-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathpipline_StableDiffusion_ConsistentID.py
622 lines (518 loc) · 27.2 KB
/
pipline_StableDiffusion_ConsistentID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import cv2
import PIL
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from insightface.app import FaceAnalysis
### insight-face installation can be found at https://github.com/deepinsight/insightface
from safetensors import safe_open
from huggingface_hub.utils import validate_hf_hub_args
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from diffusers.utils import _get_model_file
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
from functions import ProjPlusModel, masks_for_unique_values
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
### Thanks for the open source of face-parsing model.
from models.BiSeNet.model import BiSeNet
PipelineImageInput = Union[
PIL.Image.Image,
torch.FloatTensor,
List[PIL.Image.Image],
List[torch.FloatTensor],
]
### Download the pretrained model from huggingface and put it locally, then place the model in a local directory and specify the directory location.
class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
@validate_hf_hub_args
def load_ConsistentID_model(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
weight_name: str,
subfolder: str = '',
trigger_word_ID: str = '<|image|>',
trigger_word_facial: str = '<|facial|>',
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
bise_net_cp: str = 'JackAILab/ConsistentID/face_parsing.pth',
torch_dtype = torch.float16,
num_tokens = 4,
lora_rank= 128,
**kwargs,
):
self.lora_rank = lora_rank
self.torch_dtype = torch_dtype
self.num_tokens = num_tokens
self.set_ip_adapter()
self.image_encoder_path = image_encoder_path
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=self.torch_dtype
)
self.clip_image_processor = CLIPImageProcessor()
self.id_image_processor = CLIPImageProcessor()
self.crop_size = 512
# FaceID
self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id=0, det_size=(640, 640))
### BiSeNet
self.bise_net = BiSeNet(n_classes = 19)
self.bise_net.cuda()
self.bise_net_cp= bise_net_cp
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
self.bise_net.eval()
# Colors for all 20 parts
self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
[255, 0, 85], [255, 0, 170],
[0, 255, 0], [85, 255, 0], [170, 255, 0],
[0, 255, 85], [0, 255, 170],
[0, 0, 255], [85, 0, 255], [170, 0, 255],
[0, 85, 255], [0, 170, 255],
[255, 255, 0], [255, 255, 85], [255, 255, 170],
[255, 0, 255], [255, 85, 255], [255, 170, 255],
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
### LLVA (Optional)
self.llva_model_path = "liuhaotian/llava-v1.5-13b" # TODO
# IMPORTANT! Download the openai/clip-vit-large-patch14-336 model and specify the model path in config.json ("mm_vision_tower": "openai/clip-vit-large-patch14-336").
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
self.image_proj_model = ProjPlusModel(
cross_attention_dim=self.unet.config.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=self.image_encoder.config.hidden_size,
num_tokens=self.num_tokens, # 4 - inspirsed by IPAdapter and Midjourney
).to(self.device, dtype=self.torch_dtype)
self.FacialEncoder = FacialEncoder().to(self.device, dtype=self.torch_dtype)
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"id_encoder": {}, "lora_weights": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("id_encoder."):
state_dict["id_encoder"][key.replace("id_encoder.", "")] = f.get_tensor(key)
elif key.startswith("lora_weights."):
state_dict["lora_weights"][key.replace("lora_weights.", "")] = f.get_tensor(key)
else:
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
self.trigger_word_ID = trigger_word_ID
self.trigger_word_facial = trigger_word_facial
self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True)
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True)
print(f"Successfully loaded weights from checkpoint")
# Add trigger word token
if self.tokenizer is not None:
self.tokenizer.add_tokens([self.trigger_word_ID], special_tokens=True)
self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True)
def set_ip_adapter(self):
unet = self.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = Consistent_AttProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
).to(self.device, dtype=self.torch_dtype)
else:
attn_procs[name] = Consistent_IPAttProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_dtype)
unet.set_attn_processor(attn_procs)
@torch.inference_mode()
def get_facial_embeds(self, prompt_embeds, negative_prompt_embeds, facial_clip_images, facial_token_masks, valid_facial_token_idx_mask):
hidden_states = []
uncond_hidden_states = []
for facial_clip_image in facial_clip_images:
hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
hidden_states.append(hidden_state)
uncond_hidden_states.append(uncond_hidden_state)
multi_facial_embeds = torch.stack(hidden_states)
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
# condition
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
# uncondition
uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
return facial_prompt_embeds, uncond_facial_prompt_embeds
@torch.inference_mode()
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut=False):
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
return image_prompt_tokens, uncond_image_prompt_embeds
def set_scale(self, scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, Consistent_IPAttProcessor):
attn_processor.scale = scale
@torch.inference_mode()
def get_prepare_faceid(self, face_image):
faceid_image = np.array(face_image)
faces = self.app.get(faceid_image)
if faces==[]:
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
else:
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
### TODO The prior extraction of FaceID is unstable and a stronger ID prior structure can be used.
return faceid_embeds
@torch.inference_mode()
def parsing_face_mask(self, raw_image_refer):
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
to_pil = transforms.ToPILImage()
with torch.no_grad():
image = raw_image_refer.resize((512, 512), Image.BILINEAR)
image_resize_PIL = image
img = to_tensor(image)
img = torch.unsqueeze(img, 0)
img = img.float().cuda()
out = self.bise_net(img)[0]
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
im = np.array(image_resize_PIL)
vis_im = im.copy().astype(np.uint8)
stride=1
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
num_of_class = np.max(vis_parsing_anno)
for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16
index = np.where(vis_parsing_anno == pi)
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
return vis_parsing_anno_color, vis_parsing_anno
@torch.inference_mode()
def get_prepare_llva_caption(self, input_image_file, model_path=None, prompt=None):
### Optional: Use the LLaVA
# args = type('Args', (), {
# "model_path": self.llva_model_path,
# "model_base": None,
# "model_name": get_model_name_from_path(self.llva_model_path),
# "query": self.llva_prompt,
# "conv_mode": None,
# "image_file": input_image_file,
# "sep": ",",
# "temperature": 0,
# "top_p": None,
# "num_beams": 1,
# "max_new_tokens": 512
# })()
# face_caption = eval_model(args, self.llva_tokenizer, self.llva_model, self.llva_image_processor)
### Use built-in template
face_caption = "The person has one face, one nose, two eyes, two ears, and one mouth."
return face_caption
@torch.inference_mode()
def get_prepare_facemask(self, input_image_file):
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
key_parsing_mask_list = {}
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
processed_keys = set()
for key, mask_image in parsing_mask_list.items():
if key in key_list:
if "_" in key:
prefix = key.split("_")[1]
if prefix in processed_keys:
continue
else:
key_parsing_mask_list[key] = mask_image
processed_keys.add(prefix)
key_parsing_mask_list[key] = mask_image
return key_parsing_mask_list, vis_parsing_anno_color
def encode_prompt_with_trigger_word(
self,
prompt: str,
face_caption: str,
key_parsing_mask_list = None,
image_token = "<|image|>",
facial_token = "<|facial|>",
max_num_facials = 5,
num_id_images: int = 1,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
prompt_face = prompt + "Detail:" + face_caption_align
max_text_length=330
if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77:
prompt_face = "Detail:" + face_caption_align + " Caption:" + prompt
if len(face_caption)>max_text_length:
prompt_face = prompt
face_caption_align = ""
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
tokenizer = self.tokenizer
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
image_token_id = None
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
prompt_face, image_token_id, facial_token_id, tokenizer)
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
return prompt_text_only, clean_input_id, key_parsing_mask_list_align, facial_token_mask, facial_token_idx, facial_token_idx_mask
@torch.inference_mode()
def get_prepare_clip_image(self, input_image_file, key_parsing_mask_list, image_size=512, max_num_facials=5, change_facial=True):
facial_mask = []
facial_clip_image = []
transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),])
clip_image_processor = CLIPImageProcessor()
num_facial_part = len(key_parsing_mask_list)
for key in key_parsing_mask_list:
key_mask=key_parsing_mask_list[key]
facial_mask.append(transform_mask(key_mask))
key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask)
parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values
facial_clip_image.append(parsing_clip_image)
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
if num_facial_part < max_num_facials:
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
return facial_clip_image, facial_mask
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
original_size: Optional[Tuple[int, int]] = None,
target_size: Optional[Tuple[int, int]] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
input_id_images: PipelineImageInput = None,
start_merge_step: int = 0,
class_tokens_mask: Optional[torch.LongTensor] = None,
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
if not isinstance(input_id_images, list):
input_id_images = [input_id_images]
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale >= 1.0
input_image_file = input_id_images[0]
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file)
face_caption = self.get_prepare_llva_caption(input_image_file)
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
assert do_classifier_free_guidance
# 3. Encode input prompt
num_id_images = len(input_id_images)
(
prompt_text_only,
clean_input_id,
key_parsing_mask_list_align,
facial_token_mask,
facial_token_idx,
facial_token_idx_mask,
) = self.encode_prompt_with_trigger_word(
prompt = prompt,
face_caption = face_caption,
# prompt_2=None,
key_parsing_mask_list=key_parsing_mask_list,
device=device,
max_num_facials = 5,
num_id_images= num_id_images,
# prompt_embeds= None,
# pooled_prompt_embeds= None,
# class_tokens_mask= None,
)
# 4. Encode input prompt without the trigger word for delayed conditioning
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
prompt_embeds = self._encode_prompt(
prompt_text_only,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
# 5. Prepare the input ID images
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=False)
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
facial_token_mask = facial_token_mask.to(device)
facial_token_idx_mask = facial_token_idx_mask.to(device)
negative_encoder_hidden_states = negative_encoder_hidden_states_text_only
cross_attention_kwargs = {}
# 6. Get the update text embedding
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
facial_clip_images, facial_token_mask, facial_token_idx_mask)
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
prompt_embeds_text_only = torch.cat([encoder_hidden_states_text_only, prompt_tokens_faceid], dim=1)
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds_text_only], dim=0)
# 7. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 8. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
(
null_prompt_embeds,
augmented_prompt_embeds,
text_prompt_embeds,
) = prompt_embeds.chunk(3)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if i <= start_merge_step:
current_prompt_embeds = torch.cat(
[null_prompt_embeds, text_prompt_embeds], dim=0
)
else:
current_prompt_embeds = torch.cat(
[null_prompt_embeds, augmented_prompt_embeds], dim=0
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=current_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
else:
assert 0, "Not Implemented"
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 9.1 Post-processing
image = self.decode_latents(latents)
# 9.2 Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# 9.3 Convert to PIL
image = self.numpy_to_pil(image)
else:
# 9.1 Post-processing
image = self.decode_latents(latents)
# 9.2 Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)