forked from Ayews/M3Net
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathM3Net.py
143 lines (125 loc) · 6.73 KB
/
M3Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
from Models.swin import SwinTransformer
from Models.resnet import ResNet
from Models.t2t_vit import T2t_vit_t_14
from Models.EfficientNet import EfficientNet
from multistage_fusion import decoder
from multilevel_interaction import MultilevelInteractionBlock
class M3Net(nn.Module):
r""" Multilevel, Mixed and Multistage Attention Network for Salient Object Detection.
Args:
embed_dim (int): Dimension for attention. Default 384
dim (int): Patch embedding dimension. Default 96
img_size (int): Input image size. Default 224
method (string): Backbone used as the encoder.
"""
def __init__(self,embed_dim=384,dim=96,img_size=224,method='M3Net-S'):
super(M3Net, self).__init__()
self.img_size = img_size
self.feature_dims = []
self.method = method
self.dim = dim
if method == 'M3Net-S':
self.encoder = SwinTransformer(img_size=img_size,
embed_dim=128,
depths=[2,2,18,2],
num_heads=[4,8,16,32],
window_size=img_size//32)
self.proj1 = nn.Linear(128,dim)
self.proj2 = nn.Linear(256,dim*2)
self.proj3 = nn.Linear(512,dim*4)
self.proj4 = nn.Linear(1024,dim*8)
self.interact1 = MultilevelInteractionBlock(dim=dim*4,dim1=dim*8,embed_dim=embed_dim,num_heads=4,mlp_ratio=3)
self.interact2 = MultilevelInteractionBlock(dim=dim*2,dim1=dim*4,dim2=dim*8,embed_dim=embed_dim,num_heads=2,mlp_ratio=3)
self.interact3 = MultilevelInteractionBlock(dim=dim,dim1=dim*2,dim2=dim*4,embed_dim=embed_dim,num_heads=1,mlp_ratio=3)
feature_dims=[dim,dim*2,dim*4]
elif method == 'M3Net-R':
self.encoder = ResNet()
self.proj1 = nn.Conv2d(256,dim,1)
self.proj2 = nn.Conv2d(512,dim*2,1)
self.proj3 = nn.Conv2d(1024,dim*4,1)
self.proj4 = nn.Conv2d(2048,dim*8,1)
self.interact1 = MultilevelInteractionBlock(dim=dim*4,dim1=dim*8,embed_dim=embed_dim,num_heads=4,mlp_ratio=3)
self.interact2 = MultilevelInteractionBlock(dim=dim*2,dim1=dim*4,dim2=dim*8,embed_dim=embed_dim,num_heads=2,mlp_ratio=3)
self.interact3 = MultilevelInteractionBlock(dim=dim,dim1=dim*2,dim2=dim*4,embed_dim=embed_dim,num_heads=1,mlp_ratio=3)
feature_dims=[dim,dim*2,dim*4]
elif method == 'M3Net-T':
self.encoder = T2t_vit_t_14(pretrained=False)
self.interact2 = MultilevelInteractionBlock(dim=dim,dim1=embed_dim,embed_dim=embed_dim,num_heads=2,mlp_ratio=3)
self.interact3 = MultilevelInteractionBlock(dim=dim,dim1=dim,dim2=embed_dim,embed_dim=embed_dim,num_heads=1,mlp_ratio=3)
feature_dims=[dim,dim,embed_dim]
elif method == 'M3Net-E':
self.encoder = EfficientNet.from_name(f'efficientnet-b7')
self.proj1 = nn.Conv2d(48,dim,1)
self.proj2 = nn.Conv2d(80,dim*2,1)
self.proj3 = nn.Conv2d(224,dim*4,1)
self.proj4 = nn.Conv2d(640,dim*8,1)
self.interact1 = MultilevelInteractionBlock(dim=dim*4,dim1=dim*8,embed_dim=embed_dim,num_heads=4,mlp_ratio=3)
self.interact2 = MultilevelInteractionBlock(dim=dim*2,dim1=dim*4,dim2=dim*8,embed_dim=embed_dim,num_heads=2,mlp_ratio=3)
self.interact3 = MultilevelInteractionBlock(dim=dim,dim1=dim*2,dim2=dim*4,embed_dim=embed_dim,num_heads=1,mlp_ratio=3)
feature_dims=[dim,dim*2,dim*4]
self.decoder = decoder(embed_dim=embed_dim,dims=feature_dims,img_size=img_size,mlp_ratio=1)
def forward(self,x):
fea = self.encoder(x)
if self.method == 'M3Net-S':
fea_1_4,fea_1_8,fea_1_16,fea_1_32 = fea
fea_1_4 = self.proj1(fea_1_4)
fea_1_8 = self.proj2(fea_1_8)
fea_1_16 = self.proj3(fea_1_16)
fea_1_32 = self.proj4(fea_1_32)
fea_1_16_ = self.interact1(fea_1_16,fea_1_32)
fea_1_8_ = self.interact2(fea_1_8,fea_1_16_,fea_1_32)
fea_1_4_ = self.interact3(fea_1_4,fea_1_8_,fea_1_16_)
elif self.method == 'M3Net-R':
fea_1_4,fea_1_8,fea_1_16,fea_1_32 = fea
B,_,_,_ = fea_1_4.shape
fea_1_4 = self.proj1(fea_1_4).reshape(B,self.dim,-1).transpose(1,2)
fea_1_8 = self.proj2(fea_1_8).reshape(B,self.dim*2,-1).transpose(1,2)
fea_1_16 = self.proj3(fea_1_16).reshape(B,self.dim*4,-1).transpose(1,2)
fea_1_32 = self.proj4(fea_1_32).reshape(B,self.dim*8,-1).transpose(1,2)
fea_1_16_ = self.interact1(fea_1_16,fea_1_32)
fea_1_8_ = self.interact2(fea_1_8,fea_1_16_,fea_1_32)
fea_1_4_ = self.interact3(fea_1_4,fea_1_8_,fea_1_16_)
elif self.method == 'M3Net-T':
fea_1_4,fea_1_8,fea_1_16_ = fea
fea_1_8_ = self.interact2(fea_1_8,fea_1_16_)
fea_1_4_ = self.interact3(fea_1_4,fea_1_8_,fea_1_16_)
elif self.method == 'M3Net-E':
fea_1_4,fea_1_8,fea_1_16,fea_1_32 = fea
B,_,_,_ = fea_1_4.shape
fea_1_4 = self.proj1(fea_1_4).reshape(B,self.dim,-1).transpose(1,2)
fea_1_8 = self.proj2(fea_1_8).reshape(B,self.dim*2,-1).transpose(1,2)
fea_1_16 = self.proj3(fea_1_16).reshape(B,self.dim*4,-1).transpose(1,2)
fea_1_32 = self.proj4(fea_1_32).reshape(B,self.dim*8,-1).transpose(1,2)
fea_1_16_ = self.interact1(fea_1_16,fea_1_32)
fea_1_8_ = self.interact2(fea_1_8,fea_1_16_,fea_1_32)
fea_1_4_ = self.interact3(fea_1_4,fea_1_8_,fea_1_16_)
mask = self.decoder([fea_1_16_,fea_1_8_,fea_1_4_])
return mask
def flops(self):
flops = 0
flops += self.encoder.flops()
N1 = self.img_size//4*self.img_size//4
N2 = self.img_size//8*self.img_size//8
N3 = self.img_size//16*self.img_size//16
N4 = self.img_size//32*self.img_size//32
flops += self.interact1.flops(N3,N4)
flops += self.interact2.flops(N2,N3,N4)
flops += self.interact3.flops(N1,N2,N3)
flops += self.decoder.flops()
return flops
#from thop import profile
if __name__ == '__main__':
# Test
model = M3Net(embed_dim=384,dim=64,img_size=352,method='M3Net-R')
model.cuda()
f = torch.randn((1,3,352,352))
x = model(f.cuda())
for m in x:
print(m.shape)
import torch
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(model, (3, 352, 352), as_strings=True, print_per_layer_stat=True, verbose=True)
print('{:<30} {:<8}'.format('macs: ', macs))
print('{:<30} {:<8}'.format('parameters: ', params))