-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
rs-pcl-color.cpp
337 lines (273 loc) · 11.8 KB
/
rs-pcl-color.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/***********************************************************
* Author: Daniel Tran
* Liam Gogley
*
* Purpose: The following .cpp file will utilize the Intel
* realsense camera to stream and capture frame
* data of the environment. Color is then applied
* and a point cloud is generated and saved to
* a point cloud data format (.pcd).
*
* Version 0.09 - Last Editted 11/07/18
*
* Rev: Implementation of RGB Texture function to map
* color to point cloud data.
*
***********************************************************/
#include <iostream>
#include <algorithm>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/thread.hpp>
#include <string>
// Intel Realsense Headers
#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API
// PCL Headers
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/passthrough.h>
#include <pcl/common/common_headers.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/parse.h>
#include <boost/thread/thread.hpp>
#include <pcl/io/io.h>
#include <pcl/visualization/cloud_viewer.h>
using namespace std;
typedef pcl::PointXYZRGB RGB_Cloud;
typedef pcl::PointCloud<RGB_Cloud> point_cloud;
typedef point_cloud::Ptr cloud_pointer;
typedef point_cloud::Ptr prevCloud;
// Prototypes
void Load_PCDFile(void);
bool userInput(void);
void cloudViewer(void);
// Global Variables
string cloudFile; // .pcd file name
string prevCloudFile; // .pcd file name (Old cloud)
int i = 1; // Index for incremental file name
//======================================================
// RGB Texture
// - Function is utilized to extract the RGB data from
// a single point return R, G, and B values.
// Normals are stored as RGB components and
// correspond to the specific depth (XYZ) coordinate.
// By taking these normals and converting them to
// texture coordinates, the RGB components can be
// "mapped" to each individual point (XYZ).
//======================================================
std::tuple<int, int, int> RGB_Texture(rs2::video_frame texture, rs2::texture_coordinate Texture_XY)
{
// Get Width and Height coordinates of texture
int width = texture.get_width(); // Frame width in pixels
int height = texture.get_height(); // Frame height in pixels
// Normals to Texture Coordinates conversion
int x_value = min(max(int(Texture_XY.u * width + .5f), 0), width - 1);
int y_value = min(max(int(Texture_XY.v * height + .5f), 0), height - 1);
int bytes = x_value * texture.get_bytes_per_pixel(); // Get # of bytes per pixel
int strides = y_value * texture.get_stride_in_bytes(); // Get line width in bytes
int Text_Index = (bytes + strides);
const auto New_Texture = reinterpret_cast<const uint8_t*>(texture.get_data());
// RGB components to save in tuple
int NT1 = New_Texture[Text_Index];
int NT2 = New_Texture[Text_Index + 1];
int NT3 = New_Texture[Text_Index + 2];
return std::tuple<int, int, int>(NT1, NT2, NT3);
}
//===================================================
// PCL_Conversion
// - Function is utilized to fill a point cloud
// object with depth and RGB data from a single
// frame captured using the Realsense.
//===================================================
cloud_pointer PCL_Conversion(const rs2::points& points, const rs2::video_frame& color){
// Object Declaration (Point Cloud)
cloud_pointer cloud(new point_cloud);
// Declare Tuple for RGB value Storage (<t0>, <t1>, <t2>)
std::tuple<uint8_t, uint8_t, uint8_t> RGB_Color;
//================================
// PCL Cloud Object Configuration
//================================
// Convert data captured from Realsense camera to Point Cloud
auto sp = points.get_profile().as<rs2::video_stream_profile>();
cloud->width = static_cast<uint32_t>( sp.width() );
cloud->height = static_cast<uint32_t>( sp.height() );
cloud->is_dense = false;
cloud->points.resize( points.size() );
auto Texture_Coord = points.get_texture_coordinates();
auto Vertex = points.get_vertices();
// Iterating through all points and setting XYZ coordinates
// and RGB values
for (int i = 0; i < points.size(); i++)
{
//===================================
// Mapping Depth Coordinates
// - Depth data stored as XYZ values
//===================================
cloud->points[i].x = Vertex[i].x;
cloud->points[i].y = Vertex[i].y;
cloud->points[i].z = Vertex[i].z;
// Obtain color texture for specific point
RGB_Color = RGB_Texture(color, Texture_Coord[i]);
// Mapping Color (BGR due to Camera Model)
cloud->points[i].r = get<2>(RGB_Color); // Reference tuple<2>
cloud->points[i].g = get<1>(RGB_Color); // Reference tuple<1>
cloud->points[i].b = get<0>(RGB_Color); // Reference tuple<0>
}
return cloud; // PCL RGB Point Cloud generated
}
int main() try
{
//======================
// Variable Declaration
//======================
bool captureLoop = true; // Loop control for generating point clouds
//====================
// Object Declaration
//====================
pcl::PointCloud<pcl::PointXYZRGB>::Ptr newCloud (new pcl::PointCloud<pcl::PointXYZRGB>);
boost::shared_ptr<pcl::visualization::PCLVisualizer> openCloud;
// Declare pointcloud object, for calculating pointclouds and texture mappings
rs2::pointcloud pc;
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Create a configuration for configuring the pipeline with a non default profile
rs2::config cfg;
//======================
// Stream configuration with parameters resolved internally. See enable_stream() overloads for extended usage
//======================
cfg.enable_stream(RS2_STREAM_COLOR);
cfg.enable_stream(RS2_STREAM_INFRARED);
cfg.enable_stream(RS2_STREAM_DEPTH);
rs2::pipeline_profile selection = pipe.start(cfg);
rs2::device selected_device = selection.get_device();
auto depth_sensor = selected_device.first<rs2::depth_sensor>();
if (depth_sensor.supports(RS2_OPTION_EMITTER_ENABLED))
{
depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 1.f); // Enable emitter
pipe.wait_for_frames();
depth_sensor.set_option(RS2_OPTION_EMITTER_ENABLED, 0.f); // Disable emitter
}
if (depth_sensor.supports(RS2_OPTION_LASER_POWER))
{
// Query min and max values:
auto range = depth_sensor.get_option_range(RS2_OPTION_LASER_POWER);
depth_sensor.set_option(RS2_OPTION_LASER_POWER, range.max); // Set max power
sleep(1);
depth_sensor.set_option(RS2_OPTION_LASER_POWER, 0.f); // Disable laser
}
// Begin Stream with default configs
// Loop and take frame captures upon user input
while(captureLoop == true) {
// Set loop flag based on user input
captureLoop = userInput();
if (captureLoop == false) { break; }
// Wait for frames from the camera to settle
for (int i = 0; i < 30; i++) {
auto frames = pipe.wait_for_frames(); //Drop several frames for auto-exposure
}
// Capture a single frame and obtain depth + RGB values from it
auto frames = pipe.wait_for_frames();
auto depth = frames.get_depth_frame();
auto RGB = frames.get_color_frame();
// Map Color texture to each point
pc.map_to(RGB);
// Generate Point Cloud
auto points = pc.calculate(depth);
// Convert generated Point Cloud to PCL Formatting
cloud_pointer cloud = PCL_Conversion(points, RGB);
//========================================
// Filter PointCloud (PassThrough Method)
//========================================
pcl::PassThrough<pcl::PointXYZRGB> Cloud_Filter; // Create the filtering object
Cloud_Filter.setInputCloud (cloud); // Input generated cloud to filter
Cloud_Filter.setFilterFieldName ("z"); // Set field name to Z-coordinate
Cloud_Filter.setFilterLimits (0.0, 1.0); // Set accepted interval values
Cloud_Filter.filter (*newCloud); // Filtered Cloud Outputted
cloudFile = "Captured_Frame" + to_string(i) + ".pcd";
//==============================
// Write PC to .pcd File Format
//==============================
// Take Cloud Data and write to .PCD File Format
cout << "Generating PCD Point Cloud File... " << endl;
pcl::io::savePCDFileASCII(cloudFile, *cloud); // Input cloud to be saved to .pcd
cout << cloudFile << " successfully generated. " << endl;
//Load generated PCD file for viewing
Load_PCDFile();
i++; // Increment File Name
}//End-while
cout << "Exiting Program... " << endl;
return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n " << e.what() << std::endl;
return EXIT_FAILURE;
}
catch (const std::exception & e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
void Load_PCDFile(void)
{
string openFileName;
// Generate object to store cloud in .pcd file
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudView (new pcl::PointCloud<pcl::PointXYZRGB>);
openFileName = "Captured_Frame" + to_string(i) + ".pcd";
pcl::io::loadPCDFile (openFileName, *cloudView); // Load .pcd File
//==========================
// Pointcloud Visualization
//==========================
// Create viewer object titled "Captured Frame"
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("Captured Frame"));
// Set background of viewer to black
viewer->setBackgroundColor (0, 0, 0);
// Add generated point cloud and identify with string "Cloud"
viewer->addPointCloud<pcl::PointXYZRGB> (cloudView, "Cloud");
// Default size for rendered points
viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "Cloud");
// Viewer Properties
viewer->initCameraParameters(); // Camera Parameters for ease of viewing
cout << endl;
cout << "Press [Q] in viewer to continue. " << endl;
viewer->spin(); // Allow user to rotate point cloud and view it
// Note: No method to close PC visualizer, pressing Q to continue software flow only solution.
}
//========================================
// userInput
// - Prompts user for a char to
// test for decision making.
// [y|Y] - Capture frame and save as .pcd
// [n|N] - Exit program
//========================================
bool userInput(void){
bool setLoopFlag;
bool inputCheck = false;
char takeFrame; // Utilize to trigger frame capture from key press ('t')
do {
// Prompt User to execute frame capture algorithm
cout << endl;
cout << "Generate a Point Cloud? [y/n] ";
cin >> takeFrame;
cout << endl;
// Condition [Y] - Capture frame, store in PCL object and display
if (takeFrame == 'y' || takeFrame == 'Y') {
setLoopFlag = true;
inputCheck = true;
takeFrame = 0;
}
// Condition [N] - Exit Loop and close program
else if (takeFrame == 'n' || takeFrame == 'N') {
setLoopFlag = false;
inputCheck = true;
takeFrame = 0;
}
// Invalid Input, prompt user again.
else {
inputCheck = false;
cout << "Invalid Input." << endl;
takeFrame = 0;
}
} while(inputCheck == false);
return setLoopFlag;
}