-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_affinitynet.py
304 lines (230 loc) · 11.8 KB
/
train_affinitynet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (C) 2020 * Ltd. All rights reserved.
# author : Sanghyeon Jo <[email protected]>
import os
import sys
import copy
import shutil
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from core.networks import *
from core.datasets import *
from tools.general.io_utils import *
from tools.general.time_utils import *
from tools.general.json_utils import *
from tools.ai.log_utils import *
from tools.ai.demo_utils import *
from tools.ai.optim_utils import *
from tools.ai.torch_utils import *
from tools.ai.evaluate_utils import *
from tools.ai.augment_utils import *
from tools.ai.randaugment import *
parser = argparse.ArgumentParser()
###############################################################################
# Dataset
###############################################################################
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--data_dir', default='../VOC2012/', type=str)
###############################################################################
# Network
###############################################################################
parser.add_argument('--architecture', default='resnet50', type=str)
###############################################################################
# Hyperparameter
###############################################################################
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--max_epoch', default=3, type=int)
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--wd', default=1e-4, type=float)
parser.add_argument('--nesterov', default=True, type=str2bool)
parser.add_argument('--image_size', default=512, type=int)
parser.add_argument('--min_image_size', default=320, type=int)
parser.add_argument('--max_image_size', default=640, type=int)
parser.add_argument('--print_ratio', default=0.1, type=float)
parser.add_argument('--tag', default='', type=str)
parser.add_argument('--augment', default='colorjitter', type=str)
parser.add_argument('--pred_dir', default='./experiments/predictions/', type=str)
parser.add_argument('--label_name', required=True, type=str)
if __name__ == '__main__':
###################################################################################
# Arguments
###################################################################################
args = parser.parse_args()
log_dir = create_directory(f'./experiments/logs/')
data_dir = create_directory(f'./experiments/data/')
model_dir = create_directory('./experiments/models/')
tensorboard_dir = create_directory(f'./experiments/tensorboards/{args.tag}/')
log_path = log_dir + f'{args.tag}.txt'
data_path = data_dir + f'{args.tag}.json'
model_path = model_dir + f'{args.tag}.pth'
set_seed(args.seed)
log_func = lambda string='': log_print(string, log_path)
log_func('[i] {}'.format(args.tag))
log_func()
###################################################################################
# Transform, Dataset, DataLoader
###################################################################################
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
normalize_fn = Normalize(imagenet_mean, imagenet_std)
stride = 4
train_transform = [
RandomResize_For_Segmentation(args.min_image_size, args.max_image_size),
RandomHorizontalFlip_For_Segmentation(),
]
if 'colorjitter' in args.augment:
train_transform.append(ColorJitter_For_Segmentation(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1))
train_transform = transforms.Compose(train_transform + [
Normalize_For_Segmentation(imagenet_mean, imagenet_std),
RandomCrop_For_Segmentation(args.image_size),
Transpose_For_Segmentation(),
Resize_For_Mask(args.image_size // stride),
])
meta_dic = read_json('./data/VOC_2012.json')
class_names = np.asarray(meta_dic['class_names'])
path_index = PathIndex(radius=10, default_size=(args.image_size // stride, args.image_size // stride))
train_dataset = VOC_Dataset_For_Affinity(args.data_dir, 'train_aug', path_index=path_index,
label_dir=args.pred_dir + '{}/'.format(args.label_name), transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True)
log_func('[i] mean values is {}'.format(imagenet_mean))
log_func('[i] std values is {}'.format(imagenet_std))
log_func('[i] The number of class is {}'.format(meta_dic['classes']))
log_func('[i] train_transform is {}'.format(train_transform))
log_func()
val_iteration = len(train_loader)
log_iteration = int(val_iteration * args.print_ratio)
max_iteration = args.max_epoch * val_iteration
log_func('[i] log_iteration : {:,}'.format(log_iteration))
log_func('[i] val_iteration : {:,}'.format(val_iteration))
log_func('[i] max_iteration : {:,}'.format(max_iteration))
###################################################################################
# Network
###################################################################################
if args.image_size != args.resolution:
pos_embed_size = args.image_size // args.patch_size
else:
pos_embed_size = None
model = AffinityNet(args.architecture, path_index)
param_groups = list(model.edge_layers.parameters())
model = model.cuda()
model.train()
log_func('[i] Architecture is {}'.format(args.architecture))
log_func('[i] Total Params: %.2fM'%(calculate_parameters(model)))
log_func()
try:
use_gpu = os.environ['CUDA_VISIBLE_DEVICES']
except KeyError:
use_gpu = '0'
the_number_of_gpu = len(use_gpu.split(','))
if the_number_of_gpu > 1:
log_func('[i] the number of gpu : {}'.format(the_number_of_gpu))
model = nn.DataParallel(model)
load_model_fn = lambda: load_model(model, model_path, parallel=the_number_of_gpu > 1)
save_model_fn = lambda: save_model(model, model_path, parallel=the_number_of_gpu > 1)
save_model_fn_for_backup = lambda: save_model(model, model_path.replace('.pth', f'_backup.pth'), parallel=the_number_of_gpu > 1)
###################################################################################
# Loss, Optimizer
###################################################################################
optimizer = PolyOptimizer([
{'params': param_groups, 'lr': args.lr, 'weight_decay': args.wd},
], lr=args.lr, momentum=0.9, weight_decay=args.wd, max_step=max_iteration, nesterov=args.nesterov)
#################################################################################################
# Train
#################################################################################################
data_dic = {
'train' : [],
}
train_timer = Timer()
train_meter = Average_Meter([
'loss',
'bg_loss', 'fg_loss', 'neg_loss',
])
writer = SummaryWriter(tensorboard_dir)
train_iterator = Iterator(train_loader)
torch.autograd.set_detect_anomaly(True)
def cal_loss(bg_pos_label, fg_pos_label, neg_label, aff):
pos_aff_loss = (-1) * torch.log(aff + 1e-5)
neg_aff_loss = (-1) * torch.log(1. + 1e-5 - aff)
bg_pos_aff_loss = torch.sum(bg_pos_label * pos_aff_loss) / (torch.sum(bg_pos_label) + 1e-5)
fg_pos_aff_loss = torch.sum(fg_pos_label * pos_aff_loss) / (torch.sum(fg_pos_label) + 1e-5)
pos_aff_loss = bg_pos_aff_loss / 2 + fg_pos_aff_loss / 2
neg_aff_loss = torch.sum(neg_label * neg_aff_loss) / (torch.sum(neg_label) + 1e-5)
return bg_pos_aff_loss, fg_pos_aff_loss, pos_aff_loss, neg_aff_loss
for iteration in range(max_iteration):
images, labels = train_iterator.get()
images = images.cuda()
bg_pos_label = labels[0].cuda(non_blocking=True)
fg_pos_label = labels[1].cuda(non_blocking=True)
neg_label = labels[2].cuda(non_blocking=True)
#################################################################################################
# Affinity Matrix
#################################################################################################
aff = model(images, with_affinity=True)
###############################################################################
# The part is to calculate losses.
###############################################################################
pos_aff_loss = (-1) * torch.log(aff + 1e-5)
neg_aff_loss = (-1) * torch.log(1. + 1e-5 - aff)
bg_pos_aff_loss = torch.sum(bg_pos_label * pos_aff_loss) / (torch.sum(bg_pos_label) + 1e-5)
fg_pos_aff_loss = torch.sum(fg_pos_label * pos_aff_loss) / (torch.sum(fg_pos_label) + 1e-5)
pos_aff_loss = bg_pos_aff_loss / 2 + fg_pos_aff_loss / 2
neg_aff_loss = torch.sum(neg_label * neg_aff_loss) / (torch.sum(neg_label) + 1e-5)
loss = (pos_aff_loss + neg_aff_loss) / 2
#################################################################################################
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_meter.add({
'loss' : loss.item(),
'bg_loss' : bg_pos_aff_loss.item(),
'fg_loss' : fg_pos_aff_loss.item(),
'neg_loss' : neg_aff_loss.item(),
})
#################################################################################################
# For Log
#################################################################################################
if (iteration + 1) % log_iteration == 0:
loss, bg_loss, fg_loss, neg_loss = train_meter.get(clear=True)
learning_rate = float(get_learning_rate_from_optimizer(optimizer))
t = train_timer.tok(clear=True)
left_sec = (max_iteration - (iteration + 1)) * t / log_iteration
left_min = int(left_sec // 60)
left_sec = int(left_sec - (left_min * 60))
data = {
'iteration' : iteration + 1,
'learning_rate' : learning_rate,
'loss' : loss,
'bg_loss' : bg_loss,
'fg_loss' : fg_loss,
'neg_loss' : neg_loss,
'time' : t,
'left_min' : left_min,
'left_sec' : left_sec
}
data_dic['train'].append(data)
write_json(data_path, data_dic)
log_func('[i] iteration={iteration:,}, learning_rate={learning_rate:.4f}, loss={loss:.4f}, \n\
\r bg_loss={bg_loss:.4f}, fg_loss={fg_loss:.4f}, neg_loss={neg_loss:.4f}, \n\
\r time={time:.0f}sec, left_time={left_min:d}:{left_sec:d}'.format(**data)
)
writer.add_scalar('Train/loss', loss, iteration)
writer.add_scalar('Train/bg_loss', bg_loss, iteration)
writer.add_scalar('Train/fg_loss', fg_loss, iteration)
writer.add_scalar('Train/neg_loss', neg_loss, iteration)
writer.add_scalar('Train/learning_rate', learning_rate, iteration)
#################################################################################################
# Evaluation
#################################################################################################
if (iteration + 1) % val_iteration == 0:
save_model_fn()
save_model_fn()
write_json(data_path, data_dic)
writer.close()
print(args.tag)