-
Notifications
You must be signed in to change notification settings - Fork 190
/
test-ggcorrmat.R
175 lines (148 loc) · 3.94 KB
/
test-ggcorrmat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# pearson's r without NAs ------------------------------------------------
test_that(
desc = "checking ggcorrmat - without NAs - pearson's r",
code = {
skip_if_not_installed("ggcorrplot")
# creating the plot
set.seed(123)
p <-
ggcorrmat(
data = iris,
cor.vars.names = "x",
type = "p",
title = "Iris dataset",
subtitle = "By Edgar Anderson",
ggstatsplot.layer = FALSE,
sig.level = 0.001,
matrix.type = "full",
p.adjust.method = "fdr",
colors = NULL,
k = 4,
ggcorrplot.args = list(
lab_col = "white",
pch.col = "white"
)
)
# checking legend title
pb <- ggplot2::ggplot_build(p)
p_legend_title <- pb$plot$plot_env$legend.title
# check data
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(p$labels)
}
)
# robust r without NAs ---------------------------------------------------
test_that(
desc = "checking ggcorrmat - without NAs - robust r",
code = {
skip_if_not_installed("ggcorrplot")
# creating the plot
set.seed(123)
p <-
ggcorrmat(
data = anscombe,
type = "r",
partial = TRUE,
cor.vars.names = names(anscombe)
)
pb <- ggplot2::ggplot_build(p)
# check data
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(p$labels)
}
)
# robust r with NAs ---------------------------------------------------
test_that(
desc = "checking ggcorrmat - with NAs - robust r - partial",
code = {
skip_if_not_installed("ggcorrplot")
skip_on_ci()
# creating the plot
set.seed(123)
p <-
ggcorrmat(
data = ggplot2::msleep,
type = "r",
sig.level = 0.01,
partial = TRUE,
p.adjust.method = "hommel",
matrix.type = "upper"
) +
labs(caption = NULL)
# checking legend title
pb <- ggplot2::ggplot_build(p)
# check data
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(p$labels)
}
)
# spearman's rho with NAs ---------------------------------------------------
test_that(
desc = "checking ggcorrmat - with NAs - spearman's rho",
code = {
skip_if_not_installed("ggcorrplot")
# creating the plot
set.seed(123)
p <-
suppressWarnings(ggcorrmat(
data = ggplot2::msleep,
cor.vars = sleep_total:awake,
cor.vars.names = "sleep_total",
type = "np",
sig.level = 0.01,
matrix.type = "full",
p.adjust.method = "hommel",
caption.default = FALSE,
colors = NULL,
package = "wesanderson",
palette = "Rushmore1"
))
# checking legend title
pb <- ggplot2::ggplot_build(p)
# check data
set.seed(123)
expect_snapshot(pb$data)
expect_snapshot(p$labels)
}
)
# Bayesian pearson (with NA) ---------------------------------------------------
test_that(
desc = "checking Bayesian pearson (with NA)",
code = {
skip_if_not_installed("ggcorrplot")
set.seed(123)
p <- suppressWarnings(ggcorrmat(dplyr::select(ggplot2::msleep, brainwt, bodywt),
type = "bayes"
))
pb <- ggplot2::ggplot_build(p)
# check data
set.seed(123)
# expect_snapshot(pb$data)
expect_snapshot(p$labels)
}
)
# checking all dataframe outputs -------------------------------------------
test_that(
desc = "checking all dataframe outputs",
code = {
skip_on_os("windows")
skip_on_cran()
options(tibble.width = Inf, tibble.print_max = 50)
skip_on_ci()
skip_on_appveyor()
skip_on_travis()
set.seed(123)
expect_snapshot(suppressWarnings(purrr::pmap(
.l = list(
data = list(dplyr::select(ggplot2::msleep, brainwt, sleep_rem, bodywt)),
type = list("p", "p", "np", "np", "r", "r", "bf", "bayes"),
output = list("dataframe"),
partial = list(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)
),
.f = ggcorrmat
)))
}
)