-
Notifications
You must be signed in to change notification settings - Fork 189
/
Copy pathggbarstats.R
222 lines (199 loc) · 6.78 KB
/
ggbarstats.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#' @title Bar (column) charts with statistical tests
#' @name ggbarstats
#'
#' @description
#'
#'
#'
#' Bar charts for categorical data with statistical details included in the plot
#' as a subtitle.
#'
#' @param xlab Custom text for the `x` axis label (Default: `NULL`, which
#' will cause the `x` axis label to be the `x` variable).
#' @param ylab Custom text for the `y` axis label (Default: `NULL`).
#' @inheritParams ggpiestats
#'
#' @seealso \code{\link{grouped_ggbarstats}}, \code{\link{ggpiestats}},
#' \code{\link{grouped_ggpiestats}}
#'
#' @import ggplot2
#'
#' @importFrom dplyr select mutate
#' @importFrom rlang !!! as_name ensym exec
#' @importFrom paletteer scale_fill_paletteer_d
#' @importFrom tidyr uncount drop_na
#' @importFrom statsExpressions contingency_table
#'
#' @inherit ggpiestats return details
#'
#' @examples
#' \donttest{
#' # for reproducibility
#' set.seed(123)
#'
#' # association test (or contingency table analysis)
#' ggstatsplot::ggbarstats(
#' data = mtcars,
#' x = vs,
#' y = cyl
#' )
#' }
#' @export
# defining the function
ggbarstats <- function(data,
x,
y,
counts = NULL,
type = "parametric",
paired = FALSE,
results.subtitle = TRUE,
label = "percentage",
label.args = list(alpha = 1, fill = "white"),
k = 2L,
proportion.test = TRUE,
perc.k = 0,
bf.message = TRUE,
ratio = NULL,
conf.level = 0.95,
sampling.plan = "indepMulti",
fixed.margin = "rows",
prior.concentration = 1,
title = NULL,
subtitle = NULL,
caption = NULL,
legend.title = NULL,
xlab = NULL,
ylab = NULL,
ggtheme = ggplot2::theme_bw(),
ggstatsplot.layer = TRUE,
package = "RColorBrewer",
palette = "Dark2",
ggplot.component = NULL,
output = "plot",
...) {
# convert entered stats type to a standard notation
type <- ipmisc::stats_type_switch(type)
# make sure both quoted and unquoted arguments are allowed
c(x, y) %<-% c(rlang::ensym(x), rlang::ensym(y))
# =============================== dataframe ================================
# creating a dataframe
data %<>%
dplyr::select({{ x }}, {{ y }}, .counts = {{ counts }}) %>%
tidyr::drop_na(.)
# untable the dataframe based on the count for each observation
if (".counts" %in% names(data)) data %<>% tidyr::uncount(weights = .counts)
# x and y need to be a factor; also drop the unused levels of the factors
data %<>% dplyr::mutate(dplyr::across(dplyr::everything(), ~ droplevels(as.factor(.x))))
# TO DO: until one-way table is supported by `BayesFactor`
if (nlevels(data %>% dplyr::pull({{ y }})) == 1L) c(bf.message, proportion.test) %<-% c(FALSE, FALSE)
if (type == "bayes") proportion.test <- FALSE
# -------------------------- statistical analysis --------------------------
# if subtitle with results is to be displayed
if (isTRUE(results.subtitle)) {
subtitle_df <- tryCatch(
expr = statsExpressions::contingency_table(
data = data,
x = {{ x }},
y = {{ y }},
type = type,
k = k,
paired = paired,
ratio = ratio,
conf.level = conf.level
),
error = function(e) NULL
)
if (!is.null(subtitle_df)) subtitle <- subtitle_df$expression[[1]]
# preparing Bayes Factor caption
if (type != "bayes" && isTRUE(bf.message) && isFALSE(paired)) {
caption_df <- tryCatch(
expr = statsExpressions::contingency_table(
data = data,
x = {{ x }},
y = {{ y }},
type = "bayes",
k = k,
top.text = caption,
sampling.plan = sampling.plan,
fixed.margin = fixed.margin,
prior.concentration = prior.concentration
),
error = function(e) NULL
)
if (!is.null(caption_df)) caption <- caption_df$expression[[1]]
}
}
# return early if anything other than plot
if (output != "plot") {
return(switch(output,
"caption" = caption,
subtitle
))
}
# =================================== plot =================================
# dataframe with summary labels
df_descriptive <- df_descriptive(data, {{ x }}, {{ y }}, label, perc.k)
# dataframe containing all details needed for prop test
df_proptest <- df_proptest(data, {{ x }}, {{ y }}, k)
# if no. of factor levels is greater than the default palette color count
palette_message(package, palette, min_length = nlevels(data %>% dplyr::pull({{ x }}))[[1]])
# plot
p <-
ggplot2::ggplot(
data = df_descriptive,
mapping = ggplot2::aes(x = {{ y }}, y = perc, fill = {{ x }})
) +
ggplot2::geom_bar(
stat = "identity",
position = "fill",
color = "black",
na.rm = TRUE
) +
ggplot2::scale_y_continuous(
labels = function(x) paste0(x * 100, "%"),
breaks = seq(from = 0, to = 1, by = 0.10),
minor_breaks = seq(from = 0.05, to = 0.95, by = 0.10)
) +
rlang::exec(
.fn = ggplot2::geom_label,
mapping = ggplot2::aes(label = .label, group = {{ x }}),
show.legend = FALSE,
position = ggplot2::position_fill(vjust = 0.5),
!!!label.args
) +
theme_ggstatsplot(ggtheme, ggstatsplot.layer) +
ggplot2::theme(panel.grid.major.x = ggplot2::element_blank()) +
ggplot2::guides(fill = ggplot2::guide_legend(title = legend.title %||% rlang::as_name(x))) +
paletteer::scale_fill_paletteer_d(paste0(package, "::", palette), name = "")
# ================ sample size and proportion test labels ===================
# adding significance labels to bars for proportion tests
if (isTRUE(proportion.test)) {
# modify plot
p <- p +
ggplot2::geom_text(
data = df_proptest,
mapping = ggplot2::aes(x = {{ y }}, y = 1.05, label = .p.label, fill = NULL),
size = 2.8,
parse = TRUE
)
}
# adding sample size info
p <- p +
ggplot2::geom_text(
data = df_proptest,
mapping = ggplot2::aes(x = {{ y }}, y = -0.05, label = N, fill = NULL),
size = 4,
na.rm = TRUE
)
# =========================== putting all together ========================
# preparing the plot
p +
ggplot2::labs(
x = xlab %||% rlang::as_name(y),
y = ylab,
subtitle = subtitle,
title = title,
caption = caption
) +
ggplot.component
}