forked from Megvii-BaseDetection/YOLOX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnebullvm_optimization.py
51 lines (39 loc) · 1.42 KB
/
nebullvm_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import time
from nebullvm.api.functions import optimize_model # Install DL compilers
from yolox.exp import get_exp
# Get YOLO model
exp = get_exp(None, 'yolox-s') # select model name
model = exp.get_model()
model.cuda()
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Create dummy data for the optimizer
input_data = [((torch.randn(1, 3, 640, 640).to(device), ), 0) for i in range(100)]
# ---------- Optimization ----------
optimized_model = optimize_model(model, input_data=input_data, optimization_time="constrained") # Optimization without performance loss
# ---------- Benchmarks ----------
# Select image to test the latency of the optimized model
# Create dummy image
img = torch.randn(1, 3, 640, 640).to(device)
# Check perfomance
warmup_iters = 30
num_iters = 100
# Unptimized model perfomance
with torch.no_grad():
for i in range(warmup_iters):
o = model(img)
start = time.time()
for i in range(num_iters):
o = model(img)
stop = time.time()
print(f"Average inference time of unoptimized YOLOX: {(stop - start)/num_iters*1000} ms")
# Optimized model perfomance
with torch.no_grad():
for i in range(warmup_iters):
res = optimized_model(img)
start = time.time()
for i in range(num_iters):
res = optimized_model(img)
stop = time.time()
print(f"Average inference time of YOLOX otpimized with nebullvm: {(stop - start)/num_iters*1000} ms")