-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunfold_texture.py
executable file
·184 lines (161 loc) · 8.08 KB
/
unfold_texture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/python
'''
this code is to get incomplete texture from a person image and corresponding densepose result
'''
import numpy as np
import cv2
from scipy.interpolate import griddata
import glob, os
tex_size = 200
def UnfoldImg(img, IUV):
'''
return the texture image of each part corresponding to input
'''
TextureIm = np.zeros([24,200,200,3]) # return array
global TextureCnt
grid_x, grid_y = np.mgrid[0:200, 0:200] # (200,200), (200,200). coordinate of each grid
for partID in range(1, 25):
# print("processing the %d part" % partID)
y, x = np.where(IUV[:,:,0] == partID) # (N,) (N,) the index of each dim in which value is true
pixel = img[y, x] # N * 3
uv = IUV[y, x, 1:3]/255.*199 # N * 2, (u,v) is coordinate
if len(uv) == 0:
# print(" ...... no point in this part")
continue
uv = uv[:,::-1].astype(np.int32) # change to vu, which is the index
# TextureIm[partID-1] = griddata(uv, pixel, (grid_x, grid_y), method='nearest') # (200,200,3)
TextureIm[partID-1][uv[:,0], uv[:,1], :] = pixel
TextureCnt[partID-1][uv[:,0], uv[:,1], :] += 1
# print(TextureIm[partID-1][uv[:,::-1].astype(np.int32)]).shape # (200,200,3)
return TextureIm
def unfold(img_path, IUV_path):
img = cv2.imread(img_path)[:,:,::-1]/255.
IUV = cv2.imread(IUV_path)
TextureIm = UnfoldImg(img, IUV)
return TextureIm
def visualizeTex(TextureIm, save_path='./texture0617.jpg', do_close=False):
visTexture = np.zeros((1200, 800, 3)) # (1200, 800, 3)
for i in range(4): # x coordinate
for j in range(6): # y coordinate
visTexture[(200*j):(200*j+200), (200*i):(200*i+200), :] = TextureIm[(6*i+j), ::-1,:,:]
if do_close:
kernel = np.ones((5,5),np.uint8)
R = cv2.morphologyEx(visTexture[:,:,0], cv2.MORPH_CLOSE, kernel)
G = cv2.morphologyEx(visTexture[:,:,1], cv2.MORPH_CLOSE, kernel)
B = cv2.morphologyEx(visTexture[:,:,2], cv2.MORPH_CLOSE, kernel)
visTexture = np.concatenate((R[:,:,np.newaxis],G[:,:,np.newaxis],B[:,:,np.newaxis]), axis=2)
cv2.imwrite(save_path, visTexture[:,:,::-1]*255)
def TransferTexture(TextureIm, IUV):
'''
tex_img [24,200,200,3] + IUV [h,w,3] -> img [h,w,3]
'''
U = IUV[:,:,1]
V = IUV[:,:,2]
#
R_im = np.zeros(U.shape)
G_im = np.zeros(U.shape)
B_im = np.zeros(U.shape)
###
for PartInd in range(1,25): ## Set to xrange(1,23) to ignore the face part.
tex = TextureIm[PartInd-1,:,:,:].squeeze() # (200, 200, 3) get texture for each part.
#####
R = tex[:,:,0]
G = tex[:,:,1]
B = tex[:,:,2]
###############
x,y = np.where(IUV[:,:,0]==PartInd)
u_current_points = U[x,y] # Pixels that belong to this specific part.
v_current_points = V[x,y]
##
# r_current_points = R[((255-v_current_points)*199./255.).astype(int),(u_current_points*199./255.).astype(int)]*255
# g_current_points = G[((255-v_current_points)*199./255.).astype(int),(u_current_points*199./255.).astype(int)]*255
# b_current_points = B[((255-v_current_points)*199./255.).astype(int),(u_current_points*199./255.).astype(int)]*255
r_current_points = R[((v_current_points)/255.*(tex_size-1)).astype(int),(u_current_points/255.*(tex_size-1)).astype(int)]*255
g_current_points = G[((v_current_points)/255.*(tex_size-1)).astype(int),(u_current_points/255.*(tex_size-1)).astype(int)]*255
b_current_points = B[((v_current_points)/255.*(tex_size-1)).astype(int),(u_current_points/255.*(tex_size-1)).astype(int)]*255
## Get the RGB values from the texture images.
R_im[IUV[:,:,0]==PartInd] = r_current_points
G_im[IUV[:,:,0]==PartInd] = g_current_points
B_im[IUV[:,:,0]==PartInd] = b_current_points
generated_image = np.concatenate((R_im[:,:,np.newaxis],G_im[:,:,np.newaxis],B_im[:,:,np.newaxis]), axis=2 ).astype(np.uint8)
BG_MASK = generated_image==0
# generated_image[BG_MASK] = im[BG_MASK] ## Set the BG as the old image.
return generated_image
def wrap(tex_path, IUV_path):
'''
warp texture image from tex_path to IUV
texture image: [1200, 800, 3]
'''
Tex_Atlas = cv2.imread(tex_path)[:,:,::-1]/255. # change to RGB
TextureIm = np.zeros([24,tex_size,tex_size,3])
for i in range(4):
for j in range(6):
TextureIm[(6*i+j),:,:,:] = Tex_Atlas[(tex_size*j):(tex_size*j+tex_size), (tex_size*i):(tex_size*i+tex_size), :][::-1,:,:] # inverse the y direction
IUV = cv2.imread(IUV_path)
return TransferTexture(TextureIm,IUV)
def wrap_v2(tex_path, I_path, U_path, V_path):
'''
warp texture image from tex_path to I,U,V
texture image: [1200, 800, 3]
'''
I = cv2.imread(I_path, cv2.IMREAD_UNCHANGED)[:,:,np.newaxis]
I = (I / 255. * 24).astype(np.uint8)
U = cv2.imread(U_path, cv2.IMREAD_UNCHANGED)[:,:,np.newaxis]
V = cv2.imread(V_path, cv2.IMREAD_UNCHANGED)[:,:,np.newaxis] # change (h,w) to (h,w,1)
IUV = np.concatenate([I,U,V], axis=2) # (h,w,3)
Tex_Atlas = cv2.imread(tex_path)[:,:,::-1]/255. # change to RGB
TextureIm = np.zeros([24,tex_size,tex_size,3])
for i in range(4):
for j in range(6):
TextureIm[(6*i+j),:,:,:] = Tex_Atlas[(tex_size*j):(tex_size*j+tex_size), (tex_size*i):(tex_size*i+tex_size), :][::-1,:,:] # inverse the y direction
return IUV, TransferTexture(TextureIm,IUV)
def wrap_v3(tex_path, Probs_path, UVs_path):
import torch
Probs = np.load(Probs_path) # (25, h ,w)
Probs = torch.tensor(Probs)
Tex_Atlas = cv2.imread(tex_path)[:,:,::-1]/255. # change to RGB
TextureIm = np.zeros([24,tex_size,tex_size,3])
for i in range(4):
for j in range(6):
TextureIm[(6*i+j),:,:,:] = Tex_Atlas[(tex_size*j):(tex_size*j+tex_size), (tex_size*i):(tex_size*i+tex_size), :][::-1,:,:] # inverse the y direction
TextureIm = torch.tensor(TextureIm).to(torch.float32)
gen_im = torch.zeros(3, Probs.shape[1], Probs.shape[2]) # (3, h, w)
UVs = np.load(UVs_path)
UVs = torch.tensor(UVs) # (48,h,w)
for partID in range(1,25):
texture = TextureIm[(partID-1),:,:].permute(2,0,1) # [3,tex_size,tex_size]
uv = UVs[(partID-1)*2:partID*2,:,:].permute(1,2,0) # [h,w,2]
img = torch.nn.functional.grid_sample(texture.unsqueeze(0), uv.unsqueeze(0)) # [1,3,h,w]
prob = Probs[partID,:,:].unsqueeze(0) # [1,h,w]
gen_im += img[0] * prob # [bs,3,h,w]
return gen_im.permute(1,2,0).cpu().numpy() * 255
if __name__ == '__main__':
import sys
img_dir = sys.argv[1]
IUV_dir = sys.argv[2]
img_paths = sorted(glob.glob(img_dir+'/*.jpg'))
img_paths += sorted(glob.glob(img_dir+'/*.png'))[:5000]
IUV_paths = sorted(glob.glob(IUV_dir+'/*.png'))[:5000]
assert(len(img_paths) == len(IUV_paths)), "img_paths: %d, IUV_paths: %d " % (len(img_paths),len(IUV_paths))
## for generation
if True:
IMAGE_START = 1500
IMAGE_NUM = len(IUV_paths)
IMAGE_NUM = 1000
print("total images: %d" % IMAGE_NUM)
TextureCnt = np.ones([24,200,200,3], dtype=np.int32)
TextureIm_ = np.zeros([24,200,200,3])
for idx, (img_path,IUV_path) in enumerate(zip(img_paths,IUV_paths)):
if idx < IMAGE_START:
continue
if idx >= IMAGE_NUM + IMAGE_START:
break
TextureIm_ += unfold(img_path, IUV_path)
print("processing the %d image" % (idx+1))
TextureCnt[TextureCnt > 1] -= 1
TextureIm_ = TextureIm_ / TextureCnt
# visualizeTex(TextureIm_, '/home/sunyangtian/104/iPER/iPER_1024_label/007/3/texture.jpg')
# visualizeTex(TextureIm_, '/home/sunyangtian/104/new_data/dance16/texture.jpg')
save_path = os.path.join(os.path.dirname(img_dir), "texture.jpg")
# visualizeTex(TextureIm_, '/home/sunyangtian/104mnt/DanceDataset/dance14/texture.jpg')
visualizeTex(TextureIm_, save_path)