-
Notifications
You must be signed in to change notification settings - Fork 33
/
cifar.py
46 lines (35 loc) · 1.59 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torchvision
from torchvision.transforms import v2
import hydra
import torch.nn as nn
from torchinfo import summary
from train import train_model
from models.reskanet import reskalnet_18x32p
def get_data():
transforms_train = v2.Compose([
v2.ToImage(),
v2.AutoAugment(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transforms_val = v2.Compose([
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transforms_train)
# Load and transform the CIFAR100 validation dataset
val_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transforms_val)
return train_dataset, val_dataset
@hydra.main(version_base=None, config_path="./configs/", config_name="cifar10-reskanet.yaml")
def main(cfg):
model = reskalnet_18x32p(3, 10, groups=cfg.model.groups, degree=cfg.model.degree, width_scale=cfg.model.width_scale,
dropout=cfg.model.dropout, l1_decay=cfg.model.l1_decay,
dropout_linear=cfg.model.dropout_linear)
summary(model, (64, 3, 32, 32), device='cpu')
dataset_train, dataset_test = get_data()
loss_func = nn.CrossEntropyLoss(label_smoothing=cfg.loss.label_smoothing)
train_model(model, dataset_train, dataset_test, loss_func, cfg)
if __name__ == '__main__':
main()