-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
294 lines (242 loc) · 10.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import cv2
import math
import pandas as pd
import numpy as np
from PIL import Image
import multiprocessing
import argparse
from pprint import pprint
import copy
import joblib
import multiprocessing
from tools.ai.demo_utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--experiment_name', required=True, type=str)
parser.add_argument("--domain", default='train', type=str)
parser.add_argument("--threshold", default=None, type=float)
parser.add_argument('--crf_iteration', default=0, type=int)
parser.add_argument('--n_jobs', default=128, type=int)
parser.add_argument("--predict_dir", default='', type=str)
parser.add_argument('--gt_dir', default='../VOC2012/SegmentationClass', type=str)
parser.add_argument('--data_dir', default='../VOC2012/', type=str)
parser.add_argument('--mode', default='npy', type=str, choices=['npy', 'png', 'fg', 'fgs', 'bg', 'object'])
parser.add_argument('--min_th', default=0.10, type=float)
parser.add_argument('--max_th', default=0.40, type=float)
parser.add_argument('--step', default=0.01, type=float)
args = parser.parse_args()
predict_folder = './experiments/predictions/{}/'.format(args.experiment_name)
gt_folder = args.gt_dir
img_folder = args.data_dir + 'JPEGImages/'
args.list = './data/' + args.domain + '.txt'
args.predict_dir = predict_folder
if args.mode in ['fg', 'bg', 'object']:
categories = ['background', 'foreground']
else:
categories = ['background',
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
num_cls = len(categories)
def post_process(inPutMask, kernel_size=7, iterations=1):
kernel = np.ones((kernel_size, kernel_size), dtype=np.uint8)
binaryMask = np.zeros([num_cls, inPutMask.shape[0], inPutMask.shape[1]])
inputclasses = np.unique(inPutMask)
for c in inputclasses:
mask = inPutMask == c
binaryMask[c, mask] = 1
binaryMask[c] = cv2.erode(binaryMask[c], kernel, iterations=iterations)
outPutMask = np.argmax(binaryMask, axis=0).astype(np.uint8)
return outPutMask
def do_python_eval(predict_folder, gt_folder, name_list, num_cls=21):
TP = [0] * num_cls
P = [0] * num_cls
T = [0] * num_cls
def get_tp_fp(idx):
name = name_list[idx]
if args.mode != 'png':
assert os.path.isfile(predict_folder + name + '.npy')
predict_dict = np.load(os.path.join(predict_folder, name + '.npy'), allow_pickle=True).item()
if 'hr_cam' in predict_dict.keys():
cams = predict_dict['hr_cam']
elif 'rw' in predict_dict.keys():
cams = predict_dict['rw']
if 'train' in args.domain:
keys = predict_dict['keys']
cams = np.pad(cams, ((1, 0), (0, 0), (0, 0)), mode='constant', constant_values=args.threshold)
n_labels = cams.shape[0]
cams = np.argmax(cams, axis=0)
if args.crf_iteration > 0:
ori_image = np.array(Image.open(img_folder + name + '.jpg'))
cams = crf_inference_label(np.asarray(ori_image), cams, n_labels=n_labels, t=args.crf_iteration)
else:
cams = post_process(cams)
if 'train' in args.domain:
predict = keys[cams]
else:
predict = cams
else:
predict = np.array(Image.open(predict_folder + name + '.png'))
gt_file = os.path.join(gt_folder,'%s.png'%name)
gt = np.array(Image.open(gt_file))
if args.mode in ['fg', 'bg', 'object']:
gt[(gt > 0) & (gt < 255)] = 1
predict[predict > 0] = 1
cal = gt<255
mask = (predict==gt) * cal
p_list, t_list, tp_list = [0] * num_cls, [0] * num_cls, [0] * num_cls
for i in range(num_cls):
p_list[i] += np.sum((predict == i) * cal)
t_list[i] += np.sum((gt == i) * cal)
tp_list[i] += np.sum((gt == i) * mask)
return p_list, t_list, tp_list
length = len(name_list)
results = joblib.Parallel(n_jobs=args.n_jobs, backend='loky',
verbose=0, pre_dispatch="all")(
[joblib.delayed(get_tp_fp)(i) for i in range(length)]
)
p_lists, t_lists, tp_lists = zip(*results)
assert len(p_lists) == len(t_lists) == len(tp_lists) == length
for idx in range(length):
p_list = p_lists[idx]
t_list = t_lists[idx]
tp_list = tp_lists[idx]
for i in range(num_cls):
TP[i] += tp_list[i]
P[i] += p_list[i]
T[i] += t_list[i]
IoU = []
T_TP = []
P_TP = []
FP_ALL = []
FN_ALL = []
for i in range(num_cls):
IoU.append(TP[i] / (T[i] + P[i] - TP[i] + 1e-10))
T_TP.append(T[i] / (TP[i] + 1e-10))
P_TP.append(P[i] / (TP[i] + 1e-10))
FP_ALL.append((P[i] - TP[i]) / (T[i] + P[i] - TP[i] + 1e-10))
FN_ALL.append((T[i] - TP[i]) / (T[i] + P[i] - TP[i] + 1e-10))
loglist = {}
for i in range(num_cls):
loglist[categories[i]] = IoU[i] * 100
IoU = np.array(IoU)
if args.mode in ['fg', 'fgs']:
miou = np.mean(IoU[1:])
t_tp = np.mean(np.array(T_TP)[1:])
p_tp = np.mean(np.array(P_TP)[1:])
fp_all = np.mean(np.array(FP_ALL)[1:])
fn_all = np.mean(np.array(FN_ALL)[1:])
elif args.mode == 'bg':
miou = np.mean(IoU[0:1])
t_tp = np.mean(np.array(T_TP)[0:1])
p_tp = np.mean(np.array(P_TP)[0:1])
fp_all = np.mean(np.array(FP_ALL)[0:1])
fn_all = np.mean(np.array(FN_ALL)[0:1])
elif args.mode == 'object':
miou = np.mean(IoU)
t_tp = np.mean(np.array(T_TP))
p_tp = np.mean(np.array(P_TP))
fp_all = np.mean(np.array(FP_ALL))
fn_all = np.mean(np.array(FN_ALL))
else:
miou = np.mean(IoU)
t_tp = np.mean(np.array(T_TP))
p_tp = np.mean(np.array(P_TP))
fp_all = np.mean(np.array(FP_ALL))
fn_all = np.mean(np.array(FN_ALL))
miou_foreground = np.mean(IoU[1:])
loglist['T_TP'] = T_TP
loglist['P_TP'] = P_TP
loglist['FP_ALL'] = FP_ALL
loglist['FN_ALL'] = FN_ALL
loglist['IoU'] = IoU * 100
loglist['mIoU'] = miou * 100
loglist['t_tp'] = t_tp
loglist['p_tp'] = p_tp
loglist['fp_all'] = fp_all
loglist['fn_all'] = fn_all
loglist['miou_foreground'] = miou_foreground
return loglist
if __name__ == '__main__':
df = pd.read_csv(args.list, names=['filename'])
name_list = df['filename'].values
if args.mode == 'npy' and args.domain =='val':
loglist = do_python_eval(args.predict_dir, args.gt_dir, name_list, num_cls)
pprint(loglist)
print('IoU:')
pprint({categories[c]: iou for c, iou in enumerate(loglist['IoU'])})
print('mIoU={:.3f}%, FP={:.4f}, FN={:.4f}'.format(loglist['mIoU'], loglist['fp_all'], loglist['fn_all']))
elif args.mode == 'png':
loglist = do_python_eval(args.predict_dir, args.gt_dir, name_list, num_cls)
pprint(loglist)
print('IoU:')
pprint({categories[c]: iou for c, iou in enumerate(loglist['IoU'])})
print('mIoU={:.3f}%, FP={:.4f}, FN={:.4f}'.format(loglist['mIoU'], loglist['fp_all'], loglist['fn_all']))
elif args.mode == 'rw':
th_list = np.arange(args.min_th, args.max_th, args.step).tolist()
over_activation = 1.60
under_activation = 0.60
mIoU_list = []
FP_list = []
loglist_list = []
for th in th_list:
args.threshold = th
loglist = do_python_eval(args.predict_dir, args.gt_dir, name_list, num_cls)
mIoU, FP = loglist['mIoU'], loglist['fp_all']
print('Th={:.3f}, mIoU={:.3f}%, FP={:.4f}'.format(th, mIoU, FP))
FP_list.append(FP)
mIoU_list.append(mIoU)
loglist_list.append(loglist)
best_index = np.argmax(mIoU_list)
best_th = th_list[best_index]
best_mIoU = mIoU_list[best_index]
best_FP = FP_list[best_index]
best_loglist = loglist_list[best_index]
over_FP = best_FP * over_activation
under_FP = best_FP * under_activation
print('Over FP : {:.4f}, Under FP : {:.4f}'.format(over_FP, under_FP))
over_loss_list = [np.abs(FP - over_FP) for FP in FP_list]
under_loss_list = [np.abs(FP - under_FP) for FP in FP_list]
over_index = np.argmin(over_loss_list)
over_th = th_list[over_index]
over_mIoU = mIoU_list[over_index]
over_FP = FP_list[over_index]
under_index = np.argmin(under_loss_list)
under_th = th_list[under_index]
under_mIoU = mIoU_list[under_index]
under_FP = FP_list[under_index]
print('IoU:')
pprint({categories[c]: iou for c, iou in enumerate(best_loglist['IoU'])})
print('Best Th={:.3f}, mIoU={:.3f}%, FP={:.4f}'.format(best_th, best_mIoU, best_FP))
print('Over Th={:.3f}, mIoU={:.3f}%, FP={:.4f}'.format(over_th, over_mIoU, over_FP))
print('Under Th={:.3f}, mIoU={:.3f}%, FP={:.4f}'.format(under_th, under_mIoU, under_FP))
else:
if args.threshold is None:
th_list = np.arange(args.min_th, args.max_th, args.step).tolist()
best_th = 0
best_log_list = None
best_mIoU = 0
for th in th_list:
args.threshold = th
loglist = do_python_eval(args.predict_dir, args.gt_dir, name_list, num_cls)
IoU = {categories[c]: iou for c, iou in enumerate(loglist['IoU'])}
print('IoU: {}'.format(IoU))
print('Th={:.3f}, mIoU={:.3f}%, FP={:.4f}, FN={:.4f}'.format(args.threshold, loglist['mIoU'],
loglist['fp_all'], loglist['fn_all']))
if loglist['mIoU'] > best_mIoU:
best_th = th
best_log_list = loglist
best_mIoU = loglist['mIoU']
pprint(best_log_list)
print('IoU:')
pprint({categories[c]: iou for c, iou in enumerate(best_log_list['IoU'])})
print('Best Th={:.3f}, mIoU={:.3f}%, FP={:.4f}, FN={:.4f}'.format(best_th, best_mIoU,
best_log_list['fp_all'], best_log_list['fn_all']))
else:
loglist = do_python_eval(args.predict_dir, args.gt_dir, name_list, num_cls)
pprint(loglist)
print('IoU:')
pprint({categories[c]: iou for c, iou in enumerate(loglist['IoU'])})
print('Th={:.3f}, mIoU={:.3f}%, FP={:.4f}, FN={:.4f}'.format(args.threshold, loglist['mIoU'],
loglist['fp_all'], loglist['fn_all']))