-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathhelpers_anova_expressions.R
699 lines (640 loc) · 19.5 KB
/
helpers_anova_expressions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#' @title Making expression containing parametric ANOVA results
#' @name expr_anova_parametric
#'
#' @return For more details, see-
#' \url{https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html}
#'
#' @note For repeated measures designs (`paired = TRUE`), only partial
#' omega-squared and partial eta-squared are supported.
#'
#' @description The effect sizes and their confidence intervals are computed
#' using `effectsize::eta_squared` and `effectsize::omega_squared` functions.
#'
#' @param data A dataframe (or a tibble) from which variables specified are to
#' be taken. A matrix or tables will **not** be accepted.
#' @param x The grouping variable from the dataframe `data`.
#' @param y The response (a.k.a. outcome or dependent) variable from the
#' dataframe `data`.
#' @param conf.level Scalar between 0 and 1. If unspecified, the defaults return
#' `95%` lower and upper confidence intervals (`0.95`).
#' @param paired Logical that decides whether the experimental design is
#' repeated measures/within-subjects or between-subjects. The default is
#' `FALSE`.
#' @param effsize.type Type of effect size needed for *parametric* tests. The
#' argument can be `"biased"` (equivalent to `"d"` for Cohen's *d* for
#' **t-test**; `"partial_eta"` for partial eta-squared for **anova**) or
#' `"unbiased"` (equivalent to `"g"` Hedge's *g* for **t-test**;
#' `"partial_omega"` for partial omega-squared for **anova**)).
#' @param sphericity.correction Logical that decides whether to apply correction
#' to account for violation of sphericity in a repeated measures design ANOVA
#' (Default: `TRUE`).
#' @inheritParams expr_template
#' @param ... Additional arguments (currently ignored).
#' @inheritParams stats::oneway.test
#' @inheritParams effectsize::eta_squared
#'
#' @importFrom dplyr select rename matches
#' @importFrom rlang !! enquo eval_tidy expr ensym exec
#' @importFrom stats aov oneway.test
#' @importFrom ez ezANOVA
#' @importFrom effectsize eta_squared omega_squared
#' @importFrom broomExtra easystats_to_tidy_names
#'
#' @examples
#' \donttest{
#' # for reproducibility
#' set.seed(123)
#' library(statsExpressions)
#'
#' # -------------------- between-subjects ------------------------------
#'
#' # with defaults
#' statsExpressions::expr_anova_parametric(
#' data = ggplot2::msleep,
#' x = vore,
#' y = sleep_rem,
#' paired = FALSE,
#' k = 3
#' )
#'
#' # modifying the defaults
#' statsExpressions::expr_anova_parametric(
#' data = ggplot2::msleep,
#' x = vore,
#' y = sleep_rem,
#' paired = FALSE,
#' effsize.type = "eta",
#' partial = FALSE,
#' var.equal = TRUE
#' )
#'
#' # -------------------- repeated measures ------------------------------
#'
#' statsExpressions::expr_anova_parametric(
#' data = iris_long,
#' x = condition,
#' y = value,
#' paired = TRUE,
#' k = 4
#' )
#' }
#' @export
# function body
expr_anova_parametric <- function(data,
x,
y,
paired = FALSE,
k = 2L,
conf.level = 0.95,
effsize.type = "unbiased",
partial = TRUE,
var.equal = FALSE,
sphericity.correction = TRUE,
stat.title = NULL,
...) {
# make sure both quoted and unquoted arguments are allowed
c(x, y) %<-% c(rlang::ensym(x), rlang::ensym(y))
# for paired designs, variance is going to be equal across grouping levels
if (isTRUE(paired)) var.equal <- TRUE else sphericity.correction <- FALSE
# determine number of decimal places for both degrees of freedom
k.df1 <- ifelse(isTRUE(paired) && isTRUE(sphericity.correction), k, 0L)
k.df2 <- ifelse(isTRUE(var.equal) && isFALSE(sphericity.correction), 0L, k)
# figuring out which effect size to use
effsize.type <- effsize_type_switch(effsize.type)
# some of the effect sizes don't work properly for paired designs
if (isTRUE(paired)) partial <- TRUE
# omega
if (effsize.type == "unbiased") {
effsize <- "omega"
if (isTRUE(partial)) {
effsize.text <- quote(widehat(omega["p"]^2))
} else {
effsize.text <- quote(widehat(omega^2))
}
}
# eta
if (effsize.type == "biased") {
effsize <- "eta"
if (isTRUE(partial)) {
effsize.text <- quote(widehat(eta["p"]^2))
} else {
effsize.text <- quote(widehat(eta^2))
}
}
# ============================ data preparation ==========================
# have a proper cleanup with NA removal
data %<>%
long_to_wide_converter(
data = .,
x = {{ x }},
y = {{ y }},
paired = paired,
spread = FALSE
)
# -------------- within-subjects design --------------------------------
# properly removing NAs if it's a paired design
if (isTRUE(paired)) {
# sample size
sample_size <- length(unique(data$rowid))
n.text <- quote(italic("n")["pairs"])
# warn the user if
if (sample_size < nlevels(as.factor(data %>% dplyr::pull({{ x }})))) {
# no sphericity correction applied; adjust expression display accordingly
c(k.df1, k.df2, sphericity.correction) %<-% c(0L, 0L, FALSE)
# inform the user
message(cat(
ipmisc::red("Warning: "),
ipmisc::blue("No. of factor levels is greater than no. of observations per cell.\n"),
ipmisc::blue("No sphericity correction applied. Interpret results with caution.\n")
),
sep = ""
)
}
# run the ANOVA
ez_df <-
rlang::eval_tidy(rlang::expr(
ez::ezANOVA(
data = dplyr::mutate_if(.tbl = data, .predicate = is.character, .funs = as.factor) %>%
dplyr::mutate(.data = ., rowid = as.factor(rowid)),
dv = !!rlang::ensym(y),
wid = rowid,
within = !!rlang::ensym(x),
detailed = TRUE,
return_aov = TRUE
)
))
# list with results
if (isTRUE(sphericity.correction)) {
e_corr <- ez_df$`Sphericity Corrections`$GGe
stats_df <-
as_tibble(cbind.data.frame(
statistic = ez_df$ANOVA$F[2],
parameter1 = e_corr * ez_df$ANOVA$DFn[2],
parameter2 = e_corr * ez_df$ANOVA$DFd[2],
p.value = ez_df$`Sphericity Corrections`$`p[GG]`[[1]]
))
} else {
stats_df <-
as_tibble(cbind.data.frame(
statistic = ez_df$ANOVA$F[2],
parameter1 = ez_df$ANOVA$DFn[2],
parameter2 = ez_df$ANOVA$DFd[2],
p.value = ez_df$ANOVA$p[2]
))
}
# creating a standardized dataframe with effect size and its CIs
effsize_object <- ez_df$aov
}
# ------------------- between-subjects design ------------------------------
if (isFALSE(paired)) {
# sample size
sample_size <- nrow(data)
n.text <- quote(italic("n")["obs"])
# Welch's ANOVA run by default
stats_obj <-
stats::oneway.test(
formula = rlang::new_formula({{ y }}, {{ x }}),
data = data,
subset = NULL,
na.action = na.omit,
var.equal = var.equal
)
# tidy up the stats object
stats_df <-
suppressMessages(broomExtra::tidy(stats_obj)) %>%
dplyr::rename(parameter1 = dplyr::matches("^num"), parameter2 = dplyr::matches("^den"))
# creating a standardized dataframe with effect size and its CIs
effsize_object <-
stats::aov(
formula = rlang::new_formula({{ y }}, {{ x }}),
data = data,
na.action = na.omit
)
}
# ------------------- effect size computation ------------------------------
# function to compute effect sizes
if (effsize == "eta") {
.f <- effectsize::eta_squared
} else {
.f <- effectsize::omega_squared
}
# computing effect size
effsize_df <-
rlang::exec(
.fn = .f,
model = effsize_object,
partial = partial,
ci = conf.level
) %>%
broomExtra::easystats_to_tidy_names(.) %>%
dplyr::rename(estimate = dplyr::matches("eta|omega")) %>%
dplyr::filter(!is.na(estimate), !grepl(pattern = "Residuals", x = term, ignore.case = TRUE))
# test details
statistic.text <-
if (isTRUE(paired) || isTRUE(var.equal)) {
quote(italic("F")["Fisher"])
} else {
quote(italic("F")["Welch"])
}
# preparing subtitle
expr_template(
stat.title = stat.title,
no.parameters = 2L,
stats.df = stats_df,
effsize.df = effsize_df,
statistic.text = statistic.text,
effsize.text = effsize.text,
n = sample_size,
n.text = n.text,
conf.level = conf.level,
k = k,
k.parameter = k.df1,
k.parameter2 = k.df2
)
}
#' @title Making text subtitle for non-parametric ANOVA.
#' @name expr_anova_nonparametric
#'
#' @details For paired designs, the effect size is Kendall's coefficient of
#' concordance (*W*), while for between-subjects designs, the effect size is
#' epsilon-squared (for more, see `?rcompanion::epsilonSquared` and
#' `?rcompanion::kendallW`).
#'
#' @return For more details, see-
#' \url{https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html}
#'
#' @param conf.type A vector of character strings representing the type of
#' intervals required. The value should be any subset of the values `"norm"`,
#' `"basic"`, `"perc"`, `"bca"`. For more, see `?boot::boot.ci`.
#' @param nboot Number of bootstrap samples for computing confidence interval
#' for the effect size (Default: `100`).
#' @inheritParams expr_anova_parametric
#' @inheritParams expr_template
#'
#' @importFrom dplyr select
#' @importFrom rlang !! enquo
#' @importFrom stats friedman.test kruskal.test na.omit
#' @importFrom broomExtra tidy
#' @importFrom rcompanion epsilonSquared kendallW
#'
#' @examples
#' \donttest{
#' # setup
#' set.seed(123)
#' library(statsExpressions)
#'
#' # -------------- within-subjects design --------------------------------
#'
#' # creating the subtitle
#' statsExpressions::expr_anova_nonparametric(
#' data = bugs_long,
#' x = condition,
#' y = desire,
#' paired = TRUE,
#' conf.level = 0.99,
#' k = 2
#' )
#'
#' # -------------- between-subjects design --------------------------------
#'
#' statsExpressions::expr_anova_nonparametric(
#' data = ggplot2::msleep,
#' x = vore,
#' y = sleep_rem,
#' paired = FALSE,
#' conf.level = 0.99,
#' conf.type = "perc"
#' )
#' }
#' @export
# function body
expr_anova_nonparametric <- function(data,
x,
y,
paired = FALSE,
k = 2L,
conf.level = 0.95,
conf.type = "perc",
nboot = 100L,
stat.title = NULL,
...) {
# make sure both quoted and unquoted arguments are allowed
c(x, y) %<-% c(rlang::ensym(x), rlang::ensym(y))
# ============================ data preparation ==========================
# have a proper cleanup with NA removal
data %<>%
long_to_wide_converter(
data = .,
x = {{ x }},
y = {{ y }},
paired = paired,
spread = FALSE
)
# ------------------- within-subjects design ------------------------------
# properly removing NAs if it's a paired design
if (isTRUE(paired)) {
# setting up the anova model (`y ~ x | id`) and getting its summary
stats_df <-
broomExtra::tidy(
stats::friedman.test(
formula = rlang::new_formula(
{{ rlang::enexpr(y) }}, rlang::expr(!!rlang::enexpr(x) | rowid)
),
data = data,
na.action = na.omit
)
)
# details for expression creator
.f <- rcompanion::kendallW
arg_list <- list(
x = dplyr::select(long_to_wide_converter(data, {{ x }}, {{ y }}), -rowid),
correct = TRUE,
na.rm = TRUE
)
sample_size <- length(unique(data$rowid))
n.text <- quote(italic("n")["pairs"])
statistic.text <- quote(chi["Friedman"]^2)
effsize.text <- quote(widehat(italic("W"))["Kendall"])
}
# ------------------- between-subjects design ------------------------------
if (isFALSE(paired)) {
# setting up the anova model and getting its summary
stats_df <-
broomExtra::tidy(
stats::kruskal.test(
formula = rlang::new_formula({{ y }}, {{ x }}),
data = data,
na.action = na.omit
)
)
# details for expression creator
.f <- rcompanion::epsilonSquared
arg_list <- list(
x = data %>% dplyr::pull({{ y }}),
g = data %>% dplyr::pull({{ x }}),
group = "row",
reportIncomplete = FALSE
)
sample_size <- nrow(data)
n.text <- quote(italic("n")["obs"])
statistic.text <- quote(chi["Kruskal-Wallis"]^2)
effsize.text <- quote(widehat(epsilon^2))
}
# computing respective effect sizes
effsize_df <-
rlang::exec(
.fn = .f,
!!!arg_list,
ci = TRUE,
conf = conf.level,
type = conf.type,
R = nboot,
histogram = FALSE,
digits = 5
) %>%
rcompanion_cleaner(.)
# preparing subtitle
expr_template(
stat.title = stat.title,
no.parameters = 1L,
stats.df = stats_df,
effsize.df = effsize_df,
statistic.text = statistic.text,
effsize.text = effsize.text,
n = sample_size,
n.text = n.text,
conf.level = conf.level,
k = k
)
}
#' @title Expression containing results from heteroscedastic one-way ANOVA for
#' trimmed means
#' @name expr_anova_robust
#'
#' @return For more details, see-
#' \url{https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html}
#'
#' @param tr Trim level for the mean when carrying out `robust` tests. If you
#' get error stating "Standard error cannot be computed because of Winsorized
#' variance of 0 (e.g., due to ties). Try to decrease the trimming level.",
#' try to play around with the value of `tr`, which is by default set to
#' `0.1`. Lowering the value might help.
#' @inheritParams expr_anova_nonparametric
#' @inheritParams expr_template
#'
#' @importFrom dplyr select
#' @importFrom rlang !! enquo ensym as_name
#' @importFrom WRS2 rmanova t1way
#'
#' @examples
#'
#' \donttest{
#' # for reproducibility
#' set.seed(123)
#'
#' # ------------------------ between-subjects -----------------------------
#'
#' # going with the defaults
#' statsExpressions::expr_anova_robust(
#' data = ggplot2::midwest,
#' x = state,
#' y = percbelowpoverty,
#' paired = FALSE,
#' nboot = 10
#' )
#'
#' # changing defaults
#' expr_anova_robust(
#' data = ggplot2::midwest,
#' x = state,
#' y = percollege,
#' paired = FALSE,
#' conf.level = 0.99,
#' tr = 0.2,
#' nboot = 10
#' )
#'
#' # ------------------------ within-subjects -----------------------------
#'
#' statsExpressions::expr_anova_robust(
#' data = iris_long,
#' x = condition,
#' y = value,
#' paired = TRUE,
#' tr = 0.2,
#' k = 3
#' )
#' }
#' @export
# function body
expr_anova_robust <- function(data,
x,
y,
paired = FALSE,
k = 2L,
conf.level = 0.95,
tr = 0.1,
nboot = 100L,
stat.title = NULL,
...) {
# make sure both quoted and unquoted arguments are allowed
c(x, y) %<-% c(rlang::ensym(x), rlang::ensym(y))
# ============================ data preparation ==========================
# have a proper cleanup with NA removal
data %<>%
long_to_wide_converter(
data = .,
x = {{ x }},
y = {{ y }},
paired = paired,
spread = FALSE
)
# -------------- within-subjects design --------------------------------
# properly removing NAs if it's a paired design
if (isTRUE(paired)) {
# sample size
sample_size <- length(unique(data$rowid))
# test
stats_df <-
WRS2::rmanova(
y = data[[rlang::as_name(y)]],
groups = data[[rlang::as_name(x)]],
blocks = data[["rowid"]],
tr = tr
)
# preparing the subtitle
subtitle <-
substitute(
expr = paste(
italic("F")["trimmed-means"],
"(",
df1,
",",
df2,
") = ",
statistic,
", ",
italic("p"),
" = ",
p.value,
", ",
italic("n")["pairs"],
" = ",
n
),
env = list(
statistic = specify_decimal_p(x = stats_df$test[[1]], k = k),
df1 = specify_decimal_p(x = stats_df$df1[[1]], k = k),
df2 = specify_decimal_p(x = stats_df$df2[[1]], k = k),
p.value = specify_decimal_p(x = stats_df$p.value[[1]], k = k, p.value = TRUE),
n = sample_size
)
)
}
# -------------- between-subjects design --------------------------------
if (isFALSE(paired)) {
# sample size
sample_size <- nrow(data)
n.text <- quote(italic("n")["obs"])
# heteroscedastic one-way ANOVA for trimmed means
mod <-
WRS2::t1way(
formula = rlang::new_formula({{ y }}, {{ x }}),
data = data,
tr = tr,
alpha = 1 - conf.level,
nboot = nboot
)
# create a dataframe
stats_df <-
tibble(
statistic = mod$test[[1]],
parameter1 = mod$df1[[1]],
parameter2 = mod$df2[[1]],
p.value = mod$p.value[[1]],
estimate = mod$effsize[[1]],
conf.low = mod$effsize_ci[[1]],
conf.high = mod$effsize_ci[[2]]
)
# effect size dataframe
effsize_df <- stats_df
# preparing subtitle
subtitle <-
expr_template(
no.parameters = 2L,
stat.title = stat.title,
stats.df = stats_df,
effsize.df = effsize_df,
statistic.text = quote(italic("F")["trimmed-means"]),
effsize.text = quote(widehat(italic(xi))),
n = sample_size,
n.text = n.text,
conf.level = conf.level,
k = k,
k.parameter2 = k
)
}
# return the subtitle
return(subtitle)
}
#' @title Making expression containing Bayesian one-way ANOVA results.
#' @name expr_anova_bayes
#'
#' @return For more details, see-
#' \url{https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html}
#'
#' @inheritParams expr_anova_parametric
#' @inheritParams expr_t_bayes
#'
#' @importFrom tidyBF bf_oneway_anova
#'
#' @examples
#' \donttest{
#' set.seed(123)
#'
#' # between-subjects ---------------------------------------
#' # with defaults
#' statsExpressions::expr_anova_bayes(
#' data = ggplot2::msleep,
#' x = vore,
#' y = sleep_rem
#' )
#'
#' # modifying the defaults
#' statsExpressions::expr_anova_bayes(
#' data = ggplot2::msleep,
#' x = vore,
#' y = sleep_rem,
#' k = 3,
#' bf.prior = 0.8
#' )
#'
#' # repeated measures ---------------------------------------
#' statsExpressions::expr_anova_bayes(
#' data = WRS2::WineTasting,
#' x = Wine,
#' y = Taste,
#' paired = TRUE,
#' k = 4
#' )
#' }
#' @export
# function body
expr_anova_bayes <- function(data,
x,
y,
paired = FALSE,
bf.prior = 0.707,
k = 2L,
...) {
# bayes factor results
tidyBF::bf_oneway_anova(
data = data,
x = {{ x }},
y = {{ y }},
paired = paired,
bf.prior = bf.prior,
k = k,
output = "h1"
)$expr
}