Put your raw point cloud data in ./data
File structure should be like this
.
└── 2-l
├── 2-l - Cloud-body.txt
├── 2-l - Cloud-foot1.txt
├── 2-l - Cloud-foot2.txt
├── 2-l - Cloud-foot3.txt
├── 2-l - Cloud-foot4.txt
├── 2-l - Cloud-head.txt
├── 2-l - Cloud-tail.txt
├── 2-l-1.JPG
├── 2-l-2.JPG
├── 2-l-3.JPG
├── 2-l-4.JPG
├── 2-l-5.JPG
├── 2-l-6.JPG
└── 2-l.ply
2-l.ply
is the raw point clouds
*.txt
is the parts' segmentation for annotations
*.jpg
is the different view of 3D object
Please make sure the file extension is .ply->raw point clouds, .txt->segmentated point cloud
You can download example from https://github-1253353217.cos.ap-beijing.myqcloud.com/data-2-l.zip
python main.py -s ./data -d ./res
The result will be stored in ./res
File structure of ./res
.
└── 2-l
├── clean_annotation.txt
├── clean_100k.ply
├── clean_10k.ply
├── clean_1k.ply
├── info.txt
├── mesh.ply
├── noiseless.ply
├── real_annotation.txt
├── real_100k.ply
├── real_10k.ply
└── real_1k.ply
info.txt
is basic info for this 3D shape
annotation.txt
is info for annotations
clean_*k.ply
is point cloud sampled from reconstructed mesh
real_*k.ply
is point cloud sampled from noiseless point cloud
noiseless.ply
is noiseless point cloud sampled from raw point cloud
You can download example from https://github-1253353217.cos.ap-beijing.myqcloud.com/res-2-l.zip
python show_annotation.py -i ./res/2-l -t c # for clean_100k.ply
python show_annotation.py -i ./res/2-l -t r # for real_100k.ply
You can use visual_checker.py
to check your point cloud and mesh.
python visual_checker.py -s res -d check.csv
程序使用说明:
程序使用说明
选中绘图窗口按快捷键:(关闭输入法)
Q: 下一个
A: 正常
Z: 噪音过多 (手工难以剔除)
X: 明显孔洞
C: 车窗孔洞
V: 明显缺失
S: 切换分割视图 (有分割文件才可以)
D: 分割标注异常 (如果仅是分割有孔洞,原模型没有孔洞,则记为分割标注异常,而非明显孔洞)
W: 有离群点 (手工可以剔除)
R: 类别不明
E: 重建失真
space: 切换背景 (绿色背景,更容易看出问题)
.: 强制中断程序
Also, you can use GUI version for easy check
python visual_checker_GUI.py -s res -d check.csv