-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfhog.py
307 lines (253 loc) · 13.1 KB
/
fhog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
import cv2
from numba import jit
import sys
PY3 = sys.version_info >= (3,)
if PY3:
xrange = range
# constant
NUM_SECTOR = 9
FLT_EPSILON = 1e-07
@jit(cache=True)
def func1(dx, dy, boundary_x, boundary_y, height, width, numChannels):
r = np.zeros((height, width), np.float32)
alfa = np.zeros((height, width, 2), np.int32)
for j in xrange(1, height-1):
for i in xrange(1, width-1):
c = 0
x = dx[j, i, c]
y = dy[j, i, c]
r[j, i] = np.sqrt(x*x + y*y)
for ch in xrange(1, numChannels):
tx = dx[j, i, ch]
ty = dy[j, i, ch]
magnitude = np.sqrt(tx*tx + ty*ty)
if magnitude > r[j, i]:
r[j, i] = magnitude
c = ch
x = tx
y = ty
mmax = boundary_x[0]*x + boundary_y[0]*y
maxi = 0
for kk in xrange(0, NUM_SECTOR):
dotProd = boundary_x[kk]*x + boundary_y[kk]*y
if dotProd > mmax:
mmax = dotProd
maxi = kk
elif -dotProd > mmax:
mmax = -dotProd
maxi = kk + NUM_SECTOR
alfa[j, i, 0] = maxi % NUM_SECTOR
alfa[j, i, 1] = maxi
return r, alfa
@jit(cache=True)
def func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize):
mapp = np.zeros((sizeX*sizeY*p), np.float32)
for i in xrange(sizeY):
for j in xrange(sizeX):
for ii in xrange(k):
for jj in xrange(k):
if (i * k + ii > 0) and (i * k + ii < height - 1) and (j * k + jj > 0) and (j * k + jj < width - 1):
mapp[i*stringSize + j*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,0]
mapp[i*stringSize + j*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,0]
if (i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1):
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,0]
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,0]
if (j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1):
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,1]
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,1]
if (i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1) and (j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1):
mapp[(i+nearest[ii])*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,1]
mapp[(i+nearest[ii])*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,1]
return mapp
@jit(cache=True)
def func3(partOfNorm, mappmap, sizeX, sizeY, p, xp, pp):
newData = np.zeros((sizeY*sizeX*pp), np.float32)
for i in xrange(1, sizeY+1):
for j in xrange(1, sizeX+1):
pos1 = i * (sizeX+2) * xp + j * xp
pos2 = (i-1) * sizeX * pp + (j-1) * pp
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] +
partOfNorm[(i )*(sizeX + 2) + (j + 1)] +
partOfNorm[(i + 1)*(sizeX + 2) + (j )] +
partOfNorm[(i + 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON
newData[pos2:pos2+p] = mappmap[pos1:pos1+p] / valOfNorm
newData[pos2+4*p:pos2+6*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] +
partOfNorm[(i )*(sizeX + 2) + (j + 1)] +
partOfNorm[(i - 1)*(sizeX + 2) + (j )] +
partOfNorm[(i - 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON
newData[pos2+p:pos2+2*p] = mappmap[pos1:pos1+p] / valOfNorm
newData[pos2+6*p:pos2+8*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] +
partOfNorm[(i )*(sizeX + 2) + (j - 1)] +
partOfNorm[(i + 1)*(sizeX + 2) + (j )] +
partOfNorm[(i + 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON
newData[pos2+2*p:pos2+3*p] = mappmap[pos1:pos1+p] / valOfNorm
newData[pos2+8*p:pos2+10*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] +
partOfNorm[(i )*(sizeX + 2) + (j - 1)] +
partOfNorm[(i - 1)*(sizeX + 2) + (j )] +
partOfNorm[(i - 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON
newData[pos2+3*p:pos2+4*p] = mappmap[pos1:pos1+p] / valOfNorm
newData[pos2+10*p:pos2+12*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm
return newData
@jit(cache=True)
def func4(mappmap, p, sizeX, sizeY, pp, yp, xp, nx, ny):
newData = np.zeros((sizeX*sizeY*pp), np.float32)
for i in xrange(sizeY):
for j in xrange(sizeX):
pos1 = (i*sizeX + j) * p
pos2 = (i*sizeX + j) * pp
for jj in xrange(2 * xp): # 2*9
newData[pos2 + jj] = np.sum(mappmap[pos1 + yp*xp + jj : pos1 + 3*yp*xp + jj : 2*xp]) * ny
for jj in xrange(xp): # 9
newData[pos2 + 2*xp + jj] = np.sum(mappmap[pos1 + jj : pos1 + jj + yp*xp : xp]) * ny
for ii in xrange(yp): # 4
newData[pos2 + 3*xp + ii] = np.sum(mappmap[pos1 + yp*xp + ii*xp*2 : pos1 + yp*xp + ii*xp*2 + 2*xp]) * nx
return newData
def getFeatureMaps(image, k, mapp):
kernel = np.array([[-1., 0., 1.]], np.float32)
height = image.shape[0]
width = image.shape[1]
assert(image.ndim==3 and image.shape[2])
numChannels = 3 #(1 if image.ndim==2 else image.shape[2])
sizeX = width // k
sizeY = height // k
px = 3 * NUM_SECTOR
p = px
stringSize = sizeX * p
mapp['sizeX'] = sizeX
mapp['sizeY'] = sizeY
mapp['numFeatures'] = p
mapp['map'] = np.zeros((mapp['sizeX']*mapp['sizeY']*mapp['numFeatures']), np.float32)
dx = cv2.filter2D(np.float32(image), -1, kernel) # np.float32(...) is necessary
dy = cv2.filter2D(np.float32(image), -1, kernel.T)
arg_vector = np.arange(NUM_SECTOR+1).astype(np.float32) * np.pi / NUM_SECTOR
boundary_x = np.cos(arg_vector)
boundary_y = np.sin(arg_vector)
'''
### original implementation
r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels) #func1 without @jit ###
### 40x speedup
magnitude = np.sqrt(dx**2 + dy**2)
r = np.max(magnitude, axis=2)
c = np.argmax(magnitude, axis=2)
idx = (np.arange(c.shape[0])[:,np.newaxis], np.arange(c.shape[1]), c)
x, y = dx[idx], dy[idx]
dotProd = x[:,:,np.newaxis] * boundary_x[np.newaxis,np.newaxis,:] + y[:,:,np.newaxis] * boundary_y[np.newaxis,np.newaxis,:]
dotProd = np.concatenate((dotProd, -dotProd), axis=2)
maxi = np.argmax(dotProd, axis=2)
alfa = np.dstack((maxi % NUM_SECTOR, maxi)) ###
'''
### 200x speedup
r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels) #with @jit
### ~0.001s
nearest = np.ones((k), np.int)
nearest[0:k//2] = -1
w = np.zeros((k, 2), np.float32)
a_x = np.concatenate((k/2 - np.arange(k/2) - 0.5, np.arange(k/2,k) - k/2 + 0.5)).astype(np.float32)
b_x = np.concatenate((k/2 + np.arange(k/2) + 0.5, -np.arange(k/2,k) + k/2 - 0.5 + k)).astype(np.float32)
w[:, 0] = 1.0 / a_x * ((a_x*b_x) / (a_x+b_x))
w[:, 1] = 1.0 / b_x * ((a_x*b_x) / (a_x+b_x))
'''
### original implementation
mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize) #func2 without @jit ###
'''
### 500x speedup
mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize) #with @jit
### ~0.001s
return mapp
def normalizeAndTruncate(mapp, alfa):
sizeX = mapp['sizeX']
sizeY = mapp['sizeY']
p = NUM_SECTOR
xp = NUM_SECTOR * 3
pp = NUM_SECTOR * 12
'''
### original implementation
partOfNorm = np.zeros((sizeY*sizeX), np.float32)
for i in xrange(sizeX*sizeY):
pos = i * mapp['numFeatures']
partOfNorm[i] = np.sum(mapp['map'][pos:pos+p]**2) ###
'''
### 50x speedup
idx = np.arange(0, sizeX*sizeY*mapp['numFeatures'], mapp['numFeatures']).reshape((sizeX*sizeY, 1)) + np.arange(p)
partOfNorm = np.sum(mapp['map'][idx] ** 2, axis=1) ### ~0.0002s
sizeX, sizeY = sizeX-2, sizeY-2
'''
### original implementation
newData = func3(partOfNorm, mapp['map'], sizeX, sizeY, p, xp, pp) #func3 without @jit ###
### 30x speedup
newData = np.zeros((sizeY*sizeX*pp), np.float32)
idx = (np.arange(1,sizeY+1)[:,np.newaxis] * (sizeX+2) + np.arange(1,sizeX+1)).reshape((sizeY*sizeX, 1)) # much faster than it's List Comprehension counterpart (see next line)
#idx = np.array([[i*(sizeX+2) + j] for i in xrange(1,sizeY+1) for j in xrange(1,sizeX+1)])
pos1 = idx * xp
pos2 = np.arange(sizeY*sizeX)[:,np.newaxis] * pp
valOfNorm1 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2+1]) + FLT_EPSILON
valOfNorm2 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2+1]) + FLT_EPSILON
valOfNorm3 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2-1]) + FLT_EPSILON
valOfNorm4 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2-1]) + FLT_EPSILON
map1 = mapp['map'][pos1 + np.arange(p)]
map2 = mapp['map'][pos1 + np.arange(p,3*p)]
newData[pos2 + np.arange(p)] = map1 / valOfNorm1
newData[pos2 + np.arange(4*p,6*p)] = map2 / valOfNorm1
newData[pos2 + np.arange(p,2*p)] = map1 / valOfNorm2
newData[pos2 + np.arange(6*p,8*p)] = map2 / valOfNorm2
newData[pos2 + np.arange(2*p,3*p)] = map1 / valOfNorm3
newData[pos2 + np.arange(8*p,10*p)] = map2 / valOfNorm3
newData[pos2 + np.arange(3*p,4*p)] = map1 / valOfNorm4
newData[pos2 + np.arange(10*p,12*p)] = map2 / valOfNorm4 ###
'''
### 30x speedup
newData = func3(partOfNorm, mapp['map'], sizeX, sizeY, p, xp, pp) #with @jit
###
# truncation
newData[newData > alfa] = alfa
mapp['numFeatures'] = pp
mapp['sizeX'] = sizeX
mapp['sizeY'] = sizeY
mapp['map'] = newData
return mapp
def PCAFeatureMaps(mapp):
sizeX = mapp['sizeX']
sizeY = mapp['sizeY']
p = mapp['numFeatures']
pp = NUM_SECTOR * 3 + 4
yp = 4
xp = NUM_SECTOR
nx = 1.0 / np.sqrt(xp*2)
ny = 1.0 / np.sqrt(yp)
'''
### original implementation
newData = func4(mapp['map'], p, sizeX, sizeY, pp, yp, xp, nx, ny) #func without @jit ###
### 7.5x speedup
newData = np.zeros((sizeX*sizeY*pp), np.float32)
idx1 = np.arange(2*xp).reshape((2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp)
idx2 = np.arange(xp).reshape((xp, 1)) + np.arange(0, xp*yp, xp)
idx3 = np.arange(0, 2*xp*yp, 2*xp).reshape((yp, 1)) + np.arange(xp*yp, xp*yp+2*xp)
for i in xrange(sizeY):
for j in xrange(sizeX):
pos1 = (i*sizeX + j) * p
pos2 = (i*sizeX + j) * pp
newData[pos2 : pos2+2*xp] = np.sum(mapp['map'][pos1 + idx1], axis=1) * ny
newData[pos2+2*xp : pos2+3*xp] = np.sum(mapp['map'][pos1 + idx2], axis=1) * ny
newData[pos2+3*xp : pos2+3*xp+yp] = np.sum(mapp['map'][pos1 + idx3], axis=1) * nx ###
### 120x speedup
newData = np.zeros((sizeX*sizeY*pp), np.float32)
idx01 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp))
idx02 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp,3*xp)).reshape((sizeX*sizeY*xp))
idx03 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(3*xp,3*xp+yp)).reshape((sizeX*sizeY*yp))
idx11 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp)
idx12 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(xp)).reshape((sizeX*sizeY*xp, 1)) + np.arange(0, xp*yp, xp)
idx13 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(0, 2*xp*yp, 2*xp)).reshape((sizeX*sizeY*yp, 1)) + np.arange(xp*yp, xp*yp+2*xp)
newData[idx01] = np.sum(mapp['map'][idx11], axis=1) * ny
newData[idx02] = np.sum(mapp['map'][idx12], axis=1) * ny
newData[idx03] = np.sum(mapp['map'][idx13], axis=1) * nx ###
'''
### 190x speedup
newData = func4(mapp['map'], p, sizeX, sizeY, pp, yp, xp, nx, ny) #with @jit
###
mapp['numFeatures'] = pp
mapp['map'] = newData
return mapp