forked from tensorflow/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
750 lines (644 loc) · 28.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""For training NMT models."""
from __future__ import print_function
import math
import os
import random
import time
import tensorflow as tf
from . import attention_model
from . import gnmt_model
from . import inference
from . import model as nmt_model
from . import model_helper
from .utils import misc_utils as utils
from .utils import nmt_utils
utils.check_tensorflow_version()
__all__ = [
"run_sample_decode", "run_internal_eval", "run_external_eval",
"run_avg_external_eval", "run_full_eval", "init_stats", "update_stats",
"print_step_info", "process_stats", "train", "get_model_creator",
"add_info_summaries", "get_best_results"
]
def run_sample_decode(infer_model, infer_sess, model_dir, hparams,
summary_writer, src_data, tgt_data):
"""Sample decode a random sentence from src_data."""
with infer_model.graph.as_default():
loaded_infer_model, global_step = model_helper.create_or_load_model(
infer_model.model, model_dir, infer_sess, "infer")
_sample_decode(loaded_infer_model, global_step, infer_sess, hparams,
infer_model.iterator, src_data, tgt_data,
infer_model.src_placeholder,
infer_model.batch_size_placeholder, summary_writer)
def run_internal_eval(eval_model,
eval_sess,
model_dir,
hparams,
summary_writer,
use_test_set=True,
dev_eval_iterator_feed_dict=None,
test_eval_iterator_feed_dict=None):
"""Compute internal evaluation (perplexity) for both dev / test.
Computes development and testing perplexities for given model.
Args:
eval_model: Evaluation model for which to compute perplexities.
eval_sess: Evaluation TensorFlow session.
model_dir: Directory from which to load evaluation model from.
hparams: Model hyper-parameters.
summary_writer: Summary writer for logging metrics to TensorBoard.
use_test_set: Computes testing perplexity if true; does not otherwise.
Note that the development perplexity is always computed regardless of
value of this parameter.
dev_eval_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
development evaluation.
test_eval_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
testing evaluation.
Returns:
Pair containing development perplexity and testing perplexity, in this
order.
"""
if dev_eval_iterator_feed_dict is None:
dev_eval_iterator_feed_dict = {}
if test_eval_iterator_feed_dict is None:
test_eval_iterator_feed_dict = {}
with eval_model.graph.as_default():
loaded_eval_model, global_step = model_helper.create_or_load_model(
eval_model.model, model_dir, eval_sess, "eval")
dev_src_file = "%s.%s" % (hparams.dev_prefix, hparams.src)
dev_tgt_file = "%s.%s" % (hparams.dev_prefix, hparams.tgt)
dev_eval_iterator_feed_dict[eval_model.src_file_placeholder] = dev_src_file
dev_eval_iterator_feed_dict[eval_model.tgt_file_placeholder] = dev_tgt_file
dev_ppl = _internal_eval(loaded_eval_model, global_step, eval_sess,
eval_model.iterator, dev_eval_iterator_feed_dict,
summary_writer, "dev")
test_ppl = None
if use_test_set and hparams.test_prefix:
test_src_file = "%s.%s" % (hparams.test_prefix, hparams.src)
test_tgt_file = "%s.%s" % (hparams.test_prefix, hparams.tgt)
test_eval_iterator_feed_dict[
eval_model.src_file_placeholder] = test_src_file
test_eval_iterator_feed_dict[
eval_model.tgt_file_placeholder] = test_tgt_file
test_ppl = _internal_eval(loaded_eval_model, global_step, eval_sess,
eval_model.iterator, test_eval_iterator_feed_dict,
summary_writer, "test")
return dev_ppl, test_ppl
def run_external_eval(infer_model,
infer_sess,
model_dir,
hparams,
summary_writer,
save_best_dev=True,
use_test_set=True,
avg_ckpts=False,
dev_infer_iterator_feed_dict=None,
test_infer_iterator_feed_dict=None):
"""Compute external evaluation for both dev / test.
Computes development and testing external evaluation (e.g. bleu, rouge) for
given model.
Args:
infer_model: Inference model for which to compute perplexities.
infer_sess: Inference TensorFlow session.
model_dir: Directory from which to load inference model from.
hparams: Model hyper-parameters.
summary_writer: Summary writer for logging metrics to TensorBoard.
use_test_set: Computes testing external evaluation if true; does not
otherwise. Note that the development external evaluation is always
computed regardless of value of this parameter.
dev_infer_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
development external evaluation.
test_infer_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
testing external evaluation.
Returns:
Triple containing development scores, testing scores and the TensorFlow
Variable for the global step number, in this order.
"""
if dev_infer_iterator_feed_dict is None:
dev_infer_iterator_feed_dict = {}
if test_infer_iterator_feed_dict is None:
test_infer_iterator_feed_dict = {}
with infer_model.graph.as_default():
loaded_infer_model, global_step = model_helper.create_or_load_model(
infer_model.model, model_dir, infer_sess, "infer")
dev_src_file = "%s.%s" % (hparams.dev_prefix, hparams.src)
dev_tgt_file = "%s.%s" % (hparams.dev_prefix, hparams.tgt)
dev_infer_iterator_feed_dict[
infer_model.src_placeholder] = inference.load_data(dev_src_file)
dev_infer_iterator_feed_dict[
infer_model.batch_size_placeholder] = hparams.infer_batch_size
dev_scores = _external_eval(
loaded_infer_model,
global_step,
infer_sess,
hparams,
infer_model.iterator,
dev_infer_iterator_feed_dict,
dev_tgt_file,
"dev",
summary_writer,
save_on_best=save_best_dev,
avg_ckpts=avg_ckpts)
test_scores = None
if use_test_set and hparams.test_prefix:
test_src_file = "%s.%s" % (hparams.test_prefix, hparams.src)
test_tgt_file = "%s.%s" % (hparams.test_prefix, hparams.tgt)
test_infer_iterator_feed_dict[
infer_model.src_placeholder] = inference.load_data(test_src_file)
test_infer_iterator_feed_dict[
infer_model.batch_size_placeholder] = hparams.infer_batch_size
test_scores = _external_eval(
loaded_infer_model,
global_step,
infer_sess,
hparams,
infer_model.iterator,
test_infer_iterator_feed_dict,
test_tgt_file,
"test",
summary_writer,
save_on_best=False,
avg_ckpts=avg_ckpts)
return dev_scores, test_scores, global_step
def run_avg_external_eval(infer_model, infer_sess, model_dir, hparams,
summary_writer, global_step):
"""Creates an averaged checkpoint and run external eval with it."""
avg_dev_scores, avg_test_scores = None, None
if hparams.avg_ckpts:
# Convert VariableName:0 to VariableName.
global_step_name = infer_model.model.global_step.name.split(":")[0]
avg_model_dir = model_helper.avg_checkpoints(
model_dir, hparams.num_keep_ckpts, global_step, global_step_name)
if avg_model_dir:
avg_dev_scores, avg_test_scores, _ = run_external_eval(
infer_model,
infer_sess,
avg_model_dir,
hparams,
summary_writer,
avg_ckpts=True)
return avg_dev_scores, avg_test_scores
def run_internal_and_external_eval(model_dir,
infer_model,
infer_sess,
eval_model,
eval_sess,
hparams,
summary_writer,
avg_ckpts=False,
dev_eval_iterator_feed_dict=None,
test_eval_iterator_feed_dict=None,
dev_infer_iterator_feed_dict=None,
test_infer_iterator_feed_dict=None):
"""Compute internal evaluation (perplexity) for both dev / test.
Computes development and testing perplexities for given model.
Args:
model_dir: Directory from which to load models from.
infer_model: Inference model for which to compute perplexities.
infer_sess: Inference TensorFlow session.
eval_model: Evaluation model for which to compute perplexities.
eval_sess: Evaluation TensorFlow session.
hparams: Model hyper-parameters.
summary_writer: Summary writer for logging metrics to TensorBoard.
avg_ckpts: Whether to compute average external evaluation scores.
dev_eval_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
internal development evaluation.
test_eval_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
internal testing evaluation.
dev_infer_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
external development evaluation.
test_infer_iterator_feed_dict: Feed dictionary for a TensorFlow session.
Can be used to pass in additional inputs necessary for running the
external testing evaluation.
Returns:
Triple containing results summary, global step Tensorflow Variable and
metrics in this order.
"""
dev_ppl, test_ppl = run_internal_eval(
eval_model,
eval_sess,
model_dir,
hparams,
summary_writer,
dev_eval_iterator_feed_dict=dev_eval_iterator_feed_dict,
test_eval_iterator_feed_dict=test_eval_iterator_feed_dict)
dev_scores, test_scores, global_step = run_external_eval(
infer_model,
infer_sess,
model_dir,
hparams,
summary_writer,
dev_infer_iterator_feed_dict=dev_infer_iterator_feed_dict,
test_infer_iterator_feed_dict=test_infer_iterator_feed_dict)
metrics = {
"dev_ppl": dev_ppl,
"test_ppl": test_ppl,
"dev_scores": dev_scores,
"test_scores": test_scores,
}
avg_dev_scores, avg_test_scores = None, None
if avg_ckpts:
avg_dev_scores, avg_test_scores = run_avg_external_eval(
infer_model, infer_sess, model_dir, hparams, summary_writer,
global_step)
metrics["avg_dev_scores"] = avg_dev_scores
metrics["avg_test_scores"] = avg_test_scores
result_summary = _format_results("dev", dev_ppl, dev_scores, hparams.metrics)
if avg_dev_scores:
result_summary += ", " + _format_results("avg_dev", None, avg_dev_scores,
hparams.metrics)
if hparams.test_prefix:
result_summary += ", " + _format_results("test", test_ppl, test_scores,
hparams.metrics)
if avg_test_scores:
result_summary += ", " + _format_results("avg_test", None,
avg_test_scores, hparams.metrics)
return result_summary, global_step, metrics
def run_full_eval(model_dir,
infer_model,
infer_sess,
eval_model,
eval_sess,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data,
avg_ckpts=False):
"""Wrapper for running sample_decode, internal_eval and external_eval.
Args:
model_dir: Directory from which to load models from.
infer_model: Inference model for which to compute perplexities.
infer_sess: Inference TensorFlow session.
eval_model: Evaluation model for which to compute perplexities.
eval_sess: Evaluation TensorFlow session.
hparams: Model hyper-parameters.
summary_writer: Summary writer for logging metrics to TensorBoard.
sample_src_data: sample of source data for sample decoding.
sample_tgt_data: sample of target data for sample decoding.
avg_ckpts: Whether to compute average external evaluation scores.
Returns:
Triple containing results summary, global step Tensorflow Variable and
metrics in this order.
"""
run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer,
sample_src_data, sample_tgt_data)
return run_internal_and_external_eval(model_dir, infer_model, infer_sess,
eval_model, eval_sess, hparams,
summary_writer, avg_ckpts)
def init_stats():
"""Initialize statistics that we want to accumulate."""
return {"step_time": 0.0, "train_loss": 0.0,
"predict_count": 0.0, # word count on the target side
"word_count": 0.0, # word counts for both source and target
"sequence_count": 0.0, # number of training examples processed
"grad_norm": 0.0}
def update_stats(stats, start_time, step_result):
"""Update stats: write summary and accumulate statistics."""
_, output_tuple = step_result
# Update statistics
batch_size = output_tuple.batch_size
stats["step_time"] += time.time() - start_time
stats["train_loss"] += output_tuple.train_loss * batch_size
stats["grad_norm"] += output_tuple.grad_norm
stats["predict_count"] += output_tuple.predict_count
stats["word_count"] += output_tuple.word_count
stats["sequence_count"] += batch_size
return (output_tuple.global_step, output_tuple.learning_rate,
output_tuple.train_summary)
def print_step_info(prefix, global_step, info, result_summary, log_f):
"""Print all info at the current global step."""
utils.print_out(
"%sstep %d lr %g step-time %.2fs wps %.2fK ppl %.2f gN %.2f %s, %s" %
(prefix, global_step, info["learning_rate"], info["avg_step_time"],
info["speed"], info["train_ppl"], info["avg_grad_norm"], result_summary,
time.ctime()),
log_f)
def add_info_summaries(summary_writer, global_step, info):
"""Add stuffs in info to summaries."""
excluded_list = ["learning_rate"]
for key in info:
if key not in excluded_list:
utils.add_summary(summary_writer, global_step, key, info[key])
def process_stats(stats, info, global_step, steps_per_stats, log_f):
"""Update info and check for overflow."""
# Per-step info
info["avg_step_time"] = stats["step_time"] / steps_per_stats
info["avg_grad_norm"] = stats["grad_norm"] / steps_per_stats
info["avg_sequence_count"] = stats["sequence_count"] / steps_per_stats
info["speed"] = stats["word_count"] / (1000 * stats["step_time"])
# Per-predict info
info["train_ppl"] = (
utils.safe_exp(stats["train_loss"] / stats["predict_count"]))
# Check for overflow
is_overflow = False
train_ppl = info["train_ppl"]
if math.isnan(train_ppl) or math.isinf(train_ppl) or train_ppl > 1e20:
utils.print_out(" step %d overflow, stop early" % global_step,
log_f)
is_overflow = True
return is_overflow
def before_train(loaded_train_model, train_model, train_sess, global_step,
hparams, log_f):
"""Misc tasks to do before training."""
stats = init_stats()
info = {"train_ppl": 0.0, "speed": 0.0,
"avg_step_time": 0.0,
"avg_grad_norm": 0.0,
"avg_sequence_count": 0.0,
"learning_rate": loaded_train_model.learning_rate.eval(
session=train_sess)}
start_train_time = time.time()
utils.print_out("# Start step %d, lr %g, %s" %
(global_step, info["learning_rate"], time.ctime()), log_f)
# Initialize all of the iterators
skip_count = hparams.batch_size * hparams.epoch_step
utils.print_out("# Init train iterator, skipping %d elements" % skip_count)
train_sess.run(
train_model.iterator.initializer,
feed_dict={train_model.skip_count_placeholder: skip_count})
return stats, info, start_train_time
def get_model_creator(hparams):
"""Get the right model class depending on configuration."""
if (hparams.encoder_type == "gnmt" or
hparams.attention_architecture in ["gnmt", "gnmt_v2"]):
model_creator = gnmt_model.GNMTModel
elif hparams.attention and hparams.attention_architecture == "standard":
model_creator = attention_model.AttentionModel
elif not hparams.attention:
model_creator = nmt_model.Model
else:
raise ValueError("Unknown attention architecture %s" %
hparams.attention_architecture)
return model_creator
def train(hparams, scope=None, target_session=""):
"""Train a translation model."""
log_device_placement = hparams.log_device_placement
out_dir = hparams.out_dir
num_train_steps = hparams.num_train_steps
steps_per_stats = hparams.steps_per_stats
steps_per_external_eval = hparams.steps_per_external_eval
steps_per_eval = 10 * steps_per_stats
avg_ckpts = hparams.avg_ckpts
if not steps_per_external_eval:
steps_per_external_eval = 5 * steps_per_eval
# Create model
model_creator = get_model_creator(hparams)
train_model = model_helper.create_train_model(model_creator, hparams, scope)
eval_model = model_helper.create_eval_model(model_creator, hparams, scope)
infer_model = model_helper.create_infer_model(model_creator, hparams, scope)
# Preload data for sample decoding.
dev_src_file = "%s.%s" % (hparams.dev_prefix, hparams.src)
dev_tgt_file = "%s.%s" % (hparams.dev_prefix, hparams.tgt)
sample_src_data = inference.load_data(dev_src_file)
sample_tgt_data = inference.load_data(dev_tgt_file)
summary_name = "train_log"
model_dir = hparams.out_dir
# Log and output files
log_file = os.path.join(out_dir, "log_%d" % time.time())
log_f = tf.gfile.GFile(log_file, mode="a")
utils.print_out("# log_file=%s" % log_file, log_f)
# TensorFlow model
config_proto = utils.get_config_proto(
log_device_placement=log_device_placement,
num_intra_threads=hparams.num_intra_threads,
num_inter_threads=hparams.num_inter_threads)
train_sess = tf.Session(
target=target_session, config=config_proto, graph=train_model.graph)
eval_sess = tf.Session(
target=target_session, config=config_proto, graph=eval_model.graph)
infer_sess = tf.Session(
target=target_session, config=config_proto, graph=infer_model.graph)
with train_model.graph.as_default():
loaded_train_model, global_step = model_helper.create_or_load_model(
train_model.model, model_dir, train_sess, "train")
# Summary writer
summary_writer = tf.summary.FileWriter(
os.path.join(out_dir, summary_name), train_model.graph)
# First evaluation
run_full_eval(
model_dir, infer_model, infer_sess,
eval_model, eval_sess, hparams,
summary_writer, sample_src_data,
sample_tgt_data, avg_ckpts)
last_stats_step = global_step
last_eval_step = global_step
last_external_eval_step = global_step
# This is the training loop.
stats, info, start_train_time = before_train(
loaded_train_model, train_model, train_sess, global_step, hparams, log_f)
while global_step < num_train_steps:
### Run a step ###
start_time = time.time()
try:
step_result = loaded_train_model.train(train_sess)
hparams.epoch_step += 1
except tf.errors.OutOfRangeError:
# Finished going through the training dataset. Go to next epoch.
hparams.epoch_step = 0
utils.print_out(
"# Finished an epoch, step %d. Perform external evaluation" %
global_step)
run_sample_decode(infer_model, infer_sess, model_dir, hparams,
summary_writer, sample_src_data, sample_tgt_data)
run_external_eval(infer_model, infer_sess, model_dir, hparams,
summary_writer)
if avg_ckpts:
run_avg_external_eval(infer_model, infer_sess, model_dir, hparams,
summary_writer, global_step)
train_sess.run(
train_model.iterator.initializer,
feed_dict={train_model.skip_count_placeholder: 0})
continue
# Process step_result, accumulate stats, and write summary
global_step, info["learning_rate"], step_summary = update_stats(
stats, start_time, step_result)
summary_writer.add_summary(step_summary, global_step)
# Once in a while, we print statistics.
if global_step - last_stats_step >= steps_per_stats:
last_stats_step = global_step
is_overflow = process_stats(
stats, info, global_step, steps_per_stats, log_f)
print_step_info(" ", global_step, info, get_best_results(hparams),
log_f)
if is_overflow:
break
# Reset statistics
stats = init_stats()
if global_step - last_eval_step >= steps_per_eval:
last_eval_step = global_step
utils.print_out("# Save eval, global step %d" % global_step)
add_info_summaries(summary_writer, global_step, info)
# Save checkpoint
loaded_train_model.saver.save(
train_sess,
os.path.join(out_dir, "translate.ckpt"),
global_step=global_step)
# Evaluate on dev/test
run_sample_decode(infer_model, infer_sess,
model_dir, hparams, summary_writer, sample_src_data,
sample_tgt_data)
run_internal_eval(
eval_model, eval_sess, model_dir, hparams, summary_writer)
if global_step - last_external_eval_step >= steps_per_external_eval:
last_external_eval_step = global_step
# Save checkpoint
loaded_train_model.saver.save(
train_sess,
os.path.join(out_dir, "translate.ckpt"),
global_step=global_step)
run_sample_decode(infer_model, infer_sess,
model_dir, hparams, summary_writer, sample_src_data,
sample_tgt_data)
run_external_eval(
infer_model, infer_sess, model_dir,
hparams, summary_writer)
if avg_ckpts:
run_avg_external_eval(infer_model, infer_sess, model_dir, hparams,
summary_writer, global_step)
# Done training
loaded_train_model.saver.save(
train_sess,
os.path.join(out_dir, "translate.ckpt"),
global_step=global_step)
(result_summary, _, final_eval_metrics) = (
run_full_eval(
model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams,
summary_writer, sample_src_data, sample_tgt_data, avg_ckpts))
print_step_info("# Final, ", global_step, info, result_summary, log_f)
utils.print_time("# Done training!", start_train_time)
summary_writer.close()
utils.print_out("# Start evaluating saved best models.")
for metric in hparams.metrics:
best_model_dir = getattr(hparams, "best_" + metric + "_dir")
summary_writer = tf.summary.FileWriter(
os.path.join(best_model_dir, summary_name), infer_model.graph)
result_summary, best_global_step, _ = run_full_eval(
best_model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams,
summary_writer, sample_src_data, sample_tgt_data)
print_step_info("# Best %s, " % metric, best_global_step, info,
result_summary, log_f)
summary_writer.close()
if avg_ckpts:
best_model_dir = getattr(hparams, "avg_best_" + metric + "_dir")
summary_writer = tf.summary.FileWriter(
os.path.join(best_model_dir, summary_name), infer_model.graph)
result_summary, best_global_step, _ = run_full_eval(
best_model_dir, infer_model, infer_sess, eval_model, eval_sess,
hparams, summary_writer, sample_src_data, sample_tgt_data)
print_step_info("# Averaged Best %s, " % metric, best_global_step, info,
result_summary, log_f)
summary_writer.close()
return final_eval_metrics, global_step
def _format_results(name, ppl, scores, metrics):
"""Format results."""
result_str = ""
if ppl:
result_str = "%s ppl %.2f" % (name, ppl)
if scores:
for metric in metrics:
if result_str:
result_str += ", %s %s %.1f" % (name, metric, scores[metric])
else:
result_str = "%s %s %.1f" % (name, metric, scores[metric])
return result_str
def get_best_results(hparams):
"""Summary of the current best results."""
tokens = []
for metric in hparams.metrics:
tokens.append("%s %.2f" % (metric, getattr(hparams, "best_" + metric)))
return ", ".join(tokens)
def _internal_eval(model, global_step, sess, iterator, iterator_feed_dict,
summary_writer, label):
"""Computing perplexity."""
sess.run(iterator.initializer, feed_dict=iterator_feed_dict)
ppl = model_helper.compute_perplexity(model, sess, label)
utils.add_summary(summary_writer, global_step, "%s_ppl" % label, ppl)
return ppl
def _sample_decode(model, global_step, sess, hparams, iterator, src_data,
tgt_data, iterator_src_placeholder,
iterator_batch_size_placeholder, summary_writer):
"""Pick a sentence and decode."""
decode_id = random.randint(0, len(src_data) - 1)
utils.print_out(" # %d" % decode_id)
iterator_feed_dict = {
iterator_src_placeholder: [src_data[decode_id]],
iterator_batch_size_placeholder: 1,
}
sess.run(iterator.initializer, feed_dict=iterator_feed_dict)
nmt_outputs, attention_summary = model.decode(sess)
if hparams.infer_mode == "beam_search":
# get the top translation.
nmt_outputs = nmt_outputs[0]
translation = nmt_utils.get_translation(
nmt_outputs,
sent_id=0,
tgt_eos=hparams.eos,
subword_option=hparams.subword_option)
utils.print_out(" src: %s" % src_data[decode_id])
utils.print_out(" ref: %s" % tgt_data[decode_id])
utils.print_out(b" nmt: " + translation)
# Summary
if attention_summary is not None:
summary_writer.add_summary(attention_summary, global_step)
def _external_eval(model, global_step, sess, hparams, iterator,
iterator_feed_dict, tgt_file, label, summary_writer,
save_on_best, avg_ckpts=False):
"""External evaluation such as BLEU and ROUGE scores."""
out_dir = hparams.out_dir
decode = global_step > 0
if avg_ckpts:
label = "avg_" + label
if decode:
utils.print_out("# External evaluation, global step %d" % global_step)
sess.run(iterator.initializer, feed_dict=iterator_feed_dict)
output = os.path.join(out_dir, "output_%s" % label)
scores = nmt_utils.decode_and_evaluate(
label,
model,
sess,
output,
ref_file=tgt_file,
metrics=hparams.metrics,
subword_option=hparams.subword_option,
beam_width=hparams.beam_width,
tgt_eos=hparams.eos,
decode=decode,
infer_mode=hparams.infer_mode)
# Save on best metrics
if decode:
for metric in hparams.metrics:
if avg_ckpts:
best_metric_label = "avg_best_" + metric
else:
best_metric_label = "best_" + metric
utils.add_summary(summary_writer, global_step, "%s_%s" % (label, metric),
scores[metric])
# metric: larger is better
if save_on_best and scores[metric] > getattr(hparams, best_metric_label):
setattr(hparams, best_metric_label, scores[metric])
model.saver.save(
sess,
os.path.join(
getattr(hparams, best_metric_label + "_dir"), "translate.ckpt"),
global_step=model.global_step)
utils.save_hparams(out_dir, hparams)
return scores