forked from kvos/CoastSat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
251 lines (211 loc) · 11 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#==========================================================#
# Shoreline extraction from satellite images
#==========================================================#
# Kilian Vos WRL 2018
#%% 1. Initial settings
# load modules
import os
import numpy as np
import pickle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from matplotlib import gridspec
plt.ion()
import pandas as pd
from datetime import datetime
from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects
# region of interest (longitude, latitude in WGS84)
polygon = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]]
# can also be loaded from a .kml polygon
# kml_polygon = os.path.join(os.getcwd(), 'examples', 'NARRA_polygon.kml')
# polygon = SDS_tools.polygon_from_kml(kml_polygon)
# convert polygon to a smallest rectangle (sides parallel to coordinate axes)
polygon = SDS_tools.smallest_rectangle(polygon)
# date range
dates = ['2017-12-01', '2018-01-01']
# satellite missions
sat_list = ['S2']
# name of the site
sitename = 'NARRA'
# filepath where data will be stored
filepath_data = os.path.join(os.getcwd(), 'data')
# put all the inputs into a dictionnary
inputs = {
'polygon': polygon,
'dates': dates,
'sat_list': sat_list,
'sitename': sitename,
'filepath': filepath_data
}
# before downloading the images, check how many images are available for your inputs
SDS_download.check_images_available(inputs);
#%% 2. Retrieve images
# only uncomment this line if you want Landsat Tier 2 images (not suitable for time-series analysis)
# inputs['include_T2'] = True
# retrieve satellite images from GEE
metadata = SDS_download.retrieve_images(inputs)
# if you have already downloaded the images, just load the metadata file
metadata = SDS_download.get_metadata(inputs)
#%% 3. Batch shoreline detection
# settings for the shoreline extraction
settings = {
# general parameters:
'cloud_thresh': 0.5, # threshold on maximum cloud cover
'output_epsg': 3857, # epsg code of spatial reference system desired for the output
# quality control:
'check_detection': True, # if True, shows each shoreline detection to the user for validation
'adjust_detection': False, # if True, allows user to adjust the postion of each shoreline by changing the threhold
'save_figure': True, # if True, saves a figure showing the mapped shoreline for each image
# [ONLY FOR ADVANCED USERS] shoreline detection parameters:
'min_beach_area': 4500, # minimum area (in metres^2) for an object to be labelled as a beach
'buffer_size': 150, # radius (in metres) of the buffer around sandy pixels considered in the shoreline detection
'min_length_sl': 200, # minimum length (in metres) of shoreline perimeter to be valid
'cloud_mask_issue': False, # switch this parameter to True if sand pixels are masked (in black) on many images
'sand_color': 'default', # 'default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches)
# add the inputs defined previously
'inputs': inputs,
}
# [OPTIONAL] preprocess images (cloud masking, pansharpening/down-sampling)
SDS_preprocess.save_jpg(metadata, settings)
# [OPTIONAL] create a reference shoreline (helps to identify outliers and false detections)
settings['reference_shoreline'] = SDS_preprocess.get_reference_sl(metadata, settings)
# set the max distance (in meters) allowed from the reference shoreline for a detected shoreline to be valid
settings['max_dist_ref'] = 100
# extract shorelines from all images (also saves output.pkl and shorelines.kml)
output = SDS_shoreline.extract_shorelines(metadata, settings)
# remove duplicates (images taken on the same date by the same satellite)
output = SDS_tools.remove_duplicates(output)
# remove inaccurate georeferencing (set threshold to 10 m)
output = SDS_tools.remove_inaccurate_georef(output, 10)
# for GIS applications, save output into a GEOJSON layer
geomtype = 'lines' # choose 'points' or 'lines' for the layer geometry
gdf = SDS_tools.output_to_gdf(output, geomtype)
gdf.crs = {'init':'epsg:'+str(settings['output_epsg'])} # set layer projection
# save GEOJSON layer to file
gdf.to_file(os.path.join(inputs['filepath'], inputs['sitename'], '%s_output_%s.geojson'%(sitename,geomtype)),
driver='GeoJSON', encoding='utf-8')
# plot the mapped shorelines
plt.ion()
fig = plt.figure(figsize=[15,8], tight_layout=True)
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
plt.legend()
#%% 4. Shoreline analysis
# if you have already mapped the shorelines, load the output.pkl file
filepath = os.path.join(inputs['filepath'], sitename)
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'rb') as f:
output = pickle.load(f)
# now we have to define cross-shore transects over which to quantify the shoreline changes
# each transect is defined by two points, its origin and a second point that defines its orientation
# there are 3 options to create the transects:
# - option 1: draw the shore-normal transects along the beach
# - option 2: load the transect coordinates from a .kml file
# - option 3: create the transects manually by providing the coordinates
# option 1: draw origin of transect first and then a second point to define the orientation
# transects = SDS_transects.draw_transects(output, settings)
# option 2: load the transects from a .geojson file
geojson_file = os.path.join(os.getcwd(), 'examples', 'NARRA_transects.geojson')
transects = SDS_tools.transects_from_geojson(geojson_file)
# option 3: create the transects by manually providing the coordinates of two points
# transects = dict([])
# transects['NA1'] = np.array([[16843142, -3989358], [16843457, -3989535]])
# transects['NA2'] = np.array([[16842958, -3989834], [16843286, -3989983]])
# transects['NA3'] = np.array([[16842602, -3990878], [16842955, -3990949]])
# transects['NA4'] = np.array([[16842596, -3991929], [16842955, -3991895]])
# transects['NA5'] = np.array([[16842838, -3992900], [16843155, -3992727]])
# plot the transects to make sure they are correct (origin landwards!)
fig = plt.figure(figsize=[15,8], tight_layout=True)
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
for i,key in enumerate(list(transects.keys())):
plt.plot(transects[key][0,0],transects[key][0,1], 'bo', ms=5)
plt.plot(transects[key][:,0],transects[key][:,1],'k-',lw=1)
plt.text(transects[key][0,0]-100, transects[key][0,1]+100, key,
va='center', ha='right', bbox=dict(boxstyle="square", ec='k',fc='w'))
# intersect the transects with the 2D shorelines to obtain time-series of cross-shore distance
# (also saved a .csv file with the time-series, dates are in UTC time)
settings['along_dist'] = 25
cross_distance = SDS_transects.compute_intersection(output, transects, settings)
# plot the time-series
fig = plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(len(cross_distance),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(cross_distance.keys()):
if np.all(np.isnan(cross_distance[key])):
continue
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.set_ylim([-50,50])
ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-o', ms=6, mfc='w')
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
#%% 4. Tidal correction
# For this example, measured water levels for Sydney are stored in a csv file located in /examples.
# When using your own file make sure that the dates are in UTC time, as the CoastSat shorelines are also in UTC
# and the datum for the water levels is approx. Mean Sea Level. We assume a beach slope of 0.1 here.
# load the measured tide data
filepath = os.path.join(os.getcwd(),'examples','NARRA_tides.csv')
tide_data = pd.read_csv(filepath, parse_dates=['dates'])
dates_ts = [_.to_pydatetime() for _ in tide_data['dates']]
tides_ts = np.array(tide_data['tide'])
# get tide levels corresponding to the time of image acquisition
dates_sat = output['dates']
tides_sat = SDS_tools.get_closest_datapoint(dates_sat, dates_ts, tides_ts)
# plot the subsampled tide data
fig, ax = plt.subplots(1,1,figsize=(15,4), tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.plot(tide_data['dates'], tide_data['tide'], '-', color='0.6', label='all time-series')
ax.plot(dates_sat, tides_sat, '-o', color='k', ms=6, mfc='w',lw=1, label='image acquisition')
ax.set(ylabel='tide level [m]',xlim=[dates_sat[0],dates_sat[-1]], title='Water levels at the time of image acquisition')
ax.legend()
# tidal correction along each transect
reference_elevation = 0 # elevation at which you would like the shoreline time-series to be
beach_slope = 0.1
cross_distance_tidally_corrected = {}
for key in cross_distance.keys():
correction = (tides_sat-reference_elevation)/beach_slope
cross_distance_tidally_corrected[key] = cross_distance[key] + correction
# store the tidally-corrected time-series in a .csv file
out_dict = dict([])
out_dict['dates'] = dates_sat
for key in cross_distance_tidally_corrected.keys():
out_dict['Transect '+ key] = cross_distance_tidally_corrected[key]
df = pd.DataFrame(out_dict)
fn = os.path.join(settings['inputs']['filepath'],settings['inputs']['sitename'],
'transect_time_series_tidally_corrected.csv')
df.to_csv(fn, sep=',')
print('Tidally-corrected time-series of the shoreline change along the transects saved as:\n%s'%fn)
# plot the time-series of shoreline change (both raw and tidally-corrected)
fig = plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(len(cross_distance),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(cross_distance.keys()):
if np.all(np.isnan(cross_distance[key])):
continue
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.set_ylim([-50,50])
ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-o', ms=6, mfc='w', label='raw')
ax.plot(output['dates'], cross_distance_tidally_corrected[key]- np.nanmedian(cross_distance[key]), '-o', ms=6, mfc='w', label='tidally-corrected')
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
ax.legend()