-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpn_kit.py
472 lines (391 loc) · 14.9 KB
/
pn_kit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import multiprocessing
import numpy as np
import pandas as pd
import torch.nn as nn
import torch
import torch.nn.functional as F
from pytorch3d.ops.knn import _KNN, knn_gather, knn_points
from tqdm import tqdm
from pyntcloud import PyntCloud
from plyfile import PlyData
import octree_np
OCTREE_BPP_DICT = {
1024:0.07,
512:0.125,
256:0.25,
128:0.5,
64:1.0,
}
def read_point_cloud(filepath):
plydata = PlyData.read(filepath)
try:
pc = np.array(np.transpose(np.stack((plydata['vertex']['x'],plydata['vertex']['y'],plydata['vertex']['z'])))).astype(np.float32)
except:
pc = np.array(np.transpose(np.stack((plydata['vertex']['X'],plydata['vertex']['Y'],plydata['vertex']['Z'])))).astype(np.float32)
return pc
def read_point_clouds(file_path_list):
print('loading point clouds...')
with multiprocessing.Pool() as p:
pcs = np.array(list(tqdm(p.imap(read_point_cloud, file_path_list, 32), total=len(file_path_list))))
return np.array(pcs)
def save_point_cloud(pc, filename, path='./viewing/'):
points = pd.DataFrame(pc, columns=['x', 'y', 'z'])
cloud = PyntCloud(points)
cloud.to_file(os.path.join(path, filename))
# NORMLIZE
def normalize(pc, margin=0.01):
# pc: (1, N, 3), one point cloud
# margin: rescaling pc to [0+margin, 1-margin]
device = pc.device
x, y, z = pc[0, :, 0], pc[0, :, 1], pc[0, :, 2]
center = torch.Tensor([(x.max()+x.min())/2, (y.max()+y.min())/2, (z.max()+z.min())/2]).to(device)
longest = torch.max(torch.Tensor([x.max() - x.min(), y.max() - y.min(), z.max() - z.min()])).to(device)
pc = pc - center
pc = pc * (1-margin) / longest
pc = pc + 0.5
return pc, center, longest
def denormalize(pc, cetner, longest, margin=0.01):
pc = pc - 0.5
pc = pc * longest / (1-margin)
pc = pc + cetner
return pc
def n_scale_batch(batch_pc, margin=0.01):
device = batch_pc.device
B, S, _ = batch_pc.shape
x, y, z = batch_pc[:, :, 0], batch_pc[:, :, 1], batch_pc[:, :, 2]
x_max, x_min, y_max, y_min, z_max, z_min = x.max(dim=1)[0], x.min(dim=1)[0], y.max(dim=1)[0], y.min(dim=1)[0], z.max(dim=1)[0], z.min(dim=1)[0]
x_max, x_min, y_max, y_min, z_max, z_min = x_max.unsqueeze(-1), x_min.unsqueeze(-1), y_max.unsqueeze(-1), y_min.unsqueeze(-1), z_max.unsqueeze(-1), z_min.unsqueeze(-1)
#center = torch.cat([(x_max+x_min)/2, (y_max+y_min)/2, (z_max+z_min)/2], dim=1).to(device)
longest = torch.max(torch.cat([x_max-x_min, y_max-y_min, z_max-z_min], dim=1), dim=1)[0].to(device)
scaling = (1-margin) / longest
#batch_pc = batch_pc - center.view(B, 1, 3)
batch_pc = batch_pc * scaling.view(B, 1, 1)
#batch_pc = batch_pc + 0.5
return batch_pc, scaling
def d_n_scale_batch(batch_pc, scaling):
device = batch_pc.device
B, S, _ = batch_pc.shape
#batch_pc = batch_pc - 0.5
batch_pc = batch_pc / scaling.view(B, 1, 1)
#batch_pc = batch_pc + center.view(B, 1, 3)
return batch_pc
# POINTNET
class PointNet(nn.Module):
def __init__(self, in_channel, mlps, relu, bn):
super(PointNet, self).__init__()
mlps.insert(0, in_channel)
self.mlp_Modules = nn.ModuleList()
for i in range(len(mlps) - 1):
if relu[i]:
if bn:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.BatchNorm2d(mlps[i+1]),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
)
self.mlp_Modules.append(mlp_Module)
def forward(self, points):
"""
Input:
points: input points position data, [B, C, N]
Return:
points: feature data, [B, D]
"""
points = points.unsqueeze(-1) # [B, C, N, 1]
for m in self.mlp_Modules:
points = m(points)
# [B, D, N, 1]
#points_np = points.detach().cpu().numpy()
#np.save('./npys/ae_pn_feature.npy', points_np)
points = torch.max(points, 2)[0] # [B, D, 1]
points = points.squeeze(-1) # [B, D]
return points
class SetAbstraction(nn.Module):
def __init__(self, npoint, K, in_channel, mlp, bn=False, finalRelu=True):
super(SetAbstraction, self).__init__()
self.npoint = npoint
self.K = K
self.bn = bn
self.finalRelu = finalRelu
if self.bn:
self.bn0 = nn.BatchNorm2d(mlp[0])
self.bn1 = nn.BatchNorm2d(mlp[1])
self.bn2 = nn.BatchNorm2d(mlp[2])
self.conv0 = nn.Conv2d(in_channel+3, mlp[0], 1)
self.conv1 = nn.Conv2d(mlp[0], mlp[1], 1)
self.conv2 = nn.Conv2d(mlp[1], mlp[2], 1)
def forward(self, xyz):
"""
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
# 转置
xyz = xyz.permute(0, 2, 1)
B, N, C = xyz.shape
S = self.npoint
K = self.K
# 使用farthest point sample从点列中采样出S个点
if S == N:
new_xyz = xyz
else:
new_xyz = index_points(xyz, farthest_point_sample_batch(xyz, S))
#dist, group_idx = self.knn(xyz, new_xyz)
#print('group_idx:', group_idx.size())
#print(group_idx)
#grouped_xyz = index_points(xyz, group_idx)
dists, idx, grouped_xyz = knn_points(new_xyz, xyz, K=self.K, return_nn=True)
grouped_xyz -= new_xyz.view(B, S, 1, C)
# 接下来将分组过后的点集计算特征值
grouped_points = grouped_xyz
grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S]
grouped_points = F.relu(self.bn0(self.conv0(grouped_points))) if self.bn else F.relu(self.conv0(grouped_points))
grouped_points = F.relu(self.bn1(self.conv1(grouped_points))) if self.bn else F.relu(self.conv1(grouped_points))
grouped_points = self.conv2(grouped_points)
if self.bn:
grouped_points = self.bn2(grouped_points)
if self.finalRelu:
grouped_points = F.relu(grouped_points)
new_points = torch.max(grouped_points, 2)[0] # [B, D', S]
new_xyz = new_xyz.permute(0, 2, 1)
return new_xyz, new_points
class CMLP(nn.Module):
def __init__(self, in_channel, mlps, relu, bn):
super(CMLP, self).__init__()
self.bn = bn
mlps.insert(0, in_channel)
self.Mlp_Modules = nn.ModuleList()
for i in range(len(mlps) - 1):
if relu[i]:
if bn:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.BatchNorm2d(mlps[i+1]),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
)
self.Mlp_Modules.append(mlp_Module)
def forward(self, points):
"""
Input:
points: input points position data, [B, C, N]
Return:
points: feature data, [B, D']
"""
B, C, N = points.shape
points = points.unsqueeze(-1)
# points B, C, N, 1
points_mx_ls = []
for m in self.Mlp_Modules:
points = m(points)
points_mx_ls.append(torch.max(points, 2)[0])
# points_mx_ls [n_mlp * (B, D, 1)]
points = torch.cat(points_mx_ls, dim=1).squeeze(-1)
# [B, D*n_mlp]
return points
class MLP(nn.Module):
def __init__(self, in_channel, mlps, relu, bn):
super(MLP, self).__init__()
mlps.insert(0, in_channel)
self.mlp_Modules = nn.ModuleList()
for i in range(len(mlps) - 1):
if relu[i]:
if bn:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.BatchNorm2d(mlps[i+1]),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
nn.ReLU(),
)
else:
mlp_Module = nn.Sequential(
nn.Conv2d(mlps[i], mlps[i+1], 1),
)
self.mlp_Modules.append(mlp_Module)
def forward(self, points):
"""
Input:
points: input points position data, [B, C, N]
Return:
points: feature data, [B, D, N]
"""
points = points.unsqueeze(-1) # [B, C, N, 1]
for m in self.mlp_Modules:
points = m(points)
# [B, D, N, 1]
points = points.squeeze(-1) # [B, D, N]
return points
# SAMPLING
def farthest_point_sample_batch(xyz, npoint):
"""
Input:
xyz: pointcloud data, [B, N, 3]
npoint: number of samples
Return:
centroids: sampled pointcloud index, [B, npoint]
"""
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
dist = torch.sum((xyz - centroid) ** 2, -1)
mask = dist < distance
distance[mask] = dist[mask]
farthest = torch.max(distance, -1)[1]
return centroids
def index_points(points, idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S] or [B, S, K]
Return:
new_points:, indexed points data, [B, S, C]
"""
#print('points size:', points.size(), 'idx size:', idx.size())
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
# view_shape == [B, S, K]
view_shape[1:] = [1] * (len(view_shape) - 1)
# view_shape == [B, 1, 1]
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
# repeat_shape == [1, S, K]
#print('points:', points.size(), ', idx:', idx.size(), ', view_shape:', view_shape)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
# batch_indices == tensor[0, 1, ..., B-1]
#print('batch_indices:', batch_indices.size())
batch_indices = batch_indices.view(view_shape)
# batch_indices size == [B, 1, 1]
#print('after view batch_indices:', batch_indices.size())
batch_indices = batch_indices.repeat(repeat_shape)
# batch_indices size == [B, S, K]
new_points = points[batch_indices, idx.long(), :]
return new_points
def random_point_sample_batch(xyz, npoint):
"""
Input:
xyz: pointcloud data, [B, N, 3]
npoint: number of samples
Return:
new_xyz: sampled pointcloud index, [B, npoint, 3]
"""
device = xyz.device
B, N, C = xyz.shape
idx = torch.Tensor([True if i < npoint else False for i in range(N)]).to(device)
idx = idx[torch.randperm(idx.size(0))].bool()
return xyz[:, idx, :]
# NP OCTREE
def encode_sampled_np(sampled_xyz, scale, N, min_bpp):
codebits = 0
codes, depthes = [], []
for i in range(sampled_xyz.shape[0]):
pc = sampled_xyz[i]
DEPTH = 0
while True:
DEPTH += 1
code = octree_np.encode(pc, scale, DEPTH)
bpp = round(code.shape[0]/N, 5)
pc_rec = octree_np.getDecodeFromPc(pc, scale, DEPTH)
if bpp > min_bpp and pc_rec.shape == pc.shape:
break
#print(DEPTH)
codebits += code.shape[0]
codes.append(code)
depthes.append(DEPTH)
#print(depthes)
return codes, codebits
def encode_sampled_np_depth(sampled_xyz, scale, N, depth):
codebits = 0
codes, depthes = [], []
for i in range(sampled_xyz.shape[0]):
pc = sampled_xyz[i]
DEPTH = depth
while True:
code = octree_np.encode(pc, scale, DEPTH)
bpp = round(code.shape[0]/N, 5)
pc_rec = octree_np.getDecodeFromPc(pc, scale, DEPTH)
if pc_rec.shape == pc.shape:
break
DEPTH += 1
#print(DEPTH)
codebits += code.shape[0]
codes.append(code)
depthes.append(DEPTH)
#print(depthes)
return codes, codebits
def decode_sampled_np(codes, scale):
rec_sampled_xyz = []
for i in range(len(codes)):
rec_sampled_xyz.append(octree_np.decode(codes[i], scale))
return rec_sampled_xyz
def get_decode_from_pc(sampled_xyz, scale, depth):
rec_sampled_xyz = []
for i in range(sampled_xyz.shape[0]):
pc = sampled_xyz[i]
rec_sampled_xyz.append(octree_np.getDecodeFromPc(pc, scale, depth))
return rec_sampled_xyz
# PMF
def estimate_bits_from_pmf(pmf, sym):
L = pmf.shape[-1]
pmf = pmf.reshape(-1, L)
sym = sym.reshape(-1, 1)
assert pmf.shape[0] == sym.shape[0]
relevant_probabilities = torch.gather(pmf, dim=1, index=sym)
# gather: 以sym为index从pmf中找出对应的数
# relevant_probabilities shape: [B, 1]
# torch.clamp(input, min=None, max=None), Clamps all elements in input into the range [min, max].
bits = torch.sum(-torch.log2(relevant_probabilities.clamp(min=1e-3)))
return bits
def pmf_to_cdf(pmf):
cdf = pmf.cumsum(dim=-1)
#print(cdf.shape)
spatial_dimensions = pmf.shape[:-1] + (1,)
zeros = torch.zeros(spatial_dimensions, dtype=pmf.dtype, device=pmf.device)
cdf_with_0 = torch.cat([zeros, cdf], dim=-1)
# On GPU, softmax followed by cumsum can lead to the final value being
# slightly bigger than 1, so we clamp.
cdf_with_0 = cdf_with_0.clamp(max=1.)
return cdf_with_0
def binary_array_to_byte_array(a):
byte_stream = bytearray()
for i in range(0, len(a), 8):
byte_stream.append(int(''.join([str(e) for e in a[i:i+8]]), 2))
return byte_stream
def byte_array_to_binary_array(byte_stream):
int_values = [x for x in byte_stream]
binary_array = []
for i in range(0, len(int_values)):
binary_array.append(list(f'{int_values[i]:08b}'))
binary_array = np.array(binary_array, dtype=np.int).flatten()
return binary_array