forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.gitlab-ci.yml
497 lines (441 loc) · 26.2 KB
/
.gitlab-ci.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
stages:
- pylint_test
- dev_test
- pip_test
- pip_publish
- release_notes
pylintjob:
stage: pylint_test
except:
- 139-correct-toynet-demo-instructions
- 148-publish-niftynet-v0-2-0-on-python-package-index-pypi
- 170-add-niftynet-paper-on-rtd-doc
- 167-document-cli-option-for-path-to-new-networks
- 176-document-pip-installer-bundling-guidelines
- 174-design-a-workflow-that-allows-prs-from-github-to-be-merged
- 206-improve-the-handling-of-release-notes
- 221-add-changelog-entry-for-version-0.2.2
- 223-put-bug-fixes-under-fixed-header-in-changelog
script:
- pylint --rcfile=tests/pylintrc niftynet/engine
- pylint --rcfile=tests/pylintrc niftynet/io/image_*py
- pylint --rcfile=tests/pylintrc niftynet/utilities/user_parameters_*py
testjob:
stage: dev_test
only:
- master
- dev
- tags
- 195-add-evaluation-action-3
- 192-model_zoo_tests
script:
# !!kill coverage in case of hanging processes
- if pgrep coverage; then pkill -f coverage; fi
# print system info
- which nvidia-smi
- nvidia-smi
- pwd
- python -c "import tensorflow as tf; print tf.__version__"
- python -c "import tensorflow as tf; from tensorflow.python.client import device_lib; print device_lib.list_local_devices()"
- ls -la /dev | grep nvidia
- echo $(python tests/get_gpu_index.py)
- export CUDA_VISIBLE_DEVICES=$(python tests/get_gpu_index.py)
# download data
# - wget -q https://www.dropbox.com/s/y7mdh4m9ptkibax/example_volumes.tar.gz
# - tar -xzvf example_volumes.tar.gz
- wget -q https://www.dropbox.com/s/lioecnpv82r5n6e/example_volumes_v0_2.tar.gz
- tar -xzvf example_volumes_v0_2.tar.gz
# - wget -q https://www.dropbox.com/s/94wa4fl8f8k3aie/testing_data.tar.gz
# - tar -xzvf testing_data.tar.gz
# - wget -q https://www.dropbox.com/s/p7b3t2c3mewtree/testing_data_v0_2.tar.gz
# - tar -xzvf testing_data_v0_2.tar.gz
- wget -q https://www.dropbox.com/s/2g8jr3wq8rw5xtv/testing_code_v0_3.tar.gz
- wget -q https://www.dropbox.com/s/5p5fdgy053tgmdj/testing_data_v0_3.tar.gz
- mkdir -p testing_data
- tar -xzvf testing_data_v0_3.tar.gz -C testing_data
- tar -xzvf testing_code_v0_3.tar.gz -C testing_data
#### python 3 tests ###################################
# save NiftyNet folder path just in case
- export niftynet_dir=$(pwd)
# create a virtual env to dev-test
- venv="niftynet-dev-test-py3"
- mypython=$(which python3)
- virtualenv -p $mypython $venv
- cd $venv
- venv_dir=$(pwd)
- source bin/activate
# print Python version to CI output
- which python
- python --version
- cd $niftynet_dir
- pip install -r requirements-gpu.txt
# tests
- python net_download.py testing -r
- python net_segment.py train -c config/highres3dnet_config.ini --batch_size=1 --num_threads=2 --queue_length=40 --max_iter=10
- python net_segment.py inference -c config/highres3dnet_config.ini --batch_size 8 --spatial_window_size 64,64,64 --queue_length 64
- python net_segment.py train -c config/scalenet_config.ini --batch_size 1 --queue_length 5 --num_threads 2
- python net_segment.py inference -c config/scalenet_config.ini --batch_size 16 --spatial_window_size 64,64,64 --queue_length 32
- python net_segment.py train -c config/vnet_config.ini --batch_size 1 --queue_length 5 --num_threads 2 --activation_function relu
- python net_segment.py inference -c config/vnet_config.ini --batch_size 16 --spatial_window_size 64,64,64 --queue_length 32 --activation_function relu
# need a large GPU to run
#- python net_segment.py train -c config/unet_config.ini --batch_size 1 --queue_length 5 --num_threads 2
#- python net_segment.py inference -c config/unet_config.ini --batch_size 1 --spatial_window_size 96,96,96 --queue_length 5
#- python net_segment.py train -c config/deepmedic_config.ini --batch_size 128 --queue_length 48 --num_threads 4
#- python net_segment.py inference -c config/deepmedic_config.ini --batch_size 12 --spatial_window_size 135,135,135 --queue_length 128
- python net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6
- python net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6 --exclude_fraction_for_validation 0.1 --validation_every_n 3
- python net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6 --starting_iter 0 --max_iter 15
- python net_segment.py inference -c config/default_segmentation.ini --spatial_window_size 84,84,84 --batch_size 7 --queue_length 14 --inference_iter 15
- python net_segment.py evaluation -c config/default_segmentation.ini
- python net_segment.py train -c config/default_multimodal_segmentation.ini --batch_size 3
- python net_segment.py inference -c config/default_multimodal_segmentation.ini --spatial_window_size 64,64,64 --batch_size 7
- python net_classify.py train -c testing_data/test_classification.ini
- python net_classify.py inference -c testing_data/test_classification.ini
- python net_classify.py evaluation -c testing_data/test_classification.ini
- python net_regress.py train -c config/default_monomodal_regression.ini --batch_size=1 --name toynet --max_iter 10
- python net_regress.py inference -c config/default_monomodal_regression.ini --batch_size=7 --name toynet --spatial_window_size 84,84,84
- python net_regress.py evaluation -c config/default_monomodal_regression.ini
- python net_gan.py train -c config/GAN_demo_train_config.ini --max_iter 5
- python net_gan.py inference -c config/GAN_demo_train_config.ini
- python net_autoencoder.py train -c config/vae_config.ini --max_iter 5
- python net_autoencoder.py inference -c config/vae_config.ini --inference_type sample
- python net_autoencoder.py inference -c config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- python net_autoencoder.py inference -c config/vae_config.ini --inference_type encode-decode
- python -m tests.test_model_zoo
- python -m unittest discover -s "tests" -p "*_test.py"
# deactivate virtual environment
- deactivate
- cd $niftynet_dir
###############end of python3
######### Python 2 ###################### run python2 code with coverage wrapper
- python net_download.py testing -r
- coverage run -a --source . net_segment.py train -c config/highres3dnet_config.ini --batch_size=1 --num_threads=2 --queue_length=40 --max_iter=10
- coverage run -a --source . net_segment.py inference -c config/highres3dnet_config.ini --batch_size 8 --spatial_window_size 64,64,64 --queue_length 64
- coverage run -a --source . net_segment.py train -c config/scalenet_config.ini --batch_size 1 --queue_length 5 --num_threads 2
- coverage run -a --source . net_segment.py inference -c config/scalenet_config.ini --batch_size 16 --spatial_window_size 64,64,64 --queue_length 32
- coverage run -a --source . net_segment.py train -c config/vnet_config.ini --batch_size 1 --queue_length 5 --num_threads 2 --activation_function relu
- coverage run -a --source . net_segment.py inference -c config/vnet_config.ini --batch_size 16 --spatial_window_size 64,64,64 --queue_length 32 --activation_function relu
# need a large GPU to run
#- coverage run -a --source . net_segment.py train -c config/unet_config.ini --batch_size 1 --queue_length 5 --num_threads 2
#- coverage run -a --source . net_segment.py inference -c config/unet_config.ini --batch_size 1 --spatial_window_size 96,96,96 --queue_length 5
#- coverage run -a --source . net_segment.py train -c config/deepmedic_config.ini --batch_size 128 --queue_length 48 --num_threads 4
#- coverage run -a --source . net_segment.py inference -c config/deepmedic_config.ini --batch_size 12 --spatial_window_size 135,135,135 --queue_length 128
- coverage run -a --source . net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6
- coverage run -a --source . net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6 --exclude_fraction_for_validation 0.1 --validation_every_n 3
- coverage run -a --source . net_segment.py train -c config/default_segmentation.ini --batch_size 3 --queue_length 6 --starting_iter 0 --max_iter 15
- coverage run -a --source . net_segment.py inference -c config/default_segmentation.ini --spatial_window_size 84,84,84 --batch_size 7 --queue_length 14 --inference_iter 15
- coverage run -a --source . net_segment.py evaluation -c config/default_segmentation.ini
- coverage run -a --source . net_segment.py train -c config/default_multimodal_segmentation.ini --batch_size 3
- coverage run -a --source . net_segment.py inference -c config/default_multimodal_segmentation.ini --spatial_window_size 64,64,64 --batch_size 7
- coverage run -a --source . net_classify.py train -c testing_data/test_classification.ini
- coverage run -a --source . net_classify.py inference -c testing_data/test_classification.ini
- coverage run -a --source . net_classify.py evaluation -c testing_data/test_classification.ini
- coverage run -a --source . net_regress.py train -c config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- coverage run -a --source . net_run.py train -a net_regress -c config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- coverage run -a --source . net_regress.py inference -c config/default_monomodal_regression.ini --name toynet --spatial_window_size 84,84,84 --batch_size 7
- coverage run -a --source . net_regress.py evaluation -c config/default_monomodal_regression.ini
- coverage run -a --source . net_gan.py train -c config/GAN_demo_train_config.ini --max_iter 5
- coverage run -a --source . net_run.py train -a net_gan -c config/GAN_demo_train_config.ini --max_iter 5
- coverage run -a --source . net_gan.py inference -c config/GAN_demo_train_config.ini
- coverage run -a --source . net_autoencoder.py train -c config/vae_config.ini --max_iter 5
- coverage run -a --source . net_autoencoder.py inference -c config/vae_config.ini --inference_type sample
- coverage run -a --source . net_autoencoder.py inference -c config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- coverage run -a --source . net_autoencoder.py inference -c config/vae_config.ini --inference_type encode-decode
- coverage run -a --source . net_download.py dense_vnet_abdominal_ct_model_zoo -r
- coverage run -a --source . -m tests.test_model_zoo
- coverage run -a --source . -m unittest discover -s "tests" -p "*_test.py"
- coverage report -m
- echo 'finished test'
tags:
- gift-linux
quicktest:
stage: dev_test
except:
- master
- dev
- tags
- 177-merging-net_regress-to-dev
- 112-publish-api-docs-online
- 147-revise-contribution-guidelines-to-include-github
- 150-properly-format-the-bibtex-entry-to-the-ipmi-2017-paper-on-the-main-readme
- 139-correct-toynet-demo-instructions
- 148-publish-niftynet-v0-2-0-on-python-package-index-pypi
- 170-add-niftynet-paper-on-rtd-doc
- 167-document-cli-option-for-path-to-new-networks
- 176-document-pip-installer-bundling-guidelines
- 174-design-a-workflow-that-allows-prs-from-github-to-be-merged
- 206-improve-the-handling-of-release-notes
- 221-add-changelog-entry-for-version-0.2.2
- 223-put-bug-fixes-under-fixed-header-in-changelog
- 195-add-evaluation-action-3
- 192-model_zoo_tests
script:
# print system info
- which nvidia-smi
- nvidia-smi
- pwd
- python -c "import tensorflow as tf; print tf.__version__"
#- python -c "import tensorflow as tf; from tensorflow.python.client import device_lib; print device_lib.list_local_devices()"
- ls -la /dev | grep nvidia
- echo $(python tests/get_gpu_index.py)
- export CUDA_VISIBLE_DEVICES=$(python tests/get_gpu_index.py)
# download data
# - wget -q https://www.dropbox.com/s/y7mdh4m9ptkibax/example_volumes.tar.gz
# - tar -xzvf example_volumes.tar.gz
- wget -q https://www.dropbox.com/s/lioecnpv82r5n6e/example_volumes_v0_2.tar.gz
- tar -xzvf example_volumes_v0_2.tar.gz
#- wget -q https://www.dropbox.com/s/94wa4fl8f8k3aie/testing_data.tar.gz
#- tar -xzvf testing_data.tar.gz
# - wget -q https://www.dropbox.com/s/p7b3t2c3mewtree/testing_data_v0_2.tar.gz
# - tar -xzvf testing_data_v0_2.tar.gz
- wget -q https://www.dropbox.com/s/5p5fdgy053tgmdj/testing_data_v0_3.tar.gz
- mkdir -p testing_data
- tar -xzvf testing_data_v0_3.tar.gz -C testing_data
- coverage erase
# run only fast tests
- python net_download.py testing -r
- QUICKTEST=True coverage run -a --source . -m unittest discover -s "tests" -p "*_test.py"
- coverage report -m
# run global config tests
# These need to be run separately because NiftyNetGlobalConfig is a singleton, AND
# its operations pertain to a global configuration file (~/.niftynet/config.ini).
- GLOBAL_CONFIG_TEST_gcs=True python -m unittest tests.niftynet_global_config_test
- GLOBAL_CONFIG_TEST_necfc=True python -m unittest tests.niftynet_global_config_test
- GLOBAL_CONFIG_TEST_ecfl=True python -m unittest tests.niftynet_global_config_test
- GLOBAL_CONFIG_TEST_icfbu=True python -m unittest tests.niftynet_global_config_test
- GLOBAL_CONFIG_TEST_nenhc=True python -m unittest tests.niftynet_global_config_test
- GLOBAL_CONFIG_TEST_enhnt=True python -m unittest tests.niftynet_global_config_test
- echo 'finished quick tests'
tags:
- gift-linux
pip-installer:
stage: pip_test
only:
- master
- dev
- tags
- 117-support-for-user-defined-networks-using-pip-installed-niftynet
- 195-add-evaluation-action-3
script:
# get the shortened version of last commit's hash
- LAST_COMMIT=$(git rev-parse --short HEAD)
# source utils
- source ci/utils.sh
# following three lines copied over from dev script:
- ls -la /dev | grep nvidia
- echo $(python tests/get_gpu_index.py)
- export CUDA_VISIBLE_DEVICES=$(python tests/get_gpu_index.py)
# create a Python file that will import all available packages from the pip installer
- package_importer="$(pwd)/import_niftynet_packages.py"
# traverse the file hierarchy recursively to discover all packages
- find niftynet -type f \( ! -name . \) -print | grep '.py$' | grep -v __init__ | sed 's/\.\.\///g;s/\//\./g;s/\.py//g;s/^niftynet/import niftynet/g' > $package_importer
# save NiftyNet folder path just in case
- export niftynet_dir=$(pwd)
# create the NiftyNet wheel
- rm -rf dist # remove dist directory, just in case
- sh ci/bundlewheel.sh
- source ci/findwheel.sh
- echo $niftynet_wheel
# ============= Python 2 ============================
# create a virtual env to test pip installer
- venv="niftynet-pip-installer-venv-py2"
- mypython=$(which python2)
- virtualenv -p $mypython $venv
- cd $venv
- venv_dir=$(pwd)
- source bin/activate
# print Python version to CI output
- which python
- python --version
# NiftyNet console entries should fail gracefully if TF not installed
# i.e. check that the warning displays the TF website
- cd $niftynet_dir
- set +e
- python -c "import niftynet" 2>&1 | grep "https://www.tensorflow.org/"
- set -e
- cd $venv_dir
# install TF
- pip install tensorflow-gpu==1.3
# install using built NiftyNet wheel
- pip install $niftynet_wheel
# install SimpleITK for package importer test to work properly
- pip install simpleitk
# create symlink to required datasets
- ln -s /home/gitlab-runner/environments/niftynet/data/example_volumes ./example_volumes
# check user-defined networks discovered
# 1) create configuration + NiftyNet home
- CONFIG_HOME=~/.niftynet
- mkdir -p $CONFIG_HOME
- NIFTYNET_HOME=~/niftynet-$LAST_COMMIT
- mkdir $NIFTYNET_HOME
- GLOBAL_CONFIG=$CONFIG_HOME/config.ini
- echo "[global]" > $GLOBAL_CONFIG
- echo "home = $NIFTYNET_HOME" >> $GLOBAL_CONFIG
- cat $GLOBAL_CONFIG
# 2) create extension hierarchy
- mkdir -p $NIFTYNET_HOME/niftynetext/network
- touch $NIFTYNET_HOME/niftynetext/__init__.py
- touch $NIFTYNET_HOME/niftynetext/network/__init__.py
# 3) replicate working ToyNet example
- TOYNET_REPLICA=$NIFTYNET_HOME/niftynetext/network/notoynet.py
- cp $niftynet_dir/niftynet/network/toynet.py $TOYNET_REPLICA
- sed -i 's/ToyNet/NoToyNet/g' $TOYNET_REPLICA
# 4) run e.g. segmentation using ToyNet replica
- net_segment train -c $niftynet_dir/config/default_segmentation.ini --name niftynetext.network.notoynet.NoToyNet --batch_size 3 --max_iter 5
- net_segment inference -c $niftynet_dir/config/default_segmentation.ini --name niftynetext.network.notoynet.NoToyNet --spatial_window_size 80,80,80 --batch_size 8
# 5) clean up created config + NiftyNet home hierarchy
- rm -rf $CONFIG_HOME
- unset CONFIG_HOME
- rm -rf $NIFTYNET_HOME
- unset NIFTYNET_HOME
# check whether all packages are importable
- cat $package_importer
- python $package_importer
# test niftynet command
- net_download testing -r
- net_segment train -c $niftynet_dir/config/default_segmentation.ini --name toynet --batch_size 3 --max_iter 5
- net_segment inference -c $niftynet_dir/config/default_segmentation.ini --name toynet --spatial_window_size 80,80,80 --batch_size 8
- net_segment evaluation -c $niftynet_dir/config/default_segmentation.ini
- net_run train --app net_segment -c $niftynet_dir/config/default_segmentation.ini --name toynet --batch_size 3 --max_iter 5
- net_run inference --app net_segment -c $niftynet_dir/config/default_segmentation.ini --name toynet --spatial_window_size 80,80,80 --batch_size 8
- net_run evaluation --app net_segment -c $niftynet_dir/config/default_segmentation.ini
- net_classify train -c extensions/testing/test_classification.ini
- net_classify inference -c extensions/testing/test_classification.ini
- net_classify evaluation -c extensions/testing/test_classification.ini
- net_run --app net_classify train -c extensions/testing/test_classification.ini
- net_run --app net_classify inference -c extensions/testing/test_classification.ini
- net_run --app net_classify evaluation -c extensions/testing/test_classification.ini
- net_regress train -c $niftynet_dir/config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- net_regress inference -c $niftynet_dir/config/default_monomodal_regression.ini --name toynet --spatial_window_size 84,84,84 --batch_size 7
- net_regress evaluation -c $niftynet_dir/config/default_monomodal_regression.ini
- net_run train -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- net_run inference -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini --name toynet --spatial_window_size 84,84,84 --batch_size 7
- net_run evaluation -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini
- net_gan train -c $niftynet_dir/config/GAN_demo_train_config.ini --max_iter 5
- net_gan inference -c $niftynet_dir/config/GAN_demo_train_config.ini
- net_run train --app net_gan -c $niftynet_dir/config/GAN_demo_train_config.ini --max_iter 5
- net_run inference --app net_gan -c $niftynet_dir/config/GAN_demo_train_config.ini
- net_autoencoder train -c $niftynet_dir/config/vae_config.ini --max_iter 5
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type sample
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type encode-decode
- net_run train --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --max_iter 5
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type sample
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type encode-decode
- net_download dense_vnet_abdominal_ct_model_zoo -r
# deactivate virtual environment
- deactivate
- cd $niftynet_dir
# ============= Python 3 ============================
# create a virtual env to test pip installer
- venv="niftynet-pip-installer-venv-py3"
- mypython=$(which python3)
- virtualenv -p $mypython $venv
- cd $venv
- venv_dir=$(pwd)
- source bin/activate
# print Python version to CI output
- which python
- python --version
# NiftyNet console entries should fail gracefully if TF not installed
# i.e. check that the warning displays the TF website
- cd $niftynet_dir
- set +e
- python -c "import niftynet" 2>&1 | grep "https://www.tensorflow.org/"
- set -e
- cd $venv_dir
# install TF
- pip install tensorflow-gpu==1.3
# install using built NiftyNet wheel
- pip install $niftynet_wheel
# install SimpleITK for package importer test to work properly
- pip install simpleitk
# check whether all packages are importable
- cat $package_importer
- python $package_importer
# test niftynet command
- ln -s /home/gitlab-runner/environments/niftynet/data/example_volumes ./example_volumes
- net_download testing -r
- net_segment train -c $niftynet_dir/config/default_segmentation.ini --name toynet --batch_size 3 --max_iter 5
- net_segment inference -c $niftynet_dir/config/default_segmentation.ini --name toynet --spatial_window_size 80,80,80 --batch_size 8
- net_segment evaluation -c $niftynet_dir/config/default_segmentation.ini
- net_run train --app net_segment -c $niftynet_dir/config/default_segmentation.ini --name toynet --batch_size 3 --max_iter 5
- net_run inference --app net_segment -c $niftynet_dir/config/default_segmentation.ini --name toynet --spatial_window_size 80,80,80 --batch_size 8
- net_run evaluation --app net_segment -c $niftynet_dir/config/default_segmentation.ini
- net_classify train -c extensions/testing/test_classification.ini
- net_classify inference -c extensions/testing/test_classification.ini
- net_classify evaluation -c extensions/testing/test_classification.ini
- net_run --app net_classify train -c extensions/testing/test_classification.ini
- net_run --app net_classify inference -c extensions/testing/test_classification.ini
- net_run --app net_classify evaluation -c extensions/testing/test_classification.ini
- net_regress train -c $niftynet_dir/config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- net_regress inference -c $niftynet_dir/config/default_monomodal_regression.ini --name toynet --spatial_window_size 84,84,84 --batch_size 7
- net_regress evaluation -c $niftynet_dir/config/default_monomodal_regression.ini
- net_run train -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini --max_iter 10 --name toynet --batch_size=2
- net_run inference -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini --name toynet --spatial_window_size 84,84,84 --batch_size 7
- net_run evaluation -a net_regress -c $niftynet_dir/config/default_monomodal_regression.ini
- net_gan train -c $niftynet_dir/config/GAN_demo_train_config.ini --max_iter 5
- net_gan inference -c $niftynet_dir/config/GAN_demo_train_config.ini
- net_run train --app net_gan -c $niftynet_dir/config/GAN_demo_train_config.ini --max_iter 5
- net_run inference --app net_gan -c $niftynet_dir/config/GAN_demo_train_config.ini
- net_autoencoder train -c $niftynet_dir/config/vae_config.ini --max_iter 5
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type sample
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- net_autoencoder inference -c $niftynet_dir/config/vae_config.ini --inference_type encode-decode
- net_run train --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --max_iter 5
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type sample
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type encode --save_seg_dir output/vae_demo_features
- net_run inference --app net_autoencoder -c $niftynet_dir/config/vae_config.ini --inference_type encode-decode
- net_download dense_vnet_abdominal_ct_model_zoo -r
# deactivate virtual environment
- deactivate
- cd $niftynet_dir
tags:
- gift-adelie
pip-camera-ready:
stage: pip_publish
only:
- tags
script:
# Copy wheel created in previous stage to a specific location on GIFT-Adelie
- export niftynet_dir=$(pwd)
# create the NiftyNet wheel
- rm -rf dist # remove dist directory, just in case
- sh ci/bundlewheel.sh
- source ci/findwheel.sh
- echo $niftynet_wheel
# Creat camera-ready folder if doesn't exist
- camera_ready_dir=/home/gitlab-runner/environments/niftynet/pip/camera-ready
- mkdir -p $camera_ready_dir
- ls -lrtha $camera_ready_dir
# Clean up the camera-ready folder if already there
- rm -rf $camera_ready_dir/*.whl
# Finally do copy
- cp $niftynet_wheel $camera_ready_dir
- ls -lrtha $camera_ready_dir
# Instruct developer which file to publish
- echo "Camera-ready pip installer bundle (wheel) created:"
- echo "$(ls $camera_ready_dir/*.whl)"
tags:
- gift-adelie
release-notes:
stage: release_notes
only:
- tags
script:
- echo $CI_COMMIT_REF_NAME
- echo $CI_COMMIT_TAG
# Fail if nothing's been added to changelog for this version
- echo "Checking changelog modified for current release ..."
- grep ${CI_COMMIT_TAG:1} CHANGELOG.md
- echo "... DONE"
# Do actually push release notes to GitHub
- |
if [[ "$CI_COMMIT_TAG" == v* ]]; then
echo "Doing a chandler push for $CI_COMMIT_TAG ..."
chandler push $CI_COMMIT_TAG --github=NifTK/NiftyNet
echo "... DONE"
fi
tags:
- gift-adelie