-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
508 lines (383 loc) · 18.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
'''
Single-GPU training code
'''
import argparse
from datetime import datetime
import numpy as np
import tensorflow as tf
import importlib
import os
import sys
import dataset
import pickle
from main_util import get_2d_flow, scene_flow_EPE_np, evaluate_2d
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'tf_ops/sampling'))
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type = str, default='train', help=' running mode: train / eval ')
parser.add_argument('--dataset', type = str, default='ft3d', help=' data mode: ft3d / kitti')
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='HALFlowNet', help='Model name ')
parser.add_argument('--data_ft3d_path', default='/tmp/FlyingThings3D_subset_processed_35m', help='FlytingThings3d Dataset directory')
parser.add_argument('--data_kitti_path', default='/tmp/KITTI_processed_occ_final', help='KITTI Dataset directory')
parser.add_argument('--log_dir', default='log_train', help='Log dir [default: log_train]')
parser.add_argument('--checkpoint_path', default='None', help='Checkpoint_path [default: None]')
parser.add_argument('--num_point', type=int, default=8192, help='Point Number [default: 8192]')
parser.add_argument('--max_epoch', type=int, default=1510, help='Epoch to run [default: 1510]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')##########decay############3
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
FLAGS = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
EPOCH_CNT = 0
MODE = FLAGS.mode
DATA_MODE = FLAGS.dataset
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
DATA = FLAGS.data_ft3d_path
DATA_kitti = FLAGS.data_kitti_path
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
CHECKPOINT_PATH = FLAGS.checkpoint_path
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, FLAGS.model+'.py')
UTIL_FILE = os.path.join(BASE_DIR, 'utils/HALFlowNet_util.py')
LOG_DIR = FLAGS.log_dir + datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (UTIL_FILE, LOG_DIR)) ###SAVE THE UTIL FILE
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (__file__, LOG_DIR)) # bkp of train procedure
os.system('cp %s %s' % ('dataset.py', LOG_DIR)) # bkp of dataset file
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.7
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
TRAIN_DATASET = dataset.SceneflowDataset(DATA, npoints=NUM_POINT, mode = 'train_ft3d')
TEST_DATASET = dataset.SceneflowDataset(DATA, npoints=NUM_POINT, mode = 'eval_ft3d')
TEST_DATASET_kitti = dataset.SceneflowDataset(DATA_kitti, npoints=NUM_POINT, mode = 'eval_kitti')
train_dataset_idxs = np.arange(0, 19640)
np.random.shuffle(train_dataset_idxs)
train_dataset_idxs_quarter = train_dataset_idxs[:4910]
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, pointclouds_pl_raw = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0.0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
# Get model and loss
l0_pred, l1_pred, l2_pred, l3_pred, l0_label, l1_label, l2_label, l3_label, pc1_sample, pc2_sample = MODEL.get_model(pointclouds_pl, pointclouds_pl_raw, labels_pl, is_training_pl, dataset = DATA_MODE, bn_decay=bn_decay)
loss = MODEL.get_loss(l0_pred, l1_pred, l2_pred, l3_pred, l0_label, l1_label, l2_label, l3_label)
tf.summary.scalar('loss', loss)
print("--- Get training operator")
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
ops = {'pointclouds_pl': pointclouds_pl,
'pointclouds_pl_raw': pointclouds_pl_raw,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': l0_pred,
'label_2048': l0_label,
'pc1': pc1_sample,
'pc2': pc2_sample,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
}
if MODE == 'train':
if CHECKPOINT_PATH != None:
saver.restore(sess, CHECKPOINT_PATH)
log_string ("model restored")
else:
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
epe3d_min = 10000.0
for epoch in range(0, MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
epe3d, acc3d_1, acc3d_2, outlier = eval_one_epoch(sess, ops, test_writer)
# Save the variables to disk.
if epe3d < epe3d_min:
epe3d_min = epe3d
save_path_epe3d = saver.save(sess, os.path.join(LOG_DIR, "model_ft3d_epe3d_%03d.ckpt" % (epoch)))
log_string("Model saved in file: %s" % save_path_epe3d)
elif MODE == 'eval':
saver.restore(sess, CHECKPOINT_PATH)
log_string ("model restored")
eval_one_epoch(sess, ops, test_writer)
eval_one_epoch_kitti(sess, ops, test_writer)
def get_batch(dataset, idxs, start_idx, end_idx, mode = 'train_ft3d'):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT*2, 6))
batch_data_raw = np.zeros((bsize, NUM_POINT*2, 6))
batch_label = np.zeros((bsize, NUM_POINT, 3))
paths = []
shuffle_idx = np.arange(NUM_POINT)
np.random.shuffle(shuffle_idx)
for i in range(bsize):
if mode == 'eval_kitti':
pc1, pc2, flow, path = dataset[idxs[i+start_idx]]#####################################
paths.append(path)
else:
pc1, pc2, flow= dataset[idxs[i+start_idx]]
batch_data_raw[i,:NUM_POINT,:3] = pc1[shuffle_idx]
batch_data_raw[i,NUM_POINT:,:3] = pc2[shuffle_idx]######get the raw xyz coordinates
# move pc1 to center
pc1_center = np.mean(pc1, 0)
pc1 -= pc1_center
pc2 -= pc1_center
batch_data[i,:NUM_POINT,:3] = pc1[shuffle_idx]
batch_data[i,NUM_POINT:,:3] = pc2[shuffle_idx]
batch_label[i] = flow[shuffle_idx]
if mode == 'eval_kitti':
return batch_data, batch_data_raw, batch_label, paths
else:
return batch_data, batch_data_raw, batch_label
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
global EPOCH_CNT
train_idxs = train_dataset_idxs_quarter
np.random.shuffle(train_idxs)
num_batches = 4910// BATCH_SIZE
log_string(str(datetime.now()))
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_data_raw, batch_label = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['pointclouds_pl_raw']: batch_data_raw,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
if (batch_idx+1)%10 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
loss_sum = 0
EPOCH_CNT += 1
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET))
num_batches = (len(TEST_DATASET)+BATCH_SIZE-1) // BATCH_SIZE
loss_sum = 0
loss_sum_l2 = 0
sum_epe3d = 0
sum_epe2d = 0
sum_acc3d_1 = 0
sum_acc3d_2 = 0
sum_acc2d = 0
sum_outlier = 0
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
batch_data = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
batch_label = np.zeros((BATCH_SIZE, NUM_POINT, 3))
batch_data_raw = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
for batch_idx in range(num_batches):
if batch_idx %20==0:
log_string('%03d/%03d'%(batch_idx, num_batches))
start_idx = batch_idx * BATCH_SIZE
end_idx = min(len(TEST_DATASET), (batch_idx+1) * BATCH_SIZE)
cur_batch_size = end_idx-start_idx
cur_batch_data, cur_batch_data_raw, cur_batch_label = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx, mode = 'eval_ft3d')
if cur_batch_size == BATCH_SIZE:
batch_data = cur_batch_data
batch_label = cur_batch_label
batch_data_raw = cur_batch_data_raw
else:
batch_data[0:cur_batch_size] = cur_batch_data
batch_label[0:cur_batch_size] = cur_batch_label
batch_data_raw[0:cur_batch_size] = cur_batch_data_raw
# ---------------------------------------------------------------------
# ---- INFERENCE BELOW ----
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['pointclouds_pl_raw']: batch_data_raw,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training}
loss_val, label_2048, pred_val, pc1, pc2 = sess.run([ops['loss'], ops['label_2048'],ops['pred'], ops['pc1'], ops['pc2']], feed_dict=feed_dict)
# ---- INFERENCE ABOVE ----
pc1 = pc1[:cur_batch_size, :, :]
pred_val = pred_val[:cur_batch_size, :, :]
label_2048 = label_2048[:cur_batch_size, :, :]
flow_pred_2d, flow_gt_2d = get_2d_flow(pc1, pc1+label_2048, pc1+pred_val)
tmp = np.sum((pred_val - label_2048)**2, 2) / 2.0
loss_val_np = np.mean(tmp)
loss_val = loss_val_np
print('batch loss: %f' % (loss_val))
loss_sum += loss_val
EPE3D, acc3d_1, acc3d_2, outlier = scene_flow_EPE_np(pred_val, label_2048)
EPE2D, acc2d = evaluate_2d(flow_pred_2d, flow_gt_2d)
print('batch EPE 3D: %f\tACC 3D: %f\tACC 3D 2: %f\tbatch EPE 2D: %f\tACC 2D: %f' % (EPE3D, acc3d_1, acc3d_2, EPE2D, acc2d))
loss_sum += loss_val
loss_sum_l2 += loss_val_np
sum_epe3d += EPE3D
sum_epe2d += EPE2D
sum_acc3d_1 += acc3d_1
sum_acc3d_2 += acc3d_2
sum_acc2d += acc2d
sum_outlier += outlier
# Dump some results
if batch_idx == 0:
with open('test_results.pkl', 'wb') as fp:
pickle.dump([batch_data, label_2048, pred_val], fp)
epe3d = sum_epe3d / num_batches
epe2d = sum_epe2d / num_batches
acc2d = sum_acc2d / num_batches
acc3d_1 = sum_acc3d_1 / num_batches
acc3d_2 = sum_acc3d_2 / num_batches
outlier = sum_outlier / num_batches######
log_string('eval mean EPE 3D: %f' % (epe3d))
log_string('eval mean EPE 2D: %f' % (epe2d))
log_string('eval mean acc3d_1: %f' % (acc3d_1))
log_string('eval mean acc3d_2 : %f' % (acc3d_2))
log_string('eval mean acc2d : %f' % (acc2d))
log_string('eval mean outlier : %f' % (outlier))
log_string('eval mean loss: %f' % (loss_sum / num_batches))
return epe3d, acc3d_1, acc3d_2, outlier
def eval_one_epoch_kitti(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, 142)
num_batches = (142+BATCH_SIZE-1) // BATCH_SIZE
loss_sum = 0
loss_sum_l2 = 0
sum_epe3d = 0
sum_epe2d = 0
sum_acc3d_1 = 0
sum_acc3d_2 = 0
sum_acc2d = 0
sum_outlier = 0
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION_KITTI____ ----'%(EPOCH_CNT))
batch_data = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
batch_label = np.zeros((BATCH_SIZE, NUM_POINT, 3))
batch_data_raw = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
for batch_idx in range(num_batches):
if batch_idx %20==0:
log_string('%03d/%03d'%(batch_idx, num_batches))
start_idx = batch_idx * BATCH_SIZE
end_idx = min(142, (batch_idx+1) * BATCH_SIZE)
cur_batch_size = end_idx-start_idx
cur_batch_data, cur_batch_data_raw, cur_batch_label, paths = get_batch(TEST_DATASET_kitti, test_idxs, start_idx, end_idx, mode = 'eval_kitti')
if cur_batch_size == BATCH_SIZE:
batch_data = cur_batch_data
batch_label = cur_batch_label
batch_data_raw = cur_batch_data_raw
else:
batch_data[0:cur_batch_size] = cur_batch_data
batch_label[0:cur_batch_size] = cur_batch_label
batch_data_raw[0:cur_batch_size] = cur_batch_data_raw
# ---------------------------------------------------------------------
# ---- INFERENCE BELOW ----
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['pointclouds_pl_raw']: batch_data_raw,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training}
loss_val, label_2048, pred_val, pc1, pc2 = sess.run([ops['loss'], ops['label_2048'],ops['pred'], ops['pc1'], ops['pc2']], feed_dict=feed_dict)
pc1 = pc1[:cur_batch_size, :, :]
pred_val = pred_val[:cur_batch_size, :, :]
label_2048 = label_2048[:cur_batch_size, :, :]
# ---- INFERENCE ABOVE ----
flow_pred_2d, flow_gt_2d = get_2d_flow(pc1, pc1+label_2048, pc1+pred_val, paths)
tmp = np.sum((pred_val - label_2048)**2, 2) / 2.0
loss_val_np = np.mean(tmp)
loss_val = loss_val_np
print('batch loss: %f' % (loss_val))
loss_sum += loss_val
EPE3D, acc3d_1, acc3d_2, outlier = scene_flow_EPE_np(pred_val, label_2048)
EPE2D, acc2d = evaluate_2d(flow_pred_2d, flow_gt_2d)
print('batch EPE 3D: %f\tACC 3D: %f\tACC 3D 2: %f\tEPE 2d 2: %f\tACC 2D: %f' % (EPE3D, acc3d_1, acc3d_2, EPE2D, acc2d))
loss_sum += loss_val
loss_sum_l2 += loss_val_np
sum_epe3d += EPE3D
sum_epe2d += EPE2D
sum_acc3d_1 += acc3d_1
sum_acc3d_2 += acc3d_2
sum_acc2d += acc2d
sum_outlier += outlier
# Dump some results
if batch_idx == 0:
with open('test_results.pkl', 'wb') as fp:
pickle.dump([batch_data, label_2048, pred_val], fp)
epe3d = sum_epe3d / num_batches
epe2d = sum_epe2d / num_batches
acc2d = sum_acc2d / num_batches
acc3d_1 = sum_acc3d_1 / num_batches
acc3d_2 = sum_acc3d_2 / num_batches
outlier = sum_outlier / num_batches
log_string('KITTI eval mean EPE 3D: %f' % (epe3d))
log_string('KITTI eval mean EPE 2D: %f' % (epe2d))
log_string('KITTI eval mean acc3d_1: %f' % (acc3d_1))
log_string('KITTI eval mean acc3d_2 : %f' % (acc3d_2))
log_string('KITTI eval mean acc2d : %f' % (acc2d))
log_string('KITTI eval mean outlier : %f' % (outlier))
log_string('KITTI eval mean loss: %f' % (loss_sum / num_batches))
return epe3d, acc3d_1, acc3d_2, outlier
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()