Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add padding to non divisible images #218

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 32 additions & 1 deletion terratorch/models/backbones/prithvi_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from timm.models import FeatureInfo
from timm.models._builder import build_model_with_cfg
from timm.models._registry import generate_default_cfgs, register_model
from torch import nn
from torch import nn, Tensor

from terratorch.datasets import HLSBands
from terratorch.models.backbones.select_patch_embed_weights import select_patch_embed_weights
Expand Down Expand Up @@ -66,6 +66,16 @@ def checkpoint_filter_fn(

return state_dict


def pad_images(imgs: Tensor,patch_size: int, padding:str) -> Tensor:
p = patch_size
# h, w = imgs.shape[3], imgs.shape[4]
t, h, w = imgs.shape[-3:]
h_pad, w_pad = (p - h % p) % p, (p - w % p) % p # Ensure padding is within bounds
if h_pad > 0 or w_pad > 0:
imgs = nn.functional.pad(imgs, (0, w_pad, 0, h_pad), mode=padding)
return imgs

def _create_prithvi(
variant: str,
pretrained: bool = False, # noqa: FBT001, FBT002
Expand All @@ -76,6 +86,9 @@ def _create_prithvi(
if pretrained_bands is None:
pretrained_bands = PRETRAINED_BANDS

padding = kwargs.get("padding", "none")
patch_size = kwargs.get("patch_size", 16)

# Little hack because VIT does not support timm's features_only
# so we do it ourselves
encoder_only = kwargs.get("features_only", False)
Expand Down Expand Up @@ -113,6 +126,24 @@ def forward_filter_indices(*args, **kwargs):
model.model_bands = model_bands
model.pretrained_bands = pretrained_bands

if padding != "none":
original_forward = model.forward
original_forward_features = model.forward_features

def pad_and_forward(forward_fn, patch_size, padding, *args, **kwargs):
inputs = pad_images(args[0], patch_size, padding)
return forward_fn(inputs, **kwargs)

def forward_pad_images(*args, **kwargs):
return pad_and_forward(original_forward, patch_size, padding, *args, **kwargs)

def forward_features_pad_images(*args, **kwargs):
return pad_and_forward(original_forward_features, patch_size, padding, *args, **kwargs)

model.forward = forward_pad_images
model.forward_features = forward_features_pad_images


return model

def create_prithvi_vit_100(
Expand Down
15 changes: 14 additions & 1 deletion tests/test_backbones.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,8 @@ def test_vit_models_accept_multitemporal(model_name, input_224_multitemporal):

@pytest.mark.parametrize("model_name", ["prithvi_vit_100", "prithvi_vit_300"])
def test_vit_models_non_divisible_input(model_name, input_non_divisible):
backbone = timm.create_model(model_name, pretrained=False, num_frames=NUM_FRAMES)
#padding 'none','constant', 'reflect', 'replicate' or 'circular' default is 'none'
backbone = timm.create_model(model_name, pretrained=False, num_frames=NUM_FRAMES,padding='constant')
backbone(input_non_divisible)

@pytest.mark.parametrize("model_name", ["prithvi_vit_100", "prithvi_vit_300"])
Expand Down Expand Up @@ -105,6 +106,18 @@ def test_out_indices(model_name, input_224):
for filtered_index, full_index in enumerate(out_indices):
assert torch.allclose(full_output[full_index], output[filtered_index])

@pytest.mark.parametrize("model_name", ["prithvi_vit_100", "prithvi_vit_300"])
def test_out_indices_non_divisible(model_name, input_non_divisible):
out_indices = [2, 4, 8, 10]
backbone = timm.create_model(model_name, pretrained=False, features_only=True, num_frames=NUM_FRAMES, out_indices=out_indices, padding='constant')
assert backbone.feature_info.out_indices == out_indices

output = backbone(input_non_divisible)
full_output = backbone.forward_features(input_non_divisible)

for filtered_index, full_index in enumerate(out_indices):
assert torch.allclose(full_output[full_index], output[filtered_index])

@pytest.mark.parametrize("model_name", ["vit_base_patch16", "vit_large_patch16"])
def test_scale_mae(model_name):
out_indices = [2, 4, 8, 10]
Expand Down