa21i6bfsy9I8tiVFjPNZ7nTkvzsWssMsCjCI4BdVD2ouWMGT/ynP7jfkuSzSQ5LclCSUZ8GH0wPOW6V5OQkr6+qm0zj/jzJn7fW9ku/MXndNPwX02tsHJz+FPOJSa5dRbkPTnL/JLPNWx6c5Kgkh1fVDyX52/QnprdOcmKSU6Yb1dWu032T/Hj69tk/vQbQl1Yoy08m+aMkD01y4DTf5fN7QPpN4N2m6X5mZ+s4zfv7029Qzp8+7+p61VTG2yS5U/r2fvZqyrCsPHdP8or0Gjb7p2+fz6xhFvealv8z6cfII2bmfXh67ZO3Vq9J8Y5pmu+apvvLqrrzCvM8I8ntp5vTvdMDxdtW1b7TDe4PJ/mX2S9MIc//TvLaqYbN3WZGH5fkl6bl3jjJbw/W5afTm5t8Zdnwv0/ynUl+dIdbotsrycum9T4k/dhffhM6Ks+PT//vP63DGTtZ1p+kH8tHJLl9+vHxzFWU8bgkf5heS+W9Sb6SXrNl//SbxF+rKZybcc8k35fkp5I8s6ruNA3f7jow3cAu1XC6W2vte6tqnyRvTvJP03r/ZpJXVdX37aBcSQ9RfnpazwemB8xPTw9n9koP9lJVByV5a5I/SL9e/XaSv6+qLTPzf3R6DYp908+p5T6Vfm7eIj2gOamqDpwZf1SST0zLfm6Sl1ZdFxqfnORD07jfT78Ojrw/yWOmYOzI2r6W1SvS98eS+yTZZ1r3pc9v2MH8l7tLkk+31r41M+z56efRf03fXv8zywKPyRfTr3X7pR+zfzpds5LkqUkuSrIlyXen75c27dMnJfmR1tq+6deGzyyfcWvtgiRXJ1nqD+vHknx55tj68SSnTz+/PMm30o/zH0y/lm/XvKx6EPuGJP8r/Xr6iWkdZ624H1trv5t+XVlqavmkaZ7nTCHXSv/+ctnyb5vk8CSfW2FbDlXVcVV1zlq+M+POSc5prbWZYedMw5fGz4bpH50ZN+vCJPeZOaaXfDzJYVW13y6WD2CuhEcAu2C6QXtVkpe31v59MNnd0wOHp021lr42PQ3dTmvtpNbal1pr32qtvSDJd6TfQCbJNzPd4LfWvtxae//M8FsnuX1r7duttQ+11q7eQbH/oaquTL9ZPD09AFjyR621y1tr1yZ5XJITW2tnTvN9eZKvp9/Qr3advpl+4/j9Saq19vGlJ/fLPDLJ37bWPtxa+3r6jcjRtW1TwD9urV3ZWvtckndnpibRwIer16j4ePqT3KWbjl1ar9ba+a21d0w36pcmeWF6kLNWvzKt6zummmuf38Gxs5JnT2W7Nsn/TXJEVR06jXtkkjdO2/ABST7TWnvZdDx9OD2U+fnlM2ytfS3JWek3j0em3wi9N8k90rfLJ1tr24V+O/Cy1tr/m8r4uoz31QFJtjseppvuy9JvkndoOl/+vrX21dbaNelhyPL9stryDE03eI9L8j+mc+Sa9HPn4av4+ptaa++b9vfXWmuntdY+Nn0+J72ZyvIyn9Bau7a19tH0m8+lcG50HVjuR5PcPP28+UZr7V3pwegjZqbZplzTsP+vtfaFqcbEvyQ5s7X2kemY+r/ZGjw8KsmprbVTp++/I/0Yuv/M/P+utXbudPx9c3kBW2uvb61dPH3/tek1Hu8+M8lnW2t/01r7dnqYcWCS755q9vxIkmdM5+N70oOyFbXWTkoPz34m/Zr3xao6fmaSVya5V22tsfaYJCfPlPnWWeE43YH9k1yz9GGq6fPLSf77dL5/u7X2r9M2XV7Wt7bWPtW609PDv6UaqN+ctsGhrdfS+5cpwPh2+u+Kw6tqn9ZrxX5qULbTp3Vd6sj7DdPn26UHVh+dHogck+S3pmvNF5P8aVY+1u+f5NzW2hun8/ZF2b6Z2Ir7cbTxWmt3ba3tP/j36zPb9fnpAcxprbV3juY3WMbJrbVd7Vfo5kmuWjbsqmxtwrh8/FVJbr5CSPRb6dv1imXDl46dXarZCjBvwiOANZpuCF6Z5BvpT32Xhr+ttnaW+8j0Giqfbds+hR7N86lTk4WrpoDnFtnaHONX0msD/Hv1pmkPmIa/Msnbk7ymqi6u3jnnPjtYzIOnP8IPba39+nRDveTCmZ8PTfLU2ae+07rcZrXrNN2w/kWSFyf5QlW9ZPA09TaZqZnQWvtyeg2lg2ammb0h+Wr6H+ip3hxnaXv/2Mw0PzRN87D0J99LfZrs0npV1XdV1WumJhxXp/d3saOmMiMHp9e42FXX7aMpwHhrtt7UPTw9zEz6eh61bD0fmWT09qfT05tjLNU+OC090LhXttZGWK0V99UKLku/kdzGVPvpgCSX7mxBVfWd1Ts9/uy0X96TZP9ltUtWW54d2ZJeG+pDM9vzH7OKgCvbnlepqqOq6t3Vm9pdlV5bcPmxNCrz6Dqw3G2SXNham63d8tlse05dmO19Yebna1f4vFSOQ5P8wrLj657Zdn+uNP/rVNVjamvz0SvTa7zNbofrtkFr7avTjzef1u2Ktm2NtZVqNl2n9X6p7pN+Q/7EJM+pqp+Zxn0u/bh5VPUXCDw4W5usJf1atN1xugNXZNu+kA5IcpOs4ryvqmOq6v3Vm6VdmR7OLG2T56XXoPyn6k3ajp/Kf356EPHs9GDsNTV+69jsef6ebHue/8t0vByaXvPqkpl9c2J6DbblbpNtr0ktvXbUrNF+vF5aa7+dfi7ct6qOvL7zW4Mvpwdts/bL1tBn+fj9knx52jazTkjfZ7daNnzp2NmuSSTARiA8AliD6QniS9Ofnj5k9ql6a+2YtrWz3Fel/2F9SO2kg+Mp+Pid9CZZt2yt7Z/+xLKm+X6ytfaI9D/g/yTJG6rqZtMT6BNaa4enNxd4QLZtgrEWs3/cXpjkD5c99f3O1tqrV7tOU7lf1Fr74fRq+3dMb6613MXpNyxJkupNrm6d3hfJzuZ/55ntvbxpVWu934ozsrV50a6u1x+lb5+7tt5k6FGZ9s0aXZje3GglX0kPKJasFPQsvwF5dZJHVNXRSW6aXitraTmnL1vPm7fWfm2w7OXh0enZeXi0vCxr9c4kx9T2nRU/JL2WxVK/S1/NeLs8Nb123lHTfllqiraafbOW8l+WHp7ceWZ73qIt6xB7lcs5OckpSQ5uvfPlv15leYfXgRUmvTjJwbVtR9WHZNtz6vrsvwuTvHLZ8XWz1tpsB8PD+U+15f4mPXi/9XS9+7esbjtckuSWy9b7kNUUerpevj69dt0PzIx6efp18yFJLmi9pt6Sd2amT6RVOCfJ98xcRy5L8rWMz/skvU+t9NqBz0/y3dM2OTVbfwdc01p7amvte9KbFD6lpr6Nppo090y/jrb0Y2Mlp6fXZLr39PNSDcPZ8/zC9NqYB8zs2/1aays1vbokyWwfYzX7eRW2O0aWPRBY/u+vt/lya59MP24OX8Myr69zk9x1WU2iu2Zr0/Vzs7WmYKafV2rWfqf02n/Lmy/eKb3W6I5qEAOsG+ERwNr8VfofeA9cVnNnJR9I/wP7j6vqZtU7uL7HCtPtm97HxKVJ9q6qZ2bm6WVVPaqqtkx/aC49kfx29c6O7zLVtLg6/aZ7zR2EruBvkjxxqiVRU9l/tnonxqtap6r6ken7+6QHI18blO3kJL9U/fXH35HeHOjM1tpndsN6JP2NOY+v3lRjV9dr3/QnyldW7+9lpRBsNV6avq4/VVV7VdVB1ftlSpKzkzy8qvaZnqRv18RsBaem3zA+J73/oaUbkbckuWNVPXqa3z7T/rjTYD7/mh7C3D3JB1pr507zPSpbO5Ze7gvpfXPs6t8Rr0yvpfD66h1F7zPVBnlRkue21paafpyd5LiqulH1jrpnm3jtmx7qXFn9terPWsPyL03vd2a7zpyXm7br36T3QfNdSe/3Z6n2yhrtm+Ty1trXqveBddxqvzi6Dqww6Znp59z/nLbrvdMDh1F/a2t1UpIHVtXPTPvlJlV175rprHwnbpYeHFya9I6is22YM9Ra+2x6E7kTqr+S/Z7p67ai6h08/2z1Prz2qt5h850z06F1emhzcHptkJcvm8WzkvzXqnredA1JVd2+egfT2zUtaq1dlJkmeNO++tskL6yq20zb6+jpWjfrxunNzy5N8q2pnPedWY8HTMut9Gv9t9N/B3xfVf3kNL+vpZ8PK/4OmMKWa9PD7/dMAcUX0sOx06dpLklvLveCqtpv2mbfW1UrNdN9a5K7VNWDp7DsNzKu3biSL2TZ+bfsgcDyf09cYR5fT99226jej91Sn4E3no7RVYW0S8d0eofWe03fXarRe1r69n3ytIylmsfvmv5/RXqwd1D1GmBPTX+r33J7T2Vf7l7Z2t8WwIYjPAJYpepPzJ+Q3m/Kf9S2TdS203o/Dw9M73j0c+k3yw9bYdK3p//B+P/Sm2B8Lds2+7hfknOrv1Xpz5M8vPV+Sv5Ler8VV6f373N6+o3d9dJaOyu9j5e/SG+GcX6mN8asYZ32S7/hvmJapy+lP1Vfvqx/TvKM9Bu4S9Kf0K+mL5nVrsvH0rfL067Hep2Q3hTuqvQbpjfuYlk+kKkj3Glep2drratnpK/7FdPyTl7F/L4+leU+s9NPTdrum74dL05vOvIn6TenK83nK0k+nN5/yTemwWekN+P74krfSfL66f8vVdWHB9PsrOz3ST/Oz0y/qf3H9FdknzAz6X9P3y9LTe/+YWbcn6XXuLosvWPkf1zD8r+a3kfS+6o3z9lZB92/k368vL96E7l3ZmufZGvx6+nNpq5JrxH3up1MP2t0HdjGtA8flN53zWXpfX49pq2tf62h1tqFSY5N77T50vR9+LSs8m/K1tp56W+hOiM9QLhL+lsRV+u49GDz8vRw5xU7mPbqqZyfSz+Gnpvk19pMP23T8b8UIL1q9sut9x90dHon+udWb2r49+kB1jVZ2YnpHYYv+e0kH0t/KcLl6efiNttqOmefnH48XDGt4ykzk9wh/Zj7cvp2+8vW2mnp5/Qfp+/n/0ivlfb0HWyP05N8aWqut/S5su3LEx6THsicN5XlDVmh6V5r7bIkv5C+Tb+UXgPorKwciqzkz5P8fPU3sb1old9Z7j+z8nH3ifRrykHpv1+vzXStrapHVtWKL7mYPHqa/q/Sa2pdm/67bOncenD6NroyvT+rB89cN09M74PrY+m1ot46DbvOTOC+Uqfpj1g+PcBGUts3wwUAWJzpyf7b0ptWPXaFPkJgjzDVAvpIkp9qK78kYFOaQpGLkjyytfbunU2/m5Z5cnqg9sQVmoBtSFONwzPS3/Q427n6A5M8urX20HUrHMBOqHkEAKyr1vsOe0h6x8K7UqMHNoTW3wJ3+A0hOJqaLu4/BWZPT6/FNHoL4Dy8ML0m8KU17ih8w6iqf0ivyfWM2eAoSVprbxYcARudmkcAAMCaVNWzk/xmtjZze3Jr7cwdfgmAPZbwCAAAAIAhzdYAAAAAGNp7vQuwVgcccEA77LDD1rsYAAAAAJvGhz70octaa1tWGrfHhUeHHXZYzjrrrPUuBgAAAMCmUVWfHY3TbA0AAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADM0tPKqqv62qL1bVvw3GV1W9qKrOr6pzquqH5lUWAAAAAHbNPGse/V2S++1g/DFJ7jD9e3ySv5pjWQAAAADYBXMLj1pr70ly+Q4mOTbJK1r3/iT7V9WB8yrPRnPCm8/NCW8+d72LAQAAALBDe6/jsg9KcuHM54umYZcsn7CqHp9eOymHHHLIQgo3b+ddfPV6FwEAAABgp9azw+xaYVhbacLW2ktaa0e21o7csmXLnIsFAAAAwJL1DI8uSnLwzOfbJrl4ncoCAAAAwArWMzw6Jcljpreu/WiSq1pr2zVZAwAAAGD9zK3Po6p6dZJ7Jzmgqi5K8qwk+yRJa+2vk5ya5P5Jzk/y1SS/NK+yAAAAALBr5hYetdYesZPxLclvzGv5AAAAAFx/69lsDQAAAIANTngEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwNBcw6Oqul9VfaKqzq+q41cYf0hVvbuqPlJV51TV/edZHgAAAADWZm7hUVXdKMmLkxyT5PAkj6iqw5dN9ntJXtda+8EkD0/yl/MqDwAAAABrN8+aR3dPcn5r7dOttW8keU2SY5dN05LsN/18iyQXz7E8AAAAAKzRPMOjg5JcOPP5omnYrGcneVRVXZTk1CS/udKMqurxVXVWVZ116aWXzqOsAAAAAKxgnuFRrTCsLfv8iCR/11q7bZL7J3llVW1XptbaS1prR7bWjtyyZcscigoAAADASuYZHl2U5OCZz7fN9s3SfiXJ65KktXZGkpskOWCOZQIAAABgDeYZHn0wyR2q6nZVdeP0DrFPWTbN55L8VJJU1Z3SwyPt0gAAAAA2iLmFR621byV5UpK3J/l4+lvVzq2q51TVg6bJnprkcVX10SSvTvLY1trypm0AAAAArJO95znz1tqp6R1hzw575szP5yW5xzzLAAAAAMCum2ezNQAAAAD2cMIjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIbmGh5V1f2q6hNVdX5VHT+Y5qFVdV5VnVtVJ8+zPAAAAACszd7zmnFV3SjJi5P8dJKLknywqk5prZ03M80dkvyvJPdorV1RVd81r/IAAAAAsHbzrHl09yTnt9Y+3Vr7RpLXJDl22TSPS/Li1toVSdJa++IcywMAAADAGs0zPDooyYUzny+ahs26Y5I7VtX7qur9VXW/lWZUVY+vqrOq6qxLL710TsUFAAAAYLl5hke1wrC27PPeSe6Q5N5JHpHk/1TV/tt9qbWXtNaObK0duWXLlt1eUAAAAABWNs/w6KIkB898vm2Si1eY5k2ttW+21i5I8on0MAkAAACADWCe4dEHk9yhqm5XVTdO8vAkpyyb5h+S/ESSVNUB6c3YPj3HMgEAAACwBnMLj1pr30rypECca7QAACAASURBVCRvT/LxJK9rrZ1bVc+pqgdNk709yZeq6rwk707ytNbal+ZVJgAAAADWZu95zry1dmqSU5cNe+bMzy3JU6Z/AAAAAGww82y2BgAAAMAeTngEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADC092omqqp7JHl2kkOn71SS1lr7nvkVDQAAAID1tqrwKMlLk/yPJB9K8u35FQcAAACAjWS14dFVrbW3zbUkAAAAAGw4qw2P3l1Vz0vyxiRfXxrYWvvwXEoFAAAAwIaw2vDoqOn/I2eGtSQ/uXuLAwAAAMBGsqrwqLX2E/MuCAAAAAAbz16rmaiqblFVL6yqs6Z/L6iqW8y7cAAAAACsr1WFR0n+Nsk1SR46/bs6ycvmVSgAAAAANobV9nn0va21h8x8PqGqzp5HgQAAAADYOFZb8+jaqrrn0oequkeSa+dTJAAAAAA2itXWPPq1JC+f+jmqJJcneey8CgUAAADAxrDat62dneRuVbXf9PnquZYKAAAAgA1hh+FRVT2qtXZSVT1l2fAkSWvthXMsGwAAAADrbGc1j242/b/vvAsCAAAAwMazw/CotXbi9P8JiykOAAAAABvJqt62VlXPrar9qmqfqvrnqrqsqh4178IBAAAAsL5WFR4lue/USfYDklyU5I5Jnja3UgEAAACwIaw2PNpn+v/+SV7dWrt8TuUBAAAAYAPZWYfZS95cVf+e5Nokv15VW5J8bX7FAgAAAGAjWFXNo9ba8UmOTnJka+2bSb6S5Nh5FgwAAACA9bfDmkdV9ZOttXdV1c/NDJud5I3zKhgAAAAA629nzdbuleRdSR64wrgW4REAAADAprbD8Ki19qzp/19aTHEAAAAA2EhW1edRVf3vqtp/5vMtq+oP5lcsAAAAADaCVYVHSY5prV259KG1dkWS+8+nSAAAAABsFKsNj25UVd+x9KGqbprkO3YwPQAAAACbwM46zF5yUpJ/rqqXpXeU/ctJXj63UgEAAACwIawqPGqtPbeqzklynySV5Pdba2+fa8kAAAAAWHerrXmUJB9P8q3W2jur6jurat/W2jXzKhgAAAAA62+1b1t7XJI3JDlxGnRQkn+YV6EAAAAA2BhW22H2byS5R5Krk6S19skk3zWvQgEAAACwMaw2PPp6a+0bSx+qau/0jrMBAAAA2MRWGx6dXlVPT3LTqvrpJK9P8ub5FQsAAACAjWC14dHvJLk0yceSPCHJqUl+b16FAgAAAGBj2Onb1qpqryTntNZ+IMnfzL9IAAAAAGwUO6151Fr7zyQfrapDFlAeAAAAADaQndY8mhyY5Nyq+kCSrywNbK09aC6lAgAAAGBDWG14dMJcSwEAAADAhrTD8KiqbpLkiUlun95Z9ktba99aRMEAAAAAWH876/Po5UmOTA+OjknygrmXCAAAAIANY2fN1g5vrd0lSarqpUk+MP8iAQAAALBR7Kzm0TeXftBcDQAAAOCGZ2c1j+5WVVdPP1eSm06fK0lrre0319IBAAAAsK52GB611m60qIIAAAAAsPHsrNkaAAAAADdgwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMDTX8Kiq7ldVn6iq86vq+B1M9/NV1arqyHmWBwAAAIC1mVt4VFU3SvLiJMckOTzJI6rq8BWm2zfJk5OcOa+yAAAAALBr5lnz6O5Jzm+tfbq19o0kr0ly7ArT/X6S5yb52hzLAgAAAMAumGd4dFCSC2c+XzQNu05V/WCSg1trb9nRjKrq8VV1VlWddemll+7+kgIAAACwonmGR7XCsHbdyKq9kvxpkqfubEattZe01o5srR25ZcuW3VhEAAAAAHZknuHRRUkOnvl82yQXz3zeN8kPJDmtqj6T5EeTnKLTbAAAAICNY57h0QeT3KGqbldVN07y8CSnLI1srV3VWjugtXZYa+2wJO9P8qDW2llzLBMAAAAAazC38Ki19q0kT0ry9iQfT/K61tq5VfWcqnrQvJYLAAAAwO6z9zxn3lo7Ncmpy4Y9czDtvedZFgAAAADWbp7N1gAAAADYwwmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAob3XuwAAbHwnn/m5vOnszy90mccecVCOO+qQhS4TAADYnppHAOzUm87+fM675OqFLe+8S65eeFgFAACsTM0jAFbl8AP3y2ufcPRClvWwE89YyHIAAICdU/MIAAAAgCE1j9ijLbofFn2wAAAAcEOj5hF7tEX2w6IPFgAAAG6I1Dxij7eoflj0wQIAAMANkfAIAGAHFt1EOtFMGgDYWIRHANygCQbYmaUm0ocfuN9ClrfUHNsxAgBsFMIjgD3UIkOPRd44L5pggNVYVBPpRDNpAGDjER4Bm9pmrlWyyNDj8AP3y7FHHDT35awXwcCeZ5Hn9pkXXL6Q5QAAbFTCI2BT2+y1ShYZesBGsuhzGwDghkx4BGx6apXA5rSoc/uw498692UAAGxke613AQAAAADYuNQ8AgDYgXve/oD1LgIAwLoSHgHsRksd6y6i+ZpOfGExTvrVo9a7CAAA60p4BMCGs8gQTqfLu88i34BmvwEALI7wCGAOdOK75zj8wP1y7BEHrXcxNoVFvgHNfmMjWWRwuuTYIw5a2Js9AUB4BMCGtai35LH7LPLthrBRLDI4TXrNuyTCIwAWRngEeGIKANfTIoPTRTTpBYBZwiPAE9M9lDdAsTOLDoZ14s7OLPqY3KwPKhbZL1yyebcjAKsnPGK3W+Qfhpv5RmU9tqMnpnsWb4BiZxYdDLPnWa+A8ajb3WohyzrzgssXsn6b+Txb5HZcIqwC2HiER+x2blZ2D9sR2B0W2ZRGJ+67xyJrlSwyzJm12V4qsF4duG+27ZgsPqwSVAGsjvCIuVjUzcpmv1HZrNvRa9gBNpbNHDDqwH332IzHiGb0AKsnPAI2Na/zZqNZj1oli6Ifrt1rMz48gNVaxPGvGT3A6gmPgHXjaTAjQog9k364YDFcIwFYNOERABvODSGEUKuEGyKhx+6xyGukfQZAIjwC2K38kQ3sSRZ9zRJ67HkWHebbbwAbk/AIYDe6IdSYYc/hJmzPtMj9tpmvWZt53TYz+w1gYxIeAcAm5SZsz2S/AQAbzV7rXQAAAAAANi7hEQAAAABDmq3BKp15weVJkoedeMZClwdsLvohAgBgTyM8AoAF0p8NAAB7GuERrNFrn3D0QpZz2PFvXchyAAAAYEeER+zRNP/YPWxHAAAARoRH7NE0/9g9bEcAAABGhEfAwqnpBAAAsOcQHgELp6YTAADAnmOv9S4AAAAAABuXmkewQWnaBQDARnfymZ/Lm87+/EKXeewRB+W4ow5Z6DLhhk54BBuUpl0AAPNz5gWXJ0keduIZC1vmokKPRQY6S9vxqNvdamHLO/OCyxeyfotet0QwxsYlPAIAAJiz8y65OkkWEgy86ezP57xLrs7hB+4392Utee0Tjl7Icg47/q0LWc56WOQxAmslPAIAAG6wFhV6LLKGU5IcfuB+C1m39QpzFrlum/UYgbUQHgEAAMzZIpvJLbLWkX464YZBeAQAANzgbObQ4/AD98uxRxy0kGUtup/ORe63zXyMwFoJj9bJIp88rEcndgAAsJGt18tJFtUEarNa5H7zAhvYaq/1LgAAAAAAG5eaR+tsM3b0tpnfgAAAAAA3NMIjAACAOdN/DrAnEx4BAADMmf5z2JnN3C9ukhx7xEE57qhDFrY8di99HgEAAABzc94lV+dNZ39+vYvB9aDmEQAAAGwQm7Vf3DMvuHwhtaoStZzmQXgEAAAANyCbuQ+u8y65OkmER7uZ8AhWaTNfYAEAgPW1yPuN9eqDaxE1nRZVu+mGRngEq6STQwAAYF7cb7CRCY8AAACAudGKY88nPAIAAADmRq2qPd9e610AAAAAADYu4REAAAAAQ5qtsdtpzwoAAACbh/CI3U57VgAAANg8NFsDAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGvG0NAAAA2BTOvODyJMnDTjxjIcs7/Db75VkPvPNClrWe5lrzqKruV1WfqKrzq+r4FcY/parOq6pzquqfq+rQeZYHAAAAgLWZW82jqrpRkhcn+ekkFyX5YFWd0lo7b2ayjyQ5srX21ar6tSTPTfKweZUJAAAA2Pxe+4Sj17sIm8o8m63dPcn5rbVPJ0lVvSbJsUmuC49aa++emf79SR41x/IAAAAAm9g9b3/AehdhU5pneHRQkgtnPl+U5KgdTP8rSd620oiqenySxyfJIYccsrvKBwAAAGwiJ/3qjmIHdtU8+zyqFYa1FSeselSSI5M8b6XxrbWXtNaObK0duWXLlt1YRAAAAAB2ZJ41jy5KcvDM59smuXj5RFV1nyS/m+RerbWvz7E8AAAAAKzRPGsefTDJHarqdlV14yQPT3LK7ARV9YNJTkzyoNbaF+dYFgAAAAB2wdzCo9bat5I8Kcnbk3w8yetaa+dW1XOq6kHTZM9LcvMkr6+qs6vqlMHsAAAAAFgH82y2ltbaqUlOXTbsmTM/32eeywcAAADg+plnszUAAAAA9nDCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYGjv9S4A83fP2x+w3kUAAAAA9lDCoxuAk371qPUuAgAAALCH0mwNAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRH8P+3d+/BVdZ3Hsff3xIUZkQtsN3BBgW5lBCiqc2UynpBtNbLAEPxQmoHcRHKdl1X3d22zu6srLYzVEtvM7a7bnVkXQVvI1DL1qogiwxk6oWLwSJokQToqNFCGQsV+e0fOT0LhIccNOecJLxfMxnO8zy/PPk+k/nOST78fr9IkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTEUNjyLikojYGBGbI+Jbh7l+fEQ8nLveEBGDilmPJEmSJEmSjk7RwqOI6AHcDVwKjATqI2LkIcOmA++llIYCPwC+W6x6JEmSJEmSdPSKOfPo88DmlNIbKaU/AQuAiYeMmQjMy71+DLgwIqKINUmSJEmSJOkoVBTx3p8Gmg44bgZGZ41JKe2LiJ1AP+CdAwdFxExgJsCpp55arHpL6pyh/ctdgiRJkiRJUruKGR4dbgZR+ghjSCndA9wDUFdX1+Z6V/Tf1x+ao0mSJEmSJHU+xQyPmoGBBxxXAtszxjRHRAVwEvDu0X6hDz74gObmZvbs2fNRa1Un0qtXLyorK+nZs2e5S5EkSZIk6ZhXzPDo18CwiBgMbAOmAF85ZMxi4FpgFXAFsDSldNQzi5qbm+nTpw+DBg3CLZO6tpQSLS0tNDc3M3jw4HKXI0mSJEnSMa9oG2anlPYBNwBPAa8Cj6SUGiPi9oiYkBt2L9AvIjYDtwDf+ihfa8+ePfTr18/gqBuICPr16+csMkmSJEmSOolizjwipbQEWHLIuX894PUe4MqO+FoGR92H30tJkiRJkjqPos08kiRJkiRJUtdneNRBvvOd71BdXc0ZZ5xBbW0tDQ0NzJ49m1tvvfWgcWvWrKGqqgqA3bt387WvfY0hQ4ZQXV3NeeedR0NDQ5t7p5QYN24cu3btyp974okniAh+85vf5M9t2bKF3r17U1tby8iRI5k1axb79+//WM+1d+9err76aoYOHcro0aPZsmVLmzFNTU1ccMEFVFVVUV1dzY9+9KP8tbVr13L22WdTU1PD+PHj88+wfv16pk2b9rFqkyRJkiRJxWd41AFWrVrFk08+yUsvvcS6det45plnGDhwIPX19Tz88MMHjV2wYAFf+UrrvuHXX389ffv2ZdOmTTQ2NnL//ffzzjvvtLn/kiVLOPPMMznxxBPz5+bPn88555zDggULDho7ZMgQ1qxZw7p169iwYQMLFy78WM9277338slPfpLNmzdz8803881vfrPNmIqKCubOncurr77K6tWrufvuu9mwYUP+GefMmcP69euZNGkSd911FwA1NTU0NzezdevWj1WfJEmSJEkqrqLueVQO//bzRjZs39X+wKMw8pQTuW18deb1HTt20L9/f44//ngA+vfvn7928skn09DQwOjRowF45JFHeOqpp3j99ddpaGjgwQcf5BOfaM3wTj/9dE4//fQ293/wwQeZOXNm/nj37t2sXLmSZcuWMWHCBGbPnt3mcyoqKhgzZgybN2/+SM/8Z4sWLcrf/4orruCGG24gpXTQvkQDBgxgwIABAPTp04eqqiq2bdvGyJEj2bhxI+eddx4AX/ziF/nSl77EHXfcAcD48eNZsGAB3/jGNz5WjZIkSZIkqXicedQBLr74Ypqamhg+fDhf//rXWb58ef5afX19fnbQ6tWr6devH8OGDaOxsZHa2lp69OjR7v1XrlzJ5z73ufzxwoULueSSSxg+fDh9+/blpZdeavM577//Ps8++yw1NTVtrp177rnU1ta2+XjmmWfajN22bRsDBw4EWgOpk046iZaWlsxat2zZwssvv5wPy0aNGsXixYsBePTRR2lqasqPraurY8WKFe0+vyRJkiRJKp9uN/PoSDOEiuWEE07gxRdfZMWKFSxbtoyrr76aOXPmMG3aNKZMmcKYMWOYO3cuCxYsoL6+/qjv/+6779KnT5/88fz587npppsAmDJlCvPnz+ess84C4PXXX6e2tpaIYOLEiVx66aVt7nc0gU1Kqc25rL+Gtnv3biZPnswPf/jD/BK7++67jxtvvJHbb7+dCRMmcNxxx+XHf+pTn2L79u0F1yJJkiRJkkqv24VH5dKjRw/Gjh3L2LFjqampYd68eUybNo2BAwcyaNAgli9fzuOPP86qVasAqK6uZu3atezfvz+/bC1LRUVFflxLSwtLly7llVdeISL48MMPiQjuvPNO4P/3PDqSc889lz/84Q9tzn/ve9/joosuOuhcZWUlTU1NVFZWsm/fPnbu3Enfvn3bfO4HH3zA5MmTueaaa/jyl7+cPz9ixAh+9atfAfDaa6/xi1/8In9tz5499O7d+4i1SpIkSZKk8nLZWgfYuHEjmzZtyh+vWbOG0047LX9cX1/PzTffzJAhQ6isrARaQ566ujpuu+22/OyeTZs2sWjRojb3/8xnPsMbb7wBwGOPPcbUqVN588032bJlC01NTQwePJjnn3++4HpXrFjBmjVr2nwcGhwBTJgwgXnz5uW/9rhx49rMPEopMX36dKqqqrjlllsOuvbWW28BsH//fr797W8za9as/LXXXnuNUaNGFVy3JEmSJEkqPcOjDrB7926uvfZaRo4cyRlnnMGGDRsO2sT6yiuvpLGxkSlTphz0eT/72c/43e9+x9ChQ6mpqWHGjBmccsopbe5/+eWX89xzzwGtS9YmTZp00PXJkyfz0EMPdfhzAUyfPp2WlhaGDh3K97//febMmQPA9u3bueyyy4DWPZkeeOABli5dmt8/acmSJfl6hw8fzogRIzjllFO47rrr8vdetmwZl19+eVHqliRJkiRJHSMOt6dNZ1ZXV5deeOGFg869+uqrVFVVlami4tuxYwdTp07l6aefLncpHWbv3r2cf/75PP/881RUtF092d2/p5IkSZIkdSYR8WJKqe5w15x51AUMGDCAGTNmsGvXrnKX0mG2bt3KnDlzDhscSZIkSZKkzsPf3LuIq666qtwldKhhw4YxbNiwcpchSZIkSZLa0W1mHnW15XfK5vdSkiRJkqTOo1uER7169aKlpcXQoRtIKdHS0kKvXr3KXYokSZIkSaKbLFurrKykubmZt99+u9ylqAP06tWLysrKcpchSZIkSZLoJuFRz549GTx4cLnLkCRJkiRJ6na6xbI1SZIkSZIkFYfhkSRJkiRJkjIZHkmSJEmSJClTdLW/UBYRbwNvlruODtIfeKfcRUhdgL0iFcZekQpjr0jts0+kwnSnXjktpfQXh7vQ5cKj7iQiXkgp1ZW7Dqmzs1ekwtgrUmHsFal99olUmGOlV1y2JkmSJEmSpEyGR5IkSZIkScpkeFRe95S7AKmLsFekwtgrUmHsFal99olUmGOiV9zzSJIkSZIkSZmceSRJkiRJkqRMhkeSJEmSJEnKZHhUAhFxSURsjIjNEfGtw1w/PiIezl1viIhBpa9SKq8C+uSWiNgQEesi4tmIOK0cdUrl1l6vHDDuiohIEdHt/3SsdDiF9EpEXJV7b2mMiIdKXaPUGRTwM9ipEbEsIl7O/Rx2WTnqlMotIu6LiLci4pWM6xERP8710rqIOKvUNRaT4VGRRUQP4G7gUmAkUB8RIw8ZNh14L6U0FPgB8N3SVimVV4F98jJQl1I6A3gMuLO0VUrlV2CvEBF9gBuBhtJWKHUOhfRKRAwDbgX+KqVUDdxU8kKlMivwfeVfgEdSSp8FpgA/KW2VUqdxP3DJEa5fCgzLfcwEflqCmkrG8Kj4Pg9sTim9kVL6E7AAmHjImInAvNzrx4ALIyJKWKNUbu32SUppWUrp/dzhaqCyxDVKnUEh7ykAd9AasO4pZXFSJ1JIr8wA7k4pvQeQUnqrxDVKnUEhvZKAE3OvTwK2l7A+qdNIKf0v8O4RhkwE/iu1Wg2cHBEDSlNd8RkeFd+ngaYDjptz5w47JqW0D9gJ9CtJdVLnUEifHGg68D9FrUjqnNrtlYj4LDAwpfRkKQuTOplC3leGA8MjYmVErI6II/1vstRdFdIrs4GvRkQzsAT4u9KUJnU5R/s7TZdSUe4CjgGHm0GUPsIYqTsruAci4qtAHXB+USuSOqcj9kpEfILW5c/TSlWQ1EkV8r5SQevSgrG0zmZdERGjUkq/L3JtUmdSSK/UA/enlOZGxNnAA7le2V/88qQupVv/Xu/Mo+JrBgYecFxJ26me+TERUUHrdNAjTYeTuptC+oSIuAj4Z2BCSmlviWqTOpP2eqUPMAp4LiK2AF8AFrtpto5Bhf78tSil9EFK6bfARlrDJOlYUkivTAceAUgprQJ6Af1LUp3UtRT0O01XZXhUfL8GhkXE4Ig4jtZN5hYfMmYxcG3u9RXA0pRSt0kopQK02ye5pTj/QWtw5L4UOlYdsVdSSjtTSv1TSoNSSoNo3R9sQkrphfKUK5VNIT9/LQQuAIiI/rQuY3ujpFVK5VdIr2wFLgSIiCpaw6O3S1ql1DUsBqbm/uraF4CdKaUd5S6qo7hsrchSSvsi4gbgKaAHcF9KqTEibgdeSCktBu6ldfrnZlpnHE0pX8VS6RXYJ3cBJwCP5vaT35pSmlC2oqUyKLBXpGNegb3yFHBxRGwAPgT+KaXUUr6qpdIrsFf+AfjPiLiZ1iU40/yPbh2LImI+rUud++f2ALsN6AmQUvp3WvcEuwzYDLwPXFeeSosj7HtJkiRJkiRlcdmaJEmSJEmSMhkeSZIkSZIkKZPhkSRJkiRJkjIZHkmSJEmSJCmT4ZEkSZIkSZIyGR5JkiS1IyI+jIg1EfFKRPw8Ik7u4PtviYj+ude7O/LekiRJH5fhkSRJUvv+mFKqTSmNAt4F/rbcBUmSJJWK4ZEkSdLRWQV8GiAihkTELyPixYhYEREjcuf/MiKeiIi1uY8xufMLc2MbI2JmGZ9BkiSpYBXlLkCSJKmriIgewIXAvblT9wCzUkqbImI08BNgHPBjYHlKaVLuc07IV/ltNQAAAURJREFUjf/rlNK7EdEb+HVEPJ5SainxY0iSJB0VwyNJkqT29Y6INcAg4EXg6Yg4ARgDPBoRfx53fO7fccBUgJTSh8DO3PkbI2JS7vVAYBhgeCRJkjo1wyNJkqT2/TGlVBsRJwFP0rrn0f3A71NKtYXcICLGAhcBZ6eU3o+I54BexSlXkiSp47jnkSRJUoFSSjuBG4F/BP4I/DYirgSIVmfmhj4L/E3ufI+IOBE4CXgvFxyNAL5Q8geQJEn6CAyPJEmSjkJK6WVgLTAFuAaYHhFrgUZgYm7Y3wMXRMR6Wpe5VQO/BCoiYh1wB7C61LVLkiR9FJFSKncNkiRJkiRJ6qSceSRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRM/we2nFQkyXeFXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAGiCAYAAAAlePV8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd7wdVbn/8c83HUgghBAIIUhHijQjRQED0hUBFRsKKl7E7r1YUO/vWhALoqCiCCoCgiAIAooCBghFQZoBpEQiBBISSkIS0knOeX5/rHVg52Sfluxz9t4r33de+5U9Zc+sKWeeedasmVFEYGZmZo2tX70LYGZmZl1zwDYzM2sCDthmZmZNwAHbzMysCThgm5mZNQEHbDMzsyZQl4Ct5NeS5ki6ezWms6+kybUsW71I2kzSAkn9e3EeD0sa38nwiZI+2lvz722SjpV0Y0V3SNq6nmXqLklHS5qW94Hd6l2eviTp65Iurnc52kgaLOkRSRt3Md7meR8b0FdlW13t/0a6GPdDku7o5fK8WdJjkuZL2qQ351ULkv4o6QVJ368y7O2SLuvN+dcrw94HOAjYNCL2WNWJRMTtEbFd7YrVOyRNlXRgZ+NExNMRMTQiWnqrHBGxY0RMzGVa7YOkpOGSzpH0rKRFkh6SdHxNCtv1vFc6WEbEJRFxcA+nc2wOkgskLZbUWtG9oPYl79AZwKfyPvDPPpxvw5P0FUlP5m0yXdLvcv9zJV1UZfydJS2VNCJ3byvpCkmzJM2T9KCk/+nk5PhE4LaIeLb3lqo+VuVvpCM1OsH/DPCXiBgWETPydAdJ+n0+bkZnSUYH5Xq3pL/nY9LEKsN3lXRfHn6fpF0rhknS9yTNzp/TJalteEQcAewPfF7S8MrpRsS1wE6Sdu5JeXuiXgH7NcDUiFhYp/k3lGY6Q28jaRAwgbQt9wbWA74AnC7pM/UsW0/kA9jQiBgKHAbMaOvO/V7Rm7UfpPX48Kr8sJdrZSSpbpfO8gngB4ED8/YYB9yUB18AvEPSOu1+dhzwp4h4UdJWwD+AacDrImI94Jg8nWEdzPZjwG9quiDWkRFU3+/vAD4ArMpJ04vAWcB32w/Ix61rgIuB9YELgWtyf0gna0cBuwA7A28j7Q+viIh/5a8bVJn3pXkavSMiOv0AY4GrgBeA2cDZuX8/4H+Bp4DngYuA9fKwzYEAjgeeBmYBX83DTgCWAC3AAuAbwIeAO9rNN4Ct8/fDgUeA+cAzwOdz//HA9IrfbA9MBOaSdoK3Vwy7APgpcF2ezj+ArTpY5rbyf5j0hz4HOAl4A/Bgnv7ZFeNvBdyc188s4BJgeB72G6AVWJyX94sV0z8hr5/bKvoNIO3E04Ej8jSGAlOA46qUdX/goYruCcDdFd13AEfl71OBA4FDgZeBZblMD+ThE4FTgb/ldXQjMLKDdXRC3u7rtOv/HuAlYFj77VixHb6Vv68P/Im0b83J3zetGLfD8uT1Frn8C0gnDR+iYj9ixX1oMCmLfRp4Dvg5sFa7so9nxf3pAuAc4M/Awrzu3gr8My/jNODrVfablfb7PHwP4N782+eAH+ZyLci/Wwj8p5v7cvtyTSWdMD2Y+/0K2Aj4S153E4D1K6axF/D3PP0HgPHt1vtpeb0vrtx+FeOcAvwnT/sR4OiKYR8i7Xdn5O36JHBYxfAtgFvzb/8KnA1c3MF+djZwVifHp8lU/F0A/YEZbeuLdGC+rqvjXMXvN8vLPKCi31rAD0jHunl52daq2N4D8ngfBh7Ny/UE8LGKaYwk7d9zSQHldqBfHvYl0nFtfl6et1Qp1xb5t22/+SXwfMXwi4HP5e/r5e0/M0/3W0D/ym1T8buD8zznAT/L2+WjXW3HvH+0kI7lC6g4Hvbkk9fDRzoZPr1y3+zhtD8KTGzX7+C8TlTR72ng0Pz978CJ7Y5zd1WZdiuwXZX+bwKeXJXydmuZuljg/qQ/5jOBdYAhwD552EdIQWRLUkC5CvhNHta2I/8i79i7AEuB7TvYaVbozv0qD7YzgX3z9/WB3fP38eQDLDAwl+crwCDggPwHsF0efgHpD2UPUlC8BLisg+VuK//P8zIfnHfMq4FRwBhSsHpzHn9rUhX/YGBDUgA+q2J6U0kZQvvpX5TXa7U//oNJZ5ej8nr8fQdlHUI6wIzMy/Us6YA1LE93MbBB+3IAX6fdQZJ0oP4PsG3+7UTgux3M9zLgwir9BwDLgYPab8eK7dAWsDcA3gmsnct7BXB1d8rTfn11sF9V7kNnAdeSToaGAX8EvtOu7ONZOWDPI/0R9svrejzwuty9MynwHtWuTB3t93cCH8zfhwJ7dVDW7uzL7cs1FbiLFKTb9s/7gd1I++XNwNfy78eQTi4Pz78/KHdvWLHenwZ2zNtzYJXtfAywSf79e0gnCaMrtsMy4L9Ix5CPk/ZJVayHtpOV/fKydRSwP0D6u/0CKSvu3274V4EJFd2HkE4AB+buZ4EPd/uAmE7IHm7X76d5nYzJy/PGXPa27T2g4rdbAQLeDCzi1WPVd0jHk4H5s28ebzvSid8mFftQR4nE08Dr8/fJpJOC7SuG7Za/Xw2cSzq2jALuJp88UPE3QjpmvAS8I2/nz+btVhmwO9uOE9vGrShjW0JT7fOzduNuStrvDuxke6wUsIH3Aw92Y1t+9ODxa8frdx5ckw9wfcW0nwI+SUXgz/1H5H1i3e7ucz35dLXAe+edf0CVYTcBn6jo3i5v3AEVO3JltnQ38N4ODqwrdFc5gD1NqpZYt90443k1YO9L+uPsVzH8UnIGRDrI/bJi2OHAYx0sd1v5x1T0mw28p6L7SvIZbZXfHwX8s6J7KtUD9pZV+lUGoJ8AD+U/kg062U63k/7o9iJloZeTsuj9K3dsuhew/7ei+xOVO2m7cSfQcTB/Fnh/++1YsR2+1cHvdgXmdKc8Hayv9vtVkE6mRAooW1UM25t2Z8JUD9gXdfE3chZwZrsydbTf30aqUVqp1oIV9/fu7MsXtfv9VODYdvvnORXdnyafDJEyut+0+/0NwPEV6/2bnS13lfJPAo6s2A5TKoatnZdvY1IGu5yKmhngt+33xXbTPjbvbwtJf4enVAzbjHTc2TR3XwL8qGL4MnL21M3lOJaKjIp0QrIY2KXKuCvtg+2GXw18Nn//Jqkqdut242xNOrk6kConRu3G/Q3wP3k9TgZOJ9X8vZJ9k07YllJRewS8D7il/d8I6dLBnRXjiXTyUBmwq27Hiv3ko52VuZNlOSNP68ouxlutDPv1Ow+Olpnb1OQD3Fsx7aNJtZRz281zYF6uzValzF19uro2NRZ4KiKWVxm2Cekso81TpGC9UUW/yusPi0hZxap4JynAPiXpVkl7d1CeaRHR2q5MY1ajPM9VfF9cpXsogKRRki6T9Iykl0jVUyO7mDakP47OnAfsBPw6ImZ3Mt6tpGCzX/4+kXSG/+bc3RPdXUezgNHte+br8SNJJ3qdkrR2bjj0VF5vtwHD212TrcU+tCHpYHOfpLmS5gLX5/5dWWEbSdpT0i25peg80gGz/bbuqMwnkGoLHpN0j6S3dTDP7uzL1fadbu2vpOvlx7Sti7w+9mHF7dnpvinpOEmTKn6/Eyuuh1fWQUQsyl+H5mWbEyu2X6k8jqwkUjuDA4HhpPX9TUmH5GFtl5Q+IGko6WT5woqfz6bKftqJOax4bXskqQbjP139UNJhku6S9GJeJ4fz6jr5PqnW5EZJT0g6JZd/CvA50gn08/k40lFr6cq/89tY8e/89ry/vIYUNGZWbJtzSZl2e5tQsZ0jRZzp7cbpaDuuloj4POlv4WBJ41Z3eh3OB2it0b92vkHaZiPa9W/bd+b2xvJ0FbCnAZt10ChqBmnnaNN25vxclXG7spB0QAVA7W6niIh7IuJI0k53NSmDrFaese0ayGxGul7R275D2jd2joh1SdV4qhgeHfyuo/5tDYnOJVWbf1yd357UPmDfStcBu8N5d9ME4LAqDX7eScpq2m7XW0TFtiVlB21OJtXM7JnX2365f+W660hPyj+LFLB2jIjh+bNetGtU1s35/JZUtT42UgOmn3ezvETE4xHxPtJ+/D3g91XWH3RvX16d7TeNlGEPr/isExGVjXQ62zdfQ6r2/xSp5mc48C+6tx5mAuu3W+7NulPoiFgWEVeQql13qhh0ISlbfCep1uT+imETcv/uehDYsuKYN4t0OWyrzn4kaTCpVuMMYKO8Tv5MXicRMT8iTo6ILYEjgP+R9JY87LcRsQ/peBqkfaOaW0m1L+Pz9ztIl0Uq/86nkTLskRXbdt2I2LHK9GaSqqXblkGV3d2w0j6idOvogg4+P1/hxxGPk/abHXowzx4KWqK1Jp92tgeuaXdS3dZ/akS81BtL01XAvpu0Ub8raR1JQyS9KQ+7FPhvSVvkM9tvA7/rIBvvygPAjrm5/RDSmQvwShP/YyWtFxHLSNdcqt369A9S4P+ipIH5VoAjSNdae9swUsOLuZLGkK63VXqOdK2/J76S//8I6SBwUSetgf9OCnx7kBqcPUz649+TdCZezXPA5qvRAvg3pLPxK5RusRqYs54fA6dHxLw83iTg/ZL6SzqUdHBpM4wUSOcq3YLztR7M/wVSw48u12v+o/oFcKakUQCSxrRlaT00DHgxIpZI2oN0Pa1bJH1A0oa5PG1n4PXYly8GjpB0SN4uQySNl9Tdg/U6pIP1CwCSPsyKAbRDEfEUqeHdN/Lf9j6kZatK6V7gt0oaJqmfpMNI19b/UTHalaTawG+wYnYNaZ96o6TvtyUCkraWdLHa3ZaTyzcdeJz0t9S275wP/FDSJnl97Z0DdKVBpOvaLwDLczlfuX1K0tvyfMWrx7AWSdtJOiBPbwnp76HqrZ05wC0mJQS35aDwHOmE5NY8zkzSZbEfSFo3r7OtJL25yiSvA14n6ah8gvJJVjyh7spKx7VIt44O7eBzUpVpLCWtuxUo3Qs/JHcOyvtot06M2/ZpUo1vbxlAKnt7byY19OwVnR6sI90TfATpOsvTpAP0e/Lg80kH7dtIrQeXkK6T9VhE/Jt0jWcC6Y+l/c36HwSm5mrTk0g7bPtpvAy8nXRrzixSi8fjIuKxVSlTD30D2J3UEOg6UgO8St8B/jdXUX2+q4lJej3pWtVxeRt8j3SAPKXa+Ll68X5SY5mXc+87SZcznu9gNlfk/2dLur+DcToUEUtJ192mkQ6ei0nVzGeR1kebz5L2obmk64NXVww7i9Q4axapwdT1PZj/InJL5rxe9+riJ18iVUnelfejCaSTnJ76BKlKdj7wf1Sv7enIocDDSvd3/4h0bXtJ+5F6e1+OiGnAkaSTwhdI2/ALdPM2z4h4hNRq+k7SQft1pBbl3fV+0snki6SAutK91BVeyuV8mrQPnQ58PCJeOUbk/b8taF/Srqz/IbVX2Jy07uflce8lNXar5lzSMafN50ltSe7JZf4e7dZVRMwn3VN8Oala/f2kmpg225D2uQWk9fazSM9EGEy6/WgWrzYy/QoduxWYnS8FtHWLdOdCm+NIQfCRXJbfU+WyQETMIjUePJ106WAH0nqpFoiq+RHwLqUHYP24m79pr5Xq+91k0jFlDKl9xWJyjW5O4Dq7BfKDefxzUpV41OTTpiLJWSntJrUXOLeH66Db2lr7ma0WSQNJZ5bPAB8K71jWpHK2+0/S7VUz612evpID0XRS48Vb+mievyWdxJxUpXp5te2+y+C4/fqeVBp0bOgmT98XEeNyzdqdpFt3Xznpk3QE6S6Qd9dkhlX4WeJWE/lyxTtJjXMa/ulzZh2JiKURscOaEKzzZZHh+STlK6Rs/a4+LMIPSXeHvNBJY7uGIelqUo3F/6sM1gAR8cfeDNbQu3X8tobJ162/We9ymFm37U1qSNlWhX5URCzuq5lHxL3k9gK9Mn2ClhpW9kXEUR0Ny9fNbyNd5hhAenbG1yRdQLq23dau50MRMSlfk/8R6W6CRbl/p5cnHbDNzNZQEfF1Khr5lqh1tW+I6balwAERsSBfIrxDUlsDtC9ExO/bjX8YqW3DNqQ2Hefk/zvkKnEzM7PVFEnbC4PanmjX2dnCkaQHIEVE3EV6BkWnzwxwwDYzsyIF0ELU5NMd+ZaySaSn1/01ItpuPzxN6S1xZ1bcEjiGFR9QNJ0VH460kjWySnzkiP6x+diB9S6G2Wp76MXuPKzNrLEtf/FFWhYu7NZ91j1VwyrxkZLureg+LyLOqxwh34a7a77H/w+SdgK+TLplbxDp6ZVfIrX1qba8nRZ2jQzYm48dyN03jK13McxW29aXVnsWhVlzeeaHZ9W7CN0xKyK69RjViJir9C7uQyPijNx7qaRfk+7rh5RRVwaiTUlPOeyQq8TNzKxIAbRE1OTTFUkbtj09T9JapAdLPdZ2XTq3Cj+K9DhWSA/WOU7JXsC8rm4lXCMzbDMzWzPU/GksHRsNXJgfId0PuDwi/iTpZkkbkqrAJ5Ge1gnpWfOHk57AuIj0PvVOOWCbmZmtpoh4kPT++fb9D+hg/CA9v73bHLDNzKxI0YMW3s3AAdvMzMoU0FJOvHajMzMzs2bgDNvMzIqUXq9ZDgdsMzMrlGip+nyS5uQqcTMzsybgDNvMzIoUQGtBjc4csM3MrFiuEjczM7M+5QzbzMyKlF6vWU6G7YBtZmbFao1yArarxM3MzJqAM2wzMyuSq8TNzMyaQCBaCqpILmdJzMzMCuYM28zMilVSozMHbDMzK1Jp17BdJW5mZtYEnGGbmVmhREuUk5c6YJuZWZHS+7DLCdjlLImZmVnBnGGbmVmxSmp05oBtZmZFiijrGnY5S2JmZlYwZ9hmZlasVleJm5mZNbb04JRyKpLLWRIzM7OCOcM2M7NCldXozAHbzMyK5AenmJmZWZ9zhm1mZsVq8es1zczMGlsgtxI3MzOzvuUM28zMitXqVuJmZmaNzQ9OMTMzsz7nDNvMzIoUyK3EzczMmkFJD05xwDYzsyJFUNSjSctZEjMzs4I5wzYzs0LJ78M2MzNrdIGrxM3MzKyPOcM2M7Ni+cEpZmZmDS4QrVGbT1ckDZF0t6QHJD0s6Ru5/xaS/iHpcUm/kzQo9x+cu6fk4Zt3NQ8HbDMzs9W3FDggInYBdgUOlbQX8D3gzIjYBpgDnJDHPwGYExFbA2fm8TrlgG1mZsVqoV9NPl2JZEHuHJg/ARwA/D73vxA4Kn8/MneTh79FUqepvK9hm5lZkYKavq1rpKR7K7rPi4jzKkeQ1B+4D9ga+CnwH2BuRCzPo0wHxuTvY4BpABGxXNI8YANgVkcFcMA2MzPr2qyIGNfZCBHRAuwqaTjwB2D7aqPl/6tl01Gl3yscsM3MrFCipQ4PTomIuZImAnsBwyUNyFn2psCMPNp0YCwwXdIAYD3gxc6m62vYZmZWpLYq8Vp8uiJpw5xZI2kt4EDgUeAW4F15tOOBa/L3a3M3efjNEeEM28zMrJeNBi7M17H7AZdHxJ8kPQJcJulbwD+BX+XxfwX8RtIUUmb93q5m4IBtZmbF6qsq8Yh4ENitSv8ngD2q9F8CHNOTeThgm5lZkSJUy1bidVfOkpiZmRXMGbaZmRWrpLd1OWCbmVmRAop6H3Y5px5mZmYFc4ZtZmaFkqvEzczMGl16cIqrxM3MzKwPOcM2M7NidefVmM3CAdvMzIoUyFXiZmZm1recYZuZWbFaC8pLHbDNzKxIEdDiKnEzMzPrS86wzcysWCU1OnPANjOzIqVW4uVUJJezJGZmZgVzhm1mZsVqKehtXQ7YZmZWJD9L3MzMzPqcM2wzMytUWY3OHLDNzKxYrQVdwy7n1MPMzKxgzrDNzKxIpT2a1AHbzMyKVdI17HKWxMzMrGDOsI2Xl4iT37E1y17uR8ty2Pet8zjuC8+uNN6t1w7n4h9sDAq23GEJX/7ZU6s135fm9OfbJ23Oc9MHsdGmL/PVc6cybHgLN1+1Ppf/dBQAQ9Zu5dPfncZWOy5ZrXnZmuE7e07kgE2eYvaStTj8L+9eafjQgUv54d43M3rtBQzoF/zy0Z258snXrtY81xu0hB+9aQKbrjOf6QuH8Zk7DuKlZYN5+2se58QdJgGwaNlA/u/efXls7garNS/rmfRo0nKqxIvIsCUdKmmypCmSTql3eZrNwMHB6Vf8h59PmMw5f53MvROH8eh9a68wzjNPDOJ3PxnFD695nF9MnMzHv/lMt6f/wN+HcsbnNlup/+Vnj2K3febz6789ym77zOd3Z6cgvdHYpXz/yin8/KbJHPvfz/KjL45dvQW0NcZVT2zLRyYe3uHwD27zMI/PW58jrj+GY286gi/vdhcD+7V0a9p7jprB9/a8ZaX+H9thEnc+O4YD//Q+7nx2DB/b4Z8ATFs4jPdPeDtv+8sxnP3w7nzrDbet2kLZamlFNfk0gqYP2JL6Az8FDgN2AN4naYf6lqq5SLDWOq0ALF8mWpYJtds//3LJBhzxoVkMG54ObsNHLn9l2BU/25BPH7YtJ71lOy76/sbdnu+dN6zHge9+EYAD3/0id16/HgA7vmHRK/N57e6LmDVz4Covm61Z7nlhE+a+PKTD4YEYOnAZEKw9YBnzXh7M8tZ0GPzoaydx1cFX8afDruCzO93T7XkeOGYqVz25LQBXPbktB206FYB/ztqYl5YNBmDSrI3YeO0Fq7ZQZlkJVeJ7AFMi4gkASZcBRwKP1LVUTaalBT51yHbMmDqIIz40i9fuvmiF4dOfSAfB/3771rS2ig+c/Cxv2H8+900cxjNPDubHf/43EfC1D23BQ3etw+v2WtjlPOfMGsgGG6XAv8FGy5k7e+Xd8fpLR/CG/efXYAnN4Df/3pFz97uBvx91MesMeJnP/v1AArHPxtPYfNg83nHj0Qg4d7/recOGM7jnhU26nObIIYt5Yck6ALywZB02GLJ4pXGO2eoxbpu5ci2T9a7SHk1aQsAeA0yr6J4O7FmnsjSt/v3hnAmTWTCvP984YXOmPjaEzV/76nXjlhZ45snBfP/KKcyaOYiTj96ac2+ezH23DuP+W9flEwdtB8DiRf145onBvG6vhXzmrduwbGk/Fi/qx/y5/fn4gWmcE/53BuPGdx2EJ/1tKDdcugE/vPrx3lloW+PsO3o6j87ZgA/c/DZeM/QlLtj/Ou59fjT7bDydfTaezrWHXgnAOgOWsfmwl7jnhU34/UF/YFD/FtYZsIz1Bi3l2kN/D8D3J+3J7c92fblmr1HPcMyWj/HeCUf26rJZdSW1Ei8hYFc7fYqVRpJOBE4E2GxMCYvdO4au18Iuey/gnluGrRCwR45exva7L2LAQNh4s5fZdKulPPPkIAJ4z6ef460fnL3StH58XQq0D/x9KH+9fASfP+vpFYavP3IZs58bwAYbLWf2cwMYvsGr1exPPDKEsz4/lm9d/ATrjujeNUazrrxzi8mc++iugHhqwXpMXziMLdediwQ/f2Q3LvvPylfT3vXXo4F0DfsdW0zmS//Yf4Xhs5asxYZDFvLCknXYcMhCZi9Z65Vh2w2fzbf3uI2P3HpYp1X1Zt1RwqnHdKDyNHdTYEb7kSLivIgYFxHjNtygf58VrhnMnd2fBfPSOlm6WNx/+zDGbr10hXHeeOg8Hvj7UADmze7P9P8MZvRmLzPuzfO54bIRLF6YdqVZMwcyd1b3Toj2OvglJlw+AoAJl49g70PmAfD89IF886Nb8IUfP8WmWy3tbBJmPTJj0VDeuFFqMLnBkEVsMWwu0xYM4/aZm/KuLSez9oBlAGy01kJGDF65aruam555De/Y4t8AvGOLfzPhmc0BGL32fH62z42cfNf+TJ0/vPYLY12L1Eq8Fp9GUEKqeQ+wjaQtgGeA9wLvr2+RmsuLzw3kjM9uRmuraG2F/Y6Yy14HvcSFp2/MtrssYu9DXmLc+Pncf+sw/uvNr6Vf/+C//t8M1h3RwuvHz+fpKYP53BHbAKnx2hd/8hTDR3Y93/d86jlOO2lzrr9sA0aNSbd1AVxy5sbMn9Ofs7+czsP6DwjOvv7fvbX4VpAz3ziBPUfNZP3BS7jjyIv50UPjGNAvNai8dMoO/PTh3Tl9z4lcd9gViOD7D+zJnJfX4o5nx7LVunO54qCrAVi0fAAn33kALy5dq7PZAXDuI7vx4zf9lWO2eowZC4fy6b8dBMCnd7qf4YOX8I1xdwDQ0iqOvvGdvbTkVk1Q1rPEFbFS7XHTkXQ4cBbQHzg/Ik7rbPxxuwyJu2/wrULW/La+9KR6F8FstT3zw7NYOm1azSPr+q8dFQec/66aTOuqN51zX0SMq8nEVlEJGTYR8Wfgz/Uuh5mZNZZGqc6uhSICtpmZWXu+rcvMzKxJlBSwS2glbmZmVjxn2GZmVqTSXv7hgG1mZsUq6bYuV4mbmZk1AWfYZmZWpiir0ZkDtpmZFam027pcJW5mZraaJI2VdIukRyU9LOmzuf/XJT0jaVL+HF7xmy9LmiJpsqRDupqHM2wzMytWH2bYy4GTI+J+ScOA+yT9NQ87MyLOqBxZ0g6kd1/sCGwCTJC0bUR0+HpCB2wzMytSX97WFREzgZn5+3xJjwJjOvnJkcBlEbEUeFLSFGAP4M6OfuAqcTMzs66NlHRvxefEjkaUtDmwG/CP3OtTkh6UdL6k9XO/McC0ip9Np/MA7wzbzMzKFbXLsGd1521dkoYCVwKfi4iXJJ0DnEpqA3cq8APgI1D1BvFOX5/pgG1mZsXqywenSBpICtaXRMRVABHxXMXwXwB/yp3Tgcr3PG8KzOhs+q4SNzMzW02SBPwKeDQifljRf3TFaEcD/8rfrwXeK2mwpC2AbYC7O5uHM2wzMytS9O2DU94EfBB4SNKk3O8rwPsk7Uqq7p4KfCyVLR6WdDnwCKmF+Sc7ayEODthmZlawGl7D7mI+cQfVr0v/uZPfnAac1t15uErczMysCTjDNjOzQvn1mmZmZk2hr6rE+4KrxM3MzJqAM2wzMytSaW/rcsA2M7MyRbq1qxSuEjczM2sCzrDNzKxYfflo0t7mgG1mZkUK3ErczMzM+pgzbDMzK5QfnGJmZtYU3ErczMzM+pQzbDMzK1ZJjc4csM3MrEgRZQVsV4mbmZk1AWfYZmZWLLcSNzMzawJuJd3lREcAABTDSURBVG5mZmZ9yhm2mZkVq6RGZw7YZmZWpEBFBWxXiZuZmTUBZ9hmZlasgtqcOWCbmVmh/OAUMzMz62vOsM3MrFwF1Yk7YJuZWbFcJW5mZmZ9yhm2mZkVq6RHkzpgm5lZkQJXiZuZmVkfc4ZtZmZlCqCgDNsB28zMilXSNWxXiZuZmTUBZ9hmZlaugjJsB2wzMyuUX69pZmZmfcwZtpmZlctV4mZmZg2usNdrOmCbmVm5CsqwfQ3bzMysCTjDNjOzgrlK3MzMrPG5StzMzMzaSBor6RZJj0p6WNJnc/8Rkv4q6fH8//q5vyT9WNIUSQ9K2r2reThgm5lZuaJGn64tB06OiO2BvYBPStoBOAW4KSK2AW7K3QCHAdvkz4nAOV3NoO5V4pJ+QierIyI+04fFMTOzUvTh27oiYiYwM3+fL+lRYAxwJDA+j3YhMBH4Uu5/UUQEcJek4ZJG5+lUVfeADdxb7wKYmZnViqTNgd2AfwAbtQXhiJgpaVQebQwwreJn03O/xg3YEXFhZbekdSJiYb3KY2Zm5ajh6zVHSqpMMM+LiPPajyRpKHAl8LmIeEnqMMOvNqDT0tY9YLeRtDfwK2AosJmkXYCPRcQn6lsyMzNrWrUL2LMiYlxnI0gaSArWl0TEVbn3c21V3ZJGA8/n/tOBsRU/3xSY0dn0G6nR2VnAIcBsgIh4ANivriUyMzPrBqVU+lfAoxHxw4pB1wLH5+/HA9dU9D8utxbfC5jX2fVraKAMGyAiprWrPmipV1nMzKwAffcs8TcBHwQekjQp9/sK8F3gckknAE8Dx+RhfwYOB6YAi4APdzWDRgrY0yS9EQhJg4DPAI/WuUxmZtbE1EcPTomIO+j4sWpvqTJ+AJ/syTwaqUr8JFLhxwDPALvSw4UxMzMrVcNk2BExCzi23uUwM7NCdP+hJ02hYTJsSVtK+qOkFyQ9L+kaSVvWu1xmZtaslK5h1+LTABomYAO/BS4HRgObAFcAl9a1RGZmZg2ikQK2IuI3EbE8fy6mqMoMMzPrc333LPFeV/dr2JJG5K+3SDoFuIy0et4DXFe3gpmZWfNrkGBbC3UP2MB9pFXadpHgYxXDAji1z0tkZmbWYOoesCNii3qXwczMCuUMu3dI2gnYARjS1i8iLqpficzMrGn14es1+0LDBGxJXyO9M3QH0iPbDgPuABywzcxsjddIrcTfRXp827MR8WFgF2BwfYtkZmbNTFGbTyNomAwbWBwRrZKWS1qX9AoyPzjFzMxWXYME21popIB9r6ThwC9ILccXAHfXt0hmZmaNoWECdkR8In/9uaTrgXUj4sF6lsnMzKxR1D1gS9q9s2ERcX9flsfMzMrRKNefa6HuARv4QSfDAjig1jP894Nrc8gmu9Z6smZ9btutn6t3EcxW2+wXltW7CE2h7gE7IvavdxnMzKxQvg/bzMyswTXQiztqoZHuwzYzM7MOOMM2M7NyOcOuPSUfkPR/uXszSXvUu1xmZta8SnrSWcMEbOBnwN7A+3L3fOCn9SuOmZlZ42ikKvE9I2J3Sf8EiIg5kgbVu1BmZtbEGiQ7roVGCtjLJPUnr15JGwKt9S2SmZk1tYICdiNVif8Y+AMwStJppFdrfru+RTIzM2sMDZNhR8Qlku4jvWJTwFER8Widi2VmZk2qkRqM1ULDBGxJmwGLgD9W9ouIp+tXKjMza2p+0lmvuI50tUHAEGALYDKwYz0LZWZm1ggaJmBHxOsqu/NbvD5Wp+KYmVkJXCXe+yLifklvqHc5zMysefkadi+Q9D8Vnf2A3YEX6lQcMzOzhtIwARsYVvF9Oema9pV1KouZmZXAGXZt5QemDI2IL9S7LGZmVojCbuuq+4NTJA2IiBZSFbiZmZlV0QgZ9t2kYD1J0rXAFcDCtoERcVW9CmZmZk2uoAy7EQJ2mxHAbOAAXr0fOwAHbDMzWzUO2DU1KrcQ/xevBuo2Ba1qMzOzVdcIAbs/MJQVA3UbB2wzM1tlJTU6a4SAPTMivlnvQpiZmTWyurcSp3pmbWZmZhUaIcN+S70LYGZmhXKVeO1ExIv1LoOZmRWosAen1D1gm5mZ9ZqCAnYjXMM2MzOzLjhgm5lZuaJGny5IOl/S85L+VdHv65KekTQpfw6vGPZlSVMkTZZ0SHcWxVXiZmZWJNGn17AvAM4GLmrX/8yIOKOyh6QdgPcCOwKbABMkbZvfq9EhZ9hmZmarKSJuA7rbiPpI4LKIWBoRTwJTgD26+pEDtpmZlat2VeIjJd1b8TmxmyX4lKQHc5X5+rnfGGBaxTjTc79OuUrczMzKVNvbumZFxLge/uYc4NRUEk4FfgB8hFV8FLczbDMzs14QEc9FREtEtAK/4NVq7+nA2IpRNwVmdDU9B2wzMytXH7USr0bS6IrOo0lvpQS4FnivpMGStgC2Ae7uanquEjczs3L1UStxSZcC40nXuqcDXwPGS9o1l2Iq8DGAiHhY0uXAI8By4JNdtRAHB2wzM7PVFhHvq9L7V52MfxpwWk/m4YBtZmbF8rPEzczMmkFBAduNzszMzJqAM2wzMyvTarTwbkQO2GZmVqySrmG7StzMzKwJOMM2M7NyFZRhO2CbmVmxXCVuZmZmfcoZtpmZlaugDNsB28zMylTYbV2uEjczM2sCzrDNzKxIyp9SOGCbmVm5XCVuZmZmfckZtpmZFauk+7AdsM3MrFwFBWxXiZuZmTUBZ9hmZlaugjJsB2wzMytTlHUN21XiZmZmTcAZtpmZlaugDNsB28zMiuUqcTMzM+tTzrDNzKxcBWXYDthmZlYsV4mbmZlZn3KGbWZmZQpcJW5mZtYUCgrYrhI3MzNrAs6wzcysSKKsRmcO2GZmVq6CArarxM3MzJqAM2wzMyuWopwU2wHbzMzKVNhtXa4SNzMzawLOsM3MrFhuJW5mZtYMCgrYrhI3MzNrAs6wzcysWK4SNzMzawYFBWxXiZuZmTUBZ9hmZlamcJW4mZlZcygoYLtK3MzMitT2tq5afLqcl3S+pOcl/aui3whJf5X0eP5//dxfkn4saYqkByXt3p3lccA2MzNbfRcAh7brdwpwU0RsA9yUuwEOA7bJnxOBc7ozAwdsMzMrV0RtPl3OJm4DXmzX+0jgwvz9QuCoiv4XRXIXMFzS6K7m4WvYVlPjxr/ESafOoH+/4C+XjuDyszeqd5HMumXgoBZO/8ntDBzYSv/+wR0TN+GSX2/P6T+5nbXWXgbA8PVf5t+PDufUr+5V59Jad9Ww0dlISfdWdJ8XEed18ZuNImImQETMlDQq9x8DTKsYb3ruN7OziTV9wJZ0PvA24PmI2Kne5VmT9esXfPLbz/Dl927JrJkD+cmfH+euG9bj6ceH1LtoZl1a9nI/vvy5fViyeAD9+7dyxk9v595/bMQXP73vK+N89dR/cOcdXSZCVqZZETGuRtNSlX5dnlqUUCV+AStfN7A62G63RcyYOohnnx7M8mX9mHjNcPY+ZF69i2XWTWLJ4pTDDBjQSv8BrSscQtdaaxk77z6LO293wG4aUcPPqnmurao7//987j8dGFsx3qbAjK4m1vQBu4PrBlYHG2y8jBdmDHqle9bMgYwcvayOJTLrmX79gp/86mZ+e81f+Oe9o5j86IhXhu2930weuG9DFi8aWMcSWk+ptTafVXQtcHz+fjxwTUX/43Jr8b2AeW1V551p+oBtjUNVKnm60VbDrGG0topPn3AAx73rELZ97Rxes8VLrwwb/5bp3HrTmDqWzhqZpEuBO4HtJE2XdALwXeAgSY8DB+VugD8DTwBTgF8An+jOPJr+GnZ3STqR1HyeIaxd59KUadbMgWy4ycuvdI8cvYzZzzobseazcMEgHpo0ktfv+RxPPbkuw9Z9mW23n8Op/7tnvYtmPdVHSUNEvK+DQW+pMm4An+zpPNaYDDsizouIcRExbiCD612cIk2etDZjtniZjcYuZcDAVsYfOZe7blyv3sUy65Z111vKOkPTCeegQS3s+voXmP7UMAD2Hf8Md9+5Mcte7l/PItoq6KsHp/SFNSbDtt7X2iJ++tUxfPu3T9CvP9x42Qie+rdbiFtzGLHBEk7+yv306x9Iwe23jOHuOzcGYL+3TOeKS7atcwltTdf0ATtfNxhPukduOvC1iPhVfUu15rrn5nW55+Z1610Msx6b+sR6fPqj+1cddspn963a3xpcUFRDmqYP2J1cNzAzszVco1Rn18Iacw3bzMysmTV9hm1mZtahgjJsB2wzMytS2+s1S+EqcTMzsybgDNvMzMrUzVdjNgsHbDMzK5arxM3MzKxPOcM2M7NyFZRhO2CbmVmxXCVuZmZmfcoZtpmZlSmA1nJSbAdsMzMrVznx2lXiZmZmzcAZtpmZFaukRmcO2GZmVq6CnnTmKnEzM7Mm4AzbzMyK5SpxMzOzRhe4lbiZmZn1LWfYZmZWJAEqqNGZA7aZmZWrtd4FqB1XiZuZmTUBZ9hmZlYsV4mbmZk1OrcSNzMzs77mDNvMzAoVRT2a1AHbzMyKVdKTzlwlbmZm1gScYZuZWblcJW5mZtbgAuQHp5iZmVlfcoZtZmblcpW4mZlZEygnXrtK3MzMrBk4wzYzs2L5WeJmZmbNoKCA7SpxMzOzJuAM28zMyhRAQfdhO2CbmVmRRPgatpmZma1I0lRgPtACLI+IcZJGAL8DNgemAu+OiDmrMn1fwzYzs3JF1ObTfftHxK4RMS53nwLcFBHbADfl7lXigG1mZuXq+4Dd3pHAhfn7hcBRqzohB2wzMytTW6OzWny6P8cbJd0n6cTcb6OImAmQ/x+1qovja9hmZmZdGynp3oru8yLivHbjvCkiZkgaBfxV0mO1LIADtpmZFauGrcRnVVyXrioiZuT/n5f0B2AP4DlJoyNipqTRwPOrWgBXiZuZWbn66Bq2pHUkDWv7DhwM/Au4Fjg+j3Y8cM2qLoozbDMzs9W3EfAHSZBi628j4npJ9wCXSzoBeBo4ZlVn4IBtZmaFWu0W3t2fU8QTwC5V+s8G3lKLeThgm5lZmQK//MPMzMz6ljNsMzMrl1/+YWZm1vhKevmHq8TNzMyagDNsMzMrV0EZtgO2mZmVKYDWcgK2q8TNzMyagDNsMzMrVN89OKUvOGCbmVm5CgrYrhI3MzNrAs6wzcysXAVl2A7YZmZWJrcSNzMzs77mDNvMzAoVEOU8TNwB28zMylXQNWxXiZuZmTUBZ9hmZlamwhqdOWCbmVm5XCVuZmZmfckZtpmZlaugDNsB28zMClXWyz9cJW5mZtYEnGGbmVmZAmj1g1PMzMwan6vEzczMrC85wzYzs3IVlGE7YJuZWaGiqCeduUrczMysCTjDNjOzMgWEX69pZmbWBFwlbmZmZn3JGbaZmZXLrcTNzMwaXERRTzpzlbiZmVkTcIZtZmblcpV4c5vPnFkT4vdP1bschRsJzKp3IYr3eL0LsEbwvtz7XtNbE46CqsTXyIAdERvWuwylk3RvRIyrdznMVpf3ZWsUa2TANjOzNUG4StzMzKzhBX5wilk3nFfvApjViPdlawjOsK1XRIQPclYE78tNzs8SNzMza2wBhKvEzaqTdKikyZKmSDql3uUxWxWSzpf0vKR/1bssZm0csK1mJPUHfgocBuwAvE/SDvUtldkquQA4tN6FsNUUkarEa/Hpht5OWBywrZb2AKZExBMR8TJwGXBknctk1mMRcRvwYr3LYasvWqMmn670RcLigG21NAaYVtE9PfczMytdrycsbnRmtaQq/cpp8WFmTWU+c26Y0Hr5yBpNboikeyu6z2t3B0G1hGXPGs0bcMC22poOjK3o3hSYUaeymNkaLiL6sh1CrycsrhK3WroH2EbSFpIGAe8Frq1zmczM+kKvJywO2FYzEbEc+BRwA/AocHlEPFzfUpn1nKRLgTuB7SRNl3RCvctkDa/XExZFQQ9GNzMzqxdJhwNnAf2B8yPitJpO3wHbzMys8blK3MzMrAk4YJuZmTUBB2wzM7Mm4IBtZmbWBBywzbpJUoukSZL+JekKSWuvxrQukPSu/P2XnT1zWNJ4SW9chXlMlbTSU5466t9unAU9nNfXJX2+p2U0s+5zwDbrvsURsWtE7AS8DJxUOTA//L/HIuKjEfFIJ6OMB3ocsM2sLA7YZqvmdmDrnP3eIum3wEOS+kv6vqR7JD0o6WMASs6W9Iik64BRbROSNFHSuPz9UEn3S3pA0k2SNiedGPx3zu73lbShpCvzPO6R9Kb82w0k3Sjpn5LOpfqjElcg6WpJ90l6WNKJ7Yb9IJflJkkb5n5bSbo+/+Z2Sa+txco0s675WeJmPSRpAOkVetfnXnsAO0XEkznozYuIN0gaDPxN0o3AbsB2wOuAjYBHgPPbTXdD4BfAfnlaIyLiRUk/BxZExBl5vN8CZ0bEHZI2Iz1Zbnvga8AdEfFNSW8FVgjAHfhInsdawD2SroyI2cA6wP0RcbKk/8vT/hRwHnBSRDwuaU/gZ8ABq7AazayHHLDNum8tSZPy99uBX5Gqqu+OiCdz/4OBnduuTwPrAdsA+wGXRkQLMEPSzVWmvxdwW9u0IqKj9zEfCOwgvZJArytpWJ7HO/Jvr5M0pxvL9BlJR+fvY3NZZwOtwO9y/4uBqyQNzct7RcW8B3djHmZWAw7YZt23OCJ2reyRA9fCyl7ApyPihnbjHU7Xb+5RN8aBdClr74hYXKUs3X50oaTxpOC/d0QskjQRGNLB6JHnO7f9OjCzvuFr2Ga1dQPwcUkDASRtK2kd4Dbgvfka92hg/yq/vRN4s6Qt8m9H5P7zgWEV491Iqp4mj9cWQG8Djs39DgPW76Ks6wFzcrB+LSnDb9MPaKsleD+pqv0l4ElJx+R5SNIuXczDzGrEAdustn5Juj59v6R/AeeSarL+ADwOPAScA9za/ocR8QLpuvNVkh7g1SrpPwJHtzU6Az4DjMuN2h7h1dbq3wD2k3Q/qWr+6S7Kej0wQNKDwKnAXRXDFgI7SrqPdI36m7n/scAJuXwPA0d2Y52YWQ345R9mZmZNwBm2mZlZE3DANjMzawIO2GZmZk3AAdvMzKwJOGCbmZk1AQdsMzOzJuCAbWZm1gQcsM3MzJrA/weoxhJ8efYdggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJcCAYAAABwj4S5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde5glV10v/O8vCSBChgAJOhkSggSUAWHUyJiXCHgnCAwejoQEUJRLvHDwVQ6KHgUCXjmg6BE18HI1BIKIJkgAuSUKJwwEDGAGkEggtwETchkI4b7eP6o62dPZq6dn0nt3z8zn8zzzTO/atat+tat2ddd3r7WqWmsBAAAAgGkOWO0CAAAAAFi7hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AhgBqrqiVX13tWuYyVV1eOq6p+XMd/fVNXvzaOmeaiqz1TVj48/P7eqTlvtmmahqi6sqocs8fw5VfXkOZa0ohYfv1XVquro1axpuarqZ6rq0qr6UlV932rXM0/74meuqk6uqhcvY75XVdXvz6OmlbKr88iieW88t86olqqqV1fV1VX1l7Naz0qpqmOrakdVXVBV3zvl+Q9U1X1WozaARHgEcKOquk1VvbyqPltVX6yqf6uq41e7ruUY/wi/Yby4/HxVvbKqbr+S62itvba19pPLmO+XWmvPX8l1Lxgv+K8ft/PyqvrTqjpwFuva37TW7tNaOydZmQv2qjqkqv66qj5XVV+uqo9V1c+vSLG7XvdR47Fy0MK05R6/i5bzuPFY+9L4+frWxOMvrXzlXS9M8rTW2u1ba/82x/WuaVX1kHE/v2TR9PdW1ROXuYz7VNU/V9U1VXVtVX2oqh5WVRuq6htVdY8pr/mHqnrh+HNV1dOr6t/Hc9NlVfV30y7+x/lvneR3k/zv3d7gvcDkeeSWGPftZbdwMfdNckKSe7fWnjax7MdU1f8dz0vn7GZdt66qN46/c9vioGw8Hv6kqr4w/ntBVdXE85vGY+zL4/+bFp5rrZ2X5JAk/5HkSVNW/8Ikz9udegFWkvAI4CYHJbk0yYOT3CHJ7yV5Q1UdtYo17Y5HtNZun+T7k/xghguUnUxeTO/F7j9u54MzXBj84irXs6L2hX00XiC/M8ndkhyb4fP0zCQvqKqnr2Ztu2MMnG4/Hm/HJ7li4fE47UYzDjHvluTCPXnhLOsaL5RX+2/J65P83C04T785yTuSfEeSuyR5epIdrbXLk7wryRMmZ66qOyV5WJJXj5P+PMmvja+7U5J7JfnHJD/dWd+WJJ8Yl89s3SnJVa21zy+afnWSFyf54z1c7nuTPD7J56Y899Qkj0py/yT3S/LwJCcnN54Xz0xyWpI7ZjiGzhynJ0laa99Ksi3Jnacs+6wkP1JV6/ewboBbZLV/4QOsGa2161trz22tfaa19q3W2j8luTjJD/ReU1VHVNWbqurK8VvGqU3jq+rPa+h2smP8tvGHJ557QFWdPz73+ar603H6t1XVaeNyr62qD1bVdyxjOy5P8tYM37outNb51ar6VJJPjdMeXkPT+GvHb2Dvt6ttqomueONF459V1X9V1XVV9dGqWljfTl0tquopVXVRDV0Hzqqqwyeea1X1S1X1qfGb/5dMfku7i+28KMn7ktz4ze0ebtc9qurd47Srquq1VXXIcmpYrKq2jOvfUVX/WVUPHafv1D2jJlr21E2tZJ5UVZckeXdVva2qnrZo2R+pqv82/vw9VfWO8T39ZFU9plPPj1TVxyYev7OqPjDx+L1V9ajJGseafyfJCTW0sPnIxCLvVlXvq6Fl3j9X1aGdt+IJSY5M8rOttYtba19vrb0twwX271fVweM6d+o6NnnsVNUdq+qfxv11zfjzXSfmPaeqnt+p51/G/68dt+HYWqIraQ2tDl9YVZeMn8G/qarbdrZtsta/rqqzq+r6DBd1P11Di8UdNXzenzsx/8J+/vlxPVdV1f+aeP5m54Gxri8lOTDJR6rqP8d57z1u/7U1dBN65C7q+kxVPbOGz+n1NbSw/I6qeuv43r2zqu44sYwfGj8/147H3UMWve9/UFXvS/LlJN815b151nj8f7GqtlXVz0w898TxuHvhuF8vrokWnlV196o6d3ztO5L0jrEF1yZ5VZLndPbTTq3oJvbDQePxcvckL2utfW38977W2sJx8uosCo+SPDbJha21j1XVPZP8apITW2vvbq19tbX25TF07AUTxyc5d1GNx02835fWlFZTy/g8PLGqPj2+bxdX1ePG6UeP7+d14zF3Rud9enVVPWP8ecP4Hv3KxDKurhrOzbX0eXaym+9tx+VeU1Ufr6rfrJu3Jto0HpfXVdUZNfzeu12G32GH100t/Q7P7jsoybcWT2ytvbO19oYkV+zuAsdj5MXjMfLNKbP8fJIXtdYuG38XvyjJE8fnHjLW9OLxWPmLJJXkRxct41vjfIvX/ZUkH0qyWy0oAVaK8Aigo4ag5l7pfONfwzf6/5Tks0mOSrIhyes7i/tghpDjTklOT/J3VfVt43N/nuTPW2vrktwjyRvG6T+focXGERm+hfylJDcso+4jMnwzPtm95VFJNifZWFXfn+QVGb4NvXOSU5OcNV6oLnebfjLJgzK8P4dkaAH0hSm1/GiSP0rymCTrx+UuXt7DM7SUuv8430/tahvHZX9Pkh9OctH4eE+3q8YaD09y7wzv93OXU8Oieh6Q5DUZWtgckuH9+cxuLOLB4/p/KsMxcuLEsjdmaH3ylvHC6h3jPHcZ5/urmj4WxnlJjq6qQ2to0XTfJHetqoNrCEd+IMm/Tr5gDHn+MMkZYwub+088fVKSXxjXe+sk/7OzLT+R5K2ttesXTf/7JN+e5IeWfCcGByR55bjdR2Y49heHs716HjT+f8i4DeftYl1/kuFY3pTk6AzHx7OXUeNJSf4gycEZWiNcn+TnMuz/n07yyzWGcxOOS/LdSX4sybOr6t7j9JudB8YLzIUWTvdvrd2jqm6VobXMP4/b/T+SvLaqvnuJupLk0Rn2y72SPCLDxfnvZAhnDsgQ7KWqNiR5S5Lfz3C++p9J/r6qDptY/hMytLA4OMNnarH/zPDZvEOSU5KcVju3ltic5JPjul+Q5OULwUSG4/pD43PPz3Ae3JU/SPLoRe/Bcnwhw/njtKp6VN08nP+HJIdW1XET056Q4XOeDPvwstbaB7J835th25MkVXVkhn3xf5IcluEYvGDK67qfh/Gc8BdJjm+tHZzk/5lYxvMzHCt3THLXcT3TnJsh3EiGc9Gnx/+T4fP0r621ttR5dsoyn5PhfPtdGY69x0+Z5zFJHpohxLtfkieO543FLf2uqKqTxsCq9+/IhYXW0CLux5Jc0tnerjHMOml3Xze6T5LJwP0j47SF5z7aWmsTz3904vkFlyb5gaqa1vro4xl+VwLMnfAIYIrxAu21SV7dWvtEZ7YHZAgcnjm2WvrKxDfWO2mtndZa+0Jr7RuttRcluU2GC8gk+XrGC/zW2pdaa++fmH7nJEe31r7ZWvtQa23HEmX/Y1Vdm+Fi8dwMAcCCP2qtXd1auyHJU5Kc2lrbOi731Um+muGCfrnb9PUMF47fk6Raax9vrW2fMt/jkryitfbh1tpXk/x2kmNr5y4mf9xau7a1dkmS92SiJVHHh2toUfHxJOck+atx+h5tV2vtotbaO8YL9SuT/GluumjaHU8at/UdY8u1y5c4dqZ57ljbDRkuWjdV1d3G5x6X5E3je/jwJJ9prb1yPJ4+nCGU+e+LFzh+U31+hou/YzJcqLw3yQMzvC+faq3dLPRbwitba/8x1viG9PfVoUludjy01r6R5KoMF8lLGj8vfz+25PhihoBg8X5Zbj1dY2jxlCS/Pn5Gvpjhs/PYZbz8zLGlyrfGY+qc1trHxscfTfK6KTWf0lq7obX2kQwXlgsXgr3zwGI/lOT2GT43X2utvTtDMHrixDw71TVO+z+ttc+PrSH+NcnW1tq/jcfUPyRZGIj78UnObq2dPb7+HRmOoYdNLP9VrbULx+Pv64sLbK39XWvtivH1Z2Ro8fiAiVk+21p7WWvtmxla96xP8h3jxf8PJvm98fP4LxmCsiW11j6X5G+ym+PBjBfxP5Ih5H1Rku1V9S9ji6KMx9XfZQgEM07/gQwBVzKcn6ed95ZySJIvTjx+XJJ3ttZe14YWel9ord0sPFrG5+FbSe5bVbdtrW1vrS186fH1DIHT4Uv9jsrwO+OHx9DlQRlCvQeOzz04N7WWWuo8u9hjkvxha+2a1tplGQKuxf5iPFauzrCvu5/h1trprbVDlvh3SXJj18IbMgSrz+wtb4n13K+1dvqu55zq9kmum3h8XZLbj+eZxc8tPH/wommnZThPXlVV/++i576Y4RgCmDvhEcAi4x/Pf5vka0kmB9l860QT+sdlaKHy2fGCeFfLfMbYbP+6MeC5Q27qjvGkDK0BPlFD17SHj9P/Nsnbk7y+qq6oYeDNWy2xmkeNf0DfrbX2K+OFz4JLJ36+W5JnTH5jO27L4cvdpvGC9S+TvCTJ56vqpVW1bsqsh2eiZUJr7UsZvu3fMDHP5LgRX87wB3Zq6I6z8H7/8MQ83z/Oc0KGFgy3uyXbVVV3qarX1zAA944Mf7jvqqvMNEdkaHGxp27cR+PF4VtyU4Dx2AxhZjJs5+ZF2/m4JN/ZWe5Ci4IHjT+fk+FicPKCcLmm7qsprsoQCOxkbP10aJIrd7Wiqvr2qjq1hgHsd2ToinZI7TyGz3LrWcphGVpDfWji/XxblhFwZefPVapqc1W9p4auRddlaC24+Fjq1dw7Dyx2eJJL2zA2yoLPZufP1KW5uclxX26Y8nihjrsl+dlFx9dx2Xl/Tlv+jarq5+qmbk3XZmjxNvk+3PgetNa+PP54+3Hbrmk7t1ib1rJpmj9J8lNVtVutMtrQvehprbV7ZNj263NTy6JkCLceM7YUfUKSt7XW/mt87guZcpzvwjXZOSxY1nljqc/D+H6dkOF4215VbxlbZibJb2ZoXfmB8Zw6dYy41tp/JvlShvDmhzMEkleMrbkmzxVLnWcXOzw7HyvTjpuV+AzvZAyibpdh3/2vXcy+0r6UZPJ34bokXxqDysXPLTz/xUXTHpHxPW2tLb4r38EZumoCzJ3wCGDC+O3gyzMMnvroyW/VW2vHt5ua0L82wx/CR9YuBjgeg4/fyvAt7B1ba4dk+LaxxuV+qrV2YoYuKH+S5I1VdbvxW+hTWmsbM3RDeHjGb8D3wGQz+UuT/MGib2y/vbX2uuVu01j3X7TWfiBDk/t7Zfo3vFdkuNhIcmP3ijsn2eVgsW24a8/C+724a1Vrw5gV5+Wm7kV7ul1/lOH9uV8bugw9PuO+2U2XZuhuNM31GQKKBdOCnrbo8euSnFhVxya5bYZWWQvrOXfRdt6+tfbLnXUvDo/Oza7Do8W17K53Jjl+3N+THp2hJcRCN58vp/++PCND67zN435Z6Iq2nH2zO/VflSE8uc/E+3mHtmhA7GWu5/QMg9oe0Vq7Q4bWMMsdw2vqeWDKrFckOaJ2Hqj6yOz8mbol++/SJH+76Pi6Xdt5DJ/u8sfWci/LELzfeTzf/XuW9z5sT3LHRdt9ZG/mSW1oQffiDN20Ji3ns7ewjEszBOL3nZj2rxlCoi0Zzg2TwdK7MnQDPWY5NY4+muF8uWCp88akJT8PrbW3t9Z+IkOY9YkM+yCttc+11p7SWjs8Q1ezv6qJccYWOTdDC8Zbt6GF2rkZfufcMTd1g1vqPLvY9gxd5RYcsYztXHCzY6x2vvvhtH83HivjFwVvTrJxN9a5Ei7Mzt3K7p+bur5fmOR+498ZC+6Xm3eNv3eS97fprXnvnZ27xQHMjfAIYGd/neGPs0csarkzzQcy/HH8x1V1uxoG+nzglPkOTvKNDK0tDqqqZ2fi28eqenxVHTa2JFj4RvGbNQx2/L1jS4sdGS66pw3QubteluSXxlYSNdb+0zUMYrysbaqqHxxff6sMF2df6dR2epJfqOH2xLfJ0B1oa2vtMyuwHclwt5ynVtV33oLtOjjDN8LX1jDey253cxi9PMO2/lhVHVDDoLML3/5fkOSxVXWr8ULzZl3Mpjg7Q/D2vAzjDy20NPmnJPeqqieMy7vVuD/u3VnO/81w0fmAJB8Yu7PcLUOrrX/pvObzSY6qPb+T1t8muSzD2F5HjTX+VIZuKy9orS103bggyUlVdWANA3VPdsM5OEOoc20N3VCmDojccWWGbjw3G8x5sfF9fVmSP6uquyQ3Dhi8rLG3Fjk4ydWtta/UMAbWssdN6Z0Hpsy6NcNn7jfH9/UhGVoq9MZb212nJXlEVf3UuF++rYbbpt91l68c3C7Dhf+VSVJVv5CJMGYprbXPZugid0oNt0Q/LsO2LdefZgjaJz8LFyR5UFUdWVV3yNB1NmNtd6yqU2oYEPqAGgbQ/sUki7sMviZDoHdIJrrRtdY+laHb7OvG9+jW4/v12Kp6VqfGs7Pzcf7aJD9ew+3jD6qqO9fE7dsndD8PNQx+/sgxdPtqhvPZN8fnfnZi312TYd/0fo+cmyH0WzgvnJOh69d729DFMFn6PLvYG5L89vg+b8hES95l+HySO4/7LMnOdz/s/Fs8vtFXM4yFtpOF4zrDoNQHjPtsqVa9i19/m7ppzMKFfb4QCL0myW+M55DDM4R+rxqfOyfDe//0cRkL78e7F63iVmPtN1tvhm6T71hurQArSXgEMKrhG/OTMzTb/1zt3EXtZsY/ph+RYYDdSzJcLJ8wZda3ZxgQ9T8ydMH4SnZuvv/QJBfWcFelP0/y2DaMU/KdSd6YITj6eIY/7E/LLdRaOz/DuBV/meFi4qKMd4PZjW1al+Ei4ppxm76Q5IVT1vWuJL+XYUye7Rm+YV/OWDLL3ZaPZXhfnnkLtuuUDF3hrsvQVexNe1jLBzIM3vxn47LOzU2trn4vw7ZfM65vl+NptGEsmjcl+fHJ+ccubT+Z4X28IkO3jz/JMI7WtOVcn+TDGe4Q9bVx8nkZuvH917TXZBjnJUm+UFUf3lWtndp/PMNxvjXDRe/bMrQMOWVi1l/LsF8Wut7948RzL87Q4uqqDBfzb9uN9X85w5gw76uha82uBuj+rQzHy/tr6BL0ztw0Jtnu+JUkz6uqL2ZoEfeGXcw/qXce2Mm4Dx+ZYUDhqzKEFz/Xdm98ra6x9c2WDINpX5lhHz4zy/ybsbW2LcP4QedlCAC+N8NdEZfrpAzB5tUZApLXLD37TuvekWGsnjtNTHtHkjMytPj5UIbwdcHXMgzo/M4M59l/z3DR/sRFi35NhhZQZ4zH9qSn56YuvNdm6IL2M+mP1fTmJN8zBgsZA4+HZQgZrs4Qdk3rerfU5+GA8fVXjMt4cIZjMRnGkNo6HldnJfm11trFndrOzRBSLYRH783QauvGkHmp8+wUz8twrr04w3v8xkwJRaYZj+fXJfn0+Bnek7utfSvTj9snZDgn/XWGLno3ZGypldzYZXrq7/3RJ8fXbMjw+/2G3HSuPzXDPv5YhuPpLeO0hc/uozK05ro2Q1D5qInz8oIDM+UucRk+9+e01nb7LnEAK6Fau6Ut0wEA+sZv9d+aoWvVE5s/PtiPVdVTk2xsrS0eDHmfVlW/nCEU3ZMbEuzJ+hbulnqvJQKzNaWGrtVvSvKJ1tpvLnpua5Intdb+fVWKA/Z7Wh4BADPVhrHDHp2hVcaetOiBfUZr7aX7Q3BUVeur6oFjl8DvztA66h/mtf7W2n9kaBH2r1U17U5va8rYQvJzGbpHvnTx8621zYIjYDVpeQQAAKyosSv4W5LcPUM3rdcn+e0p3bQA2AsIjwAAAADo0m0NAAAAgK6DVruA3XXooYe2o446arXLAAAAANhnfOhDH7qqtXbYtOf2uvDoqKOOyvnnn7/aZQAAAADsM6rqs73ndFsDAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF0zC4+q6hVV9V9V9e+d56uq/qKqLqqqj1bV98+qFgAAAAD2zCxbHr0qyUOXeP74JPcc/z01yV/PsBYAAAAA9sBBs1pwa+1fquqoJWbZkuQ1rbWW5P1VdUhVrW+tbZ9VTWvJKW++MNuu2LHaZczMlk0bctLmI1e7DAAAAOAWWs0xjzYkuXTi8WXjtJupqqdW1flVdf6VV145l+LYc9u278iZF1y+2mUAAAAAK2BmLY+WoaZMa9NmbK29NMlLk+SYY46ZOs/e5jmPuM9qlzAzJ5x63mqXAAAAAKyQ1Wx5dFmSIyYe3zXJFatUCwAAAABTrGZ4dFaSnxvvuvZDSa7bX8Y7AgAAANhbzKzbWlW9LslDkhxaVZcleU6SWyVJa+1vkpyd5GFJLkry5SS/MKtaAAAAANgzs7zb2om7eL4l+dVZrR8AAACAW241u60BAAAAsMYJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgK6DVrsAYPWdvvWSnHnB5XNd55ZNG3LS5iPnuk4AAAB2n5ZHQM684PJs275jbuvbtn3H3MMqAAAA9oyWR0CSZOP6dTnj5GPnsq4TTj1vLusBAADgltPyCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACg66DVLgCY7vStl+TMCy6fy7q2bd+RjevXzWVdAAAA7F20PII16swLLs+27Tvmsq6N69dly6YNc1kXAAAAexctj2AN27h+Xc44+djVLgMAAID9mJZHAAAAAHQJjwAAAADoEh4BAAAA0GXMI4C91DzvyJckWzZtyEmbj5zb+gAAgLVByyOAvdQ878i3bfuOuQZVAADA2qHlEcBebF535Dvh1PNmvg4AAGBt0vIIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQZMBuWad63Rd+2fUc2rl83t/WxMuZ5nDhGAACAedDyCJZpnrdFT4a7aG3ZtGFu62NlzPM4cYwAAADzoOUR7IZ53RadvZvjBAAA2JdoeQQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHS52xqwTzt96yU584LL57a+bdt3ZOP6dXNbHwAAwKxpeQTs08684PJs275jbuvbuH5dtmzaMLf1AQAAzJqWR8A+b+P6dTnj5GNXuwwAAIC9kpZHAAAAAHRpeQTAmjPvsaq2bNqQkzYfObf1AQDA3kR4BMCaszBW1TwGH18YE0t4dMsJ/QAA9k3CIwDWpHmNVXXCqefNfB37C6EfAMC+SXgEAKwYoR8AwL7HgNkAAAAAdM00PKqqh1bVJ6vqoqp61pTnj6yq91TVv1XVR6vqYbOsBwAAAIDdM7PwqKoOTPKSJMcn2ZjkxKrauGi2303yhtba9yV5bJK/mlU9AAAAAOy+WY559IAkF7XWPp0kVfX6JFuSbJuYpyVZGFXzDkmumGE97IPmeWefeQ0Cuz/YevHVSeYzZon9tjLmuc8S+22lzPvuZ/YbAMC+aZbd1jYkuXTi8WXjtEnPTfL4qrosydlJ/se0BVXVU6vq/Ko6/8orr5xFreylFu7sMw8b16/Llk2LD2HWOvtt72S/rYx5niMT+w0AYF81y5ZHNWVaW/T4xCSvaq29qKqOTfK3VXXf1tq3dnpRay9N8tIkOeaYYxYvg/3cvO7sw8qz3/Y+9tnexzkSAIBbapYtjy5LcsTE47vm5t3SnpTkDUnSWjsvybclOXSGNQEAAACwG2YZHn0wyT2r6u5VdesMA2KftWieS5L8WJJU1b0zhEf6pQEAAACsETPrttZa+0ZVPS3J25McmOQVrbULq+p5Sc5vrZ2V5BlJXlZVv56hS9sTW2u6pQGwzzLQPwAAe5tZjnmU1trZGQbCnpz27ImftyV54CxrAIC1ZGEQ63mEOgawBgBgJcw0PAIAbs4g1gAA7E2ERwDs0nFHu5cBAADsr4RHAOzSaU/evNolAAAAq2SWd1sDAAAAYC8nPAIAAACgS7c1APZrWy++OklywqnnzWV987rTGgAArBThETB3Bl9mf7Zx/bps2bRhtcsAAIBlEx4Bc2fwZdaiM04+drVLAACANcmYRwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJe7rQGwXzvu6ENXuwQAAFjThEcA7NdOe/Lm1S4BAADWNN3WAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALndbY8VtvfjqJMkJp54383Vt274jG9evm/l6AAAAYH+l5RF7tY3r12XLpg2rXQYAAADss7Q8YmbOOPnY1S4BAAAAuIW0PAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXaZP1VsAACAASURBVMIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAICug1a7AACA3bX14quTJCecet5c1rdl04actPnIuawLAGCtER6x4o47+tDVLgEAVsy27TuSRHgEAOy3hEesuNOevHm1SwBgP3HGycfOfB3zat0EALBWGfMIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQZMBsAYAlbL746yXwHzt6yaYO7uwEAa4bwCADY6xx39KGrXcLMbNu+I0mERwDAmiE8AgD2Oqc9efPc13nGycfOZT3zbOEEALAcxjwCAAAAoEt4BAAAAECXbmsAAGvIvAfoNjg3ALArWh4BAOyntm3fkTMvuHy1ywAA1jgtjwAAlrBad3abxwDdBucGAJZDeAQAsITVuLMbAMBaotsaAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgyYDYAwBqyWnd3AwDoER4BAKwh7u4GAKw1uq0BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdMw2PquqhVfXJqrqoqp7VmecxVbWtqi6sqtNnWQ8AAAAAu+egWS24qg5M8pIkP5HksiQfrKqzWmvbJua5Z5LfTvLA1to1VXWXWdUDAAAAwO6bZcujByS5qLX26dba15K8PsmWRfM8JclLWmvXJElr7b9mWA8AAAAAu2mW4dGGJJdOPL5snDbpXknuVVXvq6r3V9VDpy2oqp5aVedX1flXXnnljMoFAAAAYLFZhkc1ZVpb9PigJPdM8pAkJyb5/6rqkJu9qLWXttaOaa0dc9hhh614oQAAAABMN7MxjzK0NDpi4vFdk1wxZZ73t9a+nuTiqvpkhjDpgzOsCwCAVXD61kty5gWXz219WzZtyEmbj5zb+gBgXzXLlkcfTHLPqrp7Vd06yWOTnLVonn9M8iNJUlWHZujG9ukZ1gQAwCo584LLs237jrmsa9v2HXMNqgBgXzazlkettW9U1dOSvD3JgUle0Vq7sKqel+T81tpZ43M/WVXbknwzyTNba1+YVU0AAKyujevX5YyTj535ek449byZrwMA9hez7LaW1trZSc5eNO3ZEz+3JL8x/gMAgBWx9eKrk8wvRNJFDoB92Sy7rQEAwD5PFzkA9nXLanlUVQ9M8twkdxtfUxkaDn3X7EoDAIBbRhc5ALjllttt7eVJfj3JhzKMTQQAwF5u3l27tm3fkY3r181lXQDAyllueHRda+2tM60EAIB92sb167Jl04bVLmOvd/rWS+baTc54TgAsNzx6T1X97yRvSvLVhYmttQ/PpCoAAOZmHl27WDlnXnD53Fpxbdu+I0mERwD7ueWGR5vH/4+ZmNaS/OjKlgMAAOzKxvXrjOcEwNwsKzxqrf3IrAsBAICVctzRh652CQCwz1ju3dbukOQ5SR40Tjo3yfNaa9fNqjAAANhTpz15865nAgCW5YBlzveKJF9M8pjx344kr5xVUQAAAACsDcsd8+gerbVHTzw+paoumEVBAACwN9l68dVJ5jc+0LwGywaABcsNj26oquNaa+9Nkqp6YJIbZlcWAACzZlygvdPG9euyZdOG1S4DgP3IcsOjX07y6nHso0pydZInzqooAABmz7hAK2sedz8DgNWw3LutXZDk/lW1bny8Y6ZVAQAAALAmLBkeVdXjW2unVdVvLJqeJGmt/ekMawMAAABgle2q5dHtxv8PnnUhAAAAAKw9S4ZHrbVTx/9PmU85AAAAAKwlByxnpqp6QVWtq6pbVdW7quqqqnr8rIsDAIC17rijD3XnOgD2acu929pPttZ+s6p+JsllSX42yXuSnDazygAAYC/grnUA7OuW1fIoya3G/x+W5HWttatnVA8AAAAAa8hyWx69uao+keSGJL9SVYcl+crsygIAAABgLVhWy6PW2rOSHJvkmNba15Ncn2TLLAsDAAAAYPUt2fKoqn60tfbuqvpvE9MmZ3nTrAoDAAAAYPXtqtvag5O8O8kjpjzXIjwCAAAA2KctGR611p4z/v8L8ykHAAAAgLVkWWMeVdUfVtUhE4/vWFW/P7uyAAAAAFgLlhUeJTm+tXbtwoPW2jVJHjabkgAAAABYK5YbHh1YVbdZeFBVt01ymyXmBwAAAGAfsKsBsxecluRdVfXKDANl/2KSV8+sKgAAAADWhGWFR621F1TVR5P8eJJK8vzW2ttnWhkAAAAAq265LY+S5ONJvtFae2dVfXtVHdxa++KsCgMAAABg9S33bmtPSfLGJKeOkzYk+cdZFQUAAADA2rDcAbN/NckDk+xIktbap5LcZVZFAQAAALA2LDc8+mpr7WsLD6rqoAwDZwMAAACwD1tueHRuVf1OkttW1U8k+bskb55dWQAAAACsBcsNj34ryZVJPpbk5CRnJ/ndWRUFAAAAwNqwy7utVdUBST7aWrtvkpfNviQAAAAA1opdtjxqrX0ryUeq6sg51AMAAADAGrLLlkej9UkurKoPJLl+YWJr7ZEzqQoAAACANWG54dEpM60CAAAAgDVpyfCoqr4tyS8lOTrDYNkvb619Yx6FAQAAALD6djXm0auTHJMhODo+yYtmXhEAAAAAa8auuq1tbK19b5JU1cuTfGD2JQEAAACwVuyq5dHXF37QXQ0AAABg/7Orlkf3r6od48+V5Lbj40rSWmvrZlodAAAAAKtqyfCotXbgvAoBAAAAYO3ZVbc1AAAAAPZjwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoOmi1CwAAANamrRdfnSQ54dTz5rbOLZs25KTNR85tfQDsmpZHAADAmrBt+46cecHlq10GAItoeQQAACzpjJOPnct65tnCCYDl0/IIAAAAgC7hEQAAAABdwiMAAAAAuox5BAAATHXc0YeudgkArAHCIwAAYKrTnrx5tUsAYA3QbQ0AAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6DlrtAgAAAJJk68VXJ0lOOPW8uaxvy6YNOWnzkXNZF8DeTMsjAABgv7Nt+46cecHlq10GwF5ByyMAAGBNOePkY2e+jnm1bgLYF2h5BAAAAECX8AgAAACALuERAAAAAF3GPAIAANaE444+dLVLAGAK4REAALAmnPbkzatdAgBT6LYGAAAAQJfwCAAAAICumYZHVfXQqvpkVV1UVc9aYr7/XlWtqo6ZZT0AAAAA7J6ZhUdVdWCSlyQ5PsnGJCdW1cYp8x2c5OlJts6qFgAAAAD2zCxbHj0gyUWttU+31r6W5PVJtkyZ7/lJXpDkKzOsBQAAAIA9MMvwaEOSSyceXzZOu1FVfV+SI1pr/7TUgqrqqVV1flWdf+WVV658pQAAAABMNcvwqKZMazc+WXVAkj9L8oxdLai19tLW2jGttWMOO+ywFSwRAAAAgKXMMjy6LMkRE4/vmuSKiccHJ7lvknOq6jNJfijJWQbNBgAAAFg7ZhkefTDJPavq7lV16ySPTXLWwpOttetaa4e21o5qrR2V5P1JHtlaO3+GNQEAAACwG2YWHrXWvpHkaUnenuTjSd7QWruwqp5XVY+c1XoBAAAAWDkHzXLhrbWzk5y9aNqzO/M+ZJa1AAAAALD7ZtltDQAAAIC9nPAIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgK6DVrsAAACAedt68dVJkhNOPW+u69t89zvNZX1bNm3ISZuPnMu6gH2flkcAAAD7kG3bd+TMCy5f7TKAfYiWRwAAwH7rjJOPnct6jnrWW+a2vnm1pgL2H1oeAQAAANAlPAIAAACgS7c1AABgv3Pc0Yfu0+sDWEnCIwAAYL9z2pM379PrA1hJuq0BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKDroNUuAAAAgJWz9eKrkyQnnHreXNa3ZdOGnLT5yLmsC1gdWh4BAACwR7Zt35EzL7h8tcsAZkzLIwAAgH3QGScfO/N1zKt1E7C6tDwCAAAAoEt4BAAAAECXbmsAAAD7kOOOPnS1SwD2McIjAACAfchpT9682iUA+xjd1gAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBrpuFRVT20qj5ZVRdV1bOmPP8bVbWtqj5aVe+qqrvNsh4AAAAAds/MwqOqOjDJS5Icn2RjkhOrauOi2f4tyTGttfsleWOSF8yqHgAAAAB23yxbHj0gyUWttU+31r6W5PVJtkzO0Fp7T2vty+PD9ye56wzrAQAAAGA3zTI82pDk0onHl43Tep6U5K3Tnqiqp1bV+VV1/pVXXrmCJQIAAACwlFmGRzVlWps6Y9Xj///27j3G6vLO4/j7C0MZoihV1ICjgIgpF3XQQaRKBEZMwQKBuJRxG8C7G10vy5qw6WbFNrW61JqYtLvUaOp6YRC2XGS7bamAS60SsVxEDCoXEaGoA0UNggjP/jHjlMsc5oAz5zeX9yuZcM7v95zf7zuT+WZmPjzPc4AyYHpd51NKv0wplaWUys4444wGLFGSJEmSJEnHUtSI194KnHPI8xJg25GDIuJq4AfAVSmlfY1YjyRJkiRJko5TY848eg3oFRE9IuIbwARgwaEDIqI/MAMYnVL6sBFrkSRJkiRJ0glotPAopfQlcCfwO+At4PmU0psR8cOIGF0zbDpwMjA7IlZFxIIcl5MkSZIkSVIGGnPZGiml3wC/OeLYvx3y+OrGvL8kSZIkSZK+nsZctiZJkiRJkqRmrlFnHkmSJEmSWq7lm3YC8L0ZrxTsnmNKz+b6gecW7H6SnHkkSZIkSWom1m3/hPmrPsi6DKnVceaRJEmSJOlrmXXboILcp5AznCT9jeGRJEmSJOmEXHl+56xLkFQAhkeSJEmSpBPyzM0Dsy5BUgG455EkSZIkSZJyMjySJEmSJElSToZHkiRJkiRJysk9jyRJkiRJzcLyTTuBwr3r2pjSs7l+4LkFuZfUlDnzSJIkSZKkI6zb/gnzV32QdRlSk+DMI0mSJElSszLrtkGNfo9CzW6SmgPDI0mSJElSs3Dl+Z2zLkFqlQyPJEmSJEnNwjM3D8y6BKlVcs8jSZIkSZIk5WR4JEmSJEmSpJwMjyRJkiRJkpST4ZEkSZIkSZJyMjySJEmSJElSToZHkiRJkiRJysnwSJIkSZIkSTkZHkmSJEmSJCknwyNJkiRJkiTlZHgkSZIkSZKknIqyLkCSJEmSpKZm+aadAHxvxisFu+eY0rO5fuC5BbuflC9nHkmSJEmSlLF12z9h/qoPsi5DqpMzjyRJkiRJymHWbYMKcp9CznCSjpfhkSRJkiRJR7jy/M5ZlyA1GYZHkiRJkiQd4ZmbB2ZdgtRkGB5JkiRJkpSxQm/Q7ebcOh5umC1JkiRJUivi5tw6Xs48kiRJkiSpiSjEBt1uzq3jZXgkSZIkSVLG3KBbTZnhkSRJkiRJGXODbjVl7nkkSZIkSZKknAyPJEmSJEmSlJPhkSRJkiRJknIyPJIkSZIkSVJOhkeSJEmSJEnKyfBIkiRJkiRJORkeSZIkSZIkKSfDI0mSJEmSJOVkeCRJkiRJkqScirIuQJIkSZIkFc7yTTsB+N6MVwp6v4E9TivI/caUns31A88tyL1aC8MjSZIkSZLUIizftJPlm3Yyf9UHBblfn66ncP+ovgW5V5YMjyRJkiRJaoVm3TaoIPfpPvV/Cna/r+6lhmV4JEmSJElSK3Ll+Z1b7P2+utczNw8s2D1bg0gpZV3DcSkrK0srVqzIugxJkiRJkqQWIyJeTymV1XWuRcw82r9/P1u3bmXv3r1Zl6IMFRcXU1JSQrt27bIuRZIkSZKkFqNFhEdbt26lY8eOdO/enYjIuhxlIKVEVVUVW7dupUePHlmXI0mSJElSi9Em6wIawt69ezn99NMNjlqxiOD000939pkkSZIkSQ2sRYRHgMGR/B6QJEmSJKkRtJjwSJIkSZIkSQ3P8KiBRARTpkypff7Tn/6UadOmHfM1Bw8e5K677qJfv35ceOGFDBgwgE2bNjF58mRmzJhx2Nh58+YxcuRIAP7yl78wYcIEevbsSZ8+fRg5ciRvv/32Udf//PPPueqqqzhw4EDtsUcffZTi4mJ2795de2zp0qWceuqp9O/fn969e/PAAw+cyJfgMDt37mT48OH06tWL4cOHs2vXrjrHtW3bltLSUkpLSxk9enTt8cWLF3PJJZfQr18/Jk2axJdffgnAwoULuf/++792fZIkSZIkKT+GRw2kffv2/PrXv+bjjz/O+zWzZs1i27ZtrFmzhjfeeIO5c+fSqVMnKioqqKysPGxsZWUlFRUVpJQYO3YsQ4YMYcOGDaxbt44HH3yQHTt2HHX9J598knHjxtG2bdvaYzNnzmTAgAHMnTv3sLGDBw9m5cqVrFixgmeeeYbXX3/9OL8Ch3vooYcoLy/nnXfeoby8nIceeqjOcR06dGDVqlWsWrWKBQsWANWh2qRJk6isrGTt2rV069aNp556CoBrr72WBQsWsGfPnq9VnyRJkiRJyk+LeLe1Qz3wwpus2/ZJg16zT9dTuH9U32OOKSoq4tZbb+XRRx/lxz/+8WHnJk+ezHe/+12uu+46AE4++WQ+++wztm/fTpcuXWjTpjrDKykpAeDqq69m8uTJtef37NnDH/7wBx5//HGWLFlCu3btuP3222uvX1paWmdNzz77LM8991zt8w0bNvDZZ58xffp0HnzwQSZPnnzUa0466SQuvfRSNmzYwKWXXlr/FyeH+fPns3TpUgAmTZrEkCFDePjhh/N6bVVVFe3bt+eCCy4AYPjw4fzkJz/hpptuIiIYMmQICxcuZPz48SdcnyRJkiRJyo8zjxrQHXfcwbPPPnvYkrBjGT9+PC+88AKlpaVMmTKFlStXAtVLucaNG8fzzz8PwIIFCxg6dCgdO3Zk7dq1eYU6X3zxBRs3bqR79+61x2bOnElFRQWDBw9m/fr1fPjhh0e9rqqqildffZW+fQ8Pyz799NPa5WVHfqxbt+6o6+zYsYMuXboA0KVLlzrvBdXvlFdWVsbll1/OvHnzAOjcuTP79+9nxYoVAMyZM4f333+/9jVlZWUsW7as3q+BJEmSJEn6+lrczKP6Zgg1plNOOYWJEyfy2GOP0aFDh3rHl5SUsH79ehYvXszixYspLy9n9uzZlJeXU1FRwX333cfdd99NZWUlEydOPK5aPv74Yzp16nTYscrKSubOnUubNm0YN24cs2fP5o477gBg2bJl9O/fnzZt2jB16tSjwqOOHTuyatWq46ohH1u2bKFr165s3LiRYcOGceGFF9KzZ08qKyu599572bdvH9dccw1FRX/7Vj3zzDPZtm1bg9ciSZIkSZKO1uLCo6zdc889XHLJJdxwww21x4qKijh48CAAKSW++OKL2nPt27dnxIgRjBgxgrPOOot58+ZRXl7OFVdcwfbt21m9ejV/+tOfavdA6tu3L3PmzKm3jg4dOrB3797a52vWrOGdd95h+PDhQPXMpPPOO682PBo8eDALFy7Meb1PP/2UwYMH13nuueeeo0+fPocdO+uss2qX3W3fvp0zzzyzztd27doVgPPOO48hQ4awcuVKevbsyaBBg2pnF/3+978/bEPwvXv35hXOSZIkSZKkr89law3stNNOY/z48TzxxBO1x7p37167AfX8+fPZv38/AH/+859rZ9AcPHiQNWvW0K1bN6D63dvGjx/PpEmTGDlyJMXFxQAMGzaMffv28fjjj9de/7XXXuOll146rI5vfvObHDhwoDZAmjlzJtOmTWPz5s1s3ryZbdu28cEHH/Dee+/l9Xl9NfOoro8jgyOA0aNH125y/dRTTzFmzJijxuzatYt9+/YB1TOlXn755dprfbXMbd++fTz88MOH7fH09ttv069fv7zqliRJkiRJX4/hUSOYMmXKYe+6dsstt/DSSy9x2WWXsXz5ck466SSgOiAZNWoU/fr146KLLqKoqIg777yz9nUVFRWsXr2aCRMm1B6LCObOncuiRYvo2bMnffv2Zdq0abUzeA51zTXX8Mc//hGoXrI2duzYw86PHTv2qHd1ayhTp05l0aJF9OrVi0WLFjF16lQAVqxYwc033wzAW2+9RVlZGRdffDFDhw5l6tSpteHR9OnT6d27NxdddBGjRo1i2LBhtddesmQJ1157baPULUmSJEmSDhcppaxrOC5lZWXpq42Uv/LWW2/Ru3fvjCpqulauXMnPfvYznn766axLaTA7duzg+uuv58UXX6zzvN8LkiRJkiQdv4h4PaVUVtc5Zx61YP3792fo0KEcOHAg61IazJYtW3jkkUeyLkOSJEmSpFbDDbNbuBtvvDHrEhrUgAEDsi5BkiRJkqRWpcXMPGpuy+/U8PwekCRJkiSp4bWI8Ki4uJiqqirDg1YspURVVVXtu9JJkiRJkqSG0SKWrZWUlLB161Y++uijrEtRhoqLiykpKcm6DEmSJEmSWpQWER61a9eOHj16ZF2GJEmSJElSi9Milq1JkiRJkiSpcRgeSZIkSZIkKSfDI0mSJEmSJOUUze0dyiLiI+C9rOtoIJ2Bj7MuQmoG7BUpP/aKlB97RaqffSLlpyX1SreU0hl1nWh24VFLEhErUkplWdchNXX2ipQfe0XKj70i1c8+kfLTWnrFZWuSJEmSJEnKyfBIkiRJkiRJORkeZeuXWRcgNRP2ipQfe0XKj70i1c8+kfLTKnrFPY8kSZIkSZKUkzOPJEmSJEmSlJPhkSRJkiRJknIyPCqAiPhORKyPiHcjYmod59tHxKya88sjonvhq5SylUef/FNErIuINRHxYkR0y6JOKWv19coh466LiBQRLf6tY6W65NMrETG+5mfLmxHxXKFrlJqCPH4HOzcilkTEyprfw0ZmUaeUtYh4MiI+jIi1Oc5HRDxW00trIuKSQtfYmAyPGllEtAV+DowA+gAVEdHniGE3AbtSSucDjwIPF7ZKKVt59slKoCyldBEwB/j3wlYpZS/PXiEiOgJ3AcsLW6HUNOTTKxHRC/gX4IqUUl/gnoIXKmUsz58r/wo8n1LqD0wAflHYKqUm41fAd45xfgTQq+bjVuA/ClBTwRgeNb7LgHdTShtTSl8AlcCYI8aMAZ6qeTwHKI+IKGCNUtbq7ZOU0pKU0p6ap68CJQWuUWoK8vmZAvAjqgPWvYUsTmpC8umVW4Cfp5R2AaSUPixwjVJTkE+vJOCUmsenAtsKWJ/UZKSU/g/YeYwhY4D/StVeBTpFRJfCVNf4DI8a39nA+4c831pzrM4xKaUvgd3A6QWpTmoa8umTQ90E/G+jViQ1TfX2SkT0B85JKS0sZGFSE5PPz5ULgAsi4uWIeDUijvW/yVJLlU+vTAO+HxFbgd8A/1iY0qRm53j/pmlWirIuoBWoawZROoExUkuWdw9ExPeBMuCqRq1IapqO2SsR0Ybq5c+TC1WQ1ETl83OliOqlBUOons26LCL6pZT+2si1SU1JPr1SAfwqpfRIRAwCnq7plYONX57UrLTov+udedT4tgLnHPK8hKOnetaOiYgiqqeDHms6nNTS5NMnRMTVwA+A0SmlfQWqTWpK6uuVjkA/YGlEbAYuBxa4abZaoXx//5qfUtqfUtoErKc6TJJak3x65SbgeYCU0itAMdC5INVJzUtef9M0V4ZHje81oFdE9IiIb1C9ydyCF2tclwAAAxlJREFUI8YsACbVPL4OWJxSajEJpZSHevukZinODKqDI/elUGt1zF5JKe1OKXVOKXVPKXWnen+w0SmlFdmUK2Umn9+/5gFDASKiM9XL2DYWtEope/n0yhagHCAielMdHn1U0Cql5mEBMLHmXdcuB3anlLZnXVRDcdlaI0spfRkRdwK/A9oCT6aU3oyIHwIrUkoLgCeonv75LtUzjiZkV7FUeHn2yXTgZGB2zX7yW1JKozMrWspAnr0itXp59srvgGsiYh1wALgvpVSVXdVS4eXZK1OAxyPiXqqX4Ez2P7rVGkXETKqXOneu2QPsfqAdQErpP6neE2wk8C6wB7ghm0obR9j3kiRJkiRJysVla5IkSZIkScrJ8EiSJEmSJEk5GR5JkiRJkiQpJ8MjSZIkSZIk5WR4JEmSJEmSpJwMjyRJkuoREQciYlVErI2IFyKiUwNff3NEdK55/FlDXluSJOnrMjySJEmq3+cppdKUUj9gJ3BH1gVJkiQViuGRJEnS8XkFOBsgInpGxG8j4vWIWBYR36o5flZEzI2I1TUf3645Pq9m7JsRcWuGn4MkSVLeirIuQJIkqbmIiLZAOfBEzaFfArenlN6JiIHAL4BhwGPASymlsTWvOblm/I0ppZ0R0QF4LSL+O6VUVeBPQ5Ik6bgYHkmSJNWvQ0SsAroDrwOLIuJk4NvA7Ij4alz7mn+HARMBUkoHgN01x++KiLE1j88BegGGR5IkqUkzPJIkSarf5yml0og4FVhI9Z5HvwL+mlIqzecCETEEuBoYlFLaExFLgeLGKVeSJKnhuOeRJElSnlJKu4G7gH8GPgc2RcTfAUS1i2uGvgj8Q83xthFxCnAqsKsmOPoWcHnBPwFJkqQTYHgkSZJ0HFJKK4HVwATg74GbImI18CYwpmbY3cDQiHiD6mVufYHfAkURsQb4EfBqoWuXJEk6EZFSyroGSZIkSZIkNVHOPJIkSZIkSVJOhkeSJEmSJEnKyfBIkiRJkiRJORkeSZIkSZIkKSfDI0mSJEmSJOVkeCRJkiRJkqScDI8kSZIkSZKU0/8DDJFr2W/B3nYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGiCAYAAAARATRgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZwdVZnw8d+ThUUChCSAEEAYQRQUEBFRHGVTFhdwRkRlFBUHcUMdl0Gdd9zHXRjccVxAkE1RRBEEFBCVXXZEImsMW0jY16Sf949zGm6aXpNO3+6q37c/99N1q+pWnVu3bj11nnOqbmQmkiRpYpvU7QJIkqRlZ0CXJKkBDOiSJDWAAV2SpAYwoEuS1AAGdEmSGqArAT2KH0bEwoi4YBmW888Rce1olq1bImKDiLg/IiYvx3VcFRE7DDL9rIh4+/Ja//IWEftGxG87nmdEbNzNMg1XRLwmIm6p+8Bzu12esRQRn4yIo7pdjtEUEe+IiEOHMd+PIuKzY1Gm0TLUcaTPvDdGxC7LsSwREUdExIKI+MbyWs9oiYgXRsS9EXFpRDynn+kXRMTmS7v8btXQXwy8DFgvM7dd2oVk5h8yc9PRK9byMZydOjNvzsxpmbl4eZUjMzfPzLNqmZb5IBoR0yPi2xFxW0Q8GBFXRMR+o1LYode9YQ3YU3rHZebRmfnyES5n3xpE74+IhyKip+P5/aNf8gF9BXhP3Qf+MobrHdciYof6OX+zz/hzI+Itw1zG5hHx21qBuDsiLo6IPSJidkQsioin9/Oan0fEV+pwRMRBEXFlRDwQEXMj4oT+Dsh1/hWA/wK+POI3PAF0HkeWRf1s5y7jYp4N7AM8KzPf07Hs10XEn+px6awRlmuFiPhpPW5n35OXuj98MSLuqo8vRUR0TN+q7mMP1v9b9U7LzD8D04G/Afv3s/qvAJ8eSXk7dSugPw24MTMf6NL6x5XOoDRR1IPWGZTP8oXA6sCHgS9FxEHdLNtI1JOAaZk5DdgdmNf7vI573PLMnlC241VL88LlnNWJiOh209wDwJsjYsOlfP3JwOnA2sBawEHAvZn5D+BM4E2dM0fEDGAP4Ig66n+B99XXzQCeAfwCeMUA69sT+GtdvpavGcD8zLy9z/gFwKHAF5ZyuecC/wbc1s+0A4C9gC2BLYBXAu+Ax4+LJwFHAWtQ9qGT6ngAMrMHuBqY2c+yfwnsGBHrLFWpM3PQB7A+cCJwJ3AX8I06fhLlLPQm4A7gSGD1Om1DIIH9gJuB+cDH67T9gYeBxcD9wKeAtwDn9llvAhvX4T3qBrgP+AfwoTp+B2Bux2ueBZwF3E05OL66Y9qPgG8Cv67LOR94+gDvubf8bwVuARYCBwLPBy6vy/9Gx/xPB35Xt8984Ghgep32Y6AHeKi+3490LH//un3O6Rg3hbKTzgVeVZcxDZgDvLmfsu4IXNHx/Azggo7n5wJ71eEbgV2A3YBHgcdqmS6r088CPgP8sW6j3wKzBthG+9fPfZU+4/cB7gVW7fs5dnwOn63DawC/ouxbC+vweh3zDlieut2ylv9+yknFW+jYj1hyH1qRcvZ7M3A78B1g5T5l34El96cfAd8GTqEElV0oB/G/1Pd4C/DJfvabJ+33dfq2wEX1tbcDX6vlur++7gHg78Pcl/uW60bKCdXlddz3KQHsN3XbnQGs0bGM7YA/1eVfBuzQZ7t/rm73hzo/v455Dgb+Xpd9NfCajmlvoex3X6mf6w3A7h3TNwLOrq89HfgGcNQA+9kOlO/C14Ef9tmv31KHP9n5epb8Ls2qw9MHWP4be7d5x7h3AZfU4U0ox6pthzpWdrz+B8B/9Rn34o7tfUtH2X/E8L8PbwGur9vtBmDfOn7juj3voexzxw1QriOAD9bh2XW7vKtjGQuAqM9fCVxay/snYIuO5dwI7FKHV67LXQhcQzm+ze0z74co++U9wHHASsAqdd/q4Ynv8LrD3cYdy98ZuHmQ6W8HzhrpcjteP5eO70Yd9yfggD7HwvPq8MspMSo6pt8M7NZnGf8NHDPAOk8H9luq8g7xZiZTvuyH1A9gJeDFddrbKEHmnygB50Tgx32+UN+rH/iWwCOUtEjvjtl54F3ieR3XeTC+Ffjnjp1+684vex2eWsvzMWAFYCfKjr9pxxdnAeWgOoUSdI8d4H33lv879T2/nHIS8gvKGf5sSjB7aceX4WWUg/OalAB9aH9fgD7LP7Ju15U7xk3p2DFuq+v7HvDTAcq6EuWLMau+r9uAecCqdbkPATP7+SJ+kj4HUcqB/O+UGsjK9fkXBljvscAR/YyfAiwCXtb3c+z4HHoPYDOBfwWeUst7AvCL4ZSn7/YaYL/q3IcOpZz9zqjrOhn4fJ+y78CTA/o9wPaUE9iV6jzPqc+3oATmvfqUaaD9/s/Am+rwNGC7Aco6nH25b7luBM6jBPHe/fMS4LmU/fJ3wCfq62dTTj73qK9/WX2+Zsd2vxnYvH6eU/v5nPcG1q2v34dyErFOx+fwGPDvlGPIOyn7ZHRsh96TmZfU9zZUQH8q5USodxsMN6AHcB0lOO4FrN1n+SvXbfnijnF/Bt5fhw8EbhrRQRUuBPbueL5BfY9vqJ/tTGCrkXwfKMeJzve/DrB5HT4G+HjHvvDiAcr1NuDkOvxGynfruI5pJ9Xhrev+84L6+e1H2b9W7Oc48gXKycQawHqUwN03oF9Q95UZlKB/YH/ft45y3T3IY4OOeScB/0Of2NFnef0G9FrON758h6fk87ZYcVQewKnAB4Df9FnXr6gnUh3j3kpJu8/sp2yHAV8byT7X+xgq1btt/SA+nJmL6rhz6/9960qvB4iIjwJXRsRbO17/qcx8CLgsIi6jHOCuGWKd/XkM2CwiLsvMhZSzwb62oxwkv5AlpfG7iPgV5Uv0yTrPiZl5QS3v0ZSDymA+k5kPA7+NiAcoZ1R31Nf/gXKwPDsz51AOwAB3RsTXgE8M4319MmuzQ0cTDACZ+duIOIGSEpxJCSJPkpkPR8RFlAPjPJ7IIGxPCSbXZeZdwyhLrx9m5t9qmY4HXj3AfLMotc2+5VkUEfMpJzaDquX6We/ziPgc8PulLM+AavvWv1NqGQvquP8BfgJ8dIiXn5SZf6zDD1OCXa/LI+IY4KWUk71eA+33jwEbR8SszJxPCcD9Gc6+vES56v7z9aypx7p/3pG1PT4ifk6pzUBJJZ6SmafU56fXfagzzfyjzBywCSAzT+h4elz9/m9LSTdCCYLfq+s+AvgWsHZNPT6fEhAeAc6JiJMHWk/H+m6LiO9Q2hf3GWr+jtdlROxIySh8FdgoIs4F9s/M6zLzofo9ezNwbkRsAjyPkjaH8t27dbjrq6ZTAnivfYEzMvOY+vyu+uhb1qG+Dz3AsyPi5sy8taNcj1GabNbNzLk8cYzu62zga7UJ5SXAl4D/V6e9tE6H8l35bmaeX58fEREfo+yXZ7Ok1wHv7D0uR8RhPLGP9josM+fV93QysBUDyMyfUL6Xg6rNIrdSMo0j6jdT17MFwDZbrnT0BadtMNKX92vyOtfNonxv7+kz6R7KCVqnoyjbeX5EfCAzOztQ3kc5YRuxodrG1qd8MRf1M21dSrq9102UM+K1O8Z1tj88SHmzS+NfKQebmyLi7Ih44QDluaUeADvLNHsZytPZLvNQP8+nAUTEWhFxbET8IyLupXxYs4ZYNpTU22AOp3T6+OEQQflsytnuS+rwWZQvaOeXdLiGu43m089OV/sDzKKkDQcVEU+JiO9GxE11u50DTO/TJjwa+9CalFrPxbVT1N2Us+khTzro8xlFxAsi4vcRcWdE3EOpwfX9rAcq8/6UbMNfI+LCiHjlAOsczr7c374zrP2VcvDfu3db1O3xYpb8PAfdNyPizVF66va+/tksuR0e3waZ+WAdnFbf28Jcsv9M53FkMF8Edo2ILYc5f+/652bmezLz6ZT3/gAlO9brCOB1EbESpT391N4Td0rgHenBdSFLHsDXp9SGBzXY96Fur30o+9utEfHriHhmfelHKJmIC6L0QH9bf8vPzL9TUttbAf9MqTnOi4hNWfJY8TTgg332j/Upn11f67LkvtLffjNaceBx9cR8Fcpn9/GlXg7QM0p/1f3Aan1WsxpLnuABvIq6TfsEcyj7zt1L836GCui3ABsM0GlrHuWD77UBJdXat3PCcDxAOeACEBFP7ZyYmRdm5p6U9PMvgOMHKM/6fTrwbEBpz1jePk/ZN7bIzNUoNaDOKncO8LqBxvd2dPou5cDzzhj88qu+Af1shg7oA657mM4Ado+IVfqM/1dKjaH3csQH6fhsKanTXh8ENgVeULfbS+r4JdMV/RtJ+edTAtrmmTm9PlbPPp3ehrmen1BS9+tn5uqUZpnhlJdaI3wDZT/+IvDTfrYfDG9fXpbP7xZK89j0jscqmdnZgWiwffNplGaF91BShtOBKxnedrgVWKPP+x5WFame1B5K6VfRaYnjB0vuY32XcQulL82zO8b9gRK496R8dzuD/ZnAehGxzXDKWF1OOXHrdQuln81QBv0+ZOZpmfkyygnGXymfAZl5W2b+e2auS+mc9a1BjhdnA68FVsjSae9sSnZiDUqbeW95P9dn/3hKR4ah062UVHuv9YfxPns9aR+LJa866e/x+L5SK5onA5uNYJ1PKsLi7BmVR3UVsEUsmXLdgid3eH0Wpd29v+zPsyhN3SM2VEC/gPKBfSEiVomIlSJi+zrtGOADEbFRREyjtGUcN0BtfiiXAZtH6e6/Eh0pmyiXEOwbEatn5mOUdqT+Lu06n/LF/khETI1yqcGrKG29y9uqlDOzuyNiNqVzUqfbKX0NRuJj9f/bKJ2LjoyBezP/iXIg2JbSIe4qysnWCyhn+f25Hdgwlr4H848pbZsnRLmEbGpE7Epp//lSZvamnS4F3hgRkyNiN8pJRq9VKYH27ppCG04zRa87KSnIIbdrrel+DzgkItYCiHLJ0q4jWF+vVYEFtaljW0qb37BExL9FxJq1PL1n4N3Yl48CXhURu9bPZaUolxCtN+Qri1UoB+M7AaI0sz170FdUmXkTpanmU/W7/WLKexuurwEvohz0el0KvCTKvRxWp6MZJSLWiIhPRcTGETEpImZRvlN9mzuOpJxkTacEid7yXkdpLjimbqMV6vZ6fUQcPEAZT2HJ/fxoYJcol1JNiYiZ0XEpU4cBvw8RsXZEvLqeCD1COd4srtP27vjsFlI+m4Eufz2bciLWe1w4C3gvpR269zXfAw6s2aiox/5XRETftDGUytVH63aeXZc9XLcDM+tnBix51ckAj5v7LOMRSj+TJfTu15Ss8aT6mU0dQdmW1lmUbX9QRKwYEb3b43d95ptKKfsSImJFSpPP6Uuz8kEP5vUDfhWl09fNlAN4b/vVDygH9XMoPS4fpuwYI1bbSD9NqfVdx5PbgN4E3FjTUAdSzqL7LuNRSvvq7pQa2bcovcL/ujRlGqFPUTqS3EPpRX9in+mfB/6rpq8+NNTCIuJ5wH9Qyr+YcqBJSjvgk9R03CXAVXU7QOnYc1NH6rCv3jbQuyLikqHK1M86H6H0rr6FEoAeoqSxD6Vsj17vo+xDd1PaEjvbmg+ldErqbU8+dQTrf5DaE7tu1+2GeMl/Uvo5nFf3ozMoJ0Ej9S7g0xFxH6Wnan/ZooHsBlwV5fr2/wVeX/toLGF578u1lron5aTxTspn+GGGeRlrZl5NaY/+M+Wg/BxKj/jheiPlZHMBJWgdOfjsS6z7Xkrb74yOcadTek9fDlxMSSX3epTSSe4MSmXgSsqB9C19Fn0kJVNwXN23Ox1E6Yn/Tcp+/HfgNXQE/j5OBp4ZEevW8t1MaTL8IOU9X0rpV9HXYN+HSfX18+oyXkrZF6H0STi/7le/BN6XmTcMULazKScOvQH9XEp24/ET/8y8iNK++w3KCcIcnry9en2aEhduoGzjn9JPoOpP3Z+PAa6v3+H+UvpD6aH//fZNlGPStynNCw9RMxrw+M1x9i0p9xyVR31Pj1I6X76Zsq+8jdJp9tEli8fkWva+Xk3pxDdvKbbF471OpWVSz35/Q0kLvyXdsdRiEXEAsFlmvr/bZRlLEfFOyonqS4eceXTW9wxKOvsZg5zEDGjrLVfMP5w6YAvNiExb9+aLM3PIppnahH0i5V4FH+kz7XxKh80rl6YM3b5hhBqiNof8K6X2Mu7v3ictT5l5eBuCeUSsExHb1+aMTSlZhJ+P1fprdvebwB+i9LAf12om8TZK087hfadn5guWNpgDQ162Jg1bbTdf6tsWSppwVqB03t2IkmI+ltJENGbqidNSnTwlyeIxTCZm5nkM7wqopWJAlyQtldrJcVgdIsernmW+4Gf8MOUuSVIDWEOXJLVSub6vOTV0A3o/Zs2YnBuuPxaXLErL198uf8rQM0nj3MM8wKP5yLBu4DRSTUq5G9D7seH6U7ngtJHc8Egan3Zdd8DbZksTxvl5ZreLMCEY0CVJrZQwpr3clzcDuiSptfq7XdtEZS93SZIawBq6JKmVkrSXuyRJE17C4ubEc1PukiQ1gTV0SVIrlZ9PbQ4DuiSppYLFLJf71XSFKXdJkhrAgC5JaqUEenJ0HsMRETdGxBURcWlEXFTHzYiI0yPiuvp/jTo+IuKwiJgTEZdHxNZDLd+ALklqrcU17b6sjxHYMTO3ysxt6vODgTMzcxPgzPocYHdgk/o4APj2UAs2oEuS1D17AkfU4SOAvTrGH5nFecD0iFhnsAUZ0CVJrVR+PnVMa+gJ/DYiLo6IA+q4tTPzVoD6f606fjZwS8dr59ZxA7KXuySptXpy1Hq5z+ptF68Oz8zD+8yzfWbOi4i1gNMj4q+DLK+/gg3aWm9AlyRp2c3vaBfvV2bOq//viIifA9sCt0fEOpl5a02p31Fnnwt0/o73esC8wZZvyl2S1EpjmXKPiFUiYtXeYeDlwJXAL4H96mz7ASfV4V8Cb6693bcD7ulNzQ/EGrokqZWSYPHY1WvXBn4eEVBi708y89SIuBA4PiL2B24G9q7znwLsAcwBHgTeOtQKDOiSJC1nmXk9sGU/4+8Cdu5nfALvHsk6DOiSpNYaxU5xXWdAlyS1Um8belPYKU6SpAawhi5JaqlgcTanXmtAlyS1Uvk99OYE9Oa8E0mSWswauiSptZrUKc6ALklqpcxmtaE3551IktRi1tAlSa3VY8pdkqSJrdxYpjmJ6ua8E0mSWswauiSppZrVKc6ALklqJW8sI0mSxh1r6JKk1lrsz6dKkjSxJWEvd0mSNL5YQ5cktVaPvdwlSZrYvLGMJEkad6yhS5JaKQl7uUuS1ARNurGMAV2S1EqZNOrWr815J5IktZg1dElSS4W/hy5J0kSXmHKXJEnjjDV0SVJrNenGMgZ0SVIrJUFPg65Db86piSRJLWYNXZLUWqbcJUma4JJm/dpac96JJEktZg1dktRSwWJvLCNJ0sRmyl2SJI071tAlSa1lyl2SpAkuM0y5S5Kk8cUauiSptZr0a2sGdElSKyU06vfQm3NqIklSi1lDlyS1VJhylyRpois3ljHlLkmSxhFr6JKk1vLnUyVJmuCSMOUuSZLGF2vokqTW6mlQvdaALklqpUxYbMpdkiSNJ9bQJUmt1aROcQZ0SVIrlV7uzUlUN+edSJLUYtbQJUmttbhBv7ZmQJcktZL3cpckSeOONXRJUks1q1OcAV2S1Fo9DWpDb86piSRJLWYNXZLUSt76VZKkhujJSaPyGK6ImBwRf4mIX9XnG0XE+RFxXUQcFxEr1PEr1udz6vQNh1q2AV2SpLHzPuCajudfBA7JzE2AhcD+dfz+wMLM3Bg4pM43KAO6hu3N227GO3balHfusinv2e0ZA8537aUrs/t6W/KHX62+zOu8d+FkDt7n6bx1+2dx8D5P5767JwPwuxPX4MCdN+XAnTfl/a/ahL9ftdIyr0saif/42s0cd/lVfPd313a7KFpK5davo/MYjohYD3gF8H/1eQA7AT+tsxwB7FWH96zPqdN3rvMPqBUBPSJ2i4hra+ri4G6XZyL70glz+PYZ1/KNU//W7/TFi+H7n1uX5+1w34iWe9mfpvGV92/wpPHHf2Mtnvvi+/jhH6/huS++j+O+sRYAa6//CF/+2Ry+c+a17PuB2/jfj6w/8jcjLYPfHjeDj++7UbeLoWXUQ4zKY5gOBT4C9NTnM4G7M3NRfT4XmF2HZwO3ANTp99T5B9T4gB4Rk4FvArsDmwFviIjNuluq5jrpB2vy4j3uYfqsRUuMP+Fba/Le3Z/BgTtvypFffuqwl/fn01Znl9ctAGCX1y3gz6eWWv/mz3+QVacvBuCZWz/I/FunjtI7kIbnyvOncd9C+xXrcbMi4qKOxwGdEyPilcAdmXlx5+h+lpPDmNavNuyN2wJzMvN6gIg4lpLKuLqrpZqIIvnYG54OAa94013s8W93LTF5/q1T+dNvVueLJ8zhbx98orZ98Vmr8o8bVuSwU/5GJnziLRtxxXmr8JztHhhylQvnT2Xm2uXkYObai7j7rifvsqceM4Pn7ziyjIAkjfKtX+dn5jaDTN8eeHVE7AGsBKxGqbFPj4gptRa+HjCvzj8XWB+YGxFTgNWBBYMVoA0B/fG0RTUXeEGXyjKhHXLSdcx86iLunj+Fg1//dNbf+OElgvJ3PjGb/T8+j8mTl3zdxWevyiVnr8a7XrYpAA89OIl/XL8iz9nuAQ56xSY89sgkHnpwEvfdPZl37lLm2f+/5rHNMNL2l/5xGqcdM5Ov/eK60XujklpjrO4Ul5kfBT4KEBE7AB/KzH0j4gTgtcCxwH7ASfUlv6zP/1yn/y4zW19DH1baoqZHDgDYYHYbNsvIzXxqqSlPn7WI7Xe7h7/+5SlLBPS/XbYyn3/nhgDcs2AyF5y5KpMnl429z3tv5xVvuutJyzzs1yUQX/anaZx+/Aw+dOjNS0xfY9Zj3HX7FGauvYi7bp/C9JlPpPKvv3olDv3Q+nz2qOtZbcbiUX63kjQm/hM4NiI+C/wF+H4d/33gxxExh1Izf/1QC2pD5OpNW/TqTGk8LjMPBw4H2GbLlQY9C2qjhx+cRE8PPGVaDw8/OImLz16Vff/jtiXmOfL8J67E+Mr7N+AFu9zDi3a/hxVX7uGILz+Vnf5lISuv0sP8W6cyZWo+qZ29P9u9/F7OOH4G+7z3Ds44fgYv3PUeAO6YO5VPv30jPnzYTaz39EdG981KaocR9FAf1dVmngWcVYevpzQN953nYWDvkSy3DQH9QmCTiNgI+AflLOeN3S3SxLPwzil8av/So3fxItjxNXfz/B3v41dHlk6Xr3zzk2vfvZ63w33cPGdF3v+qTQBYeZUePvL1m5g+a+j17vOe2/ncgRty6rEzWWv2o3z8uzcCcPQhT+W+hZP5xkfLudrkKTlgz3tpeTj4WzexxQvvZ/UZizjqoqv58VfX5rRjBu2ErHEmada93GOIlHwj1E4IhwKTgR9k5ucGm3+bLVfKC07zMihNfLuuu1W3iyAts/PzTO7NBaMeedd45lq50w9eOyrLOnH7b188RKe45a4NNXQy8xTglG6XQ5I0vnQj5b68tCKgS5LU1yhfttZ1BnRJUms1KaA3/k5xkiS1gTV0SVIr9f44S1MY0CVJrdWky9ZMuUuS1ADW0CVJ7ZTN6hRnQJcktVLTLlsz5S5JUgNYQ5cktVaTaugGdElSKzXtsjVT7pIkNYA1dElSa2WDaugGdElSa3ljGUmSNK5YQ5cktVJ6YxlJkpqhSW3optwlSWoAa+iSpJZq1nXoBnRJUmuZcpckSeOKNXRJUis17dfWDOiSpHbKculaU5hylySpAayhS5Jaq0m3fjWgS5JaKbGXuyRJGmesoUuSWsoby0iS1Aj2cpckSeOKNXRJUms1qVOcAV2S1EqZzQroptwlSWoAa+iSpNayl7skSQ1gL3dJkjSuWEOXJLVWkzrFGdAlSa2URKMCuil3SZIawBq6JKm1GtQnzoAuSWopbywjSZLGG2vokqT2alDO3YAuSWotU+6SJGlcsYYuSWqtJt361YAuSWqlxJS7JEkaZ6yhS5LaKYEG1dAN6JKk1mpSG7opd0mSGsAauiSpvRpUQzegS5Jayp9PlSRJ44w1dElSe5lylyRpgmvYz6ca0CVJ7dWgGrpt6JIkNYA1dElSizUn5W4NXZLUXjlKjyFExEoRcUFEXBYRV0XEp+r4jSLi/Ii4LiKOi4gV6vgV6/M5dfqGQ63DgC5J0vL3CLBTZm4JbAXsFhHbAV8EDsnMTYCFwP51/v2BhZm5MXBInW9QBnRJUnuNUQ09i/vr06n1kcBOwE/r+COAverwnvU5dfrOETFo+8C4b0OPiK8zyObKzIPGsDiSpKYY419bi4jJwMXAxsA3gb8Dd2fmojrLXGB2HZ4N3AKQmYsi4h5gJjB/oOWP+4AOXNTtAkiSNIRZEdEZrw7PzMM7Z8jMxcBWETEd+DnwrH6W01uB7e9MY9BcwLgP6Jl5ROfziFglMx/oVnkkSc0xij+fOj8ztxneOvPuiDgL2A6YHhFTai19PWBenW0usD4wNyKmAKsDCwZb7oRpQ4+IF0bE1cA19fmWEfGtLhdLkjSRjV0v9zVrzZyIWBnYhRLPfg+8ts62H3BSHf5lfU6d/rvMwU8/xn0NvcOhwK6UN0lmXhYRL+lukSRJGpZ1gCNqO/ok4PjM/FWtqB4bEZ8F/gJ8v87/feDHETGHUjN//VArmEgBncy8pU8nv8XdKoskqQHGqFNcZl4OPLef8dcD2/Yz/mFg75GsYyIF9Fsi4kVA1gvvD6Km3yVJWhrhvdy74kDg3ZSu/P+gXJj/7q6WSJKkcWLC1NAzcz6wb7fLIUlqiGF2aJsoJkwNPSL+KSJOjog7I+KOiDgpIv6p2+WSJE1UUdrQR+MxDkyYgA78BDie0lNwXeAE4JiulkiSpHFiIgX0yMwfZ+ai+jiKRiVLJEljboyuQx8L474NPSJm1MHfR8TBwLGUzbcP8OuuFUySNPGNk2A8GsZ9QKfcyD554r627+iYlsBnxrxEkiSNM+M+oGfmRt0ugySpoayhd0dEPBvYDFipd1xmHtm9EkmSJqwx/vnU5W3CBBZOR54AABBESURBVPSI+ASwAyWgnwLsDpwLGNAlSa03kXq5vxbYGbgtM98KbAms2N0iSZImssjReYwHE6aGDjyUmT0RsSgiVgPuALyxjCRp6Y2TYDwaJlJAv6j+luz3KD3f7wcu6G6RJEkaHyZMQM/Md9XB70TEqcBq9efoJElqvXEf0CNi68GmZeYlY1keSVJzjJf279Ew7gM68NVBpiWw02iv8LqrV2WPLXYe7cVKYy8WdLsE0rJrUNBdnsZ9QM/MHbtdBklSQ3kduiRJE9w4+mGV0TCRrkOXJEkDsIYuSWova+hjL4p/i4j/rs83iIhtu10uSdLE1aQ7xU2YgA58C3gh8Ib6/D7gm90rjiRJ48dESrm/IDO3joi/AGTmwohYoduFkiRNYOOkdj0aJlJAfywiJlM3f0SsCfR0t0iSpAmtQQF9IqXcDwN+DqwVEZ+j/HTq/3S3SJIkjQ8TpoaemUdHxMWUn1ANYK/MvKbLxZIkTVDjqUPbaJgwAT0iNgAeBE7uHJeZN3evVJKkCc07xXXFrymtHQGsBGwEXAts3s1CSZI0HkyYgJ6Zz+l8Xn+F7R1dKo4kqQlMuXdfZl4SEc/vdjkkSROXbehdEBH/0fF0ErA1cGeXiiNJ0rgyYQI6sGrH8CJKm/rPulQWSVITWEMfW/WGMtMy88PdLoskqSEadtnauL+xTERMyczFlBS7JEnqx0SooV9ACeaXRsQvgROAB3onZuaJ3SqYJGmCa1ANfSIE9F4zgLuAnXjievQEDOiSpKVjQB9Ta9Ue7lfyRCDv1aCPQpKkpTcRAvpkYBpLBvJeBnRJ0lJrUqe4iRDQb83MT3e7EJIkjWfjvpc7/dfMJUlSh4lQQ9+52wWQJDWUKfexk5kLul0GSVIDNezGMuM+oEuStNw0KKBPhDZ0SZI0BGvokqT2alAN3YAuSWqloFlt6KbcJUlqAGvokqT2alAN3YAuSWqnhl22ZspdkqQGsIYuSWqvBtXQDeiSpPZqUEA35S5JUgNYQ5cktVaTOsUZ0CVJ7dWggG7KXZKkBrCGLklqp6RRNXQDuiSptZrUhm7KXZKkBrCGLklqrwbV0A3okqTWMuUuSZKGLSLWj4jfR8Q1EXFVRLyvjp8REadHxHX1/xp1fETEYRExJyIuj4ith1qHAV2S1F45So+hLQI+mJnPArYD3h0RmwEHA2dm5ibAmfU5wO7AJvVxAPDtoVZgQJcktdNoBfNhBPTMvDUzL6nD9wHXALOBPYEj6mxHAHvV4T2BI7M4D5geEesMtg4DuiRJy25WRFzU8ThgoBkjYkPgucD5wNqZeSuUoA+sVWebDdzS8bK5ddyA7BQnSWqlqI9RMj8ztxlynRHTgJ8B78/MeyMGLEF/EwbNBVhDlyS119i1oRMRUynB/OjMPLGOvr03lV7/31HHzwXW73j5esC8wZZvQJckaTmLUhX/PnBNZn6tY9Ivgf3q8H7ASR3j31x7u28H3NObmh+IKXdJUmuN4XXo2wNvAq6IiEvruI8BXwCOj4j9gZuBveu0U4A9gDnAg8Bbh1qBAV2S1F5jFNAz81wGbrLfuZ/5E3j3SNZhyl2SpAawhi5Jaq8G3frVgC5Jaqf0Xu6SJGmcsYYuSWqvBtXQDeiSpNYy5S5JksYVa+iSpPZqUA3dgC5Jai1T7pIkaVyxhi5JaqcR/FLaRGBAlyS1V4MCuil3SZIawBq6JKmVgmZ1ijOgS5Laq0EB3ZS7JEkNYA1dktRakc2pohvQJUnt1LDL1ky5S5LUANbQJUmtZS93SZKaoEEB3ZS7JEkNYA1dktRaptwlSWqCBgV0U+6SJDWANXRJUjulKXdJkprBgC5J0sTWtF9bsw1dkqQGsIYuSWovf5xFGr6pKyzmSz+8hKkrJJMnJ+eesSZHf+uf+PDnr2KTze9j0aLgb1esxtc/symLF5k00sRwxHlX8dD9k+npgcWLgvfusWm3i6Sl0KSUeysCekT8AHglcEdmPrvb5Wmbxx6dxEff/lwefmgKk6f08JUjLuGic2fy+1+vzZc/uhkAH/niVez6L/M45fj1ulxaafg+svfG3LuwFYdRTQBtqQ79CNit24Vor+Dhh8pBb8qUZPKUHki46NxZ1G4p/O2K1Zi19iNdLaWklslRfIwDrTi1zMxzImLDbpejzSZNSv732AtZd4OH+NWxs7n2itUfnzZ5Sg87veo2vvvFZ3SxhNIIZfA/x/wdEn591Ex+c/SsbpdISyF6ul2C0dOKgK7u6+kJ3vu6bVll1cf4r0Ou4Gkb389Nc6YB8O6PX8uVF0/nqkumd7mU0vB9YK9NWHD7VFaf+RhfOPbv3DJnJa48f1q3i6UWa0vKfUgRcUBEXBQRFz3a83C3i9NYD9w3lSsuWoPnbb8AgDceeAOrr/EY3/vyJl0umTQyC26fCsA9d03lj79ZnWdu9WCXS6Sl0qCUuwG9yszDM3ObzNxmhUkrdbs4jbLaGo+yyqqPAbDCiovZarsFzL3hKez6L/PY+kV38cX/3JzM6HIppeFbceXFrLzK4seHn/fS+7jxWo8bE1Hk6DzGA1PuWu5mzHqUD372aiZNTmIS/OG0tbjgnFmcfMnvuePWFfnqjy8G4E9nrskx392oy6WVhrbGmov4xPdvAGDyZPj9L6Zz0VmrdblUartWBPSIOAbYAZgVEXOBT2Tm97tbqva48bppvHefbZ80/lVb79iF0kjL7rabV+SdL3tmt4uhZZV4Y5mJJjPf0O0ySJLGn/GSLh8NtqFLktQAraihS5LUrwbV0A3okqRW8udTJUnSuGMNXZLUTpn2cpckqQlMuUuSpHHFGrokqb0aVEM3oEuSWsuUuyRJGlesoUuS2imBnuZU0Q3okqT2ak48N+UuSVITWEOXJLVWkzrFGdAlSe3VoDvFmXKXJKkBrKFLklrLlLskSRNdYi93SZI0vlhDlyS1UgDRoE5xBnRJUnv1dLsAo8eUuyRJDWBAlyS1VmSOymNY64r4QUTcERFXdoybERGnR8R19f8adXxExGERMSciLo+IrYdavgFdktROOYqP4fkRsFufcQcDZ2bmJsCZ9TnA7sAm9XEA8O2hFm5AlyRpDGTmOcCCPqP3BI6ow0cAe3WMPzKL84DpEbHOYMu3U5wkqaVyNG/9OisiLup4fnhmHj6M162dmbcCZOatEbFWHT8buKVjvrl13K0DLciALklqrVG8U9z8zNxm1JZWrqrra9DSmnKXJKl7bu9Npdf/d9Txc4H1O+ZbD5g32IIM6JKk9socncfS+yWwXx3eDzipY/yba2/37YB7elPzAzHlLklqp4QYwxvLRMQxwA6U9va5wCeALwDHR8T+wM3A3nX2U4A9gDnAg8Bbh1q+AV2SpDGQmW8YYNLO/cybwLtHsnwDuiSpvbyXuyRJDdCceG6nOEmSmsAauiSptfz5VEmSmqBBAd2UuyRJDWANXZLUTgmM4XXoy5sBXZLUSsHwf8t8IjDlLklSA1hDlyS1V4Nq6AZ0SVJ7GdAlSZrgGtYpzjZ0SZIawBq6JKm1mtTL3YAuSWqvBgV0U+6SJDWANXRJUktlo2roBnRJUjsljQroptwlSWoAa+iSpPZq0HXoBnRJUms16bI1U+6SJDWANXRJUns1qIZuQJcktVMCPc0J6KbcJUlqAGvokqSW8sYykiQ1Q4MCuil3SZIawBq6JKm9GlRDN6BLktrJXu6SJGm8sYYuSWqphGzOzdwN6JKk9mpQG7opd0mSGsAauiSpnRrWKc6ALklqL1PukiRpPLGGLklqrwbV0A3okqSWataPs5hylySpAayhS5LaKYEebywjSdLEZ8pdkiSNJ9bQJUnt1aAaugFdktRS2ag7xZlylySpAayhS5LaKSH9+VRJkhrAlLskSRpPrKFLktrLXu6SJE1wmY26U5wpd0mSGsAauiSpvUy5N9u9i+bPP+3O797U7XI03CxgfrcLIY0C9+Xl72nLa8HZoJS7Ab0fmblmt8vQdBFxUWZu0+1ySMvKfVnjhQFdktRSacpdkqQJL/HGMtIoOLzbBZBGifuyxgVr6OqKzPQgqEZwX57gvJe7JEkTWwJpyl1aehGxW0RcGxFzIuLgbpdHWhoR8YOIuCMirux2WSQwoGuMRcRk4JvA7sBmwBsiYrPulkpaKj8Cdut2IbQMMkvKfTQe44Apd421bYE5mXk9QEQcC+wJXN3VUkkjlJnnRMSG3S6Hlo0pd2npzQZu6Xg+t46TJC0Da+gaa9HPuOacIkuaMO5j4Wln9Bw/a5QW1/Xb/xrQNdbmAut3PF8PmNelskhqscxsVB8IU+4aaxcCm0TERhGxAvB64JddLpMkTXgGdI2pzFwEvAc4DbgGOD4zr+puqaSRi4hjgD8Dm0bE3IjYv9tlUrtFNujG9JIktZU1dEmSGsCALklSAxjQJUlqAAO6JEkNYECXJKkBDOjSKImIxRFxaURcGREnRMRTlmFZP4qI19bh/xvsB2wiYoeIeNFSrOPGiHjSXbIGGt9nnvtHuK5PRsSHRlpGScNnQJdGz0OZuVVmPht4FDiwc2L9pbkRy8y3Z+ZgP16zAzDigC6pWQzo0vLxB2DjWnv+fUT8BLgiIiZHxJcj4sKIuDwi3gEQxTci4uqI+DWwVu+CIuKsiNimDu8WEZdExGURcWb9ta8DgQ/U7MA/R8SaEfGzuo4LI2L7+tqZEfHbiPhLRHyX/u+rv4SI+EVEXBwRV0XEAX2mfbWW5cyIWLOOe3pEnFpf84eIeOZobExJQ/Ne7tIoi4gplN97P7WO2hZ4dmbeUIPiPZn5/IhYEfhjRPwWeC6wKfAcYG3Kz8n+oM9y1wS+B7ykLmtGZi6IiO8A92fmV+p8PwEOycxzI2IDyl35ngV8Ajg3Mz8dEa8AlgjQA3hbXcfKwIUR8bPMvAtYBbgkMz8YEf9dl/0e4HDgwMy8LiJeAHwL2GkpNqOkETKgS6Nn5Yi4tA7/Afg+JRV+QWbeUMe/HNiit30cWB3YBHgJcExmLgbmRcTv+ln+dsA5vcvKzAUDlGMXYLOIxyvgq0XEqnUd/1Jf++uIWDiM93RQRLymDq9fy3oX0AMcV8cfBZwYEdPq+z2hY90rDmMdkkaBAV0aPQ9l5ladI2pge6BzFPDezDytz3x7MPTPyMYw5oHSlPbCzHyon7IM+17PEbED5eTghZn5YEScBaw0wOxZ13t3320gaWzYhi6NrdOAd0bEVICIeEZErAKcA7y+trGvA+zYz2v/DLw0Ijaqr51Rx98HrNox328p6W/qfL0B9hxg3zpud2CNIcq6OrCwBvNnUjIEvSYBvVmGN1JS+fcCN0TE3nUdERFbDrEOSaPEgC6Nrf+jtI9fEhFXAt+lZMp+DlwHXAF8Gzi77wsz805Ku/eJEXEZT6S8TwZe09spDjgI2KZ2uruaJ3rbfwp4SURcQkn93zxEWU8FpkTE5cBngPM6pj0AbB4RF1PayD9dx+8L7F/LdxWw5zC2iaRR4K+tSZLUANbQJUlqAAO6JEkNYECXJKkBDOiSJDWAAV2SpAYwoEuS1AAGdEmSGsCALklSA/x/Ql/ghScVANMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJcCAYAAABwj4S5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde7xndV0v/tcbUDNlRAVrGEHISzmaUpHET0srKzEVO51EUcvy1sVjv5PHopuKdjUt9WSFHjMN72WBgpqmUHpwFA01Rk0ShYFJQS6jiBf0c/5YazPf2ezPvgzz/e7LPJ+Px37M/q61vuvzWZfvmr1e38/ns6q1FgAAAABYyAGrXQEAAAAA1i7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AlimqnpCVb13teuxL1XVY6vqn5ax3F9V1e/Ook6zUFWfqaoHj78/p6pOX+06TUNVXVhVD1pk/jlV9aQZVmmfmn/+VlWrqrutZp2Wq6p+qqouraovVdX3rHZ9ZmlvP3Mb7Tq0lKp6alW9aBnL/U1V/d4s6rSvLHVtmrfsjdfrKdWlqupVVXVVVf35tMrZV6rq+KraVVUXVNV3LzD/A1V1r9WoG7CxCY+ADa2qblVVr6iqz1bVF6vq36rqhNWu13KMfzBfP95cfq6qXllVt92XZbTWXtNa+/FlLPeLrbXn7cuy54w3/NeN23lZVf1pVR04jbL2N621e7XWzkn2TUhWVYdU1V9W1X9V1Zer6mNV9XP7pLJLl33UeK4cNDdtuefvvPU8djzXvjR+vr458fpL+77mXS9I8rTW2m1ba/82w3LXtKp6UFXtWGjeNK9DS6mqe1XVP1XV1VV1TVV9qKoeWlVbquqGqrrrAu/5h6p6wfh7VdXTq+rfx+vdjqp600I3/+Pyt0zyO0n+ZLpbtjomr003x2LnywrcO8lJSe7ZWnvaxLofVVX/d7zWnbPCet2yqv5u/H+8zQ/KxvPhj6vqC+PP86uqJuYfM55jXx7/PWZuXmvtvCSHJPmPJE9coPgXJHnuSuoLsBzCI2CjOyjJpUkemOR2SX43yRur6qhVrNNKPLy1dtsk35vk+zPcTOxh8mZ6HbvvuJ0PzPBH/C+scn32qY1wjMab2XcluUuS4zN8np6Z5PlV9fTVrNtKjIHTbcfz7YQkl8+9HqfdaMoh5l2SXLg3b5xmvcabWn8fjib2x1uSvDPJtyW5U5KnJ9nVWrssyT8nefy8990hyUOTvGqc9OIkvzq+7w5J7pHkH5P8ZKfoE5N8Ylw/03WHJFe21j43b/pVSV6U5I/2cr3vTfK4JP+1wLynJHlkkvsmuU+ShyV5anLjtfaMJKcnuX2Gc+iMcXqSpLX2zSTbk9xxgXWfmeSHq2rzXtYbYEH+OAA2tNbada2157TWPtNa+2Zr7a1JLk7yfb33VNURVfXmqrpi/EZwwWbsVfXiGrqd7Bq/GfzBiXn3q6rzx3mfq6o/Had/S1WdPq73mqr6YFV92zK247Ikb8vwDelca51fqapPJfnUOO1hNTRjv2b8tvQ+S21TTXTFG2+S/qyqPl9V11bVR6tqrrw9ukVU1ZOr6qIamvmfWVWHT8xrVfWLVfWp8Vv6l05+o7rEdl6U5H1JbvyWdS+3665V9e5x2pVV9ZqqOmQ5dZivqk4cy99VVf9ZVQ8Zp+/RlaImWvbU7lYyT6yqS5K8u6reXlVPm7fuj1TVfxt//66qeue4Tz9ZVY/q1OeHq+pjE6/fVVUfmHj93qp65GQdxzr/VpKTamhh85GJVd6lqt5XQ8u8f6qqQzu74vFJjkzyM621i1trX2+tvT3DzfDvVdXBY5l7dB2bPHeq6vZV9dbxeF09/n7niWXPqarnderzL+O/14zbcHwt0pW0hlaHL6iqS8bP4F9V1a072zZZ17+sqrOr6roMN2A/WUOLxV01fN6fM7H83HH+ubGcK6vqtyfm3+Q6MNbrS0kOTPKRqvrPcdl7jtt/TQ1deh6xRL0+U1XPrOFzel0NLSy/rareNu67d1XV7SfW8QPj5+ea8bx70Lz9/vtV9b4kX07yHQvsm1PG8/+LVbW9qn5qYt4TxvPuBeNxvbgmWnhW1dFVde743ncm6Z1ji5p3Lj2ohtY7z6jhmrWzqn5+Ytnu8V/meTi5P743ydFJXt5a+9r4877W2ty596rMC4+SPDrJha21j1XV3ZP8SpLHtNbe3Vr7amvty2OQ2QsmTkhy7rztf8DEMby0qp6wwD5aatueUFWfHo/FxVX12HH63cZjdO14Hr+hcwxeVVXPGH/fMp7/vzyxjquqhut9LX7tvvH6WVW3Htd7dVV9vKp+vW7amuiY8Vy/tqreUMP/pbfJ8P/i4bW79eDhWbmDknxz/sTW2rtaa29McvlKVzieIy8az5FvLLDIzyV5YWttx/j/+wuTPGGc96CxTi8az5WXJKkkPzJvHd8cl5tf9leSfCjJilplAixFeATsV2oIau6Rzjf+NXyj/9Ykn01yVJItSV7fWd0HM4Qcd0jy2iRvqqpvGee9OMmLW2ubktw1yRvH6T+XocXGERm+MfzFJNcvo95HZPgWe7J7yyOTHJdka1V9b5K/zvDN5R2TnJbkzPEGarnb9ONJfijD/jkkQwugLyxQlx9J8odJHpVk87je+et7WIaWUvcdl/uJpbZxXPd3JfnBJBeNr/d2u2qs4+FJ7plhfz9nOXWYV5/7JXl1hhY2h2TYP59ZwSoeOJb/ExnOkcdMrHtrhtYnZ403Qe8cl7nTuNxf1MLjVpyX5G5VdWgNLZruneTOVXXweHP8fUn+dfINY8jzB0neMLawue/E7JOT/PxY7i2T/K/OtvxYkre11q6bN/3vk3xrkh9YdE8MDkjyynG7j8xw7s8PZ3v1+aHx30PGbThvibL+OMO5fEySu2U4P561jDqenOT3kxycoeXAdUl+NsPx/8kkv1RjODfhAUm+M8mPJnlWVd1znH6T68B4MzjXwum+rbW7VtUtMrRs+adxu/9HktdU1XcuUq8k+ekMx+UeSR6e4Ub6tzKEMwdkCPZSVVuSnJXk9zJcr/5Xkr+vqsMm1v/4DK0hDs7wmZrvPzN8Nm+X5NQkp9eeLRuOS/LJseznJ3nFXIiQ4bz+0DjveRmug/vCt4/12ZKh+85La3dgttjxX855OLk/PpLhmnR6VT2ybhr4/0OSQ6vqAfPe/+rx9x9NsqO19oEs33dn2J9Jkqo6MsPx/d9JDhu364IF3tfdtvE685IkJ7TWDk7y/02s43kZzr/bJ7nzWM5Czs0QbiTD9e3T47/J8Bn919ZaW+zavcA6n53hGv4dGc7nxy2wzKOSPCRDiHefJE8Yr0XzWw9eXlUnj4FV7+fIuZXW0KrsR5Nc0tnerjHMOnml7xvdK8N5Necj47S5eR9trbWJ+R+dmD/n0iTfV1ULtT76eIb/fwH2GeERsN8Yb9Bek+RVrbVPdBa7X4bA4Zljq6WvTHy7vIfW2umttS+01m5orb0wya0y3EAmydcz3uC31r7UWnv/xPQ7Jrlba+0brbUPtdZ2LVLtf6yqazLcLJ6bIQCY84ettataa9cneXKS01pr28b1virJVzPc0C93m76e4Ubpu5JUa+3jrbWdCyz32CR/3Vr7cGvtq0l+M8nxtWdXwD9qrV3TWrskyXsy0ZKo48M1tKj4eJJzkvzFOH2vtqu1dlFr7Z3jjfoVSf40u29wVuKJ47a+c2y5dtki585CnjPW7foMN5jHVNVdxnmPTfLmcR8+LMlnWmuvHM+nD2cIZf77/BWO3yqfn+FG7dgMNxXvTXL/DPvlU621m4R+i3hla+0/xjq+Mf1jdWiSm5wPrbUbklyZ4YZ2UePn5e/HVhdfzBCGzD8uy61P1xhaPDnJ/xw/I1/M8Nl59DLefsbYquSb4zl1TmvtY+PrjyZ53QJ1PrW1dn1r7SMZbgLnbtp614H5fiDJbTN8br7WWnt3hmD0MRPL7FGvcdr/bq19bmy58K9JtrXW/m08p/4hydxA3I9LcnZr7ezx/e/McA49dGL9f9Nau3A8/74+v4KttTe11i4f3/+GDC0e7zexyGdbay9vrX0jQ0uczUm+bbxR//4kvzt+Hv8lQ1C2L3w9yXPb0Aru7CRfSvKdSx3/ZZ6H8/fHD2cIjl+YZGdV/cvYoijjufqmDCFjxunflyE0S4Zr/kLX0sUckuSLE68fm+RdrbXXjdv7hdbaTcKjZWzbN5Pcu6pu3Vrb2Vqb+yLl6xkCp8MX+38vw/9DPziGLj+UISi8/zjvgdndWmqxa/d8j0ryB621q1trOzIEXPO9ZDz/rspw/nSvC62117bWDlnk55Lkxq6F12cIa5/ZW98i5dyntfbapZdc0G2TXDvx+toktx3P3fnz5uYfPG/a6RmuvVdW1f8/b94XM5xDAPuM8AjYL4x/6P5tkq8lmRwQ820Tzd0fm6GFymfHG+Kl1vmMsYn9tWPAc7vs7o7xxAzfen+ihq5pDxun/22SdyR5fVVdXsMgmbdYpJhHjn/s3qW19svjTcqcSyd+v0uSZ0x+uzpuy+HL3abxhvXPk7w0yeeq6mVVtWmBRQ/PRMuE1tqXMrRQ2jKxzOQYD1/O8MdwauiOM7e/f3Bime8dlzkpQwuG29yc7aqqO1XV62sYgHtXhj+y96arzBEZWlzsrRuP0Xgjd1Z2BxiPzhBmJsN2HjdvOx+boWXFQua+/f+h8fdzMty4Td68LdeCx2oBV2YIBPYwtn46NMkVSxVUVd9aVafVMID9rgxd0Q6pPcfwWW59FnNYhtZQH5rYn2/PMgKu7Pm5SlUdV1XvqaEb0LUZWgvOP5d6de5dB+Y7PMmlbRjHZM5ns+dn6tLc1OQYLdcv8HquHndJ8jPzzq8HZM/judD6b1RVP1u7uyBdk6HF2+R+uHEftNa+PP5623Hbrm57tlhbqGXT3vjCvM//3L5f9Pgv8zzcY3+0oXvR01prd82wP6/L7pZFyRCYPaqG1qePT/L21trn5+qZBT47S7g6e4YFy7oWLbZt4zE4KcM5vLOqzqqhtWeS/HqGFpsfGK/TC44711r7zwwh3TEZWqK9NcnlYyu5yevPYtfu+Q7Pnvt7oXNxX1wX9jAGUbfJcOx+e4nF97UvJZn8/3VTki+11toC8+bmf3HetIdn3KettflP5Ts4yTX7rroAwiNgPzB+k/eKDAOd/vTkt+qttRPa7ubur8nwR+uRtcQAx2Pw8RsZvjG9fWvtkAzfDNa43k+11h6ToQvKHyf5u6q6zfiN8amtta0Zugw8LOO31Xthskn7pUl+f963q9/aWnvdcrdprPdLWmvfl6F5/D2y8Lexl2e4MUhyY1eIOyZZcmDXNjxhZ25/z+9a1dowvsR52d29ZG+36w8z7J/7tKHL0OMyHpsVujRDd6OFXJfhBnXOQkFPm/f6dUkeU1XHJ7l1hlZZc+WcO287b9ta+6VO2fPDo3OzdHg0vy4r9a4kJ4zHe9JPZ2i1MNcl58vp75dnZGidd9x4XOa6oi3n2Kyk/ldmCE/uNbE/b9fmDYi9zHJem2EA2iNaa7dL8lfLrG/3OrDAopcnOaL2HKj6yOz5mbo5x+/SJH877/y6TdtzvJ3u+sfWci/PELzfcbze/XuWtx92Jrn9vO0+srfwPrLU8V/OedjdH621SzOE7PeemPavGUKiEzNcbyaDpX/O0LX02BVsw0czXIPnLHYtmrTotrXW3tFa+7EMYdYnMhzXtNb+q7X25Nba4Rm6mv1FTYxdNs+5GVpF3rINrd7OzfD/2O2zuxvcYtfu+XZm6Co354hlbOecmxyn2vOJigv93Hj+jeHjW5JsXUGZ+8KF2bNb2X2zuzv9hUnuM/7tMuc+uWl3+3smeX9buIXwPbNntziAm014BOwP/jLDH1IPn9dyZyEfyPCH7B9V1W1qGJTz/gssd3CSGzK0tjioqp6ViW8Kq+pxVXXY2JJg7tu/b9Qw2PF3j99w78pw073QYJor9fIkvzi2kqix7j9ZwyDGy9qmqvr+8f23yBCMfKVTt9cm+fkaHiV8qwzdQba11j6zD7YjGZ5s85Sq+vabsV0HZ/j29poaxntZcZeE0SsybOuPVtUBNQwQO/dN/QVJHl1VtxhvCm/SxWwBZ2cI3p6bYfyhuZYmb01yj6p6/Li+W4zH456d9fzfDDeI90vygbHryV0ytNr6l857PpfkqNr7J2n9bZIdGcb2Omqs409k6GLy/NbaXDeLC5KcXFUH1jBQ92SXmYMz3NRfU0OXkWevoPwrMnS5uclgzvON+/XlSf6squ6U3Di477LG3prn4CRXtda+UsMYWMse46R3HVhg0W0ZPnO/Pu7XB2VoVdAbb22lTk/y8Kr6ifG4fEsNA07fecl3Dm6T4Sb9iiSpYWDqey/6jlFr7bMZusidWsPjyx+QYdsWNdZx8mfZ4e8yjv+KzsMaBqE+tYYBoQ+oYRD3X0gyvxviqzOEhIdkomtea+1TGbrivm7c77cct+nRVXVKp9izs+dn5zVJHlzD4+MPqqo71sTj2yd0t62GAdUfMQZ5X81wjfzGOO9nJs6HqzMc797/TedmCBLnrjXnZOj69d42dFtMFr92z/fGJL857uctmWgdvAyfS3LHqrrd3IQ28UTFzs/88Y2+mmF8tT3MfVYyDEp9wHjMFmspPP/9t6rd4yDOHfO58/jVSX5tPC8PzxD6/c0475wM+/7p4zrm9se75xVxi7HuNyk3Q7fJdy63rgDLITwCNrQavjF/aoYm9v9Ve3ZRu4nxD9+HZxhg9ZIMN8snLbDoOzIMXvofGbpgfCV7NrV/SJILa3iq0ouTPLoN45R8e5K/yxAcfTzDH+Gn39ztbK2dn2GMiT/P8If/RRmf3LKCbdqU4Q/+q8dt+kKSFyxQ1j8n+d0MY/LszPBt+HLGklnutnwsw3555s3YrlMzdIW7NkNXsTfvZV0+kGHw5j8b13Vudre6+t0M2371WN6SY1+0YSyaNyd58OTyY5e2H8+wHy/P0EXjjzOMo7XQeq5L8uEMT3P62jj5vAzd+D6/0HsyjMmSJF+oqg8vVddO3R+c4TzfluEG9e0ZHmV96sSiv5rhuMx1vfvHiXkvytDi6soMN95vX0H5X84wfsv7augGs9QA3b+R4Xx5fw3dd96V3WOSrcQvJ3luVX0xQ4u4Ny6x/KTedWAP4zF8RIbBf6/MEDT8bFvZ+FpdY0uZEzMMpn1FhmP4zCzz78DW2vYMY/2cl+Fm/bszPBVxuU7OEGxelSHMePXii2dLhvNr8mc5rW4mLXb8V3oefi3DgM7vynDt/vcMN+1PmLfcqzO0qnrD+HmZ9PTs7hZ8TYYuaD+V/vhPb0nyXWOwkDHweGiGkOGqDCHtQgMiL7ZtB4zvv3xcxwMznN/JMC7VtvFcPTPJr7bWLu7U7dwMIdVcePTeDK0NbwyuF7t2L+C5Ga7fF2fYx3+XBUKRhYyfkdcl+fR4Xdibp619Mwt/Fh6f4dz7ywxd9K7P2FIrubEb9oJ/S4w+Ob5nS4a/Ga7P7v8/TstwjD+W4Xw6a5w2dz14ZIbWXNdkCCofOXGtn3NgFnhKXIZryTmttRU/JQ5gMdXazW3FDgDsb8Zv4N+WoWvVE5o/KGCfqqqnJNnaWps/GPKGVlW/lCFo3ZuHHOxNeXNPYL3HIoHZmlJDd+03J/lEa+3X583bluSJrbV/X5XKARuWlkcAwIq1Yeywn87QgmJvWvQAi2itvWx/CI6qanNV3X/sEvidGVpH/cOsym+t/UeGFmH/WlULPeltTRlbXf5Xhu6RL5s/v7V2nOAImAYtjwAAgFUxdi8/K8nRGbppvT7Jby7QTQuAVSQ8AgAAAKBLtzUAAAAAug5a7Qqs1KGHHtqOOuqo1a4GAAAAwIbxoQ996MrW2mELzVt34dFRRx2V888/f7WrAQAAALBhVNVne/N0WwMAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXVMLj6rqr6vq81X17535VVUvqaqLquqjVfW906oLAAAAAHtnmi2P/ibJQxaZf0KSu48/T0nyl1OsCwAAAAB7YWrhUWvtX5JctcgiJyZ5dRu8P8khVbV5WvVZa059y4U59S0XrnY1AAAAABZ10CqWvSXJpROvd4zTds5fsKqekqF1Uo488siZVG7atl++a7WrAAAAALCk1RwwuxaY1hZasLX2stbasa21Yw877LApVwsAAACAOasZHu1IcsTE6zsnuXyV6gIAAADAAlYzPDozyc+OT137gSTXttZu0mUNAAAAgNUztTGPqup1SR6U5NCq2pHk2UlukSSttb9KcnaShya5KMmXk/z8tOoCAAAAwN6ZWnjUWnvMEvNbkl+ZVvkAAAAA3Hyr2W0NAAAAgDVOeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABA11TDo6p6SFV9sqouqqpTFph/ZFW9p6r+rao+WlUPnWZ9AAAAAFiZqYVHVXVgkpcmOSHJ1iSPqaqt8xb7nSRvbK19T5JHJ/mLadUHAAAAgJWbZsuj+yW5qLX26dba15K8PsmJ85ZpSTaNv98uyeVTrA8AAAAAKzTN8GhLkksnXu8Yp016TpLHVdWOJGcn+R8LraiqnlJV51fV+VdcccU06goAAADAAqYZHtUC09q8149J8jettTsneWiSv62qm9Sptfay1tqxrbVjDzvssClUFQAAAICFTDM82pHkiInXd85Nu6U9Mckbk6S1dl6Sb0ly6BTrBAAAAMAKTDM8+mCSu1fV0VV1ywwDYp85b5lLkvxoklTVPTOER/qlAQAAAKwRUwuPWms3JHlaknck+XiGp6pdWFXPrapHjIs9I8mTq+ojSV6X5Amttfld2wAAAABYJQdNc+WttbMzDIQ9Oe1ZE79vT3L/adYBAAAAgL03zW5rAAAAAKxzwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuoRHAAAAAHQJjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAABAl/AIAAAAgC7hEQAAAABdwiMAAAAAuqYaHlXVQ6rqk1V1UVWd0lnmUVW1vaourKrXTrM+AAAAAKzMQdNacVUdmOSlSX4syY4kH6yqM1tr2yeWuXuS30xy/9ba1VV1p2nVBwAAAICVm2bLo/sluai19unW2teSvD7JifOWeXKSl7bWrk6S1trnp1gfAAAAAFZomuHRliSXTrzeMU6bdI8k96iq91XV+6vqIQutqKqeUlXnV9X5V1xxxZSqCwAAAMB80wyPaoFpbd7rg5LcPcmDkjwmyf+pqkNu8qbWXtZaO7a1duxhhx22zysKAAAAwMKmGR7tSHLExOs7J7l8gWXOaK19vbV2cZJPZgiTAAAAAFgDphkefTDJ3avq6Kq6ZZJHJzlz3jL/mHjfmsYAACAASURBVOSHk6SqDs3Qje3TU6wTAAAAACswtfCotXZDkqcleUeSjyd5Y2vtwqp6blU9YlzsHUm+UFXbk7wnyTNba1+YVp0AAAAAWJmDprny1trZSc6eN+1ZE7+3JL82/gAAAACwxkyz2xoAAAAA65zwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACg66DlLFRV90/ynCR3Gd9TSVpr7TumVzUAAAAAVtuywqMkr0jyP5N8KMk3plcdAAAAANaS5YZH17bW3jbVmgAAAACw5iw3PHpPVf1Jkjcn+ercxNbah6dSKwAAAADWhOWGR8eN/x47Ma0l+ZF9Wx0AAAAA1pJlhUettR+edkUAAAAAWHsOWM5CVXW7qvrTqjp//HlhVd1u2pUDAAAAYHUtKzxK8tdJvpjkUePPriSvnFalAAAAAFgbljvm0V1baz898frUqrpgGhUCAAAAYO1Ybsuj66vqAXMvqur+Sa6fTpUAAAAAWCuW2/Lol5K8ahznqJJcleQJ06oUAAAAAGvDcp+2dkGS+1bVpvH1rqnWCgAAAIA1YdHwqKoe11o7vap+bd70JElr7U+nWDcAAAAAVtlSLY9uM/578LQrAgAAAMDas2h41Fo7bfz31NlUBwAAAIC1ZFlPW6uq51fVpqq6RVX9c1VdWVWPm3blAAAAAFhdywqPkvz4OEj2w5LsSHKPJM+cWq0AAAAAWBOWGx7dYvz3oUle11q7akr1AQAAAGANWWrA7DlvqapPJLk+yS9X1WFJvjK9agEAAACwFiyr5VFr7ZQkxyc5trX29STXJTlxmhUDAAAAYPUt2vKoqn6ktfbuqvpvE9MmF3nztCoGAAAAwOpbqtvaA5O8O8nDF5jXIjwCAAAA2NAWDY9aa88e//352VQHAAAAgLVkWWMeVdUfVNUhE69vX1W/N71qAQAAALAWLCs8SnJCa+2auRettauTPHQ6VQIAAABgrVhueHRgVd1q7kVV3TrJrRZZHgAAAIANYKkBs+ecnuSfq+qVGQbK/oUkr5parQAAAABYE5YVHrXWnl9VH03y4CSV5HmttXdMtWYAAAAArLrltjxKko8nuaG19q6q+taqOri19sVpVQwAAACA1bfcp609OcnfJTltnLQlyT9Oq1IAAAAArA3LHTD7V5LcP8muJGmtfSrJnaZVKQAAAADWhuWGR19trX1t7kVVHZRh4GwAAAAANrDlhkfnVtVvJbl1Vf1Ykjclecv0qgUAAADAWrDc8Og3klyR5GNJnprk7CS/M61KAQAAALA2LPm0tao6IMlHW2v3TvLy6VcJAAAAgLViyZZHrbVvJvlIVR05g/oAAAAAsIYs2fJotDnJhVX1gSTXzU1srT1iKrUCAAAAYE1Ybnh06lRrAQAAAMCatGh4VFXfkuQXk9wtw2DZr2it3TCLigEAAACw+pYa8+hVSY7NEBydkOSFU68RAAAAAGvGUt3WtrbWvjtJquoVST4w/SoBAAAAsFYs1fLo63O/6K4GAAAAsP9ZquXRfatq1/h7Jbn1+LqStNbapqnWDgAAAIBVtWh41Fo7cFYVAQAAAGDtWarbGgAAAAD7MeERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOiaanhUVQ+pqk9W1UVVdcoiy/33qmpVdew06wMAAADAykwtPKqqA5O8NMkJSbYmeUxVbV1guYOTPD3JtmnVBQAAAIC9M82WR/dLclFr7dOtta8leX2SExdY7nlJnp/kK1OsCwAAAAB7YZrh0ZYkl0683jFOu1FVfU+SI1prb11sRVX1lKo6v6rOv+KKK/Z9TQEAAABY0DTDo1pgWrtxZtUBSf4syTOWWlFr7WWttWNba8cedthh+7CKAAAAACxmmuHRjiRHTLy+c5LLJ14fnOTeSc6pqs8k+YEkZxo0GwAAAGDtmGZ49MEkd6+qo6vqlkkeneTMuZmttWtba4e21o5qrR2V5P1JHtFaO3+KdQIAAABgBaYWHrXWbkjytCTvSPLxJG9srV1YVc+tqkdMq1wAAAAA9p2Dprny1trZSc6eN+1ZnWUfNM26AAAAALBy0+y2BgAAAMA6JzwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoEt4BAAAAECX8AgAAACALuERAAAAAF3CIwAAAAC6hEcAAAAAdAmPAAAAAOgSHgEAAADQJTwCAAAAoOug1a4AAMz32m2X5IwLLptZeScesyUnH3fkzMoDAID1RMsjANacMy64LNt37ppJWdt37pppUAUAAOuNlkcArElbN2/KG556/NTLOem086ZeBgAArGdaHgEAAADQpeURALBPzHKsqm0XX5UkOe7oO8ykPONiAQD7M+ERAEua9QDWc8EA68vcWFVbN29a7arsU3PjbwmPAID9lfAIgCVt1FCAfW9WY1UddcpZSWJcLACAGRAeAbAsswoFkt3BwCzMtXKaZUCgCxQAAOuJAbMBYIa279w10y6AAABwc2l5BACZTfenRBco1pZZj2eWaHkHAOuR8AiANecBdzt0tasAq2YjP7XO4OMAsD4JjwBYc05/0nGrXYUNYdatSmY5qPpGDhhXY4B6Le8AgMUIjwBghmY5QPesW5Vs3bwpJx6zZSZlbfSAcdZPrQMAWIzwCAA2uFm1KtmoZv1EvrnyAADWCuERwDo1yy5Js+5Csz/QqgQAgPVCeASwTs1yXJRZdkeatY08dg771qxacM0y9HP+AwDLITwCWMdmNS7KRrbRx85h/ZlloOP8BwCWQ3gEALCGCHQAgLVGeAQAG5QuSQAA7AvCIwDYoLRg2TeEcADA/k54BLAPzfIJaB7nvT4JItYfIRwAsL8THgHsQ7N8AhrrkyACAID1RngEsI/N6glos3ycNwAAsP8SHgEAMBNz3W1POu28mZR34jFbcvJxR86kLADYyIRHAABsONt37kqSmYRHsxzvbo5gDIBZEh4BrFMGXgbWq1l17d128VUzaeU016LquKPvMPWyktkGYwCQCI8A1i0DLwOsLbMIxZLZdfsDgDnCIwAANiwPMACAm094BADATOhuCwDrk/AIAICZ2KjdbYViAGx0wiNgQ5v1E3C279yVrZs3zaw8ABY2y0Bn1qHY3ADdsxr7yJPdABAeARvaGRdcNtNAZ+vmTTnxmC0zKQuAvo3aymnWZv1kt1l/6SMYA1ge4RGw4W3dvGlmT8ABgFmZ1WDg2y6+amatnOZaVR139B2mXtasgzGA9Ux4BAAArCmzCMZmFYgBbATCIwAAYFGzasF71ClnzaScZPZjRyW6yQHrl/AIAADWEU93W590kwPWM+ERAACsIxt5MPDVCMZm1apKNzlgPRMeATM3yyepzDVJBwBWbtZhzkYOxgDWM+ERMHNnXHBZtu/cla2bN612VQCARWzkMEf3P4DlEx4Bq2Lr5k0ze8QwAMB8GzkYA9jXDljtCgAAAACwdml5xLo2y7FzEo9XBQAAYP8jPGJdm+XYOR6vuj4ZzwAAAODmER6x7s1q7ByPV12fjGcAAABw8xjzCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6PK0NSCv3XZJzrjgspmVt33nrmzdvGlm5QEAALD3tDwCcsYFl2X7zl0zK2/r5k058ZgtMysPAACAvaflEaxRs2wNtO3iq5Ikb3jq8TMpDwAAgPVDeARr1FxrIN27AADWv7kv60467byZlHfiMVty8nFHzqQsYOMTHsEatnXzppm0BjrqlLOmXgYAALOx7eKrsu3iq2bWil1QBRuf8AgAAGBGNtoXg7MOqhJhFawG4REAAMAGtNGCqiQ3PuRFeASzNdXwqKoekuTFSQ5M8n9aa380b/6vJXlSkhuSXJHkF1prn51mnQAAAGbtAXc7dEOWNWdWD16Z1ZhRwJ6mFh5V1YFJXprkx5LsSPLBqjqztbZ9YrF/S3Jsa+3LVfVLSZ6f5KRp1QkAAGA1nP6k4zZkWcD+YZotj+6X5KLW2qeTpKpen+TEJDeGR62190ws//4kj5tifQAAANiHVqOVEzB70wyPtiS5dOL1jiSLReBPTPK2hWZU1VOSPCVJjjxS31YAAIC1YNatnLZdfFWS2XVfMzg3DA6Y4rprgWltwQWrHpfk2CR/stD81trLWmvHttaOPeyww/ZhFQEAAOCmtu/cNdOnyMFaNs2WRzuSHDHx+s5JLp+/UFU9OMlvJ3lga+2rU6wPAAAAG8AsBug2ODfsNs3w6INJ7l5VRye5LMmjk5w8uUBVfU+S05I8pLX2+SnWBW62WTeRnStvFvRVBwAAoGdq4VFr7YaqelqSdyQ5MMlft9YurKrnJjm/tXZmhm5qt03ypqpKkktaa4+YVp2AhXkiBwAA64EvPWF1TLPlUVprZyc5e960Z038/uBpls/qeO22S2bWN3j7zl3ZunnTTMqaM4smskly1ClnzaQcAABYL3zpCatjmgNms58644LLsn3nrpmUtXXzppx4zJaZlAUAAAD7o6m2PGL/tXXzppm10AEAAACmR3gEa5T+3AAAAKwFwiNYo/TnBgAAYC0w5hEAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANAlPAIAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXQetdgUAAABgrdl28VVJkpNOO29mZZ54zJacfNyRMysPlkt4BMv0gLsdutpVAAAANqjtO3clifCINUl4BMt0+pOOW+0qAAAAM/aGpx4/k3Jm2cIJVkp4BAAAAPPoeQC7CY8AAABgHj0PYDdPWwMAAACgS3gEAAAAQJfwCAAAAIAu4REAAAAAXcIjAAAAALqERwAAAAB0CY8AAAAA6BIeAQAAANB10GpXgOl77bZLcsYFl82svO07d2Xr5k0zKw8AAGC923bxVUmSk047b2ZlHXf0HaZe1pwTj9mSk487cmblsW9pebQfOOOCy7J9566Zlbd186aceMyWmZUHAADA2rV9566ZNmhg39PyaD+xdfOmvOGpx692NQAAAFjELO7bjjrlrJmVlcymNRXTJTwCAACAVfaAux26IctKZtslL9FFbhqERwAAALDKTn/ScRuyrFmbG7JFeLRvCY8AAACAqZlr6TSL0EoXuekQHgEAAABTs5FbOu0vhEcAAADAhjDr8ZW2Hr4pz374vWZS1mo6YLUrAAAAAMDapeURAAAAsKG84anHr3YVNhThEQAAALAhzA3Ozb4lPAIAAAA2BINzT4cxjwAAAADoEh4BAAAA0CU8AgAAAKBLeAQAAAD8v/buP8jqut7j+PMdILsG0gyio60KyjYIC27IIHWh5Fr+IiEVA7IhvZhadLllXIbbtRsWzNS9c5EsjSwc/AkYjQolmhlelZEChBAofowiLjCmKGTCIsv93D/2uJeF/cJBOOfsj+djZsfz/X4/53vex9n37O6Lz+dzpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEztS11AW/WHV94CYNTPXijaa0mSJEmSJB0tZx5JkiRJkiQpkzOPSmzeTZ8o+Gt0n/ybgr+GJEmSJElqnZx5JEmSJEmSpEzOPGoDBvc8udQlSJIkSZKkFsrwqA144IYLSl2CJEmSJElqoVy2JkmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJymR4JEmSJEmSpEyGR5IkSZIkScpkeCRJkiRJkqRMhkeSJEmSJEnKZHgkSZIkSZKkTIZHkiRJkiRJylTQ8CgiLo2I9RGxKSImN3G9Y0TMy13/Q0R0L2Q9kiRJkiRJOjoFC48ioh1wJ3AZ0BsYExG9Dxo2Dng7pdQTuB34YaHqkSRJkiRJ0tEr5MyjgcCmlNLLKaX3gLnAiIPGjADuzT2eD1wUEVHAmiRJkiRJknQU2hfw3h8FXjvguAa4IGtMSqkuInYBXYE3DxwUETcCNwKceeaZhaq3qAb3PLnUJUiSJEmSJB1RIcOjpmYQpQ8whpTS3cDdAAMGDDjkekv0wA0H52iSJEmSJEnNTyHDoxrgjAOOK4BtGWNqIqI90AV462hfaN++fdTU1FBbW/tBa5UAKCsro6Kigg4dOpS6FEmSJEmSmoVChkfLgMqI6AFsBUYDXzxozALgy8ALwEjg9ymlo55ZVFNTQ+fOnenevTtumaQPKqXEjh07qKmpoUePHqUuR5IkSZKkZqFgG2anlOqArwNPAn8GHk4prY2I70XE8NywWUDXiNgE3AJM/iCvVVtbS9euXQ2OdEwigq5duzqDTZIkSZKkAxRy5hEppceBxw869x8HPK4Frjker2VwpOPB7yNJkiRJkhor2MwjSZIkSZIktXyGR8dJp06dDjk3c+ZM7rvvvoK/9j333EPfvn3p168fVVVVPPbYY8yePZsxY8Y0Gvfmm2/SrVs39u7dy759+5g8eTKVlZVUVVUxcOBAFi1a1OT9R44cycsvv9xwvHLlSiKCJ598stG4du3aUV1dTVVVFddccw27d+8+pveVUmLChAn07NmTfv368eKLLx4yZvfu3QwbNoxevXrRp08fJk/+/5WPM2fOpG/fvlRXVzN48GDWrVsHwEsvvcR11113TLVJkiRJktRWGB4V0M0338zYsWMLdv+UElu2bGHatGk8//zzrF69mqVLl9KvXz+uuuoqnnrqqUYBzvz58xk+fDgdO3bkO9/5Dtu3b2fNmjWsWbOGhQsX8s477xzyGmvXrmX//v2cffbZDefmzJnD4MGDmTNnTqOx5eXlrFq1ijVr1nDCCScwc+bMY3p/ixYtYuPGjWzcuJG7776br371q02OmzhxIn/5y19YuXIlS5YsaQjBvvjFL/LSSy+xatUqJk2axC233AJA3759qampYcuWLcdUnyRJkiRJbUFB9zwqhdsWrmXdtr8d13v2Pv0kvntFn6N+3pQpU+jUqRMTJ07kwgsv5IILLmDx4sXs3LmTWbNmMWTIEPbv38/kyZN55pln2Lt3L+PHj+emm27i73//OyNGjODtt99m3759TJ06lREjRrB582Yuu+wyhg4dygsvvMCMGTPo3Llzw8ynTp06NTz+1Kc+xcKFCxk1ahQAc+fO5dZbb2X37t38/Oc/55VXXqFjx44AnHrqqXzhC1845D08+OCDjBgxouE4pcT8+fN56qmnGDJkCLW1tZSVlR3yvCFDhrB69eqj/n92oMcee4yxY8cSEQwaNIidO3eyfft2TjvttIYxJ554IkOHDgXghBNOoH///tTU1ABw0kknNYx79913G+1ndMUVVzB37lwmTZp0TDVKkiRJktTaOfOoiOrq6vjjH//IjBkzuO222wCYNWsWXbp0YdmyZSxbtqwh1CkrK+ORRx7hxRdfZPHixXzrW98ipQTA+vXrGTt2LCtXrmTw4MGceuqp9OjRg+uvv56FCxc2vN6YMWOYO3cuANu2bWPDhg0MHTqUTZs2ceaZZzYKV7IsWbKE888/v9Fxjx49OOecc7jwwgt5/PHHD3lOXV0dixYtom/fvodcGzVqFNXV1Yd8NbW8b+vWrZxxxhkNxxUVFWzdujWz1p07d7Jw4UIuuuiihnN33nkn55xzDpMmTeKOO+5oOD9gwACee+65I75/SZIkSZLaulY38+iDzBAqlquuugqA888/n82bNwPw29/+ltWrVzN//nwAdu3axcaNG6moqODb3/42zz77LB/60IfYunUrr7/+OgBnnXUWgwYNAur3GXriiSdYtmwZTz/9NN/85jdZsWIFU6ZM4XOf+xxf+9rX+Nvf/sbDDz/MyJEjadeu3VHVvH37drp169ZwPGfOHEaPHg3A6NGjuf/++xve1549e6iurgbqZx6NGzfukPvNmzcv79d+Pyw7UNanodXV1TFmzBgmTJjQaInd+PHjGT9+PA899BBTp07l3nvvBeCUU05h27ZtedciSZIkSVJb1erCo+bs/SVi7dq1o66uDqgPSH784x9zySWXNBo7e/Zs3njjDVasWEGHDh3o3r07tbW1AHz4wx9uNDYiGDhwIAMHDuSzn/0s119/PVOmTKG8vJxLL72URx55hLlz53L77bcD0LNnT7Zs2cI777xD586dD1tzeXl5w+vu37+fX/3qVyxYsIBp06aRUmLHjh0N93l/z6PDGTVqFOvXrz/k/C233HLI/lAVFRW89tprDcc1NTWcfvrpTd73xhtvpLKykm984xtNXh89enSjPZNqa2spLy8/bK2SJEmSJMllayV3ySWX8NOf/pR9+/YBsGHDBt5991127drFKaecQocOHVi8eDGvvvpqk8/ftm1bo08hW7VqFWeddVbD8ZgxY5g+fTqvv/56w2ylE088kXHjxjFhwgTee+89oH6G0QMPPHDI/c8991w2bdoEwO9+9zvOO+88XnvtNTZv3syrr77K1VdfzaOPPpr3+503bx6rVq065KupjcWHDx/OfffdR0qJpUuX0qVLl0b7Hb3v1ltvZdeuXcyYMaPR+Y0bNzY8/s1vfkNlZWXD8YYNG6iqqsq7bkmSJEmS2irDo+Nk9+7dVFRUNHxNnz49r+fdcMMN9O7dm/79+1NVVcVNN91EXV0d1157LcuXL2fAgAE8+OCD9OrVq8nn79u3j4kTJ9KrVy+qq6uZN28eP/rRjxquX3zxxWzbto1Ro0Y1WvI1depUunXrRu/evamqquLzn/98o+Vp7xs2bBjPPPMMUL9k7corr2x0/eqrr+ahhx7K670ercsvv5yzzz6bnj178pWvfIW77rqr4dr7y+NqamqYNm0a69ato3///lRXV/OLX/wCgJ/85Cf06dOH6upqpk+f3rBkDWDx4sUMGzasIHVLkiRJktSaRFP7yjRnAwYMSMuXL2907s9//jPnnntuiSpq3fbs2cPQoUNZsmTJUe+X1Fzt3buXT3/60zz//PO0b3/oyk2/nyRJkiRJbU1ErEgpDWjqmjOPdFjl5eXcdttth/2Us5Zmy5Yt/OAHP2gyOJIkSZIkSY3517OO6ODNvFu6ysrKRvsfSZIkSZKkbK1m5lFLW36n5snvI0mSJEmSGmsV4VFZWRk7duzwD38dk5QSO3bsoKysrNSlSJIkSZLUbLSKZWsVFRXU1NTwxhtvlLoUtXBlZWVUVFSUugxJkiRJkpqNVhEedejQgR49epS6DEmSJEmSpFanVSxbkyRJkiRJUmEYHkmSJEmSJCmT4ZEkSZIkSZIyRUv7hLKIeAN4tdR1HCcnA2+WugipBbBXpPzYK1J+7BXpyOwTKT+tqVfOSil1a+pCiwuPWpOIWJ5SGlDqOqTmzl6R8mOvSPmxV6Qjs0+k/LSVXnHZmiRJkiRJkjIZHkmSJEmSJCmT4VFp3V3qAqQWwl6R8mOvSPmxV6Qjs0+k/LSJXnHPI0mSJEmSJGVy5pEkSZIkSZIyGR5JkiRJkiQpk+FREUTEpRGxPiI2RcTkJq53jIh5uet/iIjuxa9SKq08+uSWiFgXEasj4umIOKsUdUqldqReOWDcyIhIEdHqPzpWako+vRIRX8j9bFkbEQ8Vu0apOcjjd7AzI2JxRKzM/R52eSnqlEotIu6JiL9GxJqM6xERd+R6aXVE9C92jYVkeFRgEdEOuBO4DOgNjImI3gcNGwe8nVLqCdwO/LC4VUqllWefrAQGpJT6AfOB/yxulVLp5dkrRERnYALwh+JWKDUP+fRKRFQC/wb8Q0qpD/CNohcqlVieP1duBR5OKX0cGA3cVdwqpWZjNnDpYa5fBlTmvm4EflqEmorG8KjwBgKbUkovp5TeA+YCIw4aMwK4N/d4PnBRREQRa5RK7Yh9klJanFLanTtcClQUuUapOcjnZwrA96kPWGuLWZzUjOTTK18B7kwpvQ2QUvprkWuUmoN8eiUBJ+UedwG2FbE+qdlIKT0LvHWYISOA+1K9pcBHIuK04lRXeIZHhfdR4LUDjmty55ock1KqA3YBXYtSndQ85NMnBxoHLCpoRVLzdMReiYiPA2eklH5dzMKkZiafnysfAz4WEUsiYmlEHO5fk6XWKp9emQJ8KSJqgMeBfy5OaVKLc7R/07Qo7UtdQBvQdekncAAAA+9JREFU1Ayi9AHGSK1Z3j0QEV8CBgCfLmhFUvN02F6JiA9Rv/z5umIVJDVT+fxcaU/90oILqZ/N+lxEVKWUdha4Nqk5yadXxgCzU0r/HRGfAO7P9cr/Fr48qUVp1X/XO/Oo8GqAMw44ruDQqZ4NYyKiPfXTQQ83HU5qbfLpEyLiM8C/A8NTSnuLVJvUnBypVzoDVcAzEbEZGAQscNNstUH5/v71WEppX0rpFWA99WGS1Jbk0yvjgIcBUkovAGXAyUWpTmpZ8vqbpqUyPCq8ZUBlRPSIiBOo32RuwUFjFgBfzj0eCfw+pdRqEkopD0fsk9xSnJ9RHxy5L4XaqsP2SkppV0rp5JRS95RSd+r3BxueUlpemnKlksnn969HgaEAEXEy9cvYXi5qlVLp5dMrW4CLACLiXOrDozeKWqXUMiwAxuY+dW0QsCultL3URR0vLlsrsJRSXUR8HXgSaAfck1JaGxHfA5anlBYAs6if/rmJ+hlHo0tXsVR8efbJfwGdgF/m9pPfklIaXrKipRLIs1ekNi/PXnkSuDgi1gH7gX9NKe0oXdVS8eXZK98Cfh4R36R+Cc51/kO32qKImEP9UueTc3uAfRfoAJBSmkn9nmCXA5uA3cD1pam0MMK+lyRJkiRJUhaXrUmSJEmSJCmT4ZEkSZIkSZIyGR5JkiRJkiQpk+GRJEmSJEmSMhkeSZIkSZIkKZPhkSRJ0hFExP6IWBURayJiYUR85Djff3NEnJx7/PfjeW9JkqRjZXgkSZJ0ZHtSStUppSrgLWB8qQuSJEkqFsMjSZKko/MC8FGAiDgnIp6IiBUR8VxE9MqdPzUiHomIP+W+Ppk7/2hu7NqIuLGE70GSJClv7UtdgCRJUksREe2Ai4BZuVN3AzenlDZGxAXAXcA/AncA/5NSujL3nE658f+UUnorIsqBZRHxq5TSjiK/DUmSpKNieCRJknRk5RGxCugOrACeiohOwCeBX0bE++M65v77j8BYgJTSfmBX7vyEiLgy9/gMoBIwPJIkSc2a4ZEkSdKR7UkpVUdEF+DX1O95NBvYmVKqzucGEXEh8BngEyml3RHxDFBWmHIlSZKOH/c8kiRJylNKaRcwAZgI7AFeiYhrAKLeebmhTwNfzZ1vFxEnAV2At3PBUS9gUNHfgCRJ0gdgeCRJknQUUkorgT8Bo4FrgXER8SdgLTAiN+xfgKER8RL1y9z6AE8A7SNiNfB9YGmxa5ckSfogIqVU6hokSZIkSZLUTDnzSJIkSZIkSZkMjyRJkiRJkpTJ8EiSJEmSJEmZDI8kSZIkSZKUyfBIkiRJkiRJmQyPJEmSJEmSlMnwSJIkSZIkSZn+D6G7e0QBMK3MAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGiCAYAAACYr974AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZxdZX348c83kw2yEgIYAgiyKaAgUoS64cpiFWxL3bdiEZeqFbVa+6vgVrVWcUWxIqACgmIFRWRRtgqyFZBFSlhMQsISkkAgAZKZ7++P5wzcTGbmnkkmuZMzn3de95V7z/qcc54593u/z3POicxEkiSNbmM6XQBJktR5BgSSJMmAQJIkGRBIkiQMCCRJEgYEkiSJDgUEUfwgIpZExFXrsJwXRcRtw1m2TomI7SLikYjoWo/ruDkiDhhk/MUR8a71tf71LSLeHBHnt3zOiNipk2WqKyJeFxHzqjrw3E6XZ0OKiGMi4kdrMd93IuL/rY8yjUQR8e6IOK7GdCdFxGc3RJmGS7tzU59p746IV6zHskREnBwRiyPim+trPcMlIvaPiIcj4vqIeHY/46+KiN3rLKtTGYIXAq8EtsnMfdd2IZl5WWbuOnzFWj/qVODMnJuZkzOze32VIzN3z8yLqzKt1Um4VURMj4jjI+LeiFgeEX+MiLcPS2Hbr3v76gt/bO+wzPxxZr5qiMt5c/Ul/EhErIiInpbPjwx/yQf0ZeD9VR343w243hEtIg6IiPn9jcvMozLzMxu6TAARsXtEnF/9qFkaEddGxCERMTsiVkXEjv3M8/OI+HL1PiLiAxFxU0Q8GhHzI+LM/k7o1fTjgX8F/mP9bllntJ6b1sVg9WUI9gBeDzwrM9/fsuy/i4jfV+e6i4dYrvER8dPquyD7Bj9VffhiRDxYvb4UEdEyfq+qji2v/t+rd1xmXgFMB/4POKKf1X8Z+HSdcnYqIHg6cHdmPtqh9Y8orV9qG4vqBHUh5VjuD0wDPgp8KSI+0MmyDUUVREzOzMnAwcCC3s/VsCetz+wNZT/evDYzruesUkSETYuVlv1xDnABsBWwJfAB4OHMvAe4CHhrn/lmAIcAJ1eDvgZ8sJpvBrAL8N/AqwdY9aHAn6rla/2aASzKzPv6DF8MHAd8YS2XeznwFuDefsYdCRwG7Ak8B/gr4N3w5Ln2F8CPgM0odegX1XAAMrMHuAXYvJ9lnw28NCJmtS1hZg76ArYFzgIeAB4EvlkNH0OJWP8M3A+cAkyrxm0PJPB2YC6wCPhkNe4I4DGgG3gEOBZ4B3B5n/UmsFP1/pBqY5cB9wAfqYYfAMxvmedZwMXAUsrJ9bUt404CvgX8qlrOH4AdB9jm3vK/E5gHLAGOAv4CuLFa/jdbpt8R+G21fxYBPwamV+N+CPQAK6rt/VjL8o+o9s+lLcPGUirkfOA11TImA3OAt/VT1pcCf2z5fCFwVcvny4HDqvd3A68ADgKeAFZWZbqhGn8x8Bngf6p9dD4wc4B9dER13Cf1Gf564GFgSt/j2HIcPlu93wz4JaVuLaneb9My7YDlqfZbVuV/hBKUvIOWesTqdWgCJVKeC9wHfAfYpE/ZD2D1+nQScDxwLvBote9eDfxvtY3zgGP6qTdr1Ptq/L7ANdW89wFfqcr1SDXfo8AdNety33LdTQnIbqyGfZ/yZfXrat9dCGzWsoz9gN9Xy78BOKDPfv9ctd9XtB6/lmk+DtxRLfsW4HUt495BqXdfro7rXcDBLeN3AC6p5r0A+CbwowHq2WrHpM+4k3iqLh1A+Zs5mlIvFwLvbJl2wONPvXrYuj/2qY7X9AHK9abe49gy7L3AddX7nSnnv33bnX9b5j8R+Nc+w17YcgznAe9Yi7+xdwB3VsfiLuDN1fCdqmP0EKUe/2SAcp0MHF29n13tl/e2LGMxENXnvwKur8r7e+A5Lcu5G3hF9X6TarlLgFsp58z5fab9CKWuPwT8BJgITKqOTw9PnRe2rruPW5b/cmDuIOPfBVw81OW2zD+flr+3atjvgSNbPh8BXFm9fxXley9axs8FDuqzjH8DThtgnRcAb29btjYF76KcLL5a7eyJwAurcX9P+ZJ6BuUL6yzgh9W47auK8b3q4O4JPE5JwfRWwtYT92qfq2GtJ/OFwItaKvjefU8WwLiqPP8CjAdeRqnku7b8kSymnJTHUr60Tx9gu3vL/51qm19FCWL+m/JrYDblpPOSlor/SspJZwvKF/xx/VX2Pss/pdqvm7QMG9tSCe6t1vc94KcDlHUi5Y9gZrVd9wILgCnVclcAm/fzR3cMfU7ClBPfHZRfK5tUn78wwHpPB07uZ/hYYBXwyr7HsZ+T1ebA3wCbVuU9E/jvOuXpu78GqFetdeg4SqQ8o1rXOcC/9yn7AawZEDwEvIASAE+spnl29fk5lC+Xw/qUaaB6fwXw1ur9ZGC/Acpapy73LdfdwJWUIKC3fl4HPJdSL38LfKqafzYleD2kmv+V1ectWvb7XGD36niO6+c4Hw5sXc3/ekoQMqvlOKwE/oFyDnkPpU5Gy37oDYZeXG3bcAQEqyip0XHVti2nCoIGO/7Uq4er7Q/gdsqX62HAVn3KtUl1fF7YMuwK4EPV+6OAP7c7OfdZ5tXA4S2ft6v22xur8mwO7DWUvzHKuedhnqpXs4Ddq/enAZ/kqfr1wgHK9ffAOdX7N1H+Xn/SMu4X1fu9KXXy+VWdeDulzk7o59z0BUowshmwDeWLv29AcBWl/s2gBA1HDVRfqnItHeS1Xcu0Y4DP0+f7KDN51QGb5vOeM2FYXrT8aKvW+xDw/JbP+wDLqvf/BPy6z/S/pArEWoa9k9JssHk/x+nrwFfa1bN2qep9q53+0cxcVQ27vPr/zdUK7gSIiE8AN0XEO1vmPzYzVwA3RMQNlBPkrW3W2Z+VwG4RcUNmLqFEjn3tRznJfiFL+uS3EfFLyh/MMdU0Z2XmVVV5f0w5KQ3mM5n5GHB+RDxKib7ur+a/jHKyvSQz51BO4AAPRMRXgE/V2K5jsmo2aWkuAiAzz4+IMynpx80pX0JryMzHIuIayol1AU9lMF5A+TK6PTMfrFGWXj/IzP+rynQG8NoBpptJ+bXbtzyrImIRJTAaVFWun/V+jojPAb9by/IMqGqL+wfKL5LF1bDPA6cCn2gz+y8y83+q949Rvhx63RgRpwEvoQSLvQaq9yuBnSJiZmYuonyB96dOXV6tXFX9+UZWac6qft6fVX+EiPg55ZcPlLTluZl5bvX5gqoOtaa0T8rMAZswMvPMlo8/qf7+96WkNqF84X2vWvfJwLeBrao0519QTv6PA5dGxDkDrWeIVgKfrs5V51Z9QHaNiD8wyPGvWQ9X2x8R8VJKluQ/gR0i4nLgiMy8PTNXVH+7bwMuj4idgedR0v5Q/p4XDnHbplMCgF5vBi7MzNOqzw9Wr9XU2LYeYI+ImJuZC1vKtZLSjLV1Zs7nqfN+X5cAX6maUV4MfAno7ej5kmo8lP3/3cz8Q/X55Ij4F0pdv4TV/R3wnt5zfUR8nafqfa+vZ+aCapvOAfZiAJl5KuVYD6pq1llIyZ6u0RfpwcXdXPWb7dotppauWbdP6zNoMiUo6PUQMLk6d/Ud1zt+Sp9hP6Ls50UR8U+Z2doBdRkl4BtUu7bBbSl/2Kv6Gbc1pbmg158p0fNWLcNa20qWUzZsbfwN5WT154i4JCL2H6A886oTaGuZZq9DeVrbkFb083kyQERsGRGnR8Q9EfEw5cDMbLNsKGm+wZxA6eDygzZf6pdQIuMXV+8vpvwxtv5B1lV3Hy2inwpW9YeYSUlRDioiNo2I70bEn6v9dikwvU+b+HDUoS0ov5CujdIBbClwHjWCFvoco4h4fkT8LiIeiIiHKL/2+h7rgcp8BCXb8aeIuDoi/mqAddapy/3VnVr1lXKiP7x3X1T744WsfjwHrZsR8bYovZp759+D1ffDk/sgM5dXbydX27YkV+8/1HoeWRcP9jlX9e77QY9/zXq42v7IzPmZ+f7M3JGyPx+lZPx6nQz8XURMpPQnOK/3xwTli7t9e+7qlrD6F8C2lF/jgxps26pj8HpKHV4YEb+KiGdWs34MCOCqKFcA/H1/y8/MOyip+b2AF1F+uS6IiF1Z/fzzdODoPnVuW0p96GtrVt/f/dXF4fpueVIVLE6iHLtPrjEe6Bmmf/14BJja8nkq8EiWn/d9x/WOX9Zn2Guo9mmfYABK3Vnabh+0CwjmAdsN0OltAeUg99qOkrLr2xGjjkcpf7AARMTTWkdm5tWZeSglff7fwBkDlGfbPh2gtqO0vaxv/06pL8/JzKmUX2CtP/lzgPkGGt7bUey7lJPMe2Lwy+f6BgSX0D4gGHDdNV0IHBwRk/oM/xvKr4vey0mX03JsgdZjezSwKyVVNpVSflh93w1kKOVfRPlC3D0zp1evadmn02DN9ZxKST1vm5nTKM1KdcpL9evxjZR6/EXgp/3sP6hXl9fl+M2jNO9Nb3lNyszWzlKD1c2nU5pF3k9JT04HbqLeflgIbNZnu4fnZ9fA2h3/OvVwwP2RmfMo/ZP2aBl2GeWL/1DK+aA1WLgI2CYi9hnCNtxICSZ7zaP0XWpn0G3LzN9k5ispAcqfKMeVzLw3M/8hM7emdG779iDnoEuAvwXGZ+n0eAklO7IZpc9Ab3k/16fObdqS4Wi1kNJU0GvbGtvZa43jFKtfSdTf68n6VwWU5wC79bfo7uwZllc/bqZkEnvtyVOdjG8GnhOrp5Gfw5qdkJ9F6XfQX/bpWZTm/0G1CwiuohycL0TEpIiYGBEvqMadBvxTROwQEZMp7S4/GSCb0M4NwO5RLq2YSEt6KMrlGm+OiGmZuZLS5tXfpXl/oAQWH4uIcVEu63gNpa17fZtCieKWRsRsSueuVvdR+loMxb9U//89pTPUKTFwb/LfU/7o96W0Td1MCdaeT/lF0J/7gO1j7XuQ/5DSOebMKJcAjouIAyltVV/KzN4U1/XAmyKiKyIOogQpvaZQTtRLq3RdnWaWXg9Q0p1t92v1S/t7wFcjYkuAKJeHHTiE9fWaAiyummr2pbRP1hIRb4mILary9EbrnajLPwJeExEHVsdlYpTLtbZpO2cxiXLifQAgSjPhHoPOUcnMP1Oamo6t/rZfSNm2QVVlbH3VCsKqdbY7/kOqhxGxWUQcGxE7RcSYiJhJ+Tvt2wR0CiXwm075kuktz+2UJpTTqv0+vtqmN0TExwdY7bms/rfzY+AVUS6FGxsRm0fLpWgtBty2iNgqIl5bBWePU85h3dW4w1vqwxLK8R7okuhLKMFh77nmYuAfKe3wvfN8DzgqSoYtqu+TV0dE37Q3lB98n6j28+xq2XXdB2weEU+m5LPlSqIBXnP7LONxSt+d9Sn61ONTgA9X9XJrSiB3UjXuYsq+/0BETIiI3v3x2z7LHEcpe98VTaA0WV3QrlCDfhlUB/M1lE5zcylfAK+vRp9I+VK4lNI79TFKJRiyqo3405RfnbezZnvVW4G7q5TXUZSIu+8ynqC0Lx9M+UXwbUqv/D+tTZmG6FhKp5mHKFcxnNVn/L8D/1qlyj7SbmER8Tzgw5Tyd1NOKklps1xDlfq7Dri52g9QOjH9uSVN2VdvG/CDEXFduzL1s87HKb3b51G+wFZQ0rDHUfZHrw9S6tBSSrtna1v7cZQOWL3t6ecNYf3LqXp+V/t1vzaz/DOln8eVVT26kBJEDdV7gU9HxDJKr97+slUDOQi4OUrb9teAN1R9VFazvuty9Yv2UErQ+QDlGH6UmpchZ+YtlLbzKygn4GdTeuDX9SZKsLqY8gV1yuCTM5tSv1pfdX4dtxrs+A+1Hj5B6UB6IeUHyk2UE/E7+kx3CiX78ZPq76XVByhXV3yL8rdxB/A6WgKHPs4Bnll9WVB9iR1C+eJYTAm89+xnvsG2bUw1/4JqGS+h1G8o/Tz+UNXVs4EPZuZdA5TtEkrg0RsQXE7JCj75YyQzr6G0b3+TEmDMYc391evTlO+auyj7+Kf080XXn+pv5DTgzuq80F+TRDs99PO3UJoMclhelCtNVvBUlv27lGP8R0p9+lU1rPd8cBgl67KUEnwe1nKu79VVlb2v11KuiljQbsN7e/1K6yQixlEucbuHcvmTFUsaRhFxJLBbZn6o02XZkCLiPZTg+SVtJx6e9e1CScfv0hoE7b3nhLzsvKcNPOMQTN567rWZOZQmo0FFadY/i3Kvio/1GfcHSofXm9otxxuOaFhUzTl/Q/mlM+LvHiltbDLzhNEQDETErIh4QdUcsysli/HzDbX+KmP9LeCyKFc4jGhVdvReStPUCX3HZ+bz6wQDQNvLDqXaqn4DtW6RKUkDGE9Jl+9ASZGfTmk222CqwGu14CtJukdg4jMzr6TeVW1tGRBIkkaMquNprU6qG1rPOl+cNbLZZCBJkswQSJLUTrnustkZAgOCdTB26qY5bsvpnS6GtM52n7S400WQhsW1Nz6+KDPr3IV0yJreZGBAsA7GbTmdHb/yrk4XQ1pnV+3b3w3jpI1P16w5w3Ur7FHHgECSpDYSRuRVBsPJgECSpBr6fQpBg3iVgSRJMkMgSVI7SXqVgSRJo15Cd7PjAZsMJEmSGQJJktoqjz9uNgMCSZLaCrqJThdivbLJQJIkmSGQJKmdBHoa3qnQgECSpBpsMpAkSY1nhkCSpDbK44+bnSEwIJAkqYaebHZAYJOBJEkyQyBJUjujocnADIEkSW0kQTdjhuXVTkRMjIirIuKGiLg5Io6thu8QEX+IiNsj4icRMb4aPqH6PKcav/3abKMBgSRJI8vjwMsyc09gL+CgiNgP+CLw1czcGVgCHFFNfwSwJDN3Ar5aTTdkBgSSJNXQkzEsr3ayeKT6OK56JfAy4KfV8JOBw6r3h1afqca/PCKG3L5hQCBJUhu9fQiG41VHRHRFxPXA/cAFwB3A0sxcVU0yH5hdvZ8NzAOoxj8EbD7UbTQgkCRpw5oZEde0vI7sO0FmdmfmXsA2wL7As/pZTu/NlPuLMoZ8o2WvMpAkqa2gO4ftN/SizNynzoSZuTQiLgb2A6ZHxNgqC7ANsKCabD6wLTA/IsYC04DFQy2UGQJJktpIoIcxw/JqJyK2iIjp1ftNgFcAtwK/A/62muztwC+q92dXn6nG/zYzzRBIkrSRmwWcHBFdlB/uZ2TmLyPiFuD0iPgs8L/A96vpvw/8MCLmUDIDb1iblRoQSJJUw4a6MVFm3gg8t5/hd1L6E/Qd/hhw+Lqu14BAkqQ2Moe1D8GI1OytkyRJtZghkCSphp6GP8vAgECSpDbKjYmanVRv9tZJkqRazBBIktRW8zsVGhBIktRG742JmqzZWydJkmoxQyBJUg3dNR5dvDEzIJAkqY0kvMpAkiQ1nxkCSZJq6PEqA0mSRjdvTCRJkkYFMwSSJLWRhFcZSJKk5t+YyIBAkqQ2Mmn8rYubvXWSJKkWMwSSJLUV9GAfAkmSRrXEJgNJkjQKmCGQJKmGpt+YyIBAkqQ2kqCn4fchaHa4I0mSajFDIElSDTYZSJI0yiXNf9phs7dOkiTVYoZAkqS2gm5vTCRJ0uhmk4EkSRoVzBBIklSDTQaSJI1ymWGTgSRJaj4zBJIk1dD0px0aEEiS1EYCPQ3vQ9DscEeSJNVihkCSpLbCJgNJkka7cmMimwwkSVLDmSGQJKkGH38sSdIol4RNBpIkqfnMEEiSVENPw39DGxBIktRGJnTbZCBJkprODIEkSTU0vVOhAYEkSW2UqwyanVRv9tZJkqRazBBIklRDt087lCRpdOt9lsFwvNqJiG0j4ncRcWtE3BwRH6yGHxMR90TE9dXrkJZ5PhERcyLitog4cG220QyBJEkjyyrg6My8LiKmANdGxAXVuK9m5pdbJ46I3YA3ALsDWwMXRsQumdk9lJUaEEiS1NaG61SYmQuBhdX7ZRFxKzB7kFkOBU7PzMeBuyJiDrAvcMVQ1muTgSRJNfQQw/ICZkbENS2vIwdaZ0RsDzwX+EM16P0RcWNEnBgRm1XDZgPzWmabz+ABRL8MCCRJ2rAWZeY+La8T+psoIiYDPwM+lJkPA8cDOwJ7UTII/9k7aT+z51ALZZOBJEltbOhbF0fEOEow8OPMPKuUIe9rGf894JfVx/nAti2zbwMsGOo6zRBIklRDT44Zllc7ERHA94FbM/MrLcNntUz2OuCm6v3ZwBsiYkJE7ADsDFw11O0zQyBJ0sjyAuCtwB8j4vpq2L8Ab4yIvSjNAXcD7wbIzJsj4gzgFsoVCu8b6hUGYECgYTbmgZVM/9oCupauIgOWv2ozlr9mxmrTdM1/nOnfWMi4Ox5j2Vu24NHDNl/3Fa/sYfpxCxh3x2P0TOli6Udm073VeMZf/whTT3kAViWMDR5+x5Y88ZxJ674+Nd4TjwVH//VOrHxiDN2r4EWvfoi3ffTe1ab55Smbc85JMxkzBjaZ1M0H/2MeT9/l8XVa771zx/P59zydZUvHstMey/nYN+Yybnzys+9uwXmnbk7X2GTa5qv48FfmstU2K9dpXaqv3Lp4wzQZZObl9N8v4NxB5vkc8Ll1Wa9NBn1ExEHVjR3mRMTHO12ejU4XPPzOLXngmzvy4Je2Z9KvlzB23uonyJzcxcPv2opHD5sxwEIGWfx9TzDjk39eY/imFyylZ3IXD3xnJx597QymnHI/AD1Tx7L4X7dh0defwdIPzmL6cUNuVtMoNW5C8qUz7+A7F97G8RfcxjUXT+HWazddbZqXvm4J3/3tbRx/4W0c/t77+e4x9Tt2n/+TGfzwy09bY/h/fW4Wf/0PD/CD/7mVydO7Oe+08ney4x4r+Mavb+M7F93GC1+9lP/6zNbrtoEasmG8ymBEMiBoERFdwLeAg4HdKOmZ3Tpbqo1Lz4xxrNpxEwByky5WbTOeMQ+u/iumZ/pYVu68Cdm15h/GJhc/xOYfvYuZH7qTqd9eCN31OspOvOoRVrx0GgCP/eVUJty4HDJZ9YyJ9MwYB8Cq7SYQKxNW9qzLJmqUiIBNJpW6smpl0L0yiD5VdtKUp+rSY8vHPDm+uxu+9+mt+ceDd+Gol+/Kr35YLwuWCTdcPoUX/dVSAF55+GKuOK/U671e8AgTNy1/D8/aezmLFo5bl82T1mCTwer2BeZk5p0AEXE65YYPt3S0VBuprvueYNydj7Fyl01qTT923uNMvPxhHvz37WFsMPU7C9nk0odY8dLpbecds3gV3TOrE2RX0LPpGGJZNzn1qSo+8YplrNxhAowzDlY93d3w/gN3ZcHd43nNOxbxzL2XrzHN2T+YyVknbMHKJ4IvnTkHgN+ctjmTpnbzjV//H088Hnz40J153kuW8bTtnhh0fQ8v7mLStG66qmo7c9ZKFt275hf/eafN4C9etmzdN1C19d66uMkMCFbX380dnt+hsmzUYkUPm33xHh4+Yity065a84y/8VHG3fEYMz9yV1nGE0nPtFJFN/v3eXTdtxJWJV2LVjLzQ3cC8OhrZrDi5dPLT6tBjJ37OFNOvp/Fx2y3Dlul0aarC46/8DYeeaiLY4/Ynrv/NJHtn/nYatO89p2LeO07F/Hbs6Zz6teexke/NpdrL5nCXbdO5LJflmD20WVjuOfOCWw6uZt//rudAFi2tItVK4PfVxmAj33jz2y25Zp9AvpmJS762WbcfuOm/MfP5qyHLdZgmv74YwOC1bW9uUN1R6kjAcZtMW1DlGnjsyrZ7IvzWfGSqTy2/9T68yWseNk0lr11yzVGLflEucS2674nmPb1hSz+3NNXG9+z+Ti6Fq2kZ+Y46E7GLO8hp5RAZMyilWz2hfks/dDWdM8av/bbpVFr8rRu9tz/Ea7+3ZQ1AoJeBxy2lG9U9TQT3vvZe9jngDV/xR9/4W1A6UNw37zxvPUjT3VUzIRHH+qiexV0jYVFC8ex+VZPBQnXXTqZ0762FV8+aw7jJwz5vjPSoJod7gxd25s7ZOYJvXeX6pq6egcjAZlM++ZCVm0znkcPHdrVA0/sOYmJv3+YMUtXARDLuum6v14v6sf2ncwmv3sIgIm/f5jHn70pRBCPdDPjs/NY9pYtWPksj5fqW/pgF488VILKx1cE1102hW13Wr2D7D13PhVgXnXhVGbvUMbvc8AyfnnyTFZV1Xf+HRN4bHmd689hzxc88mRm4YIzZ7D/gaVez/njJnz9n7fl2JPuZPrMVeu8fRqiYXrS4UhudjBDsLqrgZ2rGzvcQ3l61Js6W6SNy7hbV7DpxQ+x8ukTnkzrL3vLlnQtKmfG5Qdtxpglq5j5kbuI5T0QMOmcxTzwjWewatsJLHvzlsw4Zm7Jy3QFD737aXRv2b7z1PJXTGf6cQvY4qg55bLDo0tv70nnLqFr4RNMPmMRk89YBMDiY7ajZ7pVX4NbfN84vvzB7ejpCXp64MWvWcp+r3yYk7/0NHbZczn7H/gwZ/9gC667bDJjx8Lk6av4yNfmAnDQmx7k3nnjed+Bu5IJ0zZfxTEn3lVrvUd8cgGff8/TOelLs9hpjxUc+MbFAHzvM1uz4tExfPbIHQDYcvYTHHtyvWVq3SWM6CsEhkNkm7bX0aZ6vvRxQBdwYnVtZ7822Wnr3PEr79pgZZPWlxv3Pa3TRZCGRdesOddm5j7DvdzNnrllvuzEvx2WZZ31guPXSxnXlT+T+sjMcxnk5g+SpNFpJKf7h4MBgSRJbXjZoSRJApofEHiVgSRJMkMgSVI7G/LhRp1iQCBJUg1Nv+zQJgNJkmSGQJKktrL5nQoNCCRJamM0XHZok4EkSTJDIElSHU3PEBgQSJLUxmi47NAmA0mSZIZAkqQ6suEZAgMCSZJq8MZEkiSp8cwQSJLURnpjIkmSBM3vQ2CTgSRJMkMgSVJ7zb8PgQGBJEk12GQgSZIazwyBJEltjIanHRoQSJLUTpZLD5vMJgNJkmSGQJKkOpp+62IDAkmS2ki8ykCSJI0CZggkSWrLGxNJkiS8ykCSJI0CZggkSaqh6Z0KDQgkSWojs/kBgU0GkiTJDIEkSXV4lYEkSfIqA0mS1HxmCCRJqqHpnQoNCCRJaiOJxgcENhlIkiQzBJIk1dHwPoVmCCRJaqu6MdFwvNqJiG0j4ncRcWtE3BwRH/IfLbUAABRiSURBVKyGz4iICyLi9ur/zarhERFfj4g5EXFjROy9NptoQCBJ0siyCjg6M58F7Ae8LyJ2Az4OXJSZOwMXVZ8BDgZ2rl5HAsevzUoNCCRJqiOH6dVuNZkLM/O66v0y4FZgNnAocHI12cnAYdX7Q4FTsrgSmB4Rs4a6efYhkCSphmG8ymBmRFzT8vmEzDyhvwkjYnvgucAfgK0yc2EpSy6MiC2ryWYD81pmm18NWziUQhkQSJK0YS3KzH3aTRQRk4GfAR/KzIcjBgxI+hsx5D6QBgSSJNWwIW9dHBHjKMHAjzPzrGrwfRExq8oOzALur4bPB7ZtmX0bYMFQ12kfAkmS2kg26FUGAXwfuDUzv9Iy6mzg7dX7twO/aBn+tupqg/2Ah3qbFobCDIEkSSPLC4C3An+MiOurYf8CfAE4IyKOAOYCh1fjzgUOAeYAy4F3rs1KDQgkSWongQ106+LMvJz++wUAvLyf6RN437qu14BAkqQafPyxJElqPDMEkiTV0fAMgQGBJElt+fhjSZI0CpghkCSpDpsMJEka5XJYn2UwIhkQSJJUR8MzBPYhkCRJZggkSarHJgNJkmSTgSRJajozBJIk1dHwDEGjAoKI+AaDHLLM/MAGLI4kqSk24NMOO6VRAQFwTacLIEnSxqhRAUFmntz6OSImZeajnSqPJKk5fPzxRigi9o+IW4Bbq897RsS3O1wsSdLGLIfpNUI1MiAAjgMOBB4EyMwbgBd3tESSJI1gjWoyaJWZ8yJW6wDS3amySJIawE6FG6V5EfGXQEbEeOADVM0HkiStjRjB6f7h0NQmg6OA9wGzgXuAvarPkiSpH43MEGTmIuDNnS6HJKkhRniHwOHQyAxBRDwjIs6JiAci4v6I+EVEPKPT5ZIkbayi9CEYjtcI1ciAADgVOAOYBWwNnAmc1tESSZI0gjU1IIjM/GFmrqpeP6LxyR5J0nrV8PsQNKoPQUTMqN7+LiI+DpxO2f2vB37VsYJJkjZ+I/jLfDg0KiAArqUcst5Gmne3jEvgMxu8RJIkbQQaFRBk5g6dLoMkqaHMEGycImIPYDdgYu+wzDylcyWSJG20fPzxxikiPgUcQAkIzgUOBi4HDAgkSepHU68y+Fvg5cC9mflOYE9gQmeLJEnamEUOz2ukamSGAFiRmT0RsSoipgL3A96YSJK09kbwl/lwaGpAcE1ETAe+R7ny4BHgqs4WSZKkkauRAUFmvrd6+52IOA+Ympk3drJMkiSNZI0KCCJi78HGZeZ1G7I8kqTmGMnt/8OhUQEB8J+DjEvgZcO5snF3PMasw24dzkVKHXHILn/T6SJIw+SLnS7ARqtRAUFmvrTTZZAkNZT3IZAkaZQb4Q8mGg5NvQ+BJEkaAjMEkiTVYYZg4xPFWyLi36rP20XEvp0ulyRp49X0OxU2MiAAvg3sD7yx+rwM+FbniiNJ0sjW1CaD52fm3hHxvwCZuSQixne6UJKkjdgI/nU/HJoaEKyMiC6qwxcRWwA9nS2SJGmj1vCAoKlNBl8Hfg5sGRGfozz6+POdLZIkSSNXIzMEmfnjiLiW8gjkAA7LTG8pKElaKyO9Q+BwaGRAEBHbAcuBc1qHZebczpVKkrRR806FG6VfUVp7ApgI7ADcBuzeyUJJkjRSNTIgyMxnt36unoL47g4VR5LUBA1vMmhqp8LVVI89/otOl0OStPHaUDcmiogTI+L+iLipZdgxEXFPRFxfvQ5pGfeJiJgTEbdFxIFru32NzBBExIdbPo4B9gYe6FBxJEkaipOAbwKn9Bn+1cz8cuuAiNgNeAOlSXxr4MKI2CUzu4e60qZmCKa0vCZQ+hQc2tESSZI2bjlMr3arybwUWFyzVIcCp2fm45l5FzAHWKtb9TcuQ1DdkGhyZn6002WRJDXE8F52ODMirmn5fEJmnlBjvvdHxNuAa4CjM3MJMBu4smWa+dWwIWtUhiAixlZpkr07XRZJkgawKDP3aXnVCQaOB3YE9gIWAv9ZDe/vWsi1Cl2aliG4ihIMXB8RZwNnAo/2jszMszpVMEnSRq6DVxlk5n297yPie8Avq4/zgW1bJt0GWLA262haQNBrBvAg8DKeuh9BAgYEkqS108GAICJmZebC6uPrgN4rEM4GTo2Ir1A6Fe5M+XE8ZE0LCLasrjC4iacCgV4Nv4JUktQEEXEacAClr8F84FPAARGxF+W77G6qe+tk5s0RcQZwC7AKeN/aXGEAzQsIuoDJDGObiiRJsOGeZZCZb+xn8PcHmf5zwOfWdb1NCwgWZuanO10ISZI2No26yoD+MwOSJKmNpmUIXt7pAkiSGqrhDc+NCggys+6dnSRJqm94b0w0IjUqIJAkab1peEDQtD4EkiRpLZghkCSpjoZnCAwIJElqI2h+HwKbDCRJkhkCSZJqaXiGwIBAkqR2RsFlhzYZSJIkMwSSJNXS8AyBAYEkSXU0PCCwyUCSJJkhkCSpjqZ3KjQgkCSpjoYHBDYZSJIkMwSSJLWVND5DYEAgSVINTe9DYJOBJEkyQyBJUi0NzxAYEEiSVINNBpIkqfHMEEiSVEfDMwQGBJIktTMKLju0yUCSJJkhkCSpnaheTWZAIElSHTYZSJKkpjNDIElSDU2/D4EBgSRJdTQ8ILDJQJIkmSGQJKmWhmcIDAgkSWonm9+HwCYDSZJkhkCSpFoaniEwIJAkqQabDCRJUuOZIZAkqY6GZwgMCCRJqsEmA0mS1HhmCCRJaiexyUCSJNH4gMAmA0mSZIZAkqR2guZ3KjQgkCSpjoYHBDYZSJIkAwJJkuqIzGF5tV1PxIkRcX9E3NQybEZEXBARt1f/b1YNj4j4ekTMiYgbI2Lvtd0+AwJJktrJYXy1dxJwUJ9hHwcuysydgYuqzwAHAztXryOB44e+cYUBgSRJI0hmXgos7jP4UODk6v3JwGEtw0/J4kpgekTMWpv12qlQkqQaOnyVwVaZuRAgMxdGxJbV8NnAvJbp5lfDFg51BQYEkiTVMXwBwcyIuKbl8wmZecJaLiv6GbZWJTUgkCRpw1qUmfsMcZ77ImJWlR2YBdxfDZ8PbNsy3TbAgrUplH0IJEmqIXJ4XmvpbODt1fu3A79oGf626mqD/YCHepsWhsoMgSRJdWygPgQRcRpwAKVpYT7wKeALwBkRcQQwFzi8mvxc4BBgDrAceOfarteAQJKkESQz3zjAqJf3M20C7xuO9RoQSJLUzrql+zcKBgSSJNVhQCBJ0ug2Gp526FUGkiTJDIEkSbXUeDDRxsyAQCPWPgc8zFGfWUDXmOTXp83gjG9u1ekiSbWMG9/Nl752KePG9dDV1cPll8zmxyftxpe+fgmbbLoKgOnTH+f//rQZn/nX/TtcWtXV9CYDA4IWEXEi8FfA/Zm5R6fLM5qNGZO87/P38Ik3PINFC8fxjXNv58rfTGPu7RM7XTSprZVPjOETH34Rj60YS1dXD1/+xiVcc9XT+NgHXvLkNJ889kqu+J+1egaNtF7Yh2B1J7HmIyfVAbs+dzkL7h7PvXMnsGrlGC7+xXT2P/ChThdLqil4bEX5vTV2bA9dY3tW66G+ySYrec7eD3DF5Vt3qHwasg37+OOOMEPQIjMvjYjtO10OweZPW8kDC8Y/+XnRwnE8c+/lHSyRNDRjxiRfO+G3bD37EX758x257dYZT47b/0ULuOG6LVixfFwHS6ihip5Ol2D9MkOgESn6eX5Xw/vzqGF6eoJ/fNfLedvhB7PLsxbz9B2eynAd8PL5XHLRtoPMLW14BgRDFBFHRsQ1EXHNSh7vdHEaa9HCcWyx9RNPfp45ayUP3uuvKW18Hn1kPH+8fguet+99AEyZ+ji7PHMJV135tA6XTEPW8CYDA4IhyswTMnOfzNxnHBM6XZzGuu36TZm9wxNste3jjB3XwwGHLuXK86d1ulhSLVOnPc6kySWgHT++m72edz/z504B4EUH3MNVVzyNlU90dbKIWgsdftrhemcfAo1IPd3Btz45m8+feidjuuD802fw5//zCgNtHGZs/hhHf+IaxoxJYgxc9rvZXHVFuaLgxS+bz5mn7tLhEkprMiBo0d8jJzPz+50t1eh19W+ncvVvp3a6GNKQ3X3nNP7xH9Z4MB0AH//QizdwaTQsksZ3ZDIgaDHIIyclSaPcSE73Dwf7EEiSJDMEkiTV0vAMgQGBJElt+PhjSZI0KpghkCSpnUyvMpAkSTYZSJKkUcAMgSRJdTQ8Q2BAIElSDTYZSJKkxjNDIElSOwn0NDtFYEAgSVIdzY4HbDKQJElmCCRJqqXpnQoNCCRJqqPhdyq0yUCSJJkhkCSpDpsMJEka7RKvMpAkSc1nhkCSpDYCiIZ3KjQgkCSpjp5OF2D9sslAkiSZIZAkqQ6bDCRJGu28ykCSJI0GZggkSWorG3/rYgMCSZJqaPqdCm0ykCRJZggkSarFJgNJkka5hPDGRJIkqenMEEiSVIdNBpIkyRsTSZKkxjNDIElSDRvyWQYRcTewDOgGVmXmPhExA/gJsD1wN/B3mblkuNZphkCSpDoyh+dV30szc6/M3Kf6/HHgoszcGbio+jxsDAgkSdo4HAqcXL0/GThsOBduQCBJUjsJ9AzTq/4az4+IayPiyGrYVpm5EKD6f8t13axW9iGQJKmNIIezD8HMiLim5fMJmXlCn2lekJkLImJL4IKI+NNwrXwgBgSSJG1Yi1r6BfQrMxdU/98fET8H9gXui4hZmbkwImYB9w9noWwykCSpjg3UqTAiJkXElN73wKuAm4CzgbdXk70d+MVwbp4ZAkmS6thwlx1uBfw8IqB8T5+amedFxNXAGRFxBDAXOHw4V2pAIElSO72dCjfEqjLvBPbsZ/iDwMvX13ptMpAkSWYIJEmqY0PeqbATDAgkSaqj4QGBTQaSJMkMgSRJ7Q35OQQbHQMCSZLaSRofENhkIEmSzBBIklTLBroPQacYEEiSVEPTLzu0yUCSJJkhkCSploZnCAwIJElqJ4GeZgcENhlIkiQzBJIkteeNiSRJEjQ+ILDJQJIkmSGQJKmWhmcIDAgkSWrHqwwkSdJoYIZAkqS2ErLZDzMwIJAkqY6G9yGwyUCSJJkhkCSprVHQqdCAQJKkOmwykCRJTWeGQJKkOhqeITAgkCSpreY/3MgmA0mSZIZAkqS2EujxxkSSJMkmA0mS1HRmCCRJqqPhGQIDAkmS2srG36nQJgNJkmSGQJKkthLSxx9LkiSbDCRJUuOZIZAkqQ6vMpAkaZTLbPydCm0ykCRJZggkSarFJgMNZBlLFl2YP/1zp8sxCswEFnW6EI12W6cLMCpYjzeMp6+vBWfDmwwMCNZBZm7R6TKMBhFxTWbu0+lySOvCeqyRzoBAkqS20iYDSZJGvcQbE0kjwAmdLoA0DKzHGtHMEGjEy0xPpNroWY8bwGcZSJI0uiWQNhlInRERB0XEbRExJyI+3unySGsjIk6MiPsj4qZOl0UajAGBRqSI6AK+BRwM7Aa8MSJ262yppLVyEnBQpwuhdZRZmgyG41VDJ34QGRBopNoXmJOZd2bmE8DpwKEdLpM0ZJl5KbC40+XQusueHJZXO536QWRAoJFqNjCv5fP8apgkNV1HfhDZqVAjVfQzrNk9eiSNWMtY8psLe86YOUyLmxgR17R8PqHPVSj9/SB6/jCte0AGBBqp5gPbtnzeBljQobJIGuUyc0P2A+nIDyKbDDRSXQ3sHBE7RMR44A3A2R0ukyRtCB35QWRAoBEpM1cB7wd+A9wKnJGZN3e2VNLQRcRpwBXArhExPyKO6HSZNOJ15AdRZMMf1iBJ0sYmIg4BjgO6gBMz83PrfZ0GBJIkySYDSZJkQCBJkgwIJEkSBgSSJAkDAqkjIqI7Iq6PiJsi4syI2HQdlnVSRPxt9f6/BrvneUQcEBF/uRbruDsi1rhL20DD+0zzyBDXdUxEfGSoZZS0bgwIpM5YkZl7ZeYewBPAUa0jq4ebDFlmviszbxlkkgOAIQcEkprPgEDqvMuAnapf77+LiFOBP0ZEV0T8R0RcHRE3RsS7AaL4ZkTcEhG/ArbsXVBEXBwR+1TvD4qI6yLihoi4KCK2pwQe/1RlJ14UEVtExM+qdVwdES+o5t08Is6PiP+NiO/S/61UVxMR/x0R10bEzRFxZJ9x/1mV5aKI2KIatmNEnFfNc1lEPHM4dqakteOzDKQOioixlEecnlcN2hfYIzPvqr5UH8rMv4iICcD/RMT5wHOBXYFnA1sBtwAn9lnuFsD3gBdXy5qRmYsj4jvAI5n55Wq6U4GvZublEbEd5c6QzwI+BVyemZ+OiFcDq33BD+Dvq3VsAlwdET/LzAeBScB1mXl0RPxbtez3AycAR2Xm7RHxfODbwMvWYjdKGgYGBFJnbBIR11fvLwO+T0nlX5WZd1XDXwU8p7d/ADAN2Bl4MXBaZnYDCyLit/0sfz/g0t5lZebiAcrxCmC3iCcTAFMjYkq1jr+u5v1VRCypsU0fiIjXVe+3rcr6INAD/KQa/iPgrIiYXG3vmS3rnlBjHZLWEwMCqTNWZOZerQOqL8ZHWwcB/5iZv+kz3SG0f/JZ1JgGSrPh/pm5op+y1L6NaUQcQAku9s/M5RFxMTBxgMmzWu/SvvtAUufYh0AauX4DvCcixgFExC4RMQm4FHhD1cdgFvDSfua9AnhJROxQzTujGr4MmNIy3fmU9D3VdL1f0JcCb66GHQxs1qas04AlVTDwTEqGotcYoDfL8SZKU8TDwF0RcXi1joiIPdusQ9J6ZEAgjVz/RekfcF1E3AR8l5LV+zlwO/BH4Hjgkr4zZuYDlHb/syLiBp5K2Z8DvK63UyHwAWCfqtPiLTx1tcOxwIsj4jpK08XcNmU9DxgbETcCnwGubBn3KLB7RFxL6SPw6Wr4m4EjqvLdDBxaY59IWk98uJEkSTJDIEmSDAgkSRIGBJIkCQMCSZKEAYEkScKAQJIkYUAgSZIwIJAkScD/BwzqpAFkq9o+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAJcCAYAAABwj4S5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd7g1V10v8O8PQhMSgiSWdBRQghQ1gogICipBINjoKsoFLFy8V0SxAQFsKCgoKngRkWpAxABBBIEISAtIMQEk0hKDkJBGIDT53T9mTrLfnbNOefPunBP4fJ7nPOfsmTkza+re85211q7uDgAAAACs5yo7XQAAAAAAdi/hEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8Ana1qnpAVb1hp8uxL1XV/arqn7Yw3V9U1W9dEWW6IlTVh6vqTvPfj6mq5+x0mVahqk6tqjtsMP51VfW/rsAi7VPLx29VdVXdcCfLtFVV9cNVdUZVXVRV37rT5bki7dQ5V1VHzNv7qptMt6Xr4pVFVf11VT1+hfO/qKq+Yf77WlX10qq6oKpeuIptWVUPqao/3sJ0K13vVdjsmr007SXvYysqS1XVs6rq3Kr601UtZ1+pqttU1YVV9c6qutk6499aVTfdibIB+57wCNjnquoaVfWMqvpIVX2qqv6tqo7d6XJtxfzB8OL5g/nHq+qZVXWdfbmM7n5ud//AFqb72e5+3L5c9pr5hv/T83r+V1U9abObO7amu2/a3a9L9s0Ne1UdWFV/XlX/XVWfqar3VNVP7ZPCbr7so+ZjZb+1YVs9fpfmc7/5WLtoPr++tPD6on1f8qE/TPLQ7r5Od//bFbjcXa2q7rC0T86sqhOq6jsu77y7+6Pz9v6fTabb9nG1rKput7AOn56P3YsWfo64PPNfWlZV1cOq6t/nZZ05BzeXuYFehXmbfnB++WNJvjbJ9bv7x/fFtlxUVVdP8ptJ/mBfzXM3WbxmXx7zeXTm5ZzNtyS5V5KbdPdDF+Z9z6r61/k94HXbLNfVq+pF8+ebXg7K5mP596vqk/PPE6qqFsbfsqrePi/77VV1y7Vx3f2mJAcm+Y8kD1xn8X+Y5LHbKS+wewmPgFXYL8kZSW6f5LpJfivJCVV11A6WaTvu1t3XSfJtSb4j04fmPSzeTF+J3WJez9tn+rD6Mztcnn3qy2EfzTdtr05yZJLbZDqfHpHkCVX1sJ0s23bMN7PXmY+3Y5OctfZ6HnaJFYeYRyY5dW/+cZXlmm/edvoz2Vnzvtg/yXcmeV+S11fVHXe2WFvX3a9fOKbWajscuHCsfXRt2n1wfXhykl9M8rAkX53kxklekuSHLud898aRSf6ju794eWc0OM6PS/K+7v6vyzt/NvXVSc7p7o8vDT83yR8n+b29nO8bktw/yX+vM+7BSe6R5BZJbp7krkkeklzyHvQPSZ6T5HpJnpXkH+bhSZLu/lKS05Jcf515n5jke6vq6/ey3MAustMfVIAvQ9396e5+THd/uLu/1N0vS/KhJN8++p+qOryqXlxVZ89Pvtatrl1VT66p2cmF8xOw2y2Mu1VVnTKP+3hVPWkefs2qes483/Or6m1V9bVbWI//SvKKTE8C12rr/EJVfSDJB+Zhd62puvb581PBm2+2TrXQFG++afyjqvpETU0O3l1Va8vbo/p/VT2oqk6vqTr7iVV1yMK4rqqfraoPVNV5VfXUxSeHm6zn6UnemOSSp4l7uV7fWFWvmYedU1XPraoDt1KGZVV13Lz8C6vqP6vqzvPwPZoM1ELNnrq0lswDq+qjSV5TVf9YVQ9dmve7qupH5r+/uapeNW/T91fVPQfl+d6qes/C61dX1VsXXr+hqu6xWMa5zL+e5F411Xp418Isj6yqN9ZUM++fquqgwab4iSRHJPnx7v5Qd3+hu/8x0w3r46tq/3mZezQdWzx2qup6VfWyeX+dN/992MK0r6uqxw3K8y/z7/PndbhNbdCUtKZah39YVR+dz8G/qKprDdZtsax/XlUnVdWnM91o/FBNNRYvrOl8f8zC9Gv7+afm5ZxTVb+xMP4y14G5XBcluWqSd1XVf87T3mRe//Nrarpy903K9eGqekRN5+mna6ph+bVV9Yp52726qq63MI/vnM+f8+fj7g5L2/23q+qNST6T5BvW2TaPnI//T1XVaVX1wwvjHjAfd38479cP1UINz6q6QVWdPP/vq5KMjrE99OTM7n5Ukv+X5PcX5jk8X2pqOvXEmmqcXjCX7Vq1VHttLvcH53J9qKrut7g+C/P7rpqu1RfMv79raduNjtl11XSteFFN7wUXJnlAVV133ocfq6kG5uNrITypqp+pqvfO2/eVVXXkPPxGSX4hyX26+zXd/bnu/swckl7m5r42PwdH2+SG8z68YD7O/3bhf3oef3ySR+XS68wD19mWG+23yxzn62y+Y5OcvLRO371wbJ9RVQ+4ItZ7af7PqqqHz38fOm+Tn1+Yx7lV0/tgbfyedsn7ynzMPmsu73ur6lfqsrWJblnTNeCCqvrbmj5jXDvT54VD6tKabodk+/ZL8qXlgd396u4+IclZ251hd3++u/+4u9+QZL0agD+V5Inzef9fSZ6Y5AHzuDvMZfrj+Th/SpJK8n1L8/jSPN3ysj+b5O1J9llNOGDnCI+AlaspqLlxBk/85w/rL0vykSRHJTk0yQsGs3tbppDjq5M8L8kLq+qa87gnJ3lydx+Q5BuTnDAP/6lMNTYOz/Rk7GeTXLyFch+e5C5JFpu33CPJrZMcXVXfluSvMj2hu36SpyU5saYb1a2u0w8k+Z5M2+fATDWAPrlOWb4vye8muWeSr5/nuzy/u2aqKXWLebof3Gwd53l/c5LbJTl9fr2361VzGQ9JcpNM2/sxWynDUnluleRvMtWwOTDT9vnwNmZx+3n5P5jpGLnPwryPzvSU/uXzh/1XzdN8zTzdn9X6/TO8KckNq+qgmm6CvyXJYVW1f03hyLcnef3iP8whz+8k+du51sMtFkbfN8lPz8u9epJfHqzL9yd5RXd/emn43yX5qkw1RDZzlSTPnNf7iEzH/nI4OyrP98y/12pvvGmTZf1+pmP5lklumOn4eNQWynjfJL+dqdbLG5J8OslPZtr/P5Tk52oO5xZ8d5JvSnLHJI+qqpvMwy9zHZhvetZqON2iu7+xqq6W5KVJ/mle7/+d5LlV9U0blCtJfjTTfrlxkrtlumH89UzhzFUyBXupqkOTvDzJ4zNdr345yd9V1cEL8/+JTE/99890Ti37z0zn5nWTHJ/kObXnE/xbJ3n/vOwnJHnG2s1ypuP67fO4x2W6Dm7Xi5N8W1Vdewvnyx9mOg++a17fX8nSTfA8j6ckOba795+nfefyQqvqqzNtu6dkugY9KdM5u1izYavn0KLjkrwo03H13Ey1KL6Y6Vj91kzX4/81l+EemfbrjyQ5ONP5/fx5PndMcmZ3vzVbMzwHN9kmj8t0fF4vyWFJ/mR5xt396Ox5nXnG4vgtXufWO84X3SzTcbY2zyMyHfd/kmnb3DLr7MdVrvfs5EzhRjJd9z84/06ma9fru7s3ek9bZ56PzvTe9g2ZzvP7rzPNPZPcOckNMtXUecB8jV6uVXlWVd13DqxGP5c0payp9uEdk3x0nWVuaA6z7rvd/5vdNMniw4135dKaezdN8u7u7oXx714Yv+aMJN++dI6ueW+mzyXAlZzwCFip+QbtuUme1d3vG0x2q0yBwyPmWkufnZ+QXUZ3P6e7P9ndX+zuJya5RqYbyCT5QuYb/O6+qLvfvDD8+klu2N3/091v7+4LNyj2S6rq/Ewfok/O9MF8ze9297ndfXGSByV5Wne/ZZ7vs5J8LtMN/VbX6QuZPrB/c5Lq7vd298fWme5+Sf6qu9/R3Z9L8mtJblN7NgX8ve4+f26a8dos1CQaeMf8pPm9SV6X5M/m4Xu1Xt19ene/ar5RPzvTDd/ts30PnNf1VXPNtf/a4NhZz2Pmsl2c5O8zPSU+ch53vyQvnrfhXZN8uLufOR9P78gUyvzY8gznp6enZLohOSbTh+c3JLltpu3yge6+TOi3gWd293/MZTwh4311UJLLHA9z85RzMt24bWg+X/5urhnxqUw3icv7ZavlGZpDiwcl+b/zOfKpTOfOvbfw7//Q3W+c9/dnu/t13f2e+fW7M920L5f5+O6+uLvflelmZ+3mZHQdWPadSa6T6bz5fHe/JlMwep+FafYo1zzsT7r74/MT+tcneUt3/9t8TP19phAimW46T+ruk+b/f1WmY+guC/P/6+4+dT7+vrBcwO5+YXefNf//32aq8XirhUk+0t1/2VN/Qs/KFCx/7XxD+h1Jfms+H/8lU1C2XWdlCoUPzAbny3zT+zNJfnE+X/+nu/913ibLvpTkW6rqWt39se5e76HCD2U6p549L+v5mZrR3W1hmr05Zt/U3S/pqZnNAZlu9v/PfL34RJI/yqXH60MyXe/fO59vv5NLryXXzzrn5cgWzsHRNvlCpuDlkI3eFzexlevcesf5ogOTfGrh9f2SvLq7n99TbchPdvdlwqMrYL1PTnK7+fj7nkwB6m3ncbfPpbWlNnpPW3bPJL/T3ed195mZAq5lT5nPy3MznVfDY6+7n9fdB27w89HkksD04kwh9iNG89tgOTfv7udt9/9m10lywcLrC5JcZ76mL49bG7//0rDnZHpPOqeq/s/SuE9lOoaAKznhEbAy8we6Zyf5fJLFjh9fsVCt+36Zaqh8pLfQX0NVPXyuSn7BHPBcN5c2x3hgptoA76upmcNd5+HPTvLKJC+oqrNq6gzyahss5h7zh7oju/vn55uTNWcs/H1kkocvPkWc1+WQra7TfMP6p0memuTjVfX0qjpgnUkPyULNhO6+KFMNpUMXplnsy+AzmT70pabmOGvb+3YL03zbPM29MtVguPblWa+q+pqqekFNzT8uzPRhcktNZZYcnqnGxd66ZB/NNywvz6U3hPfOFGYm03reemk975fk6wbzXXvK/T3z36/LdIOyeJOyVevuq3WckykQ2MNc++mgJGdvtqCq+qqqelpNzYkuzNQU7cDas2+TrZZnIwdnqg319oXt+Y/ZQsCVPc+rVNWtq+q1NTV3uSBTbcHlY2lU5tF1YNkhSc6Yg4Q1H8me59QZuazFvkguXuf1WjmOTPLjS8fXd2fP/bne/C9RVT9Zlza1OT9TjbfF7XDJNujuz8x/Xmdet/N6zxpr69Vs2syhSTrJ+dn4fDkoyTWzyXk7l+demfbnx6rq5XPNx2V7XO8Wyr/p9W4Ty9fvq83lWFufp2WqnbM2/skL487NFKQdmunau+U+XDY6BzfZJr8yL/Ot83V8b/ql28p1bsPjMMl52TMs2NI1etXr3d3/meSiTOHN7TKFv2fVVHtw8bq80XvaskOy5/ZYb9vsi+vlHuYg6tqZQuDf2GTyfe2iTGHqmgOSXNTdvc64tfGfWhp2t8zbtLuXv5Vv/0zXEOBKTngErMT8xOoZmb4B5kcXn6p397F9abXu52b6cHZEbdKB6Rx8/GqmJ4PX6+4DMz0Bq3m+H+ju+2T68P/7SV5UVdeen4we391HZ6oaf9dMTWL2xmLV7TOS/PbSU8Svmp+Sb2md5nI/pbu/PVM18Btn/aeOZ2X6AJzkkir/10+yaQemPX2TzNr2Xm5a1T31o/CmXNq8aG/X63czbZ+b99Rk6P6Z9802nZGpudF6Pp0poFizXtDTS6+fn+Q+VXWbJNfKVCtrbTknL63ndbr75wbLXg6PTs7m4dFyWbbr1UmOnff3oh/N9HR+rdnMZzLeLg/PVDvv1vN+WWuKtpV9s53yn5MpPLnpwva8bi91iL3F5TwvU0erh3f3dZP8xRbLO7wOrDPpWUkOrz07qj4ie55Tl2f/nZHk2UvH17V7zz5xhvOfa7j8Zabg/frz9e7fs7Xt8LEk11ta7735prEfTvKO+UZ/o/PlnCSfzfi8vUR3v7K7vz9T+PK+TOu4bI/r3UL5L2+HzcvX788lOWhhfQ7o7psujH/I0vpeq7v/Nck/Z2q2eswWl7vhOTjaJt393939oO4+JFNNqD+rhb7Ntmgr17nNjvN3Z3pvWpznpvs6V8x6n5ypFtXVe6oNeHKm9/fr5dJmcBu9py37WKamcmsO38J6rrnMdqw9v2lyvZ9Lzsv5ocxLkxy9jWXuC6dmz2Zlt8il3QycmuTm82e6NTfPZbshuEmSN/f6Nadvkj2bxQFXUsIjYFX+PNMHhrst1dxZz1szfWD7vZr61rhmVd12nen2z9Q/xdlJ9quqR2XhiVhV3b+qDp5rEqw95fqfmjo7vtlc0+LCTDfdG35t9Bb9ZZKfnWtJ1Fz2H6qpE+MtrVNVfcf8/1fLFIx8dlC25yX56Zq+MvcamZpQvKW7P7wP1iOZvsHlwVX1dZdjvfbP9JTy/Jr6e9l21fvZMzKt6x2r6io1dYS69kT6nUnuXVVXm2/cLtPEbB0nZboRfWymfkHWapq8LMmNq+on5vldbd4fNxnM518z3QjdKslbe2picWSmWlv/Mvifjyc5qvb+m7SeneTMTH17HTWX8QczNaV4QnevNSd4Z5L7VtVVa+qoe7FpyP6ZQp3za2oa8ehtLP/sTE1LLtOZ87J5u/5lkj+qqq9JLunEdkt9by3ZP8m53f3ZmvrA2nJfHqPrwDqTviXTOfcr83a9Q6an56P+1rbrOUnuVlU/OO+Xa9b0Vd6Hbfqfk2tnuhk9O0mq6qczd96/me7+SKYmcsfX9DXd3509m3wNzef8oVX16Ez9//z6PGp4vszb+q+SPKmqDpnX9za11KdMTZ2L330OtT6X6Xqx3r45aV7Wfatqv6q6V6Yb6pdtZR22Yr7J/ackT6yqA+ZrzTdW1dq58xdJfq3mvoFq6lz7x+f//UCmZr7Pn/fp1ef9e++qeuQ6ixuegxttk6r68YXj5bxMx8N237u2e51bz0nZ85ry3CR3qunr4/erquvXwte3L7gi1vvkTAHr2jX4dZmafr2hp+acycbvactOyLTfrze/jz10nWlGPp7k+lV13bUBvfBNk4Of5f6NPpepD689rF1DMnVKfZX5eNuoBvXy/1+jLu0fcu14XQuE/ibJL83n/SGZQr+/nse9LtO2f9g8j7Xt8ZqlRVxtLvtllpupL7RXbbWswO4lPAL2uZqemD8kU1Xy/649m6hdxvwB726ZOi39aKab5XutM+krM3XS+R+ZmjB8NntWKb9zklNr+lalJye5d0/9N3xdpk5SL8zUv8/JmW7sLpfuPiVTXwp/mukD7umZv6FkG+t0QKYPtufN6/TJTB3PLi/rn5P8Vqa+Kj6W6anvVvqS2eq6vCfTdnnE5Viv4zM1hbsgU1OxF+9lWd6aqSPcP5rndXIurYXwW5nW/bx5eZv28dBTvysvTnKnxel7atL2A5m241mZmiL8fqZ+tNabz6eTvCPJqd39+XnwmzI14/vEYPEvnH9/sqresVlZB2W/U6bj/C2ZbsT+MdNXNh+/MOkvZtova01SXrIw7o8z1bg6J8mb5//f6vI/k6mfkjfW1Nxjsw66fzXT8fLmmpqpvDqX9km2HT+f5LFV9alMNeJO2GT6RaPrwB7mfXj3TP3enJMpDPjJ3l7/WkPdfUamDpp/PVMAdEamQHVLn726+7RM33r0pkw3pTfL9K2IW3XfTMHmuZlu2v9mk+kPmbfZRZm+mOBmSe7Q3f80l2ez8+WXk7xn/t9z53HL63qVTDemZ83T3D7Tvt5DT/2H3XWe9pOZmjHdtbvP2dqqb9lPZrpRPy3TNeVFmZujdfffz+vwgvlY/vdMx8qah+XSJsfnZ2rG9cNZv2+pjc7BjbbJdyR5y7xfTszUp9SHtrOC273ODbw0yTfPwULmwOMuc7nPzRRer9ch8hWx3idnCqnWwqM3ZKqFeUmgv9F72joem+l97UOZrl8vyjqhyHrma8fzk3xwvl7uzbetfSnrXyN+ItP1/88zNdG7OAu19mpq3rfuZ6zZ++f/OTTTZ6mLc+n76tMy7eP3ZDrOXz4PW7tO3iPTuXJ+pr7N7rHwHrjmqlnnW+IyXWNf193b/pY4YPep7stbox4AuCLMT5pfkan5zgPamzhwBaiqByc5uruXO0P+slZVP5cpgN6bL3/Ym+WtfTPtjbcbFO6UmpqxvzjJ+7r7V5bGvSXJA7v733ekcMA+peYRAFxJ9NR32I9mquWwNzV6ALatu5/+lRAcVdXXV9Vt52aM35SpdtTfX1HL7+7/yFSb7fVVtd43ve0qc23U/870bWpPXx7f3bcWHMGXDzWPAACAr3hzs/uXJ7lBpmZaL0jya+s00wL4iiM8AgAAAGBIszUAAAAAhvbb6QJs10EHHdRHHXXUThcDAAAA4MvG29/+9nO6++D1xl3pwqOjjjoqp5xyyk4XAwAAAODLRlV9ZDROszUAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMLSy8Kiq/qqqPlFV/z4YX1X1lKo6vareXVXftqqyAAAAALB3Vlnz6K+T3HmD8ccmudH88+Akf77CsgAAAACwF1YWHnX3vyQ5d4NJjkvyNz15c5IDq+rrV1We3eb4l56a41966k4XAwAAAGBD++3gsg9NcsbC6zPnYR9bnrCqHpypdlKOOOKIK6Rwq3baWRfudBEAAAAANrWTHWbXOsN6vQm7++ndfUx3H3PwwQevuFgAAAAArNnJ8OjMJIcvvD4syVk7VBYAAAAA1rGT4dGJSX5y/ta170xyQXdfpskaAAAAADtnZX0eVdXzk9whyUFVdWaSRye5WpJ0918kOSnJXZKcnuQzSX56VWUBAAAAYO+sLDzq7vtsMr6T/MKqlg8AAADA5beTzdYAAAAA2OWERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIZWGh5V1Z2r6v1VdXpVPXKd8UdU1Wur6t+q6t1VdZdVlgcAAACA7VlZeFRVV03y1CTHJjk6yX2q6uilyX4zyQnd/a1J7p3kz1ZVHgAAAAC2b5U1j26V5PTu/mB3fz7JC5IctzRNJzlg/vu6Sc5aYXkAAAAA2KZVhkeHJjlj4fWZ87BFj0ly/6o6M8lJSf73ejOqqgdX1SlVdcrZZ5+9irICAAAAsI5Vhke1zrBeen2fJH/d3YcluUuSZ1fVZcrU3U/v7mO6+5iDDz54BUUFAAAAYD2rDI/OTHL4wuvDctlmaQ9MckKSdPebklwzyUErLBMAAAAA27DK8OhtSW5UVTeoqqtn6hD7xKVpPprkjklSVTfJFB5plwYAAACwS6wsPOruLyZ5aJJXJnlvpm9VO7WqHltVd58ne3iSB1XVu5I8P8kDunu5aRsAAAAAO2S/Vc68u0/K1BH24rBHLfx9WpLbrrIMAAAAAOy9VTZbAwAAAOBKTngEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAClOzPYAACAASURBVAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADC00vCoqu5cVe+vqtOr6pGDae5ZVadV1alV9bxVlgcAAACA7dlvVTOuqqsmeWqS709yZpK3VdWJ3X3awjQ3SvJrSW7b3edV1desqjwAAAAAbN8qax7dKsnp3f3B7v58khckOW5pmgcleWp3n5ck3f2JFZYHAAAAgG1aZXh0aJIzFl6fOQ9bdOMkN66qN1bVm6vqzuvNqKoeXFWnVNUpZ5999oqKCwAAAMCyVYZHtc6wXnq9X5IbJblDkvsk+X9VdeBl/qn76d19THcfc/DBB+/zggIAAACwvlWGR2cmOXzh9WFJzlpnmn/o7i9094eSvD9TmAQAAADALrDK8OhtSW5UVTeoqqsnuXeSE5emeUmS702SqjooUzO2D66wTAAAAABsw8rCo+7+YpKHJnllkvcmOaG7T62qx1bV3efJXpnkk1V1WpLXJnlEd39yVWUCAAAAYHv2W+XMu/ukJCctDXvUwt+d5JfmHwAAAAB2mVU2WwMAAADgSk54BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAof22MlFV3TbJY5IcOf9PJenu/obVFQ0AAACAnbal8CjJM5L83yRvT/I/qysOAAAAALvJVsOjC7r7FSstCQAAAAC7zlbDo9dW1R8keXGSz60N7O53rKRUAAAAAOwKWw2Pbj3/PmZhWCf5vn1bHAAAAAB2ky2FR939vasuCAAAAAC7z1W2MlFVXbeqnlRVp8w/T6yq6666cAAAAADsrC2FR0n+Ksmnktxz/rkwyTNXVSgAAAAAdoet9nn0jd39owuvj6+qd66iQAAAAADsHluteXRxVX332ouqum2Si1dTJAAAAAB2i63WPPq5JM+a+zmqJOcmecCqCgUAAADA7rDVb1t7Z5JbVNUB8+sLV1oqAAAAAHaFDcOjqrp/dz+nqn5paXiSpLuftMKyAQAAALDDNqt5dO359/6rLggAAAAAu8+G4VF3P23+ffwVUxwAAAAAdpMtfdtaVT2hqg6oqqtV1T9X1TlVdf9VFw4AAACAnbWl8CjJD8ydZN81yZlJbpzkESsrFQAAAAC7wlbDo6vNv++S5Pndfe6KygMAAADALrJZh9lrXlpV70tycZKfr6qDk3x2dcUCAAAAYDfYUs2j7n5kktskOaa7v5Dk00mOW2XBAAAAANh5G9Y8qqrv6+7XVNWPLAxbnOTFqyoYAAAAADtvs2Zrt0/ymiR3W2dcR3gEAAAA8GVtw/Coux89//7pK6Y4AAAAAOwmW+rzqKp+p6oOXHh9vap6/OqKBQAAAMBusKXwKMmx3X3+2ovuPi/JXVZTJAAAAAB2i62GR1etqmusvaiqayW5xgbTAwAAAPBlYLMOs9c8J8k/V9UzM3WU/TNJnrWyUgEAAACwK2wpPOruJ1TVu5PcKUkleVx3v3KlJQMAAABgx2215lGSvDfJF7v71VX1VVW1f3d/alUFAwAAAGDnbfXb1h6U5EVJnjYPOjTJS1ZVKAAAAAB2h612mP0LSW6b5MIk6e4PJPmaVRUKAAAAgN1hq+HR57r782svqmq/TB1nAwAAAPBlbKvh0clV9etJrlVV35/khUleurpiAQAAALAbbDU8+tUkZyd5T5KHJDkpyW+uqlAAAAAA7A6bfttaVV0lybu7+1uS/OXqiwQAAADAbrFpzaPu/lKSd1XVEVdAeQAAAADYRTateTT7+iSnVtVbk3x6bWB3330lpQIAAABgV9hqeHT8SksBAAAAwK60YXhUVddM8rNJbpips+xndPcXr4iCAQAAALDzNuvz6FlJjskUHB2b5IkrLxEAAAAAu8ZmzdaO7u6bJUlVPSPJW1dfJAAAAAB2i81qHn1h7Q/N1QAAAAC+8mxW8+gWVXXh/Hcludb8upJ0dx+w0tIBAAAAsKM2DI+6+6pXVEEAAAAA2H02a7YGAAAAwFcw4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQ8IjAAAAAIaERwAAAAAMCY8AAAAAGBIeAQAAADAkPAIAAABgSHgEAAAAwJDwCAAAAIAh4REAAAAAQysNj6rqzlX1/qo6vaoeucF0P1ZVXVXHrLI8AAAAAGzPysKjqrpqkqcmOTbJ0UnuU1VHrzPd/kkeluQtqyoLAAAAAHtnlTWPbpXk9O7+YHd/PskLkhy3znSPS/KEJJ9dYVkAAAAA2AurDI8OTXLGwusz52GXqKpvTXJ4d79soxlV1YOr6pSqOuXss8/e9yUFAAAAYF2rDI9qnWF9yciqqyT5oyQP32xG3f307j6mu485+OCD92ERAQAAANjIKsOjM5McvvD6sCRnLbzeP8m3JHldVX04yXcmOVGn2QAAAAC7xyrDo7cluVFV3aCqrp7k3klOXBvZ3Rd090HdfVR3H5XkzUnu3t2nrLBMAAAAAGzDysKj7v5ikocmeWWS9yY5obtPrarHVtXdV7VcAAAAAPad/VY58+4+KclJS8MeNZj2DqssCwAAAADbt8pmawAAAABcyQmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYEh4BAAAAMCQ8AgAAACAIeERAAAAAEPCIwAAAACGhEcAAAAADAmPAAAAABgSHgEAAAAwJDwCAAAAYGi/nS7AV7LTPnZh7vW0N+10MWBHHHfLQ3PfWx+x08UAAABgE8KjHXLcLQ/d6SLAjjntYxcmifAIAADgSkB4tEPue+sj3DjzFUuNOwAAgCsPfR4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMLTS8Kiq7lxV76+q06vqkeuM/6WqOq2q3l1V/1xVR66yPAAAAABsz8rCo6q6apKnJjk2ydFJ7lNVRy9N9m9Jjunumyd5UZInrKo8AAAAAGzfKmse3SrJ6d39we7+fJIXJDlucYLufm13f2Z++eYkh62wPAAAAABs0yrDo0OTnLHw+sx52MgDk7xivRFV9eCqOqWqTjn77LP3YREBAAAA2Mgqw6NaZ1ivO2HV/ZMck+QP1hvf3U/v7mO6+5iDDz54HxYRAAAAgI3st8J5n5nk8IXXhyU5a3miqrpTkt9Icvvu/twKywMAAADANq2y5tHbktyoqm5QVVdPcu8kJy5OUFXfmuRpSe7e3Z9YYVkAAAAA2AsrC4+6+4tJHprklUnem+SE7j61qh5bVXefJ/uDJNdJ8sKqemdVnTiYHQAAAAA7YJXN1tLdJyU5aWnYoxb+vtMqlw8AAADA5bPKZmsAAAAAXMkJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADAkPAIAAAAgCHhEQAAAABDwiMAAAAAhoRHAAAAAAwJjwAAAAAYEh4BAAAAMCQ8AgAAAGBIeAQAAADA0P9v796Doy7vPY5/viZogEgaCJyhxjbAwQihJyuEA5SqQW6CFkaLF1QuCrYw3DxoOjKeIgHLKKZCpQpyKoKMB7koF6lC5OaFkUuoFIGKUORolJYQIJFCYgLP+WPXrSH5kSUku0l4v2YyZH+/Z598fxm+s8knv+dZwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAIAnwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAIAnwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAIAnwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAIAnwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAIAnwiMAAAAAAAB4IjwCAAAAAACAJ8IjAAAAAAAAeCI8AgAAAAAAgCfCIwAAAAAAAHgiPAIAAAAAAICn6EgXAODytO9Ioe556aNIlwEAAAAAVdb+h0305M9TIl1GjSM8AhB2A33XRLoEAAAAAECICI8AhN19XX6k+7r8KNJlAAAAAABCUC/Co5KSEuXm5qqoqCjSpQB1QkxMjBITE9WgQYNIlwIAAAAAqOXqRXiUm5urq6++WklJSTKzSJcD1GrOOeXn5ys3N1etWrWKdDkAAAAAgFquXrzbWlFRkZo1a0ZwBITAzNSsWTPu1AMAAAAAhKRehEeSCI6Ai0C/AAAAAABCVW/CIwAAAAAAAFQ/wqNqEhUVJZ/Pp5SUFKWmpuq5557TuXPnqjTX5MmTtX79es/zc+fO1auvvnrR865bt04+n08+n0+xsbFKTk6Wz+fT0KFDq1Tn92VlZen6669Xhw4dlJqaGqwvPT1dOTk5lzy/JOXk5Gj8+PGSpOLiYvXq1Us+n09LlizRyJEjtW/fvkuaf9asWWW+r6WlpUpISNCkSZPKjEtPT1dycrJSU1PVvXt37d+//5K+riQtXLhQbdu2Vdu2bbVw4cIKxyxbtkwpKSm64oorynxP8/Pz1aNHD8XGxmrs2LFlntOrVy+dOHHikusDAAAAAFy+6sWG2bVBw4YNtWvXLknS0aNHdd9996mgoECZmZkXPdfUqVMveH7UqFFVqrFv377q27evJH8AkpWVpbS0tDJjzp49q6ioqIuad+7cuXr33Xe1fft2NWnSRAUFBVq5cmWVaryQtLS0YL0ff/yxSkpKgt/ze+6556LmOv86S0tLNX/+fP35z38OHsvOzlZycrKWLl2q6dOnl1nq9dprryktLU3z5s1TRkaGVq9eXeXrOn78uDIzM5WTkyMzU6dOnTRgwADFx8eXGdehQwe9+eab+tWvflXmeExMjKZNm6Y9e/Zoz549Zc4NGTJEL774op544okq1wcAAAAAuLzVu/Ao86292vd1YbXO2f6HTfTkz1NCHt+iRQvNmzdPnTt31pQpU3Tu3Dk9/vjj2rx5s4qLizVmzJhgADBjxgwtWrRIV1xxhfr166enn35aw4cP1+23365Bgwbp8ccf1+rVqxUdHa0+ffooKytLU6ZMUWxsrB577DHt2rVLo0aN0unTp9WmTRvNnz9f8fHxSk9PV5cuXbRp0yadPHlSL7/8sm688cYK601KStJDDz2k7OxsjR07Vk2bNtWTTz6p4uJitWnTRq+88opiY2O1c+dOTZw4UadOnVJCQoIWLFigli1bavr06dq0aZOaNGkiSYqLi9OwYcPKfZ3Ro0drx44dOnPmjAYNGhQM1iq6xmXLlikzM1NRUVGKi4vT+++/r82bNysrK0vz58/XAw88oLy8PPl8Pr3xxhsaMWJEMAzLzs6usP7zr/Pee+8N1rZx40Z17NhR0dH/aonFixdrwoQJmjNnjrZu3apu3bqVu6abbrpJs2bNCvn/RkXWrVun3r17q2nTppKk3r17a+3atRo8eHCZce3atavw+Y0bN9bPfvYzHTx4sNy5AQMG6MYbbyQ8AgAAAABUWb0Lj2qL1q1b69y5czp69KhWrVqluLg47dixQ8XFxerevbv69OmjTz/9VCtXrtS2bdvUqFEjHT9+vMwcx48f14oVK/Tpp5/KzHTy5MlyX2fo0KGaPXu2br75Zk2ePFmZmZnBMKO0tFTbt2/X22+/rczMzAsuhYuJidGHH36oY8eO6c4779T69evVuHFjPfPMM3ruuec0adIkjRs3TqtWrVLz5s21ZMkSPfHEE/r973+vb775Rm3atKn0e/Lb3/5WTZs21dmzZ9WzZ0/t3r1biYmJFV7j1KlTtW7dOl1zzTXlrrtFixb64x//qKysLK1Zs6bMuWPHjumpp54qV//kyZPLXOf5tmzZok6dOgUfnzlzRhs2bNBLL72kkydPavHixRWGR2+99ZZ+8pOflDv+7LPP6rXXXit3/KabbtLzzz9f5thXX32la6+9Nvg4MTFRX331VbnnVkV8fLyKi4uVn5+vZs2aVcucAAAAAIDLS70Ljy7mDqGa5pyT5F/+tHv3bi1fvlySVFBQoAMHDmj9+vV68MEH1ahRI0kK3nnynSZNmigmJkYjR47Ubbfdpttvv73M+YKCAp08eVI333yzJGnYsGG66667gufvvPNOSVKnTp10+PDhC9b63bKvrVu3at++ferevbsk6dtvv1W3bt20f/9+7dmzR71795bkX/bVsmVLOedCfueupUuXat68eSotLdWRI0e0b98+tW/fvsJr7N69u4YPH6677747eB2h8Kr//Os835EjR8rc2bNmzRr16NFDjRo10i9+8QtNmzZNM2fODC51u//++9WwYUMlJSVp9uzZ5ebLyMhQRkZGSDV/9//k+6rz3dBatGihr7/+mvAIAAAAAFAl9S48qi0OHTqkqKgotWjRQs45zZ49O7jf0HfWrl17wZAgOjpa27dv14YNG/T666/rD3/4gzZu3BhyDVdddZUk/2bepaWlFxzbuHFjSf4go3fv3lq8eHGZ85988olSUlL00UcfVfjcQ4cOqXXr1p7zf/7558rKytKOHTsUHx+v4cOHq6ioyPMa586dq23btulPf/qTfD5fcG+jynjVf/51nq9hw4YqKioKPl68eLG2bNmipKQkSf5NqTdt2qRevXpJ+teeR14u5s6jxMREbd68Ofg4NzdX6enpnnNfrKKiIjVs2LDa5gMAAAAAXF54t7UakJeXp1GjRmns2LEyM/Xt21dz5sxRSUmJJOmzzz7TP//5T/Xp00fz58/X6dOnJancsrVTp06poKBA/fv316xZs8oFKHFxcYqPj9cHH3wgSVq0aFHwLqSq6tq1q7Zs2RLcP+f06dP67LPPlJycrLy8vGB4VFJSor1790qSJk2apDFjxqiw0L/XVGFhoebNm1dm3sLCQjVu3FhxcXH6xz/+oXfeeeeC1/i3v/1NXbp00dSpU5WQkKAvv/zykuqvTLt27YLPKSws1IcffqgvvvhChw8f1uHDh/XCCy94BlIVycjI0K5du8p9nB8cSf6NzLOzs3XixAmdOHFC2dnZ5YLGqnLO6e9//3swBAMAAAAA4GJx51E1OXPmjHw+n0pKShQdHa0hQ4Zo4sSJkqSRI0fq8OHD6tixo5xzat68uVauXKlbb71Vu3btUlpamq688kr1799f06dPD875zTffaODAgSoqKpJzTjNnziz3dRcuXBjcMLt169Z65ZVXLuk6mjdvrgULFmjw4MEqLi6WJD311FO67rrrtHz5co0fP14FBQUqLS3VI488opSUFI0ePVqnTp1S586d1aBBAzVo0ECPPvpomXlTU1N1ww03KCUlRa1btw4uK/O6xoyMDB04cEDOOfXs2VOpqal67733Lqn+C+nXr5+GDBkiSXrzzTd1yy23BO/ckqSBAwfq17/+dXDO6tS0aVP95je/UefOnSVJkydPDi5hHDlypEaNGqW0tDStWLFC48aNU15enm677Tb5fD6tW7dOkn/T88LCQn377bdauXKlsrOz1b59e+3cuVNdu3YtsxE4AAAAAAAXwyrab6U2S0tLczk5OWWO/fWvf/V8JyogVHfccYdmzJihtm3bRrqUajNhwgQNGDBAPXv2LHeOvgEAAAAAfMfMdjrnKtyfhWVrQMDTTz+tI0eORLqMatWhQ4cKgyMAAAAAAELFWhYgIDk5WcnJyZEuo1o9/PDDkS4BAAAAAFDH1Zs7j+ra8jsgkugXAAAAAECo6kV4FBMTo/z8fH4hBkLgnFN+fr5iYmIiXQoAAAAAoA6oF8vWEhMTlZubq7y8vEiXAtQJMTExSkxMjHQZAAAAAIA6oF6ERw0aNFCrVq0iXQYAAAAAAEC9Uy+WrQEAAAAAAKBmEB4BAAAAAADAE+ERAAAAAAAAPFlde4cyM8uT9H+RrqOaJEg6FukigDqAXgFCQ68AoaFXgMrRJ0Bo6lOv/Ng517yiE3UuPKpPzCzHOZcW6TqA2o5eAUJDrwChoVeAytEnQGgul15h2RoAAAAAAAA8ER4BAAAAAADAE+FRZM2LdAFAHUGvAKGhV4DQ0CtA5egTIDSXRa+w5xEAAAAAAAA8cecRAAAAAAAAPBEeAQAAAAAAwBPhURiY2a1mtt/MDprZ4xWcv8rMlgTObzOzpPBXCURWCH0y0cz2mdluM9tgZj+ORJ1ApFXWK98bN8jMnJnV+7eOBSoSSq+Y2d2B15a9Zva/4a4RqA1C+BnsR2a2ycw+Dvwc1j8SdQKRZmbzzeyome3xOG9m9nygl3abWcdw11iTCI9qmJlFSXpBUj9J7SUNNrP25w0bIemEc+7fJc2U9Ex4qwQiK8Q++VhSmnPuPyQtlzQjvFUCkRdir8jMrpY0XtK28FYI1A6h9IqZtZU0SVJ351yKpEfCXigQYSG+rvy3pKXOuRsk3SvpxfBWCdQaCyTdeoHz/SS1DXz8UtKcMNQUNoRHNe8/JR10zh1yzn0r6XVJA88bM1DSwsDnyyX1NDMLY41ApFXaJ865Tc6504GHWyUlhrlGoDYI5TVFkqbJH7AWhbM4oBYJpVcelvSCc+6EJDnnjoa5RqA2CKVXnKQmgc/jJH0dxvqAWsM5976k4xcYMlDSq85vq6QfmFnL8FRX8wiPat41kr783uPcwLEKxzjnSiUVSGoWluqA2iGUPvm+EZLeqdGKgNqp0l4xsxskXeucWxPOwoBaJpTXleskXWdmW8xsq5ld6K/JQH0VSq9MkfSAmeVKelvSuPCUBtQ5F/s7TZ0SHekCLgMV3UHkqjAGqM9C7gEze0BSmqSba7QioHa6YK+Y2RXyL38eHq6CgFoqlNeVaPmXFqTLfzfrB2bWwTl3soZrA2qTUHplsKQFzrnfmVk3SYsCvXKu5ssD6pR6/Xs9dx7VvFxJ137vcaLK3+oZHGNm0fLfDnqh2+GA+iaUPpGZ9ZL0hKQBzrniMNUG1CaV9crVkjpI2mxmhyV1lbSaTbNxGQr1569VzrkS59znkvbLHyYBl5NQemWEpKWS5Jz7SFKMpISwVAfULSH9TlNXER7VvB2S2ppZKzO7Uv5N5lafN2a1pGGBzwdJ2uicqzcJJRCCSvsksBTnJfmDI/alwOXqgr3inCtwziU455Kcc0ny7w82wDmXE5lygYgJ5eevlZJ6SJKZJci/jO1QWKsEIi+UXvlCUk9JMrN28odHeWGtEqgbVksaGnjXta6SCpxzRyJdVHVh2VoNc86VmtlYSeskRUma75zba2ZTJeU451ZLeln+2z8Pyn/H0b2RqxgIvxD75FlJsZKWBfaT/8I5NyBiRQMREGKvAJe9EHtlnaQ+ZrZP0llJGc65/MhVDYRfiL3yqKT/MbP/kn8JznD+0I3LkZktln+pc0JgD7AnJTWQJOfcXPn3BOsv6aCk05IejEylNcPoewAAAAAAAHhh2RoAAAAAAAA8ER4BAAAAAADAE+ERAAAAAAAAPBEeAQAAAAAAwBPhEQAAAAAAADwRHgEAAFTCzM6a2S4z22Nmb5nZD6p5/sNmlhD4/FR1zg0AAHCpCI8AtsM/KQAAAcNJREFUAAAqd8Y553POdZB0XNKYSBcEAAAQLoRHAAAAF+cjSddIkpm1MbO1ZrbTzD4ws+sDx//NzFaY2V8CHz8NHF8ZGLvXzH4ZwWsAAAAIWXSkCwAAAKgrzCxKUk9JLwcOzZM0yjl3wMy6SHpR0i2Snpf0nnPujsBzYgPjH3LOHTezhpJ2mNkbzrn8MF8GAADARSE8AgAAqFxDM9slKUnSTknvmlmspJ9KWmZm3427KvDvLZKGSpJz7qykgsDx8WZ2R+DzayW1lUR4BAAAajXCIwAAgMqdcc75zCxO0hr59zxaIOmkc84XygRmli6pl6RuzrnTZrZZUkzNlAsAAFB92PMIAAAgRM65AknjJT0m6Yykz83sLkkyv9TA0A2SRgeOR5lZE0lxkk4EgqPrJXUN+wUAAABUAeERAADARXDOfSzpL5LulXS/pBFm9hdJeyUNDAybIKmHmX0i/zK3FElrJUWb2W5J0yRtDXftAAAAVWHOuUjXAAAAAAAAgFqKO48AAAAAAADgifAIAAAAAAAAngiPAAAAAAAA4InwCAAAAAAAAJ4IjwAAAAAAAOCJ8AgAAAAAAACeCI8AAAAAAADg6f8Bj13N3YE34OYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGiCAYAAAAY3OnrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd7xcdZn48c+TQk0gEDqEIiIKCsgCghVFEWzgrqwgK6i4qKviupZFdvdnWdvaENeKgoAICIJ0KYq0tdCko1IEEkMLJBA6SZ7fH9/vwORyJ/cmufdMTvJ553VfmVPmnO85c+bMM8/zPWciM5EkSdKzjel3AyRJkpZUBkqSJEk9GChJkiT1YKAkSZLUg4GSJElSDwZKkiRJPfQlUIrixxExMyIuW4zlvCIi/jySbeuXiNgwIh6OiLGjuI4bImLnBUy/MCLeO1rrH20RsW9EnNc1nBHx3H62abgi4q0RMbUeAy/ud3uaFBGfiYhj+7DeYb3nBh5XbRcRR0XE50dx+Q9HxHPq4xUj4oyIeDAiThqNfRkR74uIbw5jvlHd7tEw1Dl7wLy3R8RrR7EtERFHR8QDEfHt0VrPSImInSLioYi4OiJeNMj0yyJiy+Esq18ZpZcDrwM2yMwdFnUhmXlJZm4+cs0aHcM5gDPzzsyckJlzR6sdmbllZl5Y27TYH04RMSkivhcRd0fEoxFxXUTsPyKNHXrdG9dAaFxnXGb+NDN3Xcjl7FtP7A9HxGMRMa9r+OGRb3lPXwM+VI+BPza43iVaROw84DWZFhEnRsT2i7vs4b7nFuW4Gqh+qetswyP12H2462/DxVn+gHVFRBwUEdfXdU2rQcqzPixGQ92nt9XBtwFrA5Mzc6+R2JfdImI54D+Br47UMpck3efsxVHfR9MWczEvBN4OvCAzP9S17H+MiN/Wz4ALF7Jdy0XEz+tnZA4MCuux/D8RcX/9+0pERNf0bSLiyrruKyNim860zPwdMAn4C3DAIKv/GvC54bSzX4HSRsDtmflIn9a/ROn+sG+LeoL6FeW13AlYFfgE8JWIOKifbVsY9cQ9ITMnALsD0zvDddzThso8LKaNgBsW5Ymj2a56oup3iX56fS0mAjsCfwIuiYhd+tus4atf6jrHVOdb7KSuY+3OzrwjcD44DPgIcBCwOvA84FTgjYu53EWxEfCXzJyzuAvqcZzvAfwpM/+2uMvXkFYHZmTmPQPGPwB8E/jyIi73UuCfgLsHmXYgsCewNbAV8CbgffD0Z9BpwLHAasDRwGl1PACZOQ+4EZg8yLJPB14dEesO2cLMXOAfMAU4BbgPuB/4dh0/hhLJ3wHcCxwDrFqnbQwksD9wJzAD+I867QDgcWAu8DDwWeBdwKUD1pvAc+vjN9SNnQ38Dfh4Hb8zMK3rOS8ALgRmUT503tI17SjgO8BZdTl/ADbtsc2d9r8bmArMBN4PbA9cW5f/7a75NwUuqPtnBvBTykkQ4CfAPOCxur2f7Fr+AXX/XNw1bhzlgJwGvLkuYwJwC7DfIG19NXBd1/CvgMu6hi8F9qyPbwdeC+wGPAk8Vdt0TZ1+IfDfwP/VfXQesEaPfXRAfd1XHjD+7cBDwMSBr2PX6/D5+ng14EzKsTWzPt6ga96e7an7LWv7H6YEa++i6zhi/mNoeco3iDuBe4DvAysOaPvOzH88HQV8DzgbeKTuuzcCf6zbOBX4zCDHzbOO+zp9B+CK+tx7gG/Udj1cn/cIcOswj+WB7bqdEqheW8cdQfkm/8u6734FrNa1jB2B39blXwPsPGC/f6Hu98e6X7+ueQ4Gbq3LvhF4a9e0d1GOu6/V1/WvwO5d0zcBLqrPPR/4NnBsj+Nsvteka/y3gSu6hp9fl/UA8GfgH7umrQh8nXKuerC2bcWu12tcV7tvq+36K7Bv9/Z0Le+lwOV1WZcDLx3OMTvIcdJZ72eAn1NO+A8B76V88TgCuItyzvs8MLZrGe8Bbqr791xgozp+M8q5dYcFnNOPYvjvwV775Ln1NXyQcpz/bOD7jnJu7z7PHDDIvlzQ63YUA47zQbblSOA/B4x7Oc8c21OBdzWx3QPacDTwsfp4/bpP/qVrGQ8AUYffBFxd2/tbYKuu5dze2W7KMXt0be9NlM+SaQPm/TjlHPAg8DNgBWBlyvt4Hs+cL9frdXws4LjZBbhzAdPfC1y4sMvtev40us5DddxvgQO7hg8Afl8f70p5b0TX9DuB3QYs4/8Bx/dY5/nA/kO2bYiGj6WcRA+tO3sF4OVdb9RbgOdQPshPAX4y4ETww/ribg08QUnZdQ7C7jfLfMPdb7b6+C7gFV0H+Lb18c6dAwUYX9tzCLAc8BrKQb5515vkAcqH1ThKMHNCj+3utP/7dZt3pQR3pwJrUQ78e4FXdR34r6N86K1JCXy+OdjBPmD5x9T9OthJe1dKhL1W3Y8/79HWFShvgjXqdt0NTKd8+16xTps8yJvuMwz4cKKc5G+lfANdsQ5/ucd6TwCOHmT8OGAO8LqBr+MgJ6vJwD8AK9X2ngScOpz2DNxfPY6r7mPom5RvEKvXdZ0BfGlA23fm2YHSg8DLKF8MVqjzvKgOb0UJePYc0KZex/3vgHfWxxOAHXu0dTjH8sB23Q78nhIcdY7Pq4AXU47LC4BP1+evTwnq31Cf/7o6vGbXfr+TkvkYB4wf5HXeC1ivPv/tlA+ydbteh6eAf6acQz5AOSajaz90gsRX1m1b2EDpNZQT/8r1byrli804YFvKh9iWdd7v1G1av7bnpXXdnddrXF3GQ137eN2u57+LelxRjp+ZwDvr8/apw5O79t0C30MMHig9RfnmPKY+71TgB7VdawGXAe+r8+9JOT5eUNvwn8Bv67T3A3cMcV4/imG8B4fYJ8cD/8Ezx9/LexzLn+l+bQfsy6Fet6MYcJwPsi2XA3t1DW9IOZ72obyPJgPbNLHdA9r1HuCM+vgd9Zj4Wde00+rjbSnv1ZdQjs39Ke/l5Qc5Z3+ZEqSttuvOK+XfbbX8iPxRjr1Zg/xt2LU9Y4AvMuBzesA2DxooUQK3dyzomKzzDRYoPQi8pGt4O2B2ffxR4JcD5j+TGqB2jXs3pfw2eZB1fgv4xlBtGyrFuwPlZPiJfCZ1emn9f9+6gtsAIuJTwPUR8e6u5382Mx8DromIaygfHDcNsc7BPAVsERHXZOZMyolpoB0pHz5fzpJuuyAizqS8YT5T5zklMy+r7f0p5WS9IP+dmY8D50XEI5So9N76/EsoH0IXZeYtlBMXwH0R8Q3g08PYrs9kLT92lV0ByMzzIuIk4NeUN/Wg/Qsy8/GIuILygTOdZzJeL6N8SN+cmfcPoy0dP87Mv9Q2nQi8pcd8a1CyIwPbMyciZlACxgWq7Tq5MxwRXwB+s4jt6anWtP+Z8k3tgTrui8BxwKeGePppmfl/9fHjlA++jmsj4njgVZQPto5ex/1TwHMjYo3MnEEJbAYznGN5vnbV4+d/s6bF6/F5b9b+ThHxC8o3Qihp7rMz8+w6fH49ht5A+cYKcFRm9iwFZuZJXYM/q+//HSipcCgf1j+s6z4a+C6wdk2Lb085+T8BXBwRZ/RazwJMB4LSB+HllFL+j+u0qyLiZOBtEXET5YNpx3ymPPPb2q6By5wHvDAi7szMuyhf0AZ6I+U99ZM6fHwtNb+Z8kEMi3bM/i4zT63PWYVSBp5Uj6NHIuJQShniB5TSw5cy86Y6/xeBQyJiI8q5YrB2D2oY78Fe++QpSlltvcycxjOfCwvjTfR43XimDD3w/TfQJEpg1LEv8KvMPL4O31//5tPAdl8EfKOWrV8JfAX4rzrtVXU6lPPSDzLzD3X46Ig4hHIOuIj5/SPwgcycud3WK3DZuSPTrW3sujdfk5nb9ZoeEatTtv9Jyhf4hZKZWy1G8yZQgqWOB4EJ9Zw+cFpn+sQB446l7OcZEfHRzOzu+D+bEggv0FB9D6ZQTniD1ZfXo6SyO+6gfCtYu2tcd83xUcqGLYp/oJzE74iIiyJipx7tmVo/WLrbtP5itKe7FvvYIMMTACJirYg4ISL+FhEPUV6YNYZYNpRvUwtyOKUD3Y+HCHYuonzzfmV9fCHlzdj9hhyu4e6jGQxygNX+FWtQUtoLFBErRcQPIuKOut8uBiYN6IswEsfQmpRvjldGxKyImAWcwzCCOQa8RhHxkoj4TUTcFxEPUr7BD3yte7X5AEqm4U8RcXlEvKnHOodzLA927AzreKWc6Pfq7Iu6P17O/K/nAo/NiNgvytUknee/kPn3w9P7IDMfrQ8n1G2bmfP3T+w+jwxXp5wxq27PSwZsz77AOrVNK1C+0fdU2/N2yut5V0ScFRHPH2TWgee9TvsX5zwD8+/vjSjZkLu6tucHlMxSZ/phXdMeoASNnUzh0H0uqgW9B4fYJ5+s67wsypVZ7xnuOgdsZ6/XrWOoc+RM5v9gnMIQrzWM/nZn5q2UEtc2wCsomY7pEbE585+XNwI+NmAfTKEcZwOtR90fCcwboX9DqV8uV6Z8ifqPIZ8wsh4GVukaXgV4OEs6aOC0zvTZA8a9mbpPBwRJUI6dWUM1YqhAaSqwYY/OhdMpL3LHhpSSy8COXsPxCOWDDICI6H6jkJmXZ+YelBPFqcCJPdozJebveLohpYY52r5EOXa3ysxVKN/Yu7+uZo/n9Rrf6bj4A0p57gOx4MvcBwZKFzF0oNRz3cP0K2D3iFh5wPh/oHzr6tz24VG6XlvmPwl+DNicklpdhdJ+mH/f9bIw7Z9BCRS2zMxJ9W/VHNBZe5jrOY5SwpuSmatSyrPDaS+ZeXNm7kM5jv8H+Pkg+w+Gdywvzus3lVImn9T1t3JmdnfGXNCxuRGlvPghSjp7EnA9w9sPdwGrDdjuRflq/FbgqvqhNpWS2e3engmZ+QHKa/84pR/hAmXmuZn5Okqg8SfKNg408LzXaf/inme69/dUSjZ4ja7tWSUzt+ya/r4B27tiZv6WkoHeICJ6ZggGWOB7sNc+ycy7M/OfM3M9Sobru0OcowazoNdtsP0ymGspXz66lznka00z230RJTu2XM1mXgTsR+k+cnVXe78wYB+s1JUR63YXsEF5mMzNeSPyB7w45r8C81lXYtZkyRnAFsPYtyPpBkpGvmNrnsk23gBsFfOnhrfi2RfFvIDSr2mwTOsLKN2LFmioQOkyyovz5YhYOSJWiIiX1WnHAx+NiE0iYgKlfvmzHtmnoVwDbBnlUr8VeKa80Ll8cN+IWDUzn6LUjge7nPcPlIDrkxExPsplhm+m9KUZbRMp0e2siFif0qm22z2UvlwL45D6/3sonWKPid5XN/2W8qbfgdKR+wbqtzXKN6XB3ANsHIt+RdNPKDXlk6Jcqj8+Il5Pqfl+JTM7KdGrgXdExNiI2I0SvHVMpAQws2p6dzjlyo77KOnxIfdrzcz8EDg0ItYCiIj1a3sX1kTggVry3IHS/2BYIuKfImLN2p7Ot5h+HMvHAm+OiNfX12WFKJcPbzDM569M+QC7DyBKuf2Fw3liZt5BKdl+tr63X07ZtiFFsX5EfJrSH6LzHjkTeF5EvLPur/ERsX1EvKDu6yMpZZD16vbuFBHLD1j22hHxlhrAPUF5Pw/22pxd1/WOiBgXEW+nfHicOZxtGI56Qj8P+HpErBIRYyJi04jovHe+D3wq6j1gImLViNirPvdmSpnz+PqaLldf370j4uBBVtfzPbigfRIRe3UdLzMpx8PC3tqk5+u2EMs4m/nPKT8FXhvlkvVxETE5ui4Z79LEdl9E+TLROQdfCHyY0s+n85wfAu+PkqmO+jn7xogYWD6CkiD4VESs1nt3LJI/ZteVvjnIlZjVE5Q+k/PpnEMoFaUx9XgbP9yVR8Ty9fkAneO1E/wcA/xbfd+vRwlwj6rTLqTs+4PqMjq3LLhgwCrG17Y/a73A31E6dC/QAj8k64v5Zkpn5TspH4xvr5OPpHxYXky5KuBxykGw0Go9/3OULMXNPLvu+07g9igp0vdTMjYDl/EkpS/A7pRvkd+lXCX2p0Vp00L6LKVT3oOUq+pOGTD9S8B/RkmtfnyohUXE3wH/Rmn/XEr2ISlXGj1L/VZ9FXBD3Q9QOszekbVP1SA6fUzuj4irhmrTIOt8gnK11VTKB/tjlHLWNyn7o+MjlGOok1bv7svzTUrH1U5/nXMWYv2PUq/Mqvt1xyGe8u+UfmS/r8fRryjB5cL6F+BzETGbcjXFYNnNXnYDbohyf6bDgL2z9IGbz2gfy5k5lXJZ9SGUYGcqJbgfVtCcmTdSriL7HSXgfhHlKq/hegcliH+A8gF1zBDzr1f32cOUzrsvonT6PK+2Zzal78TelIzP3ZT3TCcY+jhwXX3uA3XawG0dQzkJT6/zvIryWs+nlsDfVOe9n1KKeVOWPmcjaT/Kh9KNlA/kn1NLapn5i7oNJ9Rj+XrKsdJxEOWqwO9Q3ne3UjJwg/UFW9B7cEH7ZHvgD/V1OR34SGb+dWE2cBiv23CcATy/fohSP9zfUNv9AOWL2taDPK+J7b6IEpB1AqVLKdn1p7+8ZuYVlP4z36a8zrdQOrwP5nOUz+C/ltJbjsjfQpjH4OeId1LO/9+jlBkfoysbG6VEue8Clvvn+pz1KVdwPsYzWdsfUF7j6yjH+Vl1XOc8uSflvTKLklTYs+szsGNsbftAb6F0Pp++gLaVbSilPmnx1G8Qv6SUIN6VHliSGhARBwJbZOa/9rstTdl26+XzknPWGXrGYZiw3p1XLqgzd0dEPI9S1nrewgbF/RKl29AplHttfXLAtD8AB2Tm9UMtp983ktNSopZF/4Hy7XWJv1u6pKVDZh6+LARJEbFuRLxsMbpLLJZa+fkO5Wav3+pHGxZGrTLcTbky8vCB0zPzJcMJksCMkiRJS7woF1GcBWyyzVbjV7rolyOTUVp1/anDyigty8woSZK0hMvMOzLzhZm5MvSlj9Iyy0BJkiSph9b9GKskScuyck8Cs0FNMVBaSqyx+tjceMqwb10hLbH+ct1KQ88ktcDsnDkjM4fzCwALzbJZcwyUlhIbTxnPZedO6XczpMW224b2K9XS4fynTliUn+fREsZASZKkFklgboNXrEfE7ZTfUJsLzMnM7eodzX8GbAzcDvxjZs6sd9U+jHLjz0cp99Vb6JsaL0nszC1JUsvMG6G/hfDqzNym61YCBwO/zszNKL8x2PnliN2BzerfgZQ7dreagZIkSVpYewBH18dHU35OpDP+mCx+D0yKiHX70cCRYqAkSVKLJMncEfob9irhvIi4sv5kDMDa9QecOz/kvFYdvz7l9yM7ptVxrWUfJUmS2iRh7sh1UVojIq7oGj48Mwf+5MfLMnN6RKwFnB8RC/qB7hhkXKsv0TNQkiRp2TVjqJ8wyczp9f97I+IXwA7APRGxbmbeVUtr99bZpwHdl2BvAEwfhXY3xtKbJEktkjTXmTsiVo6IiZ3HwK7A9cDpwP51tv2B0+rj04H9otgReLBTomsrM0qSJLVKMHfQCteoWBv4Rbnqn3HAcZl5TkRcDpwYEQcAdwJ71fnPptwa4BbK7QHe3VRDR4uBkiRJGlRm3gZsPcj4+4FdBhmfwAcbaFpjDJQkSWqRBOa1unt0uxgoSZLUMg2W3pZ5duaWJEnqwYySJEktkphRapKBkiRJLTMvDZSaYulNkiSpBzNKkiS1iKW3ZhkoSZLUIkkw14JQY9zTkiRJPZhRkiSpZezM3RwDJUmSWsQ+Ss2y9CZJktSDGSVJklolmJvmOZpioCRJUoskMM+CUGPc05IkST2YUZIkqWXszN0cAyVJklok0z5KTXJPS5Ik9WBGSZKklpln6a0xBkqSJLVIueGkBaGmuKclSZJ6MKMkSVKr2Jm7SQZKkiS1iDecbJZ7WpIkqQczSpIktczc9Kq3phgoSZLUIkl41VuD3NOSJEk9mFGSJKll5nnVW2MMlCRJahFvONks97QkSVIPZpQkSWqRJLzqrUEGSpIktYw3nGyOgZIkSS2SiT9h0iD3tCRJUg9mlCRJapVgHvZRaoqBkiRJLZJYemuSe1qSJKkHM0qSJLWMN5xsjoGSJEktkgTzvI9SYwxJJUmSejCjJElSy1h6a46BkiRJLZLAPK96a4x7WpIkqQczSpIktUow1xtONsZASZKkFrH01iz3tCRJUg9mlCRJahlLb80xUJIkqUUyw9Jbg9zTkiRJPZhRkiSpZeaaUWqMgZIkSS2SwDz7KDXGkFSSJKkHM0qSJLVKWHprkIGSJEktUm44aemtKYakkiRJPZhRkiSpZeaa52iMgZIkSS2ShKW3BhmSSpIk9WBGSZKklplnnqMxBkqSJLVIJsy19NYYQ1JJkqQezChJktQyduZujoGSJEktUq56syDUFPe0JElSD2aUJElqmblYemuKGSVJklqk81tvI/E3HBExNiL+GBFn1uFNIuIPEXFzRPwsIpar45evw7fU6RuP1j5okoGSJElakI8AN3UN/w9waGZuBswEDqjjDwBmZuZzgUPrfK1noCRJUquUztwj8TfkmiI2AN4I/KgOB/Aa4Od1lqOBPevjPeowdfoudf5Ws4+SJEktM2/k+iitERFXdA0fnpmHdw1/E/gkMLEOTwZmZeacOjwNWL8+Xh+YCpCZcyLiwTr/jJFqbD8YKEmStOyakZnbDTYhIt4E3JuZV0bEzp3Rg8yaw5jWWgZKkiS1SIM/YfIy4C0R8QZgBWAVSoZpUkSMq1mlDYDpdf5pwBRgWkSMA1YFHmiioaPJPkqSJLVME32UMvNTmblBZm4M7A1ckJn7Ar8B3lZn2x84rT4+vQ5Tp1+Qma3PKBkoSZKkhfHvwL9FxC2UPkhH1PFHAJPr+H8DDu5T+0aUpTct1fbbYQtWnDCXMWNg7Ljk2+f8Zb7pF5yyGid+Zy0AVlhpHh/+8lQ23fLxxVrnk08EXz1oQ26+biVWWW0Oh3z/DtaZ8iRXXjSBI7+4HnOeCsaNT/75v6azzcsfXqx1SUP56Fdv5yW7PMis+8fx/tdtCcA/fXQ6u+0zgwfvLx8BR31lfS7/zar9bKYWQvkJk2YvJsvMC4EL6+PbgB0GmedxYK9GG9YAA6UlWETsBhwGjAV+lJlf7nOTWukrJ93CqpPnDjpt7SlP8NWTb2HipLlcfsFEDvvkFL511s3DWu7dU5fj6/+6IV89+Zb5xp97/OpMmDSXo357ExeeOokjPr8u//GDO1h19bl87ujbmLzOHG7/0woc8o7ncNxVNy729kkLcv5Jkznj6LX4+KF/nW/8L360Ficfvk6fWqXFNYJXvWkIlt6WUBExFvgOsDuwBbBPRGzR31Ytfbbc/lEmTipB1PO3fZQZd41/etqvT16ND79hMz7w2s057JMbMHfwWOtZfnfuqrxur9J/8RVvmsXVl04kE577oseYvE65onajzR/nySfG8OQTnuw0uq6/bCKzZ43tdzOk1jJQWnLtANySmbdl5pPACZSbeWlhRHLIPpvywdc/j7OPnbzAWc85fnW2f/VsAO68eXkuOm0Sh552M9/71Z8ZM7aU6YZjxt3jWXO9pwAYOw5WXmUuDz0w/wfVpWetyqZbPsZyy7e+n6Na6i3738f3zr2Rj371diasOmfoJ2iJ0fRPmCzrLL0tuZ6+cVc1DXhJn9rSWoeedjOT15nDrBnjOHjvTZny3Md50Y6PPGu+q/9vAuceP5lvnFrKbn+8ZCI3X7cSH959cwCefDyYNLl8mHz2PRtz953LM+ep4N6/jecDry3z7Pne+3j93g8w2DUe3femvf3PK3DEF9bji8ffOsJbKw3PmT9Zk+MOW5dM2O/j0/nn/5zGoZ/YuN/N0kIYzl21NTIMlJZcQ964KyIOBA4E2HB9X8rBdEpdk9aYw8t2e5A//XGlZwVKt924At/8+BQ+f+xtrLJ6ra8lvG6vB3jPIXc9a5mfPvJ2oHcfpTXXfYr7ppes0tw58MhDY5m4WlnufdPH87kDNuYTh93Jehs/OcJbKw3PrBnPlJjPOX4NPvvjWxYwt7RsMyRdcnVu3NXRfVMvADLz8MzcLjO3W3OyfRAGevzRMTz68JinH1950UQ2fv78V7TdO208n3vvJnziW3ewwaZPPD1+m1fM5pKzJjFrRglAH5o5lnumjWc4dtz1Ic4/aXUALjlzElu/fDYR8PCDY/mv/Z7Duz91F1vu8OysltSU1dd66unHL339LG7/84p9bI0W2giV3Sy9DY9piCXX5cBmEbEJ8DfKzb7e0d8mtcvM+8bx2QM2AWDuHHj1W2ex/atnc+Yxpa/Sm/a7n58eug6zZ47l258qMWnnFgIbPe8J9v/kXXxq703JLOM/9MVprL3BUz3X17HbPvfzlYM24l0vfQETJ83hkO/dAcDpP16D6X9djuMOXYfjDi1XG33phFuZtIb9QzR6Dv7f29hqp9msstocfvKHazn2G+ux1U6zec4Wj0IG90xbjm99aqN+N1MLIfGqtybFUnDTzKVWvW38Nym3BzgyM7/Qa97ttl4hLzt3Sq/JUmvstuGgPzsltc75T51wZa/fUVscqz1/rXzNkW8besZhOOVl3xuVNi5NzCgtwTLzbODsfrdDkrRksWzWHAMlSZJapHN7ADXDQEmSpJYxUGqOV71JkiT1YEZJkqQW6ceP4i7LDJQkSWoZbw/QHEtvkiRJPZhRkiSpTdLO3E0yUJIkqUW8PUCzLL1JkiT1YEZJkqSWMaPUHAMlSZJaxNsDNMvSmyRJUg9mlCRJapk0o9QYAyVJklrGG042x9KbJElSD2aUJElqkfSGk40yUJIkqWXso9QcS2+SJEk9mFGSJKlVvI9SkwyUJElqGUtvzbH0JkmS1IMZJUmSWiTxqrcmGShJktQmWW4RoGZYepMkSerBjJIkSS3jT5g0x0BJkqQWSbzqrUmW3iRJknowoyRJUqt4w8kmGShJktQyXvXWHEtvkiRJPZhRkiSpZezM3RwDJUmSWiTTQKlJlt4kSZJ6MKMkSVLLeNVbcwyUJElqGa96a46lN0mSpB7MKEmS1DJ25m6OgZIkSS2ShIFSgyy9SZIk9WBGSZKklrEvd3MMlCRJahNvONkoS2+SJEk9mFGSJKltrL01xkBJkqSWsfTWHEtvkn7F0qkAABR6SURBVCRJPZhRkiSpZfwJk+YYKEmS1CKJpbcmWXqTJEnqwYySJEltkoAZpcYYKEmS1DL2UWqOpTdJkqQezChJktQ2ZpQaY6AkSVKrhFe9NcjSmyRJUg9mlCRJahtLb40xoyRJUptkueHkSPwNJSJWiIjLIuKaiLghIj5bx28SEX+IiJsj4mcRsVwdv3wdvqVO33hU90UDDJQkSWqbHKG/oT0BvCYztwa2AXaLiB2B/wEOzczNgJnAAXX+A4CZmflc4NA6X6sZKEmSpEFl8XAdHF//EngN8PM6/mhgz/p4jzpMnb5LRLS657mBkiRJrRMj9DeMNUWMjYirgXuB84FbgVmZOafOMg1Yvz5eH5gKUKc/CExe9O3sPztzS5LUNiPXmXuNiLiia/jwzDx8vlVlzgW2iYhJwC+AFyygRYNFX63uem6gJEnSsmtGZm43nBkzc1ZEXAjsCEyKiHE1a7QBML3ONg2YAkyLiHHAqsADI9/s5lh6kySpbRrqzB0Ra9ZMEhGxIvBa4CbgN8Db6mz7A6fVx6fXYer0CzLb/ct0ZpRGSUT8Lws4DDPzoAabI0laWiTQ3J251wWOjoixlOTKiZl5ZkTcCJwQEZ8H/ggcUec/AvhJRNxCySTt3VRDR4uB0ui5YuhZJElacmXmtcCLBxl/G7DDIOMfB/ZqoGmNMVAaJZl5dPdwRKycmY/0qz2SpKVHu4tZ7WIfpVEWETvVFOVNdXjriPhun5slSWqz5m44ucwzUBp93wReD9wPkJnXAK/sa4skSdKwWHprQGZOHXBj0rn9aoskaSnQXGfuZZ6B0uibGhEvBbL+aOBB1DKcJEmLIiybNcbS2+h7P/BBym3d/0b5UcEP9rVFkiRpWMwojbLMnAHs2+92SJKWEnbEbpQZpVEWEc+JiDMi4r6IuDciTouI5/S7XZKktorSR2kk/jQkA6XRdxxwIuXupusBJwHH97VFkiRpWAyURl9k5k8yc079OxaTppKkxeF9lBpjH6VREhGr14e/iYiDgRMoh+XbgbP61jBJUvsZ5DTGQGn0XEk5lDtF4Pd1TUvgvxtvkSRJWigGSqMkMzfpdxskSUspM0qNMVBqQES8ENgCWKEzLjOP6V+LJEmtlXjFWoMMlEZZRHwa2JkSKJ0N7A5cChgoSZK0hPOqt9H3NmAX4O7MfDewNbB8f5skSWqzyJH509DMKI2+xzJzXkTMiYhVgHsBbzgpSVp0BjmNMVAafVdExCTgh5Qr4R4GLutvkyRJ0nAYKI2yzPyX+vD7EXEOsEpmXtvPNkmSpOExUBolEbHtgqZl5lVNtkeStPSwf1FzDJRGz9cXMC2B14zkym6+YSJv2OJVI7lIqS9yzoP9boIkPc1AaZRk5qv73QZJ0lLK+yg1xkBJkqQ28QdtG+V9lCRJknowoyRJUtuYUWqMGaVRFsU/RcT/q8MbRsQO/W6XJKm9vDN3cwyURt93gZ2AferwbOA7/WuOJEkaLktvo+8lmbltRPwRIDNnRsRy/W6UJKnFzAY1xkBp9D0VEWOph3VErAnM62+TJEmtZqDUGEtvo+9bwC+AtSLiC8ClwBf72yRJkjQcZpRGWWb+NCKuBHYBAtgzM2/qc7MkSS1lR+xmGSiNsojYEHgUOKN7XGbe2b9WSZJazTtzN8ZAafSdRakmB7ACsAnwZ2DLfjZKkiQNzUBplGXmi7qHI2Jb4H19ao4kaWlg6a0xBkoNy8yrImL7frdDktRe9lFqjoHSKIuIf+saHANsC9zXp+ZIkqSFYKA0+iZ2PZ5D6bN0cp/aIklaGphRaoyB0iiqN5qckJmf6HdbJElLCW8P0ChvODlKImJcZs6llNokSVILmVEaPZdRgqSrI+J04CTgkc7EzDylXw2TJLWcGaXGGCiNvtWB+4HX8Mz9lBIwUJIkLRoDpcYYKI2eteoVb9fzTIDU4SEuSVILGCiNnrHABOYPkDoMlCRJi8zO3M0xUBo9d2Xm5/rdCEmStOi86m30+IuFkiS1nBml0bNLvxsgSVpKWXprjIHSKMnMB/rdBknSUsgbTjbKQEmSpLYxUGqMfZQkSZJ6MKMkSVLbmFFqjIGSJEktEthHqUmW3iRJknowoyRJUtuYUWqMgZIkSW3i7QEaZelNkiSpBzNKkiS1jRmlxhgoSZLUNgZKjbH0JkmS1IMZJUmSWsbO3M0xUJIkqW0MlBpj6U2SJKkHM0qSJLVJYkapQQZKkiS1jH2UmmPpTZIkqQczSpIktY0ZpcaYUZIkqWUiR+ZvyPVETImI30TETRFxQ0R8pI5fPSLOj4ib6/+r1fEREd+KiFsi4tqI2HZ098ToM1CSJEm9zAE+lpkvAHYEPhgRWwAHA7/OzM2AX9dhgN2BzerfgcD3mm/yyDJQkiSpbXKE/oZaTeZdmXlVfTwbuAlYH9gDOLrOdjSwZ328B3BMFr8HJkXEuou3sf1loCRJUpuMVJBUAqU1IuKKrr8De602IjYGXgz8AVg7M++CEkwBa9XZ1gemdj1tWh3XWnbmliRp2TUjM7cbaqaImACcDPxrZj4UET1nHWRcq7uem1GSJKlFYgT/hrW+iPGUIOmnmXlKHX1Pp6RW/7+3jp8GTOl6+gbA9IXeyCWIgZIkSW3TUB+lKKmjI4CbMvMbXZNOB/avj/cHTusav1+9+m1H4MFOia6tLL1JkqReXga8E7guIq6u4w4BvgycGBEHAHcCe9VpZwNvAG4BHgXe3WxzR56BkiRJLdPUT5hk5qX0rtLtMsj8CXxwVBvVMAMlSZLaptXdo9vFPkqSJEk9mFGSJKltzCg1xkBJkqQ2GebvtGlkWHqTJEnqwYySJEltY0apMQZKkiS1jKW35lh6kyRJ6sGMkiRJbWNGqTEGSpIktYylt+ZYepMkSerBjJIkSW2SWHprkIGSJEltY6DUGEtvkiRJPZhRkiSpRQI7czfJQEmSpLYxUGqMpTdJkqQezChJktQykaaUmmKgJElSm3h7gEZZepMkSerBjJIkSS3jVW/NMVCSJKltDJQaY+lNkiSpBzNKkiS1jKW35hgoSZLUNgZKjbH0JkmS1IMZJUmS2iQtvTXJQEmSpLYxUGqMgZIkSS0SmFFqkn2UJEmSejCjJElS2/ijuI0xUJIGMX65eXzlmGsYv9w8xo5LLj1vDX767Y1Ze/3HOPjrf2LCqk9x640T+drBmzPnKROzaocNNn2cQ75/x9PD62z4JD/56jr84kdr9rFVWhSW3ppjoLSEiogjgTcB92bmC/vdnmXNU08Gn3rPVjz+6FjGjpvH1469hisuXp2/f9c0fnH0+lz8y7X40KdvZte/v5uzf7Zev5srDcu0W1fgX163OQBjxiQ/vepG/u+Xq/a5VdKSza/CS66jgN363YhlV/D4o2MBGDcuGTuufH3b6iWzuPS88u37V6euzU673N+3FkqLY5tXPMxddyzHvX9brt9N0cLKEfzTkMwoLaEy8+KI2Ljf7ViWjRmTHPbzq1hvw8c487j1uOvOFXlk9jjmzQ0AZtyzHJPXfqLPrZQWzc57zOTCU1frdzO0iGJev1uw7DCjJPUwb17w4b//O/Z79Y4870WzmbLpo8+eyW9kaqFx4+ex464PcfEZlt2koZhRarGIOBA4EGCFMSv3uTVLr0dmj+O6yyfx/K0fYuWJcxgzNpk3N1hj7Se5/97l+908aaFt/5rZ3HLdisyaMb7fTdGi8ktaY8wotVhmHp6Z22XmdsvFiv1uzlJlldWeZOWJcwBYbvm5bLPTTKbeuhLXXjaJl+96HwCv3fMefn/B5H42U1okO+85y7Jby0WOzJ+GZkZJGsTqaz7Jx770Z8aMgRiTXHLOmlx20WTuvHUl/v1rf2K/j9zOrTdN4NyT1+l3U6WFsvyK89j2FbM57JMb9LspUisYKC2hIuJ4YGdgjYiYBnw6M4/ob6uWHbf/ZQIf/oe/e9b4u6etyEf3fnEfWiSNjCceG8NeL/SOI62WeMPJBhkoLaEyc59+t0GStGSybNYc+yhJkiT1YEZJkqS2MaPUGAMlSZJaJLD01iRLb5IkST2YUZIkqU0yveqtQQZKkiS1jKW35lh6kyRJ6sGMkiRJbWNGqTEGSpIktYylt+ZYepMkSerBjJIkSW2SwDxTSk0xUJIkqW2Mkxpj6U2SJKkHM0qSJLWMnbmbY6AkSVLbeGfuxlh6kyRJ6sGMkiRJLWPprTkGSpIktUniVW8NsvQmSZLUgxklSZJaJICwM3djDJQkSWqbef1uwLLD0pskSVIPZpQkSWoZS2/NMVCSJKlNvOqtUZbeJEnSoCLiyIi4NyKu7xq3ekScHxE31/9Xq+MjIr4VEbdExLURsW3/Wj5yDJQkSWqVLD9hMhJ/QzsK2G3AuIOBX2fmZsCv6zDA7sBm9e9A4Hsjsrl9ZqAkSVLLRI7M31Ay82LggQGj9wCOro+PBvbsGn9MFr8HJkXEuiOzxf1joCRJ0rJrjYi4ouvvwGE8Z+3MvAug/r9WHb8+MLVrvml1XKvZmVuSpLYZuaveZmTmdiO0rBhkXOu7nRsoSZLUJgnR3xtO3hMR62bmXbW0dm8dPw2Y0jXfBsD0xls3wiy9SZKkhXE6sH99vD9wWtf4/erVbzsCD3ZKdG1mRkmSpLZp6IaTEXE8sDOlL9M04NPAl4ETI+IA4E5grzr72cAbgFuAR4F3N9LIUWagJElS2zTU8ycz9+kxaZdB5k3gg6PbouZZepMkSerBjJIkSS3jb701x0BJkqS2MVBqjKU3SZKkHswoSZLUJgn09z5KyxQDJUmSWiRI+yg1yNKbJElSD2aUJElqGzNKjTFQkiSpbQyUGmOgJElSm9iZu1H2UZIkSerBjJIkSS3jVW/NMVCSJKltDJQaY+lNkiSpBzNKkiS1SppRapCBkiRJbZIYKDXI0pskSVIPZpQkSWob76PUGAMlSZJaxtsDNMfSmyRJUg9mlCRJahszSo0xUJIkqU0SmGeg1BRLb5IkST2YUZIkqVW84WSTDJQkSWobA6XGWHqTJEnqwYySJEltY0apMQZKkiS1iVe9NcrSmyRJUg9mlCRJapWE9MfemmKgJElS29hHqTGW3iRJknowoyRJUpvYmbtRBkqSJLWNpbfGWHqTJEnqwYySJEltY0apMQZKkiS1ij+K2yRLb5IkST2YUZIkqU0SmOcNJ5tioCRJUttYemuMpTdJkqQezChJktQ2ZpQaY6AkSVKrpHfmbpClN0mSpB7MKEmS1CYJmV711hQDJUmS2sbSW2MsvUmSJPVgRkmSpLbxqrfGGChJktQmmd6Zu0GW3iRJknowoyRJUttYemuMgdJS4qG5M2acO/OIO/rdjmXAGsCMfjdCWkwex83YaLQWnJbeGmOgtJTIzDX73YZlQURckZnb9bsd0uLwOJaGz0BJkqRWSUtvDTJQkiSpTRJvONkgr3qTFs7h/W6ANAI8jqVhMqMkLYTM9ANGredxvBTwt94aY6AkSVKLJJCW3hpj6U0ahojYLSL+HBG3RMTB/W6PtCgi4siIuDciru93W6S2MFCShhARY4HvALsDWwD7RMQW/W2VtEiOAnbrdyO0mDJL6W0k/jQkS2/S0HYAbsnM2wAi4gRgD+DGvrZKWkiZeXFEbNzvdmjxWXprjhklaWjrA1O7hqfVcZKkpZwZJWloMcg4v85J6ovZzDz3V/NOXGOEFudP2QzBQEka2jRgStfwBsD0PrVF0jIuM+1n1iBLb9LQLgc2i4hNImI5YG/g9D63SZLUAAMlaQiZOQf4EHAucBNwYmbe0N9WSQsvIo4HfgdsHhHTIuKAfrdJWtJF+sN6kiRJgzKjJEmS1IOBkiRJUg8GSpIkST0YKEmSJPVgoCRJktSDgZK0jIuIuRFxdURcHxEnRcRKi7GsoyLibfXxjxb048ERsXNEvHQR1nF7RDzrrsS9xg+Y5+GFXNdnIuLjC9tGSUsPAyVJj2XmNpn5QuBJ4P3dEyNi7KIsNDPfm5kL+uHgnYGFDpQkqUkGSpK6XQI8t2Z7fhMRxwHXRcTYiPhqRFweEddGxPsAovh2RNwYEWcBa3UWFBEXRsR29fFuEXFVRFwTEb+uv2D/fuCjNZv1iohYMyJOruu4PCJeVp87OSLOi4g/RsQPGPy39+YTEadGxJURcUNEHDhg2tdrW34dEWvWcZtGxDn1OZdExPNHYmdKaj9/600SABExDtgdOKeO2gF4YWb+tQYbD2bm9hGxPPB/EXEe8GJgc+BFwNrAjcCRA5a7JvBD4JV1Watn5gMR8X3g4cz8Wp3vOODQzLw0Ijak3An9BcCngUsz83MR8UZgvsCnh/fUdawIXB4RJ2fm/cDKwFWZ+bGI+H912R8CDgfen5k3R8RLgO8Cr1mE3ShpKWOgJGnFiLi6Pr4EOIJSErssM/9ax+8KbNXpfwSsCmwGvBI4PjPnAtMj4oJBlr8jcHFnWZn5QI92vBbYIuLphNEqETGxruPv63PPioiZw9imgyLirfXxlNrW+4F5wM/q+GOBUyJiQt3ek7rWvfww1iFpGWCgJOmxzNyme0QNGB7pHgV8ODPPHTDfG4ChfgcphjEPlK4AO2XmY4O0Zdi/tRQRO1OCrp0y89GIuBBYocfsWdc7a+A+kCSwj5Kk4TkX+EBEjAeIiOdFxMrAxcDetQ/TusCrB3nu74BXRcQm9bmr1/GzgYld851HKYNR5+sELhcD+9ZxuwOrDdHWVYGZNUh6PiWj1TEG6GTF3kEp6T0E/DUi9qrriIjYeoh1SFpGGChJGo4fUfofXRUR1wM/oGSkfwHcDFwHfA+4aOATM/M+Sr+iUyLiGp4pfZ0BvLXTmRs4CNiudha/kWeuvvss8MqIuIpSArxziLaeA4yLiGuB/wZ+3zXtEWDLiLiS0gfpc3X8vsABtX03AHsMY59IWgZE5rAz2pIkScsUM0qSJEk9GChJkiT1YKAkSZLUg4GSJElSDwZKkiRJPRgoSZIk9WCgJEmS1IOBkiRJUg//H67FY46aQjJTAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -1189,15 +899,64 @@ } ], "source": [ - "disp = metrics.plot_precision_recall_curve(clf, X_test, y_test)\n", - "disp.ax_.set_title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precision));" + "orig_stdout = sys.stdout\n", + "f = open(os.path.join(out_dir, 'out.txt'), 'w')\n", + "sys.stdout = f\n", + "\n", + "for pred, score, clf in zip(predictions, scores, clfs):\n", + "\n", + " # Evaluate\n", + " print(clf)\n", + " print(\"Accuracy:\", metrics.accuracy_score(y_test, pred))\n", + " print(\"Precision:\", metrics.precision_score(y_test, pred))\n", + " print(\"Recall:\", metrics.recall_score(y_test, pred))\n", + " \n", + " print(metrics.classification_report(y_test, pred))\n", + " \n", + " average_precision = metrics.average_precision_score(y_test, score)\n", + " print('Average precision-recall score: {0:0.2f}'.format(average_precision))\n", + " \n", + " print('Brier score: to be implemented!')\n", + " \n", + " print('F1 score: {0:0.2f}'.format(metrics.f1_score(y_test, pred)))\n", + " \n", + " fig, ax = plt.subplots(1, 1, figsize=(20,10))\n", + " disp = metrics.plot_precision_recall_curve(clf, X_test, y_test, ax=ax)\n", + " disp.ax_.set_title('2-class Precision-Recall curve with {} and {} (class weight={})'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0], class_weight))\n", + " plt.savefig(os.path.join(out_dir, 'precision_recall_curve_{}+{}.png'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0])), dpi=300)\n", + " \n", + " fig, ax = plt.subplots(1, 1, figsize=(8, 7))\n", + " ax.set_title('confusion matrix with {} and {} (class weight={})'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0], class_weight))\n", + " metrics.plot_confusion_matrix(clf, X_test, y_test, ax=ax)\n", + " plt.savefig(os.path.join(out_dir, 'confusion_matrix_{}+{}.png'.format(str(scaler).rsplit('(')[0], str(clf).rsplit('(')[0])), dpi=300)\n", + " \n", + " print('')\n", + " \n", + "sys.stdout = orig_stdout\n", + "f.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Results are pretty crappy, but that is okay give we use not very sensible input data at the moment..." + "# Documentation\n", + "\n", + "Let's safe some settings used in this run to csv-files so results can be assessed in light of these settings." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "scaler_params = scaler.get_params()\n", + "\n", + "out_fo = os.path.join(out_dir, '{}_params.csv'.format(str(scaler).rsplit('(')[0]))\n", + "w = csv.writer(open(out_fo, \"w\"))\n", + "for key, val in scaler_params.items():\n", + " w.writerow([key, val])" ] }, { diff --git a/requirements_dev.txt b/requirements_dev.txt index eaeb422..1f5845a 100644 --- a/requirements_dev.txt +++ b/requirements_dev.txt @@ -2,7 +2,7 @@ pip==20.0.2 click==7.1.2 configparser==5.0.0 descartes==1.1.0 -geopandas==0.7.0 +geopandas==0.8.0 ipython==7.13.0 matplotlib==3.2.1 nbconvert==5.6.1 diff --git a/scripts/run_script.sh b/scripts/run_script.sh new file mode 100644 index 0000000..17e1974 --- /dev/null +++ b/scripts/run_script.sh @@ -0,0 +1 @@ +python runner.py ../data/run_setting.cfg -o ../data/OUT_runner -v \ No newline at end of file diff --git a/scripts/runner.py b/scripts/runner.py index 1e63f5d..9aebdb3 100644 --- a/scripts/runner.py +++ b/scripts/runner.py @@ -6,11 +6,14 @@ from os.path import isdir, dirname, abspath from os import makedirs import geopandas as gpd +import xarray as xr import pandas as pd import numpy as np import seaborn as sbs from sklearn import svm, preprocessing, model_selection, metrics import matplotlib.pyplot as plt +from shutil import copyfile +import csv import os, sys @@ -20,9 +23,11 @@ def cli(): @click.command() @click.argument('cfg',) -@click.option('-so', '--safe-output', default=False, help='whether or not to save output', type=click.BOOL) +@click.option('-so', '--safe-output', default=True, help='save output yes/no', type=click.BOOL) +@click.option('-o', '--output-folder', default=None, help='output folder', type=click.Path()) +@click.option('-v', '--verbose', default=False, help='verbose model yes/no', is_flag=True, type=click.BOOL) -def main(cfg, safe_output=False): +def main(cfg, safe_output=True, output_folder=None, verbose=False): """ Runs the conflict_model from command line with several options and the settings cfg-file as argument. @@ -31,20 +36,29 @@ def main(cfg, safe_output=False): print('') print('#### LETS GET STARTED PEOPLZ! ####' + os.linesep) + print('safe output: {}'.format(safe_output)) + print('verbose mode on: {}'.format(verbose) + os.linesep) + if gpd.__version__ < '0.7.0': sys.exit('please upgrade geopandas to version 0.7.0, your current version is {}'.format(gpd.__version__)) config = RawConfigParser(allow_no_value=True) + config.optionxform = lambda option: option config.read(cfg) if safe_output: - out_dir = config.get('general','output_dir') + if output_folder == None: + out_dir = os.path.abspath(config.get('general','output_dir')) + else: + out_dir = output_folder if not os.path.isdir(out_dir): os.makedirs(out_dir) print('saving output to folder {}'.format(out_dir) + os.linesep) else: print('not saving output' + os.linesep) + if verbose: copyfile(cfg, os.path.join(out_dir, 'copy_of_run_setting.cfg')) + gdf = conflict_model.utils.get_geodataframe(config) conflict_gdf, extent_gdf = conflict_model.selection.select(gdf, config) @@ -52,54 +66,91 @@ def main(cfg, safe_output=False): print('data retrieval period from', str(config.getint('settings', 'y_start')), 'to', str(config.getint('settings', 'y_end'))) print('') - X1 = pd.Series(dtype=float) - X2 = pd.Series(dtype=float) - Y = pd.Series(dtype=int) + XY = {} + for key in config.items('env_vars'): + XY[str(key[0])] = pd.Series(dtype=float) + XY['conflict'] = pd.Series(dtype=int) for sim_year in np.arange(config.getint('settings', 'y_start'), config.getint('settings', 'y_end'), 1): - + print('entering year {}'.format(sim_year) + os.linesep) - - list_boolConflict = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year) - Y = Y.append(pd.Series(list_boolConflict, dtype=int), ignore_index=True) - list_GDP_PPP = conflict_model.get_var_from_nc.nc_with_integer_timestamp(extent_gdf, config, 'GDP_per_capita_PPP', sim_year) - X1 = X1.append(pd.Series(list_GDP_PPP), ignore_index=True) + # go through all keys in dictionary + for key, value in XY.items(): + + if key == 'conflict': + data_series = value + data_list = conflict_model.get_boolean_conflict.conflict_in_year_bool(conflict_gdf, extent_gdf, config, sim_year) + data_series = data_series.append(pd.Series(data_list), ignore_index=True) + XY[key] = data_series + + else: + nc_fo = os.path.join(config.get('general', 'input_dir'), + config.get('env_vars', key)) + + print('calculating mean {0} per aggregation unit from file {1} for year {2}'.format(key, nc_fo, sim_year)) + + nc_ds = xr.open_dataset(nc_fo) + + if (np.dtype(nc_ds.time) == np.float32) or (np.dtype(nc_ds.time) == np.float64): + data_series = value + data_list = conflict_model.get_var_from_nc.nc_with_float_timestamp(extent_gdf, config, key, sim_year) + data_series = data_series.append(pd.Series(data_list), ignore_index=True) + XY[key] = data_series + + elif np.dtype(nc_ds.time) == 'datetime64[ns]': + data_series = value + data_list = conflict_model.get_var_from_nc.nc_with_continous_datetime_timestamp(extent_gdf, config, key, sim_year) + data_series = data_series.append(pd.Series(data_list), ignore_index=True) + XY[key] = data_series + + else: + raise Warning('this nc-file does have a different dtype for the time variable than currently supported: {}'.format(nc_fo)) + + print('...all data retrieved' + os.linesep) - if not len(list_GDP_PPP) == len(list_boolConflict): - raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_GDP_PPP), len(list_boolConflict))) + print('preparing data for Machine Learning model' + os.linesep) + XY = pd.DataFrame.from_dict(XY).dropna() - list_Evap = conflict_model.get_var_from_nc.nc_with_continous_regular_timestamp(extent_gdf, config, 'total_evaporation', sim_year) - X2 = X2.append(pd.Series(list_Evap), ignore_index=True) + X = XY.to_numpy()[:, :-1] + Y = XY.conflict.astype(int).to_numpy() - if not len(list_Evap) == len(list_boolConflict): - raise AssertionError('length of lists do not match, they are {0} and {1}'.format(len(list_Evap), len(list_boolConflict))) + scaler = preprocessing.QuantileTransformer() - print('...all data retrieved' + os.linesep) + if verbose: + scaler_params = scaler.get_params() + out_fo = os.path.join(out_dir, '{}_params.csv'.format(str(scaler).rsplit('(')[0])) + w = csv.writer(open(out_fo, "w")) + for key, val in scaler_params.items(): + w.writerow([key, val]) - print('preparing data for Machine Learning model' + os.linesep) - XY_data = list(zip(X1, X2, Y)) - XY_data = pd.DataFrame(XY_data, columns=['GDP_PPP', 'ET', 'conflict']) - XY_data = XY_data.dropna() - X = XY_data[['GDP_PPP', 'ET']].to_numpy() - Y = XY_data.conflict.astype(int).to_numpy() - - print('scaling data and splitting into trainings and test samples' + os.linesep) - X_train, X_test, y_train, y_test = model_selection.train_test_split(preprocessing.scale(X), + print('scaling data with {}'.format(str(scaler).rsplit('(')[0])) + X_scaled = scaler.fit_transform(X) + + print('splitting into trainings and test samples' + os.linesep) + X_train, X_test, y_train, y_test = model_selection.train_test_split(X_scaled, Y, - test_size=0.7) + test_size=1-config.getfloat('machine_learning', 'train_fraction')) plt.figure(figsize=(10,10)) sbs.scatterplot(x=X_train[:,0], y=X_train[:,1], hue=y_train) - plt.title('n=' + str(len(X_train))) - if safe_output: - plt.savefig(os.path.join(out_dir, 'scatter_plot.png'), dpi=300) + plt.title('training-data scaled with {0}; n_train={1}; n_tot={2}'.format(str(scaler).rsplit('(')[0], len(X_train), len(X_scaled))) + plt.xlabel('Variable 1') + plt.ylabel('Variable 2') + if safe_output: plt.savefig(os.path.join(out_dir, 'scatter_plot_scaled_traindata_{}.png'.format(str(scaler).rsplit('(')[0])), dpi=300) print('initializing Support Vector Classification model' + os.linesep) - clf = svm.SVC(class_weight='balanced') + clf = svm.LinearSVC(class_weight={1:100}, random_state=42, max_iter=10000000) + + if verbose: + SVC_params = clf.get_params() + out_fo = os.path.join(out_dir, 'SVC_params.csv') + w = csv.writer(open(out_fo, "w")) + for key, val in SVC_params.items(): + w.writerow([key, val]) print('fitting model with trainings data' + os.linesep) clf.fit(X_train, y_train) @@ -115,8 +166,21 @@ def main(cfg, safe_output=False): print("...Recall:", metrics.recall_score(y_test, y_pred)) print('...Average precision-recall score: {0:0.2f}'.format(metrics.average_precision_score(y_test, y_score))) - disp = metrics.plot_precision_recall_curve(clf, X_test, y_test) - disp.ax_.set_title('2-class Precision-Recall curve: AP={0:0.2f}'.format(metrics.average_precision_score(y_test, y_score))) + fig, ax = plt.subplots(1, 1, figsize=(20,10)) + disp = metrics.plot_precision_recall_curve(clf, X_test, y_test, ax=ax) + disp.ax_.set_title('2-class Precision-Recall curve: AP={} with {}'.format(round(metrics.average_precision_score(y_test, y_score),2), str(scaler).rsplit('(')[0])) + if safe_output: plt.savefig(os.path.join(out_dir, 'precision_recall_curve_{}.png'.format(str(scaler).rsplit('(')[0])), dpi=300) + + if safe_output: + evaluation = {'Accuracy': round(metrics.accuracy_score(y_test, y_pred), 2), + 'Precision': round(metrics.precision_score(y_test, y_pred), 2), + 'Recall': round(metrics.recall_score(y_test, y_pred), 2), + 'Average precision-recall score': round(metrics.average_precision_score(y_test, y_score), 2)} + + out_fo = os.path.join(out_dir, 'evaluation.csv') + w = csv.writer(open(out_fo, "w")) + for key, val in evaluation.items(): + w.writerow([key, val]) if __name__ == '__main__': main() \ No newline at end of file diff --git a/setup.cfg b/setup.cfg index 9d6f5cd..629b7aa 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.0.1 +current_version = 0.0.2b3 commit = True tag = True diff --git a/setup.py b/setup.py index c1c3395..ed021e4 100644 --- a/setup.py +++ b/setup.py @@ -45,6 +45,6 @@ test_suite='tests', tests_require=test_requirements, url='https://github.com/JannisHoch/conflict_model', - version='0.0.1', + version='0.0.2b3', zip_safe=False, )