Skip to content
/ Dunit Public

(CVPR 2020) DUNIT: Detection-Based Unsupervised Image-to-Image Translation

License

Notifications You must be signed in to change notification settings

IVRL/Dunit

Repository files navigation

(CVPR 2020) DUNIT: Detection-Based Unsupervised Image-to-Image Translation

DOI

Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, Mathieu Salzmann

Figure Abstract

CVPR 2020 Paper

Project Organization

├── LICENSE
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── docker             <- Dockerfiles for running the models
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.

│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── app.py             <- Interactive demonstration of the behavior of the multi-box losses

Installation

  1. Clone the repo: `git clone
  2. Install the requirements: pip install -r requirements.txt

Interactive visualization of the behavior of the multi-box losses

  1. Run python app.py
  2. Open localhost:8050 on your favorite browser.

Citation

If you find the code, data, or the models useful, please cite this paper:

     @InProceedings{Bhattacharjee_2020_CVPR,
author = {Bhattacharjee, Deblina and Kim, Seungryong and Vizier, Guillaume and Salzmann, Mathieu},
title = {DUNIT: Detection-Based Unsupervised Image-to-Image Translation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

License

 [Creative Commons Attribution Non-commercial No Derivatives](http://creativecommons.org/licenses/by-nc-nd/3.0/)

Project based on the cookiecutter data science project template. #cookiecutterdatascience