diff --git a/CONDUCT.md b/CODE_OF_CONDUCT.md similarity index 95% rename from CONDUCT.md rename to CODE_OF_CONDUCT.md index 52a673e80..24aa0a3cd 100644 --- a/CONDUCT.md +++ b/CODE_OF_CONDUCT.md @@ -21,5 +21,5 @@ Instances of abusive, harassing, or otherwise unacceptable behavior may be repor opening an issue or contacting one or more of the project maintainers. This Code of Conduct is adapted from the Contributor Covenant -(http:contributor-covenant.org), version 1.0.0, available at +(http://contributor-covenant.org), version 1.0.0, available at http://contributor-covenant.org/version/1/0/0/ diff --git a/CRAN-RELEASE b/CRAN-RELEASE index 895080ed2..cb045fbe2 100644 --- a/CRAN-RELEASE +++ b/CRAN-RELEASE @@ -1,2 +1,2 @@ -This package was submitted to CRAN on 2019-03-17. -Once it is accepted, delete this file and tag the release (commit 972e711c4b). +This package was submitted to CRAN on 2019-06-14. +Once it is accepted, delete this file and tag the release (commit c4ad59643b). diff --git a/NAMESPACE b/NAMESPACE index 3c4c97b0b..2a9481c3d 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -203,7 +203,6 @@ importFrom(stats,na.omit) importFrom(stats,oneway.test) importFrom(stats,p.adjust) importFrom(stats,pairwise.t.test) -importFrom(stats,pchisq) importFrom(stats,pt) importFrom(stats,ptukey) importFrom(stats,qnorm) diff --git a/R/ggbarstats.R b/R/ggbarstats.R index 5c4611d0a..c0bf0e875 100644 --- a/R/ggbarstats.R +++ b/R/ggbarstats.R @@ -54,7 +54,7 @@ #' labels.legend = c("0 = V-shaped", "1 = straight"), #' legend.title = "Engine" #' ) -#' \dontrun{ +#' \donttest{ #' # simple function call with the defaults (with count data) #' library(jmv) #' diff --git a/R/ggbetweenstats.R b/R/ggbetweenstats.R index c802930e1..559faafb5 100644 --- a/R/ggbetweenstats.R +++ b/R/ggbetweenstats.R @@ -171,7 +171,7 @@ #' title = "Fuel efficiency by type of car transmission", #' caption = "Transmission (0 = automatic, 1 = manual)" #' ) -#' \dontrun{ +#' \donttest{ #' # more detailed function call #' ggstatsplot::ggbetweenstats( #' data = datasets::morley, diff --git a/R/ggcoefstats.R b/R/ggcoefstats.R index 98d53b102..e887e148f 100644 --- a/R/ggcoefstats.R +++ b/R/ggcoefstats.R @@ -204,7 +204,7 @@ #' ggstatsplot::ggcoefstats(x = mod, output = "augment") #' #' # -------------- with custom dataframe ----------------------------------- -#' \dontrun{ +#' \donttest{ #' # creating a dataframe #' df <- #' structure( diff --git a/R/grouped_ggbarstats.R b/R/grouped_ggbarstats.R index b772cc650..559adb9ec 100644 --- a/R/grouped_ggbarstats.R +++ b/R/grouped_ggbarstats.R @@ -26,7 +26,7 @@ #' #' @examples #' -#' \dontrun{ +#' \donttest{ #' # with condition and with count data #' library(jmv) #' diff --git a/R/grouped_ggbetweenstats.R b/R/grouped_ggbetweenstats.R index e17a85dae..a673e8803 100644 --- a/R/grouped_ggbetweenstats.R +++ b/R/grouped_ggbetweenstats.R @@ -40,7 +40,7 @@ #' grouping.var = drv, #' conf.level = 0.99 #' ) -#' \dontrun{ +#' \donttest{ #' # modifying individual plots using `ggplot.component` argument #' ggstatsplot::grouped_ggbetweenstats( #' data = dplyr::filter( diff --git a/R/grouped_ggpiestats.R b/R/grouped_ggpiestats.R index 585ab4652..6f9899aa6 100644 --- a/R/grouped_ggpiestats.R +++ b/R/grouped_ggpiestats.R @@ -42,7 +42,7 @@ #' ) #' #' # the following will take slightly more amount of time -#' \dontrun{ +#' \donttest{ #' # for reproducibility #' set.seed(123) #' diff --git a/R/grouped_ggscatterstats.R b/R/grouped_ggscatterstats.R index 9b52fb887..81461c20f 100644 --- a/R/grouped_ggscatterstats.R +++ b/R/grouped_ggscatterstats.R @@ -27,7 +27,7 @@ #' #' @examples #' -#' \dontrun{ +#' \donttest{ #' # to ensure reproducibility #' set.seed(123) #' diff --git a/R/helpers_effsize_ci.R b/R/helpers_effsize_ci.R index b159d709c..c6e320d8a 100644 --- a/R/helpers_effsize_ci.R +++ b/R/helpers_effsize_ci.R @@ -31,7 +31,8 @@ #' @importFrom stats na.omit #' #' @examples -#' \dontrun{ +#' +#' \donttest{ #' set.seed(123) #' ggstatsplot:::t1way_ci( #' data = dplyr::filter(ggplot2::msleep, vore != "insecti"), @@ -180,7 +181,8 @@ t1way_ci <- function(data, #' @importFrom stats na.omit #' #' @examples -#' \dontrun{ +#' +#' \donttest{ #' ggstatsplot:::yuend_ci( #' data = dplyr::filter( #' .data = ggstatsplot::iris_long, @@ -346,7 +348,8 @@ yuend_ci <- function(data, #' @importFrom stats na.omit #' #' @examples -#' \dontrun{ +#' +#' \donttest{ #' ggstatsplot:::robcor_ci( #' data = mtcars, #' x = "hp", @@ -486,7 +489,8 @@ robcor_ci <- function(data, #' @importFrom stats na.omit #' #' @examples -#' \dontrun{ +#' +#' \donttest{ #' ggstatsplot:::kw_eta_h_ci( #' data = ggplot2::msleep, #' x = vore, diff --git a/R/helpers_ggbetween_anova_subtitles.R b/R/helpers_ggbetween_anova_subtitles.R index e7ba1e920..4f6d40a20 100644 --- a/R/helpers_ggbetween_anova_subtitles.R +++ b/R/helpers_ggbetween_anova_subtitles.R @@ -482,7 +482,7 @@ subtitle_anova_nonparametric <- function(data, #' #' @examples #' -#' \dontrun{ +#' \donttest{ #' # for reproducibility #' set.seed(123) #' @@ -664,7 +664,7 @@ subtitle_anova_robust <- function(data, #' @importFrom sjstats eta_sq omega_sq #' #' @examples -#' \dontrun{ +#' \donttest{ #' set.seed(123) #' #' # between-subjects --------------------------------------- diff --git a/R/helpers_ggbetween_t_subtitles.R b/R/helpers_ggbetween_t_subtitles.R index 3f9a4abe6..8d886310f 100644 --- a/R/helpers_ggbetween_t_subtitles.R +++ b/R/helpers_ggbetween_t_subtitles.R @@ -219,7 +219,7 @@ subtitle_t_parametric <- function(data, #' below. #' #' @examples -#' \dontrun{ +#' \donttest{ #' set.seed(123) #' #' # -------------- between-subjects design ------------------------ @@ -693,7 +693,7 @@ subtitle_t_bayes <- function(data, #' } #' #' @examples -#' \dontrun{ +#' \donttest{ #' #---------------- two-sample test ------------------------------------ #' #' # creating a smaller dataset diff --git a/R/helpers_ggcatstats.R b/R/helpers_ggcatstats.R index 1d917e9c2..ef7a582df 100644 --- a/R/helpers_ggcatstats.R +++ b/R/helpers_ggcatstats.R @@ -20,10 +20,8 @@ #' #' @importFrom dplyr mutate #' @importFrom rlang !! := -#' @importFrom stats pchisq #' #' @examples -#' \dontrun{ #' #' # dataframe with label column #' ggstatsplot:::cat_label_df( @@ -32,8 +30,6 @@ #' label.content = "both", #' perc.k = 1 #' ) -#' } -#' #' @keywords internal # function body diff --git a/R/helpers_ggcoefstats.R b/R/helpers_ggcoefstats.R index 7c601aabb..c270feb9a 100644 --- a/R/helpers_ggcoefstats.R +++ b/R/helpers_ggcoefstats.R @@ -5,7 +5,7 @@ #' @inheritParams tfz_labeller #' #' @examples -#' \dontrun{ +#' \donttest{ #' # show all columns in output tibble #' options(tibble.width = Inf) #' @@ -753,7 +753,7 @@ subtitle_meta_ggcoefstats <- function(data, #' #' @examples #' -#' \dontrun{ +#' \donttest{ #' # setup #' set.seed(123) #' library(metaBMA) diff --git a/R/helpers_ggcorrmat.R b/R/helpers_ggcorrmat.R index a2d1d2d55..ff0ca6df1 100644 --- a/R/helpers_ggcorrmat.R +++ b/R/helpers_ggcorrmat.R @@ -13,7 +13,7 @@ #' @importFrom stats median #' #' @examples -#' \dontrun{ +#' \donttest{ #' ggstatsplot:::numdf_summary(ggplot2::msleep) #' } #' diff --git a/R/helpers_gghistostats.R b/R/helpers_gghistostats.R index e2c78eb30..b83f1c3cb 100644 --- a/R/helpers_gghistostats.R +++ b/R/helpers_gghistostats.R @@ -112,7 +112,7 @@ line_labeller <- function(plot, #' for centrality parameter label. (Default: `2`). #' #' @examples -#' \dontrun{ +#' \donttest{ #' library(ggplot2) #' #' # creating a ploton which lines and labels are to be superposed diff --git a/R/helpers_messages.R b/R/helpers_messages.R index 605bca89e..092921ef1 100644 --- a/R/helpers_messages.R +++ b/R/helpers_messages.R @@ -202,14 +202,11 @@ grouped_message <- function() { #' @family helper_messages #' #' @examples -#' \dontrun{ #' ggstatsplot:::palette_message( #' package = "RColorBrewer", #' palette = "Dark2", #' min_length = 20 #' ) -#' } -#' #' @keywords internal # function body @@ -295,7 +292,7 @@ effsize_ci_message <- function(nboot = 100, conf.level = 0.95) { #' contingency table analyses. #' #' @examples -#' \dontrun{ +#' \donttest{ #' ggstatsplot:::proptest_message(main = "am", condition = "cyl") #' } #' diff --git a/R/helpers_pairwise_comparison.R b/R/helpers_pairwise_comparison.R index 4946497b0..f7913af7f 100644 --- a/R/helpers_pairwise_comparison.R +++ b/R/helpers_pairwise_comparison.R @@ -185,7 +185,7 @@ games_howell <- function(data, #' @examples #' #' # time consuming, so not run on `CRAN` machines -#' \dontrun{ +#' \donttest{ #' # show all columns in a tibble #' options(tibble.width = Inf) #' diff --git a/R/kendall_w_ci.R b/R/kendall_w_ci.R index b4f3ee5bf..db9ffc031 100644 --- a/R/kendall_w_ci.R +++ b/R/kendall_w_ci.R @@ -12,13 +12,10 @@ #' @param ... Additional arguments (currently ignored). #' #' @examples -#' \dontrun{ #' set.seed(123) #' library(jmv) #' data("bugs", package = "jmv") #' ggstatsplot:::kendall_w_ci(dplyr::select(bugs, LDLF:HDHF)) -#' } -#' #' @keywords internal kendall_w_ci <- function(data, diff --git a/README.Rmd b/README.Rmd index 47c02f93c..f214e2242 100644 --- a/README.Rmd +++ b/README.Rmd @@ -14,13 +14,13 @@ knitr::opts_chunk$set( ) ``` -# ggstatsplot: `ggplot2` Based Plots with Statistical Details +# `ggstatsplot`: `ggplot2` Based Plots with Statistical Details Package | Status | Usage | GitHub | References ----------------- | ----------------- | ----------------- | ----------------- | ----------------- [![CRAN_Release_Badge](http://www.r-pkg.org/badges/version-ago/ggstatsplot)](https://CRAN.R-project.org/package=ggstatsplot) | [![Travis Build Status](https://travis-ci.org/IndrajeetPatil/ggstatsplot.svg?branch=master)](https://travis-ci.org/IndrajeetPatil/ggstatsplot) | [![Daily downloads badge](https://cranlogs.r-pkg.org/badges/last-day/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![GitHub version](https://img.shields.io/badge/GitHub-0.0.11.9000-orange.svg?style=flat-square)](https://github.com/IndrajeetPatil/ggstatsplot/) | [![Website](https://img.shields.io/badge/website-ggstatsplot-orange.svg?colorB=E91E63)](https://indrajeetpatil.github.io/ggstatsplot/) [![CRAN Checks](https://cranchecks.info/badges/summary/ggstatsplot)](https://cran.r-project.org/web/checks/check_results_ggstatsplot.html) | [![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/IndrajeetPatil/ggstatsplot?branch=master&svg=true)](https://ci.appveyor.com/project/IndrajeetPatil/ggstatsplot) | [![Weekly downloads badge](https://cranlogs.r-pkg.org/badges/last-week/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Forks](https://img.shields.io/badge/forks-`r itdepends:::get_github_info("ggstatsplot")$forks[[1]]`-blue.svg)](https://github.com/IndrajeetPatil/ggstatsplot/) | [![Rdoc](https://www.rdocumentation.org/badges/version/ggstatsplot)](https://www.rdocumentation.org/packages/ggstatsplot) -[![minimal R version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-project.org/) | [![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/) | [![Monthly downloads badge](https://cranlogs.r-pkg.org/badges/last-month/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Issues](https://img.shields.io/badge/issues-`r itdepends:::get_github_info("ggstatsplot")$open_issues[[1]]`-red.svg)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | [![vignettes](https://img.shields.io/badge/vignettes-0.0.11-orange.svg?colorB=FF5722)](https://cran.r-project.org/web/packages/ggstatsplot/vignettes/) +[![minimal R version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-project.org/) | [![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/) | [![Monthly downloads badge](https://cranlogs.r-pkg.org/badges/last-month/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Issues](https://img.shields.io/badge/issues-`r itdepends:::get_github_info("ggstatsplot")$open_issues[[1]]`-red.svg)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | [![vignettes](https://img.shields.io/badge/vignettes-0.0.11-orange.svg?colorB=FF5722)](https://CRAN.R-project.org/package=ggstatsplot/vignettes/) [![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/IndrajeetPatil/ggstatsplot.svg)](https://github.com/IndrajeetPatil/ggstatsplot) | [![Coverage Status](https://coveralls.io/repos/github/IndrajeetPatil/ggstatsplot/badge.svg?branch=master)](https://coveralls.io/github/IndrajeetPatil/ggstatsplot?branch=master) | [![Total downloads badge](https://cranlogs.r-pkg.org/badges/grand-total/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Stars](https://img.shields.io/github/stars/IndrajeetPatil/ggstatsplot.svg?style=social&label=Github)](https://github.com/IndrajeetPatil/ggstatsplot) | [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2074621.svg)](https://doi.org/10.5281/zenodo.2074621) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html) | [![Codecov test coverage](https://codecov.io/gh/IndrajeetPatil/ggstatsplot/branch/master/graph/badge.svg)](https://codecov.io/gh/IndrajeetPatil/ggstatsplot?branch=master) | [![HitCount](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot.svg)](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot) | [![Last-changedate](https://img.shields.io/badge/last%20change-`r gsub('-', '--', Sys.Date())`-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | [![GitHub last commit](https://img.shields.io/github/last-commit/IndrajeetPatil/ggstatsplot.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) [![status](https://tinyverse.netlify.com/badge/ggstatsplot)](https://CRAN.R-project.org/package=ggstatsplot) | [![Covrpage Summary](https://img.shields.io/badge/covrpage-Last_Build_2019_05_25-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/blob/master/tests/README.md) | [![saythanks](https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg)](https://saythanks.io/to/IndrajeetPatil) | [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) | [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/IndrajeetPatil/ggstatsplot/issues) @@ -230,11 +230,10 @@ Here are examples of the main functions currently supported in `ggstatsplot`. **Note**: If you are reading this on GitHub repository, the documentation below is for the **development** version of the package. So you may see some features available here that are not currently present in the stable version of this -package on **CRAN**. For documentation relevant for the CRAN version, see: +package on **CRAN**. For documentation relevant for the `CRAN` version, see: - - vignettes: - - README: - + - vignettes: + - README: ## `ggbetweenstats` diff --git a/README.md b/README.md index f6b8e2889..da4b01a37 100644 --- a/README.md +++ b/README.md @@ -1,15 +1,15 @@ -# ggstatsplot: `ggplot2` Based Plots with Statistical Details +# `ggstatsplot`: `ggplot2` Based Plots with Statistical Details | Package | Status | Usage | GitHub | References | | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | | [![CRAN\_Release\_Badge](http://www.r-pkg.org/badges/version-ago/ggstatsplot)](https://CRAN.R-project.org/package=ggstatsplot) | [![Travis Build Status](https://travis-ci.org/IndrajeetPatil/ggstatsplot.svg?branch=master)](https://travis-ci.org/IndrajeetPatil/ggstatsplot) | [![Daily downloads badge](https://cranlogs.r-pkg.org/badges/last-day/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![GitHub version](https://img.shields.io/badge/GitHub-0.0.11.9000-orange.svg?style=flat-square)](https://github.com/IndrajeetPatil/ggstatsplot/) | [![Website](https://img.shields.io/badge/website-ggstatsplot-orange.svg?colorB=E91E63)](https://indrajeetpatil.github.io/ggstatsplot/) | | [![CRAN Checks](https://cranchecks.info/badges/summary/ggstatsplot)](https://cran.r-project.org/web/checks/check_results_ggstatsplot.html) | [![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/IndrajeetPatil/ggstatsplot?branch=master&svg=true)](https://ci.appveyor.com/project/IndrajeetPatil/ggstatsplot) | [![Weekly downloads badge](https://cranlogs.r-pkg.org/badges/last-week/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Forks](https://img.shields.io/badge/forks-55-blue.svg)](https://github.com/IndrajeetPatil/ggstatsplot/) | [![Rdoc](https://www.rdocumentation.org/badges/version/ggstatsplot)](https://www.rdocumentation.org/packages/ggstatsplot) | -| [![minimal R version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-project.org/) | [![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/) | [![Monthly downloads badge](https://cranlogs.r-pkg.org/badges/last-month/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Issues](https://img.shields.io/badge/issues-15-red.svg)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | [![vignettes](https://img.shields.io/badge/vignettes-0.0.11-orange.svg?colorB=FF5722)](https://cran.r-project.org/web/packages/ggstatsplot/vignettes/) | +| [![minimal R version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-project.org/) | [![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/) | [![Monthly downloads badge](https://cranlogs.r-pkg.org/badges/last-month/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Issues](https://img.shields.io/badge/issues-16-red.svg)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | [![vignettes](https://img.shields.io/badge/vignettes-0.0.11-orange.svg?colorB=FF5722)](https://CRAN.R-project.org/package=ggstatsplot/vignettes/) | | [![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/IndrajeetPatil/ggstatsplot.svg)](https://github.com/IndrajeetPatil/ggstatsplot) | [![Coverage Status](https://coveralls.io/repos/github/IndrajeetPatil/ggstatsplot/badge.svg?branch=master)](https://coveralls.io/github/IndrajeetPatil/ggstatsplot?branch=master) | [![Total downloads badge](https://cranlogs.r-pkg.org/badges/grand-total/ggstatsplot?color=blue)](https://CRAN.R-project.org/package=ggstatsplot) | [![Github Stars](https://img.shields.io/github/stars/IndrajeetPatil/ggstatsplot.svg?style=social&label=Github)](https://github.com/IndrajeetPatil/ggstatsplot) | [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2074621.svg)](https://doi.org/10.5281/zenodo.2074621) | -| [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html) | [![Codecov test coverage](https://codecov.io/gh/IndrajeetPatil/ggstatsplot/branch/master/graph/badge.svg)](https://codecov.io/gh/IndrajeetPatil/ggstatsplot?branch=master) | [![HitCount](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot.svg)](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot) | [![Last-changedate](https://img.shields.io/badge/last%20change-2019--06--12-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | [![GitHub last commit](https://img.shields.io/github/last-commit/IndrajeetPatil/ggstatsplot.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | +| [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html) | [![Codecov test coverage](https://codecov.io/gh/IndrajeetPatil/ggstatsplot/branch/master/graph/badge.svg)](https://codecov.io/gh/IndrajeetPatil/ggstatsplot?branch=master) | [![HitCount](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot.svg)](http://hits.dwyl.io/IndrajeetPatil/ggstatsplot) | [![Last-changedate](https://img.shields.io/badge/last%20change-2019--06--14-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | [![GitHub last commit](https://img.shields.io/github/last-commit/IndrajeetPatil/ggstatsplot.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | | [![status](https://tinyverse.netlify.com/badge/ggstatsplot)](https://CRAN.R-project.org/package=ggstatsplot) | [![Covrpage Summary](https://img.shields.io/badge/covrpage-Last_Build_2019_05_25-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/blob/master/tests/README.md) | [![saythanks](https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg)](https://saythanks.io/to/IndrajeetPatil) | [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) | [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | | [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/ggstatsplot/community) | [![Dependency Status](https://dependencyci.com/github/IndrajeetPatil/ggstatsplot/badge)](https://dependencyci.com/github/IndrajeetPatil/ggstatsplot) | | | | @@ -203,7 +203,7 @@ ggstatsplot::ggplot_converter #> # returning the converted plot #> return(p) #> } -#> +#> #> ``` @@ -238,12 +238,12 @@ Here are examples of the main functions currently supported in documentation below is for the **development** version of the package. So you may see some features available here that are not currently present in the stable version of this package on **CRAN**. For -documentation relevant for the CRAN version, see: +documentation relevant for the `CRAN` version, see: - vignettes: - + - README: - + ## `ggbetweenstats` diff --git a/Rplots.pdf b/Rplots.pdf index a5ab960ea..96d8ce577 100644 Binary files a/Rplots.pdf and b/Rplots.pdf differ diff --git a/codemeta.json b/codemeta.json index 095588a69..862727a41 100644 --- a/codemeta.json +++ b/codemeta.json @@ -725,7 +725,9 @@ "tidy-data", "effect-size", "mixed-models", - "statistical-measures" + "statistical-measures", + "robust-statistics", + "non-parametric-statistics" ], "citation": [ { diff --git a/cran-comments.md b/cran-comments.md index f01cb6d19..79290377f 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,10 +1,18 @@ ## Test environments * local OS X install, R 3.6.0 -* ubuntu 14.04 (on travis-ci), R 3.6.0 +* ubuntu 14.04 on travis-ci (devel and release) * win-builder (devel and release) ## R CMD check results -0 errors | 0 warnings | 0 note - +0 errors | 0 warnings | 1 note + - On both LINUX and Windows architectures, the CHECK returns one `NOTE` + because the `help` sub-directory is above the `1MB` threshold. This is + because graphics images in the `README` file are being saved in this + directory. I can reduce the `dpi` to get rid of this `NOTE`, but this would + lead to loss of important details in the plots that I would want the + user/reader to appreciate and I would therefore like to retain the current + high-res (`dpi = 200`) images. + - Replaced `\dontrun{}` with ` \donttest{}` in all `.Rd` files. + - All `CRAN`-releated URL linkes in the recommended format now. diff --git a/docs/CODE_OF_CONDUCT.html b/docs/CODE_OF_CONDUCT.html new file mode 100644 index 000000000..c5abfcac7 --- /dev/null +++ b/docs/CODE_OF_CONDUCT.html @@ -0,0 +1,222 @@ + + + + + + + + +Contributor Code of Conduct • ggstatsplot + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ +
+
+ + +
+ +

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

+

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

+

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory comments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

+

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the Code of Conduct may be removed from the project team.

+

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

+

This Code of Conduct is adapted from the Contributor Covenant (http://contributor-covenant.org), version 1.0.0, available at http://contributor-covenant.org/version/1/0/0/

+
+ +
+ +
+ + + +
+ + + + + + + + + diff --git a/docs/index.html b/docs/index.html index bbedc7b44..14d31d0d9 100644 --- a/docs/index.html +++ b/docs/index.html @@ -147,7 +147,7 @@

+ggstatsplot: ggplot2 Based Plots with Statistical Details
@@ -182,8 +182,8 @@ - - + + @@ -196,7 +196,7 @@ - + @@ -485,7 +485,7 @@

#> # returning the converted plot #> return(p) #> } -#> <bytecode: 0x00000000367db5c0> +#> <bytecode: 0x0000000036290b40> #> <environment: namespace:ggstatsplot>

If you are not familiar either with what the namespace :: does or how to use pipe operator %>%, something this package and its documentation relies a lot on, you can check out these links-

    @@ -499,11 +499,11 @@

    ggstatsplot relies on non-standard evaluation (NSE), i.e., rather than looking at the values of arguments (x, y), it instead looks at their expressions. This means that you shouldn’t enter arguments with the $ operator and setting data = NULL: data = NULL, x = data$x, y = data$y. You must always specify the data argument for all functions. On the plus side, you can enter arguments either as a string (x = "x", y = "y") or as a bare expression (x = x, y = y) and it wouldn’t matter. To read more about NSE, see- http://adv-r.had.co.nz/Computing-on-the-language.html

    ggstatsplot is a very chatty package and will by default print helpful notes on assumptions about linear models, warnings, etc. If you don’t want your console to be cluttered with such messages, they can be turned off by setting argument messages = FALSE in the function call.

    Here are examples of the main functions currently supported in ggstatsplot.

    -

    Note: If you are reading this on GitHub repository, the documentation below is for the development version of the package. So you may see some features available here that are not currently present in the stable version of this package on CRAN. For documentation relevant for the CRAN version, see:

    +

    Note: If you are reading this on GitHub repository, the documentation below is for the development version of the package. So you may see some features available here that are not currently present in the stable version of this package on CRAN. For documentation relevant for the CRAN version, see:

    @@ -1714,6 +1714,7 @@

    License

    Community

    diff --git a/docs/reference/bf_meta_message.html b/docs/reference/bf_meta_message.html index b60a8b23a..64d2afbc8 100644 --- a/docs/reference/bf_meta_message.html +++ b/docs/reference/bf_meta_message.html @@ -269,14 +269,14 @@

    Examp ), row.names = c(NA, -5L), class = c("tbl_df", "tbl", "data.frame") - ))

    #> # A tibble: 5 x 3 + ))
    #> # A tibble: 5 x 3 #> study estimate std.error -#> <chr> <dbl> <dbl> -#> 1 1 0.382 0.0466 -#> 2 2 0.781 0.0330 -#> 3 3 0.426 0.0363 -#> 4 4 0.558 0.0481 -#> 5 5 0.956 0.0622
    +#> <chr> <dbl> <dbl> +#> 1 1 0.382 0.0466 +#> 2 2 0.781 0.0330 +#> 3 3 0.426 0.0363 +#> 4 4 0.558 0.0481 +#> 5 5 0.956 0.0622
    # getting bayes factor in favor of null hypothesis ggstatsplot::bf_meta_message( data = df, diff --git a/docs/reference/cat_label_df.html b/docs/reference/cat_label_df.html index 26c13adc8..e8bf36cd8 100644 --- a/docs/reference/cat_label_df.html +++ b/docs/reference/cat_label_df.html @@ -232,16 +232,16 @@

    Examp label.col.name = "slice.label", label.content = "both", perc.k = 1 -)

    #> # A tibble: 6 x 5 +)
    #> # A tibble: 6 x 5 #> cyl am counts perc slice.label -#> <dbl> <dbl> <int> <dbl> <chr> -#> 1 4 1 8 72.7 "n = 8\n(72.7%)" -#> 2 6 1 3 42.9 n = 3 (42.9%) -#> 3 8 1 2 14.3 "n = 2\n(14.3%)" -#> 4 4 0 3 27.3 n = 3 (27.3%) -#> 5 6 0 4 57.1 "n = 4\n(57.1%)" -#> 6 8 0 12 85.7 n = 12 (85.7%)
    -
    +#> <dbl> <dbl> <int> <dbl> <chr> +#> 1 4 1 8 72.7 "n = 8\n(72.7%)" +#> 2 6 1 3 42.9 n = 3 (42.9%) +#> 3 8 1 2 14.3 "n = 2\n(14.3%)" +#> 4 4 0 3 27.3 n = 3 (27.3%) +#> 5 6 0 4 57.1 "n = 4\n(57.1%)" +#> 6 8 0 12 85.7 n = 12 (85.7%)
    +
    #> # A tibble: 1 x 9 +)
    #> # A tibble: 1 x 9 #> method estimate conf.low conf.high conf.level alternative paired noncentral -#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> -#> 1 Hedge~ 0.614 -0.223 1.32 0.95 two.sided FALSE TRUE -#> # ... with 1 more variable: var.equal <lgl>
    +#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> +#> 1 Hedge~ 0.614 -0.223 1.32 0.95 two.sided FALSE TRUE +#> # ... with 1 more variable: var.equal <lgl>
    # changing defaults tobj2 <- t.test( formula = sleep_rem ~ vore, @@ -309,11 +309,11 @@

    Examp conf.level = .99, noncentral = FALSE, tobject = tobj2 -)

    #> # A tibble: 1 x 9 +)
    #> # A tibble: 1 x 9 #> method estimate conf.low conf.high conf.level alternative paired noncentral -#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> -#> 1 Hedge~ 0.614 -0.582 1.81 0.99 two.sided FALSE FALSE -#> # ... with 1 more variable: var.equal <lgl>
    +#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <lgl> +#> 1 Hedge~ 0.614 -0.582 1.81 0.99 two.sided FALSE FALSE +#> # ... with 1 more variable: var.equal <lgl>
    #---------------- one-sample test ------------------------------------ tobj3 <- t.test( @@ -329,11 +329,11 @@

    Examp conf.level = .90, noncentral = TRUE, tobject = tobj3 -)

    #> # A tibble: 1 x 9 +)
    #> # A tibble: 1 x 9 #> method estimate conf.low conf.high conf.level alternative paired noncentral -#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <lgl> -#> 1 Hedge~ -0.269 -0.570 0.0140 0.9 two.sided NA TRUE -#> # ... with 1 more variable: var.equal <lgl>
    +#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <lgl> +#> 1 Hedge~ -0.269 -0.570 0.0140 0.9 two.sided NA TRUE +#> # ... with 1 more variable: var.equal <lgl>
    #> Note: Results from one-sample proportion tests for each #> level of the variable cyl testing for equal #> proportions of the variable vs. -#>
    #>
    #> # A tibble: 3 x 7 +#>
    #>
    #> # A tibble: 3 x 7 #> condition `0` `1` `Chi-squared` df `p-value` significance -#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <chr> -#> 1 4 9.09% 90.91% 7.36 1 0.007 ** -#> 2 6 42.86% 57.14% 0.143 1 0.705 ns -#> 3 8 100.00% NA 14 1 0 ***
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 10 bootstrap samples. +#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <chr> +#> 1 4 9.09% 90.91% 7.36 1 0.007 ** +#> 2 6 42.86% 57.14% 0.143 1 0.705 ns +#> 3 8 100.00% NA 14 1 0 ***
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 10 bootstrap samples. #>
    #>
    # simple function call with the defaults (with count data) library(jmv)
    #> -#> Attaching package: 'jmv'
    #> The following object is masked from 'package:stats': +#> Attaching package: ‘jmv’
    #> The following object is masked from ‘package:stats’: #> #> anova
    ggstatsplot::ggbarstats( @@ -497,13 +497,13 @@

    Examp )

    #> Note: Results from one-sample proportion tests for each #> level of the variable Hair testing for equal #> proportions of the variable Eye. -#>
    #>
    #> # A tibble: 4 x 9 +#>
    #>
    #> # A tibble: 4 x 9 #> condition Brown Blue Hazel Green `Chi-squared` df `p-value` significance -#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> -#> 1 Black 62.96% 18.52% 13.8~ 4.63% 87.3 3 0 *** -#> 2 Brown 41.61% 29.37% 18.8~ 10.1~ 63.3 3 0 *** -#> 3 Red 36.62% 23.94% 19.7~ 19.7~ 5.45 3 0.142 ns -#> 4 Blond 5.51% 74.02% 7.87% 12.6~ 164. 3 0 *** +#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> +#> 1 Black 62.96% 18.52% 13.8~ 4.63% 87.3 3 0 *** +#> 2 Brown 41.61% 29.37% 18.8~ 10.1~ 63.3 3 0 *** +#> 3 Red 36.62% 23.94% 19.7~ 19.7~ 5.45 3 0.142 ns +#> 4 Blond 5.51% 74.02% 7.87% 12.6~ 164. 3 0 *** #> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples. #>
    #>
    diff --git a/docs/reference/ggbetweenstats-1.png b/docs/reference/ggbetweenstats-1.png index f1c62da66..9989fedf2 100644 Binary files a/docs/reference/ggbetweenstats-1.png and b/docs/reference/ggbetweenstats-1.png differ diff --git a/docs/reference/ggbetweenstats-2.png b/docs/reference/ggbetweenstats-2.png index 28d58c13d..065c71909 100644 Binary files a/docs/reference/ggbetweenstats-2.png and b/docs/reference/ggbetweenstats-2.png differ diff --git a/docs/reference/ggbetweenstats.html b/docs/reference/ggbetweenstats.html index a84b018a9..96934ccb6 100644 --- a/docs/reference/ggbetweenstats.html +++ b/docs/reference/ggbetweenstats.html @@ -592,20 +592,20 @@

    Examp ggtheme = ggplot2::theme_grey(), ggstatsplot.layer = FALSE )
    #> Note: 99% CI for effect size estimate was computed with 10 bootstrap samples. -#>
    #>
    #> # A tibble: 10 x 9 +#>
    #>
    #> # A tibble: 10 x 9 #> group1 group2 mean.difference se t.value df p.value significance -#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 1 2 -53 19.2 1.95 30.6 0.72 ns -#> 2 1 3 -64 20.8 2.18 35.3 0.703 ns -#> 3 1 4 -88.5 19.1 3.27 30.2 0.21 ns -#> 4 1 5 -77.5 18.7 2.94 28.5 0.235 ns -#> 5 2 3 -11 15.8 0.492 35.7 0.988 ns -#> 6 2 4 -35.5 13.6 1.85 38.0 0.72 ns -#> 7 2 5 -24.5 12.9 1.34 37.5 0.988 ns -#> 8 3 4 -24.5 15.7 1.10 35.4 0.988 ns -#> 9 3 5 -13.5 15.2 0.63 33.6 0.988 ns -#> 10 4 5 11 12.8 0.608 37.6 0.988 ns -#> # ... with 1 more variable: p.value.label <chr> +#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 1 2 -53 19.2 1.95 30.6 0.72 ns +#> 2 1 3 -64 20.8 2.18 35.3 0.703 ns +#> 3 1 4 -88.5 19.1 3.27 30.2 0.21 ns +#> 4 1 5 -77.5 18.7 2.94 28.5 0.235 ns +#> 5 2 3 -11 15.8 0.492 35.7 0.988 ns +#> 6 2 4 -35.5 13.6 1.85 38.0 0.72 ns +#> 7 2 5 -24.5 12.9 1.34 37.5 0.988 ns +#> 8 3 4 -24.5 15.7 1.10 35.4 0.988 ns +#> 9 3 5 -13.5 15.2 0.63 33.6 0.988 ns +#> 10 4 5 11 12.8 0.608 37.6 0.988 ns +#> # ... with 1 more variable: p.value.label <chr> #> Note: Shapiro-Wilk Normality Test for Speed-of-light measurement : p-value = 0.514
    #>
    #> Note: Bartlett's test for homogeneity of variances for factor The experiment number : p-value = 0.021
    #>
    # to get a tidy dataframe -ggstatsplot::ggcoefstats(x = mod, output = "tidy")
    #> # A tibble: 3 x 12 +ggstatsplot::ggcoefstats(x = mod, output = "tidy")
    #> # A tibble: 3 x 12 #> term estimate conf.low conf.high std.error statistic p.value significance -#> <fct> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> -#> 1 cyl -1.98 -2.89 -1.06 0.449 -4.40 1.41e-4 *** -#> 2 am 10.2 1.36 19.0 4.30 2.36 2.53e-2 * -#> 3 cyl:~ -1.31 -2.75 0.143 0.707 -1.85 7.55e-2 ns -#> # ... with 4 more variables: p.value.formatted <chr>, p.value.formatted2 <chr>, -#> # df.residual <int>, label <chr>
    +#> <fct> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> +#> 1 cyl -1.98 -2.89 -1.06 0.449 -4.40 1.41e-4 *** +#> 2 am 10.2 1.36 19.0 4.30 2.36 2.53e-2 * +#> 3 cyl:~ -1.31 -2.75 0.143 0.707 -1.85 7.55e-2 ns +#> # ... with 4 more variables: p.value.formatted <chr>, p.value.formatted2 <chr>, +#> # df.residual <int>, label <chr>
    # to get a glance summary -ggstatsplot::ggcoefstats(x = mod, output = "glance")
    #> # A tibble: 1 x 12 +ggstatsplot::ggcoefstats(x = mod, output = "glance")
    #> # A tibble: 1 x 12 #> r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC -#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 0.785 0.762 2.94 34.1 1.73e-9 3 -77.8 166. 173. -#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
    +#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 0.785 0.762 2.94 34.1 1.73e-9 3 -77.8 166. 173. +#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
    # to get augmented dataframe -ggstatsplot::ggcoefstats(x = mod, output = "augment")
    #> # A tibble: 32 x 10 +ggstatsplot::ggcoefstats(x = mod, output = "augment")
    #> # A tibble: 32 x 10 #> .rownames mpg cyl am .fitted .resid .std.resid .hat .sigma .cooksd -#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 Mazda RX4 21 6 1 21.4 0.364 -0.131 0.106 2.99 5.10e-4 -#> 2 Mazda RX4 ~ 21 6 1 21.4 0.364 -0.131 0.106 2.99 5.10e-4 -#> 3 Datsun 710 22.8 4 1 27.9 5.13 -1.86 0.117 2.80 1.14e-1 -#> 4 Hornet 4 D~ 21.4 6 0 19.0 -2.38 0.842 0.0735 2.96 1.41e-2 -#> 5 Hornet Spo~ 18.7 8 0 15.1 -3.63 1.29 0.0784 2.90 3.53e-2 -#> 6 Valiant 18.1 6 0 19.0 0.919 -0.325 0.0735 2.99 2.09e-3 -#> 7 Duster 360 14.3 8 0 15.1 0.768 -0.272 0.0784 2.99 1.57e-3 -#> 8 Merc 240D 24.4 4 0 23.0 -1.43 0.563 0.255 2.98 2.71e-2 -#> 9 Merc 230 22.8 4 0 23.0 0.171 -0.0672 0.255 2.99 3.87e-4 -#> 10 Merc 280 19.2 6 0 19.0 -0.181 0.0639 0.0735 2.99 8.11e-5 -#> # ... with 22 more rows
    +#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 Mazda RX4 21 6 1 21.4 0.364 -0.131 0.106 2.99 5.10e-4 +#> 2 Mazda RX4 ~ 21 6 1 21.4 0.364 -0.131 0.106 2.99 5.10e-4 +#> 3 Datsun 710 22.8 4 1 27.9 5.13 -1.86 0.117 2.80 1.14e-1 +#> 4 Hornet 4 D~ 21.4 6 0 19.0 -2.38 0.842 0.0735 2.96 1.41e-2 +#> 5 Hornet Spo~ 18.7 8 0 15.1 -3.63 1.29 0.0784 2.90 3.53e-2 +#> 6 Valiant 18.1 6 0 19.0 0.919 -0.325 0.0735 2.99 2.09e-3 +#> 7 Duster 360 14.3 8 0 15.1 0.768 -0.272 0.0784 2.99 1.57e-3 +#> 8 Merc 240D 24.4 4 0 23.0 -1.43 0.563 0.255 2.98 2.71e-2 +#> 9 Merc 230 22.8 4 0 23.0 0.171 -0.0672 0.255 2.99 3.87e-4 +#> 10 Merc 280 19.2 6 0 19.0 -0.181 0.0639 0.0735 2.99 8.11e-5 +#> # ... with 22 more rows
    # -------------- with custom dataframe -----------------------------------
    # creating a dataframe df <- @@ -743,10 +743,10 @@

    Examp ) # dataframe with model summary -ggstatsplot::ggcoefstats(x = lmm1, output = "glance")

    #> Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
    #> # A tibble: 1 x 6 +ggstatsplot::ggcoefstats(x = lmm1, output = "glance")
    #> Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
    #> # A tibble: 1 x 6 #> sigma logLik AIC BIC REMLcrit df.residual -#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> -#> 1 25.6 -872. 1756. 1775. 1744. 174
    +#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> +#> 1 25.6 -872. 1756. 1775. 1744. 174
    # -------------- getting augmented dataframe ------------------------------ # setup @@ -763,21 +763,21 @@

    Examp data = lung, output = "augment", type.predict = "risk" -)

    #> # A tibble: 228 x 13 +)
    #> # A tibble: 228 x 13 #> inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss -#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 3 306 2 74 1 1 90 100 1175 NA -#> 2 3 455 2 68 1 0 90 90 1225 15 -#> 3 3 1010 1 56 1 0 90 90 NA 15 -#> 4 5 210 2 57 1 1 90 60 1150 11 -#> 5 1 883 2 60 1 0 100 90 NA 0 -#> 6 12 1022 1 74 1 1 50 80 513 0 -#> 7 7 310 2 68 2 2 70 60 384 10 -#> 8 11 361 2 71 2 2 60 80 538 1 -#> 9 1 218 2 53 1 1 70 80 825 16 -#> 10 7 166 2 61 1 2 70 70 271 34 -#> # ... with 218 more rows, and 3 more variables: .fitted <dbl>, .se.fit <dbl>, -#> # .resid <dbl>
    +#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 3 306 2 74 1 1 90 100 1175 NA +#> 2 3 455 2 68 1 0 90 90 1225 15 +#> 3 3 1010 1 56 1 0 90 90 NA 15 +#> 4 5 210 2 57 1 1 90 60 1150 11 +#> 5 1 883 2 60 1 0 100 90 NA 0 +#> 6 12 1022 1 74 1 1 50 80 513 0 +#> 7 7 310 2 68 2 2 70 60 384 10 +#> 8 11 361 2 71 2 2 60 80 538 1 +#> 9 1 218 2 53 1 1 70 80 825 16 +#> 10 7 166 2 61 1 2 70 70 271 34 +#> # ... with 218 more rows, and 3 more variables: .fitted <dbl>, .se.fit <dbl>, +#> # .resid <dbl>
    #> # A tibble: 4 x 9 +)), statistic = "t")
    #> # A tibble: 4 x 9 #> term estimate std.error statistic p.value significance -#> <chr> <dbl> <dbl> <chr> <dbl> <chr> -#> 1 (Intercept) 2.98 1.57 1.90 0.0683 ns -#> 2 cyl 0.478 0.233 2.05 0.0503 ns -#> 3 mpg -0.00947 0.0660 -0.14 0.887 ns -#> 4 cyl:mpg -0.0219 0.0120 -1.82 0.0790 ns +#> <chr> <dbl> <dbl> <chr> <dbl> <chr> +#> 1 (Intercept) 2.98 1.57 1.90 0.0683 ns +#> 2 cyl 0.478 0.233 2.05 0.0503 ns +#> 3 mpg -0.00947 0.0660 -0.14 0.887 ns +#> 4 cyl:mpg -0.0219 0.0120 -1.82 0.0790 ns #> p.value.formatted p.value.formatted2 -#> <chr> <chr> -#> 1 0.068 ==0.068 -#> 2 0.050 ==0.050 -#> 3 0.887 ==0.887 -#> 4 0.079 ==0.079 +#> <chr> <chr> +#> 1 0.068 ==0.068 +#> 2 0.050 ==0.050 +#> 3 0.887 ==0.887 +#> 4 0.079 ==0.079 #> label -#> <chr> -#> 1 list(~italic(beta)==2.98, ~italic(t)==1.90, ~italic(p)==0.068) -#> 2 list(~italic(beta)==0.48, ~italic(t)==2.05, ~italic(p)==0.050) -#> 3 list(~italic(beta)==-0.01, ~italic(t)==-0.14, ~italic(p)==0.887) -#> 4 list(~italic(beta)==-0.02, ~italic(t)==-1.82, ~italic(p)==0.079)
    +#> <chr> +#> 1 list(~italic(beta)==2.98, ~italic(t)==1.90, ~italic(p)==0.068) +#> 2 list(~italic(beta)==0.48, ~italic(t)==2.05, ~italic(p)==0.050) +#> 3 list(~italic(beta)==-0.01, ~italic(t)==-0.14, ~italic(p)==0.887) +#> 4 list(~italic(beta)==-0.02, ~italic(t)==-1.82, ~italic(p)==0.079)
    # (in case `x` is not a dataframe, no need to specify `statistic` argument; # this will be figured out by the function itself) @@ -294,19 +294,19 @@

    Examp conf.int = TRUE, conf.level = 0.95 ) -)

    #> # A tibble: 2 x 11 +)
    #> # A tibble: 2 x 11 #> term estimate std.error statistic conf.low conf.high p.value -#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> -#> 1 (Intercept) -0.0166 0.000928 -17.85 -0.0184 -0.0147 0.000000428 -#> 2 log(u) 0.0153 0.000415 36.97 0.0145 0.0162 0.00000000275 +#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> +#> 1 (Intercept) -0.0166 0.000928 -17.85 -0.0184 -0.0147 0.000000428 +#> 2 log(u) 0.0153 0.000415 36.97 0.0145 0.0162 0.00000000275 #> significance p.value.formatted p.value.formatted2 -#> <chr> <chr> <chr> -#> 1 *** < 0.001 <= 0.001 -#> 2 *** < 0.001 <= 0.001 +#> <chr> <chr> <chr> +#> 1 *** < 0.001 <= 0.001 +#> 2 *** < 0.001 <= 0.001 #> label -#> <chr> -#> 1 list(~italic(beta)==-0.02, ~italic(t)==-17.85, ~italic(p)<= 0.001) -#> 2 list(~italic(beta)==0.02, ~italic(t)==36.97, ~italic(p)<= 0.001)
    +#> <chr> +#> 1 list(~italic(beta)==-0.02, ~italic(t)==-17.85, ~italic(p)<= 0.001) +#> 2 list(~italic(beta)==0.02, ~italic(t)==36.97, ~italic(p)<= 0.001)
    #------------------------- models with *z*-statistic -------------------- # preparing dataframe @@ -323,28 +323,28 @@

    Examp ) # creating tidy dataframe with label column -ggstatsplot:::ggcoefstats_label_maker(x = mod, tidy_df = broomExtra::tidy(mod))

    #> # A tibble: 5 x 9 +ggstatsplot:::ggcoefstats_label_maker(x = mod, tidy_df = broomExtra::tidy(mod))
    #> # A tibble: 5 x 9 #> term estimate std.error statistic p.value significance -#> <chr> <dbl> <dbl> <chr> <dbl> <chr> -#> 1 (Intercept) 3.04e+ 0 0.171 17.81 5.43e-71 *** -#> 2 outcome2 -4.54e- 1 0.202 -2.25 2.46e- 2 * -#> 3 outcome3 -2.93e- 1 0.193 -1.52 1.28e- 1 ns -#> 4 treatment2 1.34e-15 0.200 0.00 10.00e- 1 ns -#> 5 treatment3 1.42e-15 0.200 0.00 10.00e- 1 ns +#> <chr> <dbl> <dbl> <chr> <dbl> <chr> +#> 1 (Intercept) 3.04e+ 0 0.171 17.81 5.43e-71 *** +#> 2 outcome2 -4.54e- 1 0.202 -2.25 2.46e- 2 * +#> 3 outcome3 -2.93e- 1 0.193 -1.52 1.28e- 1 ns +#> 4 treatment2 1.34e-15 0.200 0.00 10.00e- 1 ns +#> 5 treatment3 1.42e-15 0.200 0.00 10.00e- 1 ns #> p.value.formatted p.value.formatted2 -#> <chr> <chr> -#> 1 < 0.001 <= 0.001 -#> 2 0.025 ==0.025 -#> 3 0.128 ==0.128 -#> 4 1.000 ==1.000 -#> 5 1.000 ==1.000 +#> <chr> <chr> +#> 1 < 0.001 <= 0.001 +#> 2 0.025 ==0.025 +#> 3 0.128 ==0.128 +#> 4 1.000 ==1.000 +#> 5 1.000 ==1.000 #> label -#> <chr> -#> 1 list(~italic(beta)==3.04, ~italic(z)==17.81, ~italic(p)<= 0.001) -#> 2 list(~italic(beta)==-0.45, ~italic(z)==-2.25, ~italic(p)==0.025) -#> 3 list(~italic(beta)==-0.29, ~italic(z)==-1.52, ~italic(p)==0.128) -#> 4 list(~italic(beta)==0.00, ~italic(z)==0.00, ~italic(p)==1.000) -#> 5 list(~italic(beta)==0.00, ~italic(z)==0.00, ~italic(p)==1.000)
    +#> <chr> +#> 1 list(~italic(beta)==3.04, ~italic(z)==17.81, ~italic(p)<= 0.001) +#> 2 list(~italic(beta)==-0.45, ~italic(z)==-2.25, ~italic(p)==0.025) +#> 3 list(~italic(beta)==-0.29, ~italic(z)==-1.52, ~italic(p)==0.128) +#> 4 list(~italic(beta)==0.00, ~italic(z)==0.00, ~italic(p)==1.000) +#> 5 list(~italic(beta)==0.00, ~italic(z)==0.00, ~italic(p)==1.000)
    #------------------------- models with *f*-statistic -------------------- # creating a model object op <- options(contrasts = c("contr.helmert", "contr.poly")) @@ -366,34 +366,34 @@

    Examp tidy_df = tidy_df, effsize = "omega", partial = FALSE -)

    #> # A tibble: 7 x 13 +)
    #> # A tibble: 7 x 13 #> term statistic df1 df2 estimate conf.low conf.high p.value significance -#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 block 4.45 5 12 0.298 0.0298 0.675 0.0159 * -#> 2 N 12.26 1 12 0.195 0.0440 0.588 0.00437 ** -#> 3 P 0.54 1 12 -0.00789 NA 0.233 0.475 ns -#> 4 K 6.17 1 12 0.0894 NA 0.472 0.0288 * -#> 5 N:P 1.38 1 12 0.00655 NA 0.294 0.263 ns -#> 6 N:K 2.15 1 12 0.0198 NA 0.336 0.169 ns -#> 7 P:K 0.03 1 12 -0.0168 NA 0.126 0.863 ns +#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 block 4.45 5 12 0.298 0.0298 0.675 0.0159 * +#> 2 N 12.26 1 12 0.195 0.0440 0.588 0.00437 ** +#> 3 P 0.54 1 12 -0.00789 NA 0.233 0.475 ns +#> 4 K 6.17 1 12 0.0894 NA 0.472 0.0288 * +#> 5 N:P 1.38 1 12 0.00655 NA 0.294 0.263 ns +#> 6 N:K 2.15 1 12 0.0198 NA 0.336 0.169 ns +#> 7 P:K 0.03 1 12 -0.0168 NA 0.126 0.863 ns #> p.value.formatted p.value.formatted2 effsize.text -#> <chr> <chr> <list> -#> 1 0.016 ==0.016 <language> -#> 2 0.004 ==0.004 <language> -#> 3 0.475 ==0.475 <language> -#> 4 0.029 ==0.029 <language> -#> 5 0.263 ==0.263 <language> -#> 6 0.169 ==0.169 <language> -#> 7 0.863 ==0.863 <language> +#> <chr> <chr> <list> +#> 1 0.016 ==0.016 <language> +#> 2 0.004 ==0.004 <language> +#> 3 0.475 ==0.475 <language> +#> 4 0.029 ==0.029 <language> +#> 5 0.263 ==0.263 <language> +#> 6 0.169 ==0.169 <language> +#> 7 0.863 ==0.863 <language> #> label -#> <chr> -#> 1 "list(~italic(F)(5*\",\"*12)==4.45, ~italic(p)==0.016, ~italic(omega)^2==0.30~ -#> 2 "list(~italic(F)(1*\",\"*12)==12.26, ~italic(p)==0.004, ~italic(omega)^2==0.1~ -#> 3 "list(~italic(F)(1*\",\"*12)==0.54, ~italic(p)==0.475, ~italic(omega)^2==-0.0~ -#> 4 "list(~italic(F)(1*\",\"*12)==6.17, ~italic(p)==0.029, ~italic(omega)^2==0.09~ -#> 5 "list(~italic(F)(1*\",\"*12)==1.38, ~italic(p)==0.263, ~italic(omega)^2==0.01~ -#> 6 "list(~italic(F)(1*\",\"*12)==2.15, ~italic(p)==0.169, ~italic(omega)^2==0.02~ -#> 7 "list(~italic(F)(1*\",\"*12)==0.03, ~italic(p)==0.863, ~italic(omega)^2==-0.0~
    +#> <chr> +#> 1 "list(~italic(F)(5*\",\"*12)==4.45, ~italic(p)==0.016, ~italic(omega)^2==0.30~ +#> 2 "list(~italic(F)(1*\",\"*12)==12.26, ~italic(p)==0.004, ~italic(omega)^2==0.1~ +#> 3 "list(~italic(F)(1*\",\"*12)==0.54, ~italic(p)==0.475, ~italic(omega)^2==-0.0~ +#> 4 "list(~italic(F)(1*\",\"*12)==6.17, ~italic(p)==0.029, ~italic(omega)^2==0.09~ +#> 5 "list(~italic(F)(1*\",\"*12)==1.38, ~italic(p)==0.263, ~italic(omega)^2==0.01~ +#> 6 "list(~italic(F)(1*\",\"*12)==2.15, ~italic(p)==0.169, ~italic(omega)^2==0.02~ +#> 7 "list(~italic(F)(1*\",\"*12)==0.03, ~italic(p)==0.863, ~italic(omega)^2==-0.0~
    #> Note: Results from one-sample proportion tests for each #> level of the variable cyl testing for equal #> proportions of the variable vs. -#>
    #>
    #> # A tibble: 3 x 7 +#>
    #>
    #> # A tibble: 3 x 7 #> condition `0` `1` `Chi-squared` df `p-value` significance -#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <chr> -#> 1 4 9.09% 90.91% 7.36 1 0.007 ** -#> 2 6 42.86% 57.14% 0.143 1 0.705 ns -#> 3 8 100.00% NA 14 1 0 ***
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 10 bootstrap samples. +#> <fct> <chr> <chr> <dbl> <dbl> <dbl> <chr> +#> 1 4 9.09% 90.91% 7.36 1 0.007 ** +#> 2 6 42.86% 57.14% 0.143 1 0.705 ns +#> 3 8 100.00% NA 14 1 0 ***
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 10 bootstrap samples. #>
    #>
    # simple function call with the defaults (without condition; with count data) library(jmv, warn.conflicts = FALSE) diff --git a/docs/reference/grouped_ggbarstats-1.png b/docs/reference/grouped_ggbarstats-1.png index cdad0374f..e65be276b 100644 Binary files a/docs/reference/grouped_ggbarstats-1.png and b/docs/reference/grouped_ggbarstats-1.png differ diff --git a/docs/reference/grouped_ggbarstats.html b/docs/reference/grouped_ggbarstats.html index eba101867..55d3a56f6 100644 --- a/docs/reference/grouped_ggbarstats.html +++ b/docs/reference/grouped_ggbarstats.html @@ -542,35 +542,35 @@

    Examp )

    #> Note: Results from one-sample proportion tests for each #> level of the variable Eye testing for equal #> proportions of the variable Hair. -#>
    #>
    #> # A tibble: 4 x 9 +#>
    #>
    #> # A tibble: 4 x 9 #> condition Black Brown Red Blond `Chi-squared` df `p-value` -#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> -#> 1 Brown 32.65% 54.08% 10.20% 3.06% 62.9 3 0 -#> 2 Blue 10.89% 49.50% 9.90% 29.70% 42.4 3 0 -#> 3 Hazel 21.28% 53.19% 14.89% 10.64% 21 3 0 -#> 4 Green 9.09% 45.45% 21.21% 24.24% 9.06 3 0.028 +#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> +#> 1 Brown 32.65% 54.08% 10.20% 3.06% 62.9 3 0 +#> 2 Blue 10.89% 49.50% 9.90% 29.70% 42.4 3 0 +#> 3 Hazel 21.28% 53.19% 14.89% 10.64% 21 3 0 +#> 4 Green 9.09% 45.45% 21.21% 24.24% 9.06 3 0.028 #> significance -#> <chr> -#> 1 *** -#> 2 *** -#> 3 *** -#> 4 *
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples. +#> <chr> +#> 1 *** +#> 2 *** +#> 3 *** +#> 4 *
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples. #>
    #>
    #> Note: Results from one-sample proportion tests for each #> level of the variable Eye testing for equal #> proportions of the variable Hair. -#>
    #>
    #> # A tibble: 4 x 9 +#>
    #>
    #> # A tibble: 4 x 9 #> condition Black Brown Red Blond `Chi-squared` df `p-value` -#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> -#> 1 Brown 29.51% 54.10% 13.11% 3.28% 72.2 3 0 -#> 2 Blue 7.89% 29.82% 6.14% 56.14% 74.8 3 0 -#> 3 Hazel 10.87% 63.04% 15.22% 10.87% 35.7 3 0 -#> 4 Green 6.45% 45.16% 22.58% 25.81% 9.39 3 0.025 +#> <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> +#> 1 Brown 29.51% 54.10% 13.11% 3.28% 72.2 3 0 +#> 2 Blue 7.89% 29.82% 6.14% 56.14% 74.8 3 0 +#> 3 Hazel 10.87% 63.04% 15.22% 10.87% 35.7 3 0 +#> 4 Green 6.45% 45.16% 22.58% 25.81% 9.39 3 0.025 #> significance -#> <chr> -#> 1 *** -#> 2 *** -#> 3 *** -#> 4 *
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples. +#> <chr> +#> 1 *** +#> 2 *** +#> 3 *** +#> 4 *
    #> Warning: Chi-squared approximation may be incorrect
    #> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples. #>
    #>
    #> Warning: Individual plots in the combined `grouped_` plot #> can't be further modified with `ggplot2` functions. #>
    #>
    diff --git a/docs/reference/grouped_ggbetweenstats.html b/docs/reference/grouped_ggbetweenstats.html index 288b2c304..01700f11f 100644 --- a/docs/reference/grouped_ggbetweenstats.html +++ b/docs/reference/grouped_ggbetweenstats.html @@ -646,7 +646,8 @@

    Examp conf.level = 0.99 )

    #> Note: Shapiro-Wilk Normality Test for hwy : p-value = < 0.001
    #>
    #> Note: Bartlett's test for homogeneity of variances for factor year : p-value = 0.144
    #>
    #> Note: Shapiro-Wilk Normality Test for hwy : p-value = 0.033
    #>
    #> Note: Bartlett's test for homogeneity of variances for factor year : p-value = 0.682
    #>
    #> Warning: Individual plots in the combined `grouped_` plot #> can't be further modified with `ggplot2` functions. -#>
    #>
    # modifying individual plots using `ggplot.component` argument +#>
    #>
    +
    # modifying individual plots using `ggplot.component` argument ggstatsplot::grouped_ggbetweenstats( data = dplyr::filter( ggstatsplot::movies_long, diff --git a/docs/reference/grouped_ggscatterstats-1.png b/docs/reference/grouped_ggscatterstats-1.png index 069ff7aa5..308aa2d42 100644 Binary files a/docs/reference/grouped_ggscatterstats-1.png and b/docs/reference/grouped_ggscatterstats-1.png differ diff --git a/docs/reference/grouped_ggscatterstats-2.png b/docs/reference/grouped_ggscatterstats-2.png index a0ed0bbd0..99cc229b8 100644 Binary files a/docs/reference/grouped_ggscatterstats-2.png and b/docs/reference/grouped_ggscatterstats-2.png differ diff --git a/docs/reference/grouped_ggscatterstats-3.png b/docs/reference/grouped_ggscatterstats-3.png index ea75143ec..abbcd1cae 100644 Binary files a/docs/reference/grouped_ggscatterstats-3.png and b/docs/reference/grouped_ggscatterstats-3.png differ diff --git a/docs/reference/histo_labeller-1.png b/docs/reference/histo_labeller-1.png index 0d302ba2f..a392dd8b9 100644 Binary files a/docs/reference/histo_labeller-1.png and b/docs/reference/histo_labeller-1.png differ diff --git a/docs/reference/kendall_w_ci.html b/docs/reference/kendall_w_ci.html index 26f637e37..d2a8a62a9 100644 --- a/docs/reference/kendall_w_ci.html +++ b/docs/reference/kendall_w_ci.html @@ -226,11 +226,11 @@

    Examp
    set.seed(123) library(jmv) data("bugs", package = "jmv") -ggstatsplot:::kendall_w_ci(dplyr::select(bugs, LDLF:HDHF))
    #> # A tibble: 1 x 3 +ggstatsplot:::kendall_w_ci(dplyr::select(bugs, LDLF:HDHF))
    #> # A tibble: 1 x 3 #> estimate conf.low conf.high -#> <dbl> <dbl> <dbl> -#> 1 0.615 0.523 0.705
    -
    +#> <dbl> <dbl> <dbl> +#> 1 0.615 0.523 0.705

    +
    #> Warning: No. of factor levels is greater than specified palette color count. #> Try using another color `palette` (and/or `package`). -#>
    #>
    -
    +#>
    #>
    +

minimal R version lifecycle Monthly downloads badgeGithub IssuesvignettesGithub Issuesvignettes
GitHub code size in bytesLicence Codecov test coverage HitCountLast-changedateLast-changedate GitHub last commit