-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_detector_coco.py
467 lines (384 loc) · 16.3 KB
/
train_detector_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#!/usr/bin/env python
# coding: utf-8
from multiprocessing import Value
import sys
sys.executable
import random
import os
import json
import matplotlib.pyplot as plt
import numpy as np
from collections import defaultdict
import utils
import torch
import torchvision
import torch.utils.data as data
import json, os, random, math
from collections import defaultdict
import numpy as np
import pycocotools.mask as mask_utils
from skimage.transform import resize as imresize
from PIL import Image
from lib.faster_rcnn import FastRCNNPredictorPairedSortedGNNFull
from torchvision.transforms import functional as F
from engine import train_one_epoch
import lib
import gensim
from gensim import downloader
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
torch.multiprocessing.set_sharing_strategy('file_system')
glove_vectors = downloader.load('glove-wiki-gigaword-300')
# In[3]:
print (torch.cuda.is_available())
print (torch.cuda.device_count())
print (torch.cuda.get_device_name())
device = torch.device("cuda")
import transforms as T
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
def seg_to_mask(seg, width=1.0, height=1.0):
"""
Tiny utility for decoding segmentation masks using the pycocotools API.
"""
if type(seg) == list:
rles = mask_utils.frPyObjects(seg, height, width)
rle = mask_utils.merge(rles)
elif type(seg['counts']) == list:
rle = mask_utils.frPyObjects(seg, height, width)
else:
rle = seg
return mask_utils.decode(rle)
class COCODataset(data.Dataset):
def __init__(self,glove_vectors, transforms=None):
self.image_dir = "/path/to/coco/train2017"
self.include_relationships = True
instances_json = "/path/to/coco/annotations/instances_train2017.json"
with open(instances_json, 'r') as f:
instances_data = json.load(f)
stuff_json = "/path/to/coco/stuff_train2017.json"
with open(stuff_json, 'r') as f:
stuff_data = json.load(f)
self.image_ids = []
self.image_id_to_filename = {}
self.image_id_to_size = {}
for image_data in instances_data['images']:
image_id = image_data['id']
filename = image_data['file_name']
width = image_data['width']
height = image_data['height']
self.image_ids.append(image_id)
self.image_id_to_filename[image_id] = filename
self.image_id_to_size[image_id] = (width, height)
self.vocab = {
'object_name_to_idx': {},
'pred_name_to_idx': {},
}
object_idx_to_name = {}
all_instance_categories = []
for category_data in instances_data['categories']:
category_id = category_data['id']
category_name = category_data['name']
all_instance_categories.append(category_name)
object_idx_to_name[category_id] = category_name
self.vocab['object_name_to_idx'][category_name] = category_id
all_stuff_categories = []
if stuff_data:
for category_data in stuff_data['categories']:
category_name = category_data['name']
category_id = category_data['id']
all_stuff_categories.append(category_name)
object_idx_to_name[category_id] = category_name
self.vocab['object_name_to_idx'][category_name] = category_id
self.image_id_to_objects = defaultdict(list)
instance_whitelist = None
if instance_whitelist is None:
instance_whitelist = all_instance_categories
stuff_whitelist = None
if stuff_whitelist is None:
stuff_whitelist = all_stuff_categories
category_whitelist = set(instance_whitelist) | set(stuff_whitelist)
min_object_size = 0.02
include_other = False
for object_data in instances_data['annotations']:
image_id = object_data['image_id']
_, _, w, h = object_data['bbox']
W, H = self.image_id_to_size[image_id]
box_area = (w * h) / (W * H)
box_ok = box_area > min_object_size
object_name = object_idx_to_name[object_data['category_id']]
category_ok = object_name in category_whitelist
other_ok = object_name != 'other' or include_other
if box_ok and category_ok and other_ok:
self.image_id_to_objects[image_id].append(object_data)
stuff_only = True
if stuff_data:
image_ids_with_stuff = set()
for object_data in stuff_data['annotations']:
image_id = object_data['image_id']
image_ids_with_stuff.add(image_id)
_, _, w, h = object_data['bbox']
W, H = self.image_id_to_size[image_id]
box_area = (w * h) / (W * H)
box_ok = box_area > min_object_size
object_name = object_idx_to_name[object_data['category_id']]
category_ok = object_name in category_whitelist
other_ok = object_name != 'other' or include_other
if box_ok and category_ok and other_ok:
self.image_id_to_objects[image_id].append(object_data)
if stuff_only:
new_image_ids = []
for image_id in self.image_ids:
if image_id in image_ids_with_stuff:
new_image_ids.append(image_id)
self.image_ids = new_image_ids
all_image_ids = set(self.image_id_to_filename.keys())
image_ids_to_remove = all_image_ids - image_ids_with_stuff
for image_id in image_ids_to_remove:
self.image_id_to_filename.pop(image_id, None)
self.image_id_to_size.pop(image_id, None)
self.image_id_to_objects.pop(image_id, None)
self.data = {}
name_to_idx = self.vocab['object_name_to_idx']
assert len(name_to_idx) == len(set(name_to_idx.values()))
max_object_idx = max(name_to_idx.values())
idx_to_name = ['NONE'] * (1 + max_object_idx)
for name, idx in self.vocab['object_name_to_idx'].items():
idx_to_name[idx] = name
self.vocab['object_idx_to_name'] = idx_to_name
new_image_ids = []
total_objs = 0
min_objects_per_image = 3
max_objects_per_image = 8
for image_id in self.image_ids:
num_objs = len(self.image_id_to_objects[image_id])
total_objs += num_objs
if min_objects_per_image <= num_objs <= max_objects_per_image:
new_image_ids.append(image_id)
self.image_ids = new_image_ids
self.vocab['pred_idx_to_name'] = [
# '__in_image__',
'left of',
'right of',
'above',
'below',
'inside',
'surrounding',
]
self.vocab['pred_name_to_idx'] = {}
for idx, name in enumerate(self.vocab['pred_idx_to_name']):
self.vocab['pred_name_to_idx'][name] = idx
self.w2v = glove_vectors
def load_image(self, index):
image_path = os.path.join(self.image_dir, "%d.jpg"%(index))
if os.path.exists(image_path):
img = Image.open(image_path)
else:
image_path = os.path.join(self.image_dir+"_2", "%d.jpg"%(index))
img = Image.open(image_path)
return img
def __getitem__(self, index):
image_id = self.image_ids[index]
filename = self.image_id_to_filename[image_id]
image_path = os.path.join(self.image_dir, filename)
img = Image.open(image_path)
WW, HH = img.size
objs, boxes, masks = [], [], []
for object_data in self.image_id_to_objects[image_id]:
objs.append(object_data['category_id'])
x, y, w, h = object_data['bbox']
boxes.append(torch.FloatTensor([x, y, x+w, y+w]))
mask = seg_to_mask(object_data['segmentation'], WW, HH)
mx0, mx1 = int(round(x)), int(round(x + w))
my0, my1 = int(round(y)), int(round(y + h))
mx1 = max(mx0 + 1, mx1)
my1 = max(my0 + 1, my1)
# print(my0, my1, mx0, mx1)
mask = mask[my0:my1, mx0:mx1]
self.mask_size = WW//4
mask = imresize(255.0 * mask, (self.mask_size, self.mask_size),
mode='constant')
mask = torch.from_numpy((mask > 128).astype(np.int64))
# mask = torch.from_numpy((mask).astype(np.int64))
# print(mask.shape)
masks.append(mask)
masks = torch.stack(masks, dim=0)
objs = torch.LongTensor(objs)
boxes = torch.stack(boxes, dim=0)
obj_centers = []
_, MH, MW = masks.size()
for i, obj_idx in enumerate(objs):
x0, y0, x1, y1 = boxes[i]
mask = (masks[i] == 1)
xs = torch.linspace(x0, x1, MW).view(1, MW).expand(MH, MW)
ys = torch.linspace(y0, y1, MH).view(MH, 1).expand(MH, MW)
if mask.sum() == 0:
mean_x = 0.5 * (x0 + x1)
mean_y = 0.5 * (y0 + y1)
else:
mean_x = xs[mask].mean()
mean_y = ys[mask].mean()
obj_centers.append([mean_x, mean_y])
obj_centers = torch.FloatTensor(obj_centers)
triples = []
num_objs = objs.size(0)
real_objs = []
__image__ = "__image__"
# if num_objs > 1:
# real_objs = (objs != __image__).nonzero().squeeze(1)
real_objs = objs
objs_ids = [i for i in range(len(real_objs))]
rel_happened = []
unique_rel = []
rels = []
i = 0
s_o_occured = []
rel_idx2id = {}
for cur, name_id in enumerate(real_objs):
choices = [obj for obj in objs_ids if obj != cur]
if len(choices) == 0 or not self.include_relationships:
break
other = random.choice(choices)
if random.random() > 0.5:
s, o = cur, other
else:
s, o = other, cur
if str(s)+'_'+str(o) in s_o_occured:
s,o = o,s
if str(s)+'_'+str(o) in s_o_occured:
continue
sx0, sy0, sx1, sy1 = boxes[s]
ox0, oy0, ox1, oy1 = boxes[o]
d = obj_centers[s] - obj_centers[o]
theta = math.atan2(d[1], d[0])
if sx0 < ox0 and sx1 > ox1 and sy0 < oy0 and sy1 > oy1:
p = 'surrounding'
elif sx0 > ox0 and sx1 < ox1 and sy0 > oy0 and sy1 < oy1:
p = 'inside'
elif theta >= 3 * math.pi / 4 or theta <= -3 * math.pi / 4:
p = 'left of'
elif -3 * math.pi / 4 <= theta < -math.pi / 4:
p = 'above'
elif -math.pi / 4 <= theta < math.pi / 4:
p = 'right of'
elif math.pi / 4 <= theta < 3 * math.pi / 4:
p = 'below'
rel_idx = self.vocab['pred_name_to_idx'][p]
rel_name = p.encode().decode("utf-8","ignore").split(' ')
# print(subject_name, data_item['subj_id'])
if len(rel_name)>1:
rel_name = torch.as_tensor([self.w2v[str(r)] for r in rel_name], dtype=torch.float32).mean(0)
else:
rel_name = torch.as_tensor(self.w2v[str(rel_name[0])], dtype=torch.float32)
rels.append(rel_name.unsqueeze(0))
if rel_idx in rel_happened:
p = rel_idx2id[rel_idx]
else:
unique_rel.append(rel_name.unsqueeze(0))
rel_happened.append(rel_idx)
rel_idx2id[rel_idx] = i
p = i
i = i+1
# p = self.vocab['pred_name_to_idx'][p]
triples.append([int(s), int(p), int(o)])
s_o_occured.append(str(s)+'_'+str(o))
unique_nodes = []
for cur, name_id in enumerate(real_objs):
id_name = self.vocab['object_idx_to_name'][name_id]
if id_name.encode().decode() == "playingfield":
id_name = "playing field"
if id_name.encode().decode() == "waterdrops":
id_name = "water drops"
id_name = id_name.encode().decode("utf-8","ignore").replace('-',' ').split(" ")
if len(id_name)>1:
id_name = torch.as_tensor([self.w2v[str(r)] for r in id_name], dtype=torch.float32).mean(0)
else:
id_name = torch.as_tensor(self.w2v[str(id_name[0])], dtype=torch.float32)
unique_nodes.append(id_name.unsqueeze(0))
unique_nodes = torch.cat(unique_nodes, dim=0)
unique_rel = torch.cat(unique_rel, dim=0)
rels = torch.cat(rels, dim=0)
labels = [i+1 for i in range(len(real_objs))]
target = {}
target['image_id'] = torch.tensor(int(index), dtype=torch.int64)
target['subject_embedding'] = unique_nodes
target['object_embedding'] = unique_nodes
target['relation_embedding'] = rels
target['relation_unique'] = unique_rel.permute(1,0)
target['unique_nodes'] = unique_nodes.permute(1,0)
target['boxes'] = boxes
target['labels'] = torch.tensor(labels, dtype=torch.int64)
target['edges'] = torch.tensor(triples, dtype=torch.int64)
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.image_ids)
def get_model(num_classes):
model = lib.fasterrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor_v2.cls_score.in_features
num_classes = 2
model.roi_heads.box_predictor_v2 =FastRCNNPredictorPairedSortedGNNFull(in_features, num_classes)
return model
dataset = COCODataset(glove_vectors, get_transform(train=True))
print (len(dataset))
lr = 0.02
momentum = 0.9
weight_decay = 0.0005
lr_backbone = 0.00001
batch_size = 7
num_workers = 8
shuffle = True # Shuffle the data
step = 2
gamma = 0.1
num_epochs = 10
dataset_train = dataset
dataset.transforms = get_transform(train=True)
# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
dataset_train, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers,
collate_fn=utils.collate_fn)
num_classes = 2
print (num_classes)
# # get the model using our helper function
model = get_model(num_classes)
# torch.hub.load(model, force_reload=True)
if torch.cuda.device_count() > 1:
print ('Going train with Data Parallel...')
model = torch.nn.DataParallel(model)
# move model to the right device
model.to(device)
# construct an optimizer
# params = [p for p in model.parameters() if p.requires_grad]
param_dicts = [
{
"params": [
p
for n, p in model.named_parameters()
if "backbone" not in n and p.requires_grad
]
},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": lr_backbone,
}
]
optimizer = torch.optim.SGD(param_dicts, lr=lr, #lr=0.0005
momentum=momentum, weight_decay=weight_decay)
# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=step, #stepsize=5
gamma=gamma)
MODEL_DIR = "saved_models"
num_epochs = 50
for epoch in range(num_epochs):
torch.save(model.state_dict(), os.path.join(MODEL_DIR, "model_coco_epoch_%s.pth"%(epoch)))
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=100)
#evaluate model
# update the learning rate
lr_scheduler.step()