forked from tensorflow/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_model.py
194 lines (166 loc) · 7.21 KB
/
attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Attention-based sequence-to-sequence model with dynamic RNN support."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from . import model
from . import model_helper
__all__ = ["AttentionModel"]
class AttentionModel(model.Model):
"""Sequence-to-sequence dynamic model with attention.
This class implements a multi-layer recurrent neural network as encoder,
and an attention-based decoder. This is the same as the model described in
(Luong et al., EMNLP'2015) paper: https://arxiv.org/pdf/1508.04025v5.pdf.
This class also allows to use GRU cells in addition to LSTM cells with
support for dropout.
"""
def __init__(self,
hparams,
mode,
iterator,
source_vocab_table,
target_vocab_table,
reverse_target_vocab_table=None,
scope=None,
extra_args=None):
self.has_attention = hparams.attention_architecture and hparams.attention
# Set attention_mechanism_fn
if self.has_attention:
if extra_args and extra_args.attention_mechanism_fn:
self.attention_mechanism_fn = extra_args.attention_mechanism_fn
else:
self.attention_mechanism_fn = create_attention_mechanism
super(AttentionModel, self).__init__(
hparams=hparams,
mode=mode,
iterator=iterator,
source_vocab_table=source_vocab_table,
target_vocab_table=target_vocab_table,
reverse_target_vocab_table=reverse_target_vocab_table,
scope=scope,
extra_args=extra_args)
def _prepare_beam_search_decoder_inputs(
self, beam_width, memory, source_sequence_length, encoder_state):
memory = tf.contrib.seq2seq.tile_batch(
memory, multiplier=beam_width)
source_sequence_length = tf.contrib.seq2seq.tile_batch(
source_sequence_length, multiplier=beam_width)
encoder_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=beam_width)
batch_size = self.batch_size * beam_width
return memory, source_sequence_length, encoder_state, batch_size
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Build a RNN cell with attention mechanism that can be used by decoder."""
# No Attention
if not self.has_attention:
return super(AttentionModel, self)._build_decoder_cell(
hparams, encoder_outputs, encoder_state, source_sequence_length)
elif hparams.attention_architecture != "standard":
raise ValueError(
"Unknown attention architecture %s" % hparams.attention_architecture)
num_units = hparams.num_units
num_layers = self.num_decoder_layers
num_residual_layers = self.num_decoder_residual_layers
infer_mode = hparams.infer_mode
dtype = tf.float32
# Ensure memory is batch-major
if self.time_major:
memory = tf.transpose(encoder_outputs, [1, 0, 2])
else:
memory = encoder_outputs
if (self.mode == tf.contrib.learn.ModeKeys.INFER and
infer_mode == "beam_search"):
memory, source_sequence_length, encoder_state, batch_size = (
self._prepare_beam_search_decoder_inputs(
hparams.beam_width, memory, source_sequence_length,
encoder_state))
else:
batch_size = self.batch_size
# Attention
attention_mechanism = self.attention_mechanism_fn(
hparams.attention, num_units, memory, source_sequence_length, self.mode)
cell = model_helper.create_rnn_cell(
unit_type=hparams.unit_type,
num_units=num_units,
num_layers=num_layers,
num_residual_layers=num_residual_layers,
forget_bias=hparams.forget_bias,
dropout=hparams.dropout,
num_gpus=self.num_gpus,
mode=self.mode,
single_cell_fn=self.single_cell_fn)
# Only generate alignment in greedy INFER mode.
alignment_history = (self.mode == tf.contrib.learn.ModeKeys.INFER and
infer_mode != "beam_search")
cell = tf.contrib.seq2seq.AttentionWrapper(
cell,
attention_mechanism,
attention_layer_size=num_units,
alignment_history=alignment_history,
output_attention=hparams.output_attention,
name="attention")
# TODO(thangluong): do we need num_layers, num_gpus?
cell = tf.contrib.rnn.DeviceWrapper(cell,
model_helper.get_device_str(
num_layers - 1, self.num_gpus))
if hparams.pass_hidden_state:
decoder_initial_state = cell.zero_state(batch_size, dtype).clone(
cell_state=encoder_state)
else:
decoder_initial_state = cell.zero_state(batch_size, dtype)
return cell, decoder_initial_state
def _get_infer_summary(self, hparams):
if not self.has_attention or hparams.infer_mode == "beam_search":
return tf.no_op()
return _create_attention_images_summary(self.final_context_state)
def create_attention_mechanism(attention_option, num_units, memory,
source_sequence_length, mode):
"""Create attention mechanism based on the attention_option."""
del mode # unused
# Mechanism
if attention_option == "luong":
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units, memory, memory_sequence_length=source_sequence_length)
elif attention_option == "scaled_luong":
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units,
memory,
memory_sequence_length=source_sequence_length,
scale=True)
elif attention_option == "bahdanau":
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(
num_units, memory, memory_sequence_length=source_sequence_length)
elif attention_option == "normed_bahdanau":
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(
num_units,
memory,
memory_sequence_length=source_sequence_length,
normalize=True)
else:
raise ValueError("Unknown attention option %s" % attention_option)
return attention_mechanism
def _create_attention_images_summary(final_context_state):
"""create attention image and attention summary."""
attention_images = (final_context_state.alignment_history.stack())
# Reshape to (batch, src_seq_len, tgt_seq_len,1)
attention_images = tf.expand_dims(
tf.transpose(attention_images, [1, 2, 0]), -1)
# Scale to range [0, 255]
attention_images *= 255
attention_summary = tf.summary.image("attention_images", attention_images)
return attention_summary