This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 163
/
Cross_Entropy.py
76 lines (67 loc) · 2.59 KB
/
Cross_Entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import utils as u
class Cross_Entropy(torch.nn.Module):
"""docstring for Cross_Entropy"""
def __init__(self, args, dataset):
super().__init__()
weights = torch.tensor(args.class_weights).to(args.device)
self.weights = self.dyn_scale(args.task, dataset, weights)
def dyn_scale(self,task,dataset,weights):
# if task == 'link_pred': commented to have a 1:1 ratio
# '''
# when doing link prediction there is an extra weighting factor on the non-existing
# edges
# '''
# tot_neg = dataset.num_non_existing
# def scale(labels):
# cur_neg = (labels == 0).sum(dtype = torch.float)
# out = weights.clone()
# out[0] *= tot_neg/cur_neg
# return out
# else:
# def scale(labels):
# return weights
def scale(labels):
return weights
return scale
def logsumexp(self,logits):
m,_ = torch.max(logits,dim=1)
m = m.view(-1,1)
sum_exp = torch.sum(torch.exp(logits-m),dim=1, keepdim=True)
return m + torch.log(sum_exp)
def forward(self,logits,labels):
'''
logits is a matrix M by C where m is the number of classifications and C are the number of classes
labels is a integer tensor of size M where each element corresponds to the class that prediction i
should be matching to
'''
labels = labels.view(-1,1)
alpha = self.weights(labels)[labels].view(-1,1)
loss = alpha * (- logits.gather(-1,labels) + self.logsumexp(logits))
return loss.mean()
if __name__ == '__main__':
dataset = u.Namespace({'num_non_existing': torch.tensor(10)})
args = u.Namespace({'class_weights': [1.0,1.0],
'task': 'no_link_pred'})
labels = torch.tensor([1,0])
ce_ref = torch.nn.CrossEntropyLoss(reduction='sum')
ce = Cross_Entropy(args,dataset)
# print(ce.weights(labels))
# print(ce.weights(labels))
logits = torch.tensor([[1.0,-1.0],
[1.0,-1.0]])
logits = torch.rand((5,2))
labels = torch.randint(0,2,(5,))
print(ce(logits,labels)- ce_ref(logits,labels))
exit()
ce.logsumexp(logits)
# print(labels)
# print(ce.weights(labels))
# print(ce.weights(labels)[labels])
x = torch.tensor([0,1])
y = torch.tensor([1,0]).view(-1,1)
# idx = torch.stack([x,y])
# print(idx)
# print(idx)
print(logits.gather(-1,y))
# print(logits.index_select(0,torch.tensor([0,1])))