-
Notifications
You must be signed in to change notification settings - Fork 5
/
dataset.py
131 lines (106 loc) · 4.79 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import math
import os
import hparams
import audio as Audio
from utils import pad_1D, pad_2D, process_meta, standard_norm
from text import text_to_sequence, sequence_to_text
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Dataset(Dataset):
def __init__(self, filename="train.txt", sort=True):
self.basename, self.text = process_meta(os.path.join(hparams.preprocessed_path, filename))
self.mean_mel, self.std_mel = np.load(os.path.join(hparams.preprocessed_path, "mel_stat.npy"))
self.mean_f0, self.std_f0 = np.load(os.path.join(hparams.preprocessed_path, "f0_stat.npy"))
self.mean_energy, self.std_energy = np.load(os.path.join(hparams.preprocessed_path, "energy_stat.npy"))
self.sort = sort
def __len__(self):
return len(self.text)
def __getitem__(self, idx):
t=self.text[idx]
basename=self.basename[idx]
phone = np.array(text_to_sequence(t, []))
mel_path = os.path.join(
hparams.preprocessed_path, "mel", "{}-mel-{}.npy".format(hparams.dataset, basename))
mel_target = np.load(mel_path)
D_path = os.path.join(
hparams.preprocessed_path, "alignment", "{}-ali-{}.npy".format(hparams.dataset, basename))
D = np.load(D_path)
f0_path = os.path.join(
hparams.preprocessed_path, "f0", "{}-f0-{}.npy".format(hparams.dataset, basename))
f0 = np.load(f0_path)
energy_path = os.path.join(
hparams.preprocessed_path, "energy", "{}-energy-{}.npy".format(hparams.dataset, basename))
energy = np.load(energy_path)
sample = {"id": basename,
"text": phone,
"mel_target": mel_target,
"D": D,
"f0": f0,
"energy": energy}
return sample
def reprocess(self, batch, cut_list):
ids = [batch[ind]["id"] for ind in cut_list]
texts = [batch[ind]["text"] for ind in cut_list]
mel_targets = [standard_norm(batch[ind]["mel_target"], self.mean_mel, self.std_mel, is_mel=True) for ind in cut_list]
Ds = [batch[ind]["D"] for ind in cut_list]
f0s = [standard_norm(batch[ind]["f0"], self.mean_f0, self.std_f0) for ind in cut_list]
energies = [standard_norm(batch[ind]["energy"], self.mean_energy, self.std_energy) for ind in cut_list]
for text, D, id_ in zip(texts, Ds, ids):
if len(text) != len(D):
print('the dimension of text and duration should be the same')
print('text: ',sequence_to_text(text))
print(text, text.shape, D, D.shape, id_)
length_text = np.array(list())
for text in texts:
length_text = np.append(length_text, text.shape[0])
length_mel = np.array(list())
for mel in mel_targets:
length_mel = np.append(length_mel, mel.shape[0])
texts = pad_1D(texts)
Ds = pad_1D(Ds)
mel_targets = pad_2D(mel_targets)
f0s = pad_1D(f0s)
energies = pad_1D(energies)
log_Ds = np.log(Ds + hparams.log_offset)
out = {"id": ids,
"text": texts,
"mel_target": mel_targets,
"D": Ds,
"log_D": log_Ds,
"f0": f0s,
"energy": energies,
"src_len": length_text,
"mel_len": length_mel}
return out
def collate_fn(self, batch):
len_arr = np.array([d["text"].shape[0] for d in batch])
index_arr = np.argsort(-len_arr)
batchsize = len(batch)
real_batchsize = int(math.sqrt(batchsize))
cut_list = list()
for i in range(real_batchsize):
if self.sort:
cut_list.append(index_arr[i*real_batchsize:(i+1)*real_batchsize])
else:
cut_list.append(np.arange(i*real_batchsize, (i+1)*real_batchsize))
output = list()
for i in range(real_batchsize):
output.append(self.reprocess(batch, cut_list[i]))
return output
if __name__ == "__main__":
# Test
dataset = Dataset('val.txt')
training_loader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=0)
total_step = hparams.epochs * len(training_loader) * hparams.batch_size
cnt = 0
for i, batchs in enumerate(training_loader):
for j, data_of_batch in enumerate(batchs):
mel_target = torch.from_numpy(
data_of_batch["mel_target"]).float().to(device)
D = torch.from_numpy(data_of_batch["D"]).int().to(device)
if mel_target.shape[1] == D.sum().item():
cnt += 1