This repository has been archived by the owner on Dec 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·188 lines (163 loc) · 6.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import time
import argparse
import numpy as np
import pandas as pd
import torch.optim as optim
from data_util import *
from model import *
from tensorboard import SummaryWriter
from datetime import datetime
from torch.utils.data import DataLoader,Dataset
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
"""
https://www.kaggle.com/c/carvana-image-masking-challenge
"""
parser = argparse.ArgumentParser(description='Carvance')
parser.add_argument('--batch_size', type=int, default=1,
help='input batch size for training (default: 8)')
parser.add_argument('--lr', type=float, default=1e-3,
help='initial learning rate')
parser.add_argument('--test-batch-size', type=int, default=12, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--start-epoch', type=int, default=0,
help='start epoch')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 20)')
parser.add_argument('--seed', type=int, default=212,
metavar='S', help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--resume', type=str, default=None,
help='resume training')
args = parser.parse_args()
args.cuda =torch.cuda.is_available()
if args.cuda:
torch.cuda.manual_seed(args.seed)
def train(epoch, model, optimizer, train_loader, writer, iters):
model.train()
criterion=nn.NLLLoss2d(torch.FloatTensor(CLASS_WEIGHT)).cuda()
dice_co=0
count=0
for batch_idx,(data,target) in enumerate(train_loader):
data = Variable(data.cuda())
target = Variable(target.cuda())
output = model(data)
optimizer.zero_grad()
_, pred = torch.max(output, 1)
dice_coef=compute_dice(pred,target)
dice_co += dice_coef
loss = criterion(output, target)+Variable(torch.FloatTensor([10.0-10.0*dice_coef]).cuda())
loss.backward()
optimizer.step()
count += torch.sum(pred.data[0] == target.data[0])
wrong = torch.ones(pred.data[0].size()).cuda()
nonMatch = torch.eq(pred.data[0], target.data[0])
wrong[nonMatch] = 0
if batch_idx % args.log_interval == 0 and not batch_idx==0 :
print('Train Epoch:{}/{} [{}/{} ({:.0f}%)] Loss:{:.4f} acc:{:.2f}% ave dice coef:{:.4f}'.format(
epoch, args.epochs, batch_idx *
len(data), len(train_loader.dataset),
100.0 * batch_idx / len(train_loader), loss.data[0], 100.0 *
count / args.log_interval / torch.numel(target.data[0]),
dice_co/args.log_interval
))
# add to tensorboard
writer.add_scalar('loss', loss.data[0], iters)
writer.add_scalar('dice_coef', dice_co, iters)
writer.add_image('image', data.data[0], iters)
writer.add_image('pred', pred.data[0].float().expand_as(data.data[0]), iters)
writer.add_image('ground truth', target.data[0].float().expand_as(data.data[0]),iters)
writer.add_image('wrong prediction',wrong.expand_as(data.data[0]),iters)
iters += 1
dice_co = 0
count=0
return loss.data[0],iters
def compute_dice(pred,target):
"""
compute dice coefficient
"""
dice_count = torch.sum(pred.data[0].type(torch.ByteTensor)
& target.data[0].type(torch.ByteTensor))
dice_sum = (1.0 * torch.sum(target.data[0].type(torch.ByteTensor)) +
1.0 * torch.sum(pred.data[0].type(torch.ByteTensor)))
return (2 * dice_count+1.0)/(1.0 + dice_sum)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""
save checkpoint
"""
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def resume(ckpt,model):
"""
resume training
"""
if os.path.isfile(ckpt):
print('==> loading checkpoint {}'.format(ckpt))
checkpoint = torch.load(ckpt)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['loss']
model.load_state_dict(checkpoint['state_dict'])
optimizer = checkpoint['optimizer']
iters=checkpoint['iters']
print("==> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
return model,optimizer,args.start_epoch,best_loss,iters
else:
print("==> no checkpoint found at '{}'".format(args.resume))
def adjust_lr(optimizer,epoch,decay=20):
"""
adjust the learning rate initial lr decayed 10 every 20 epoch
"""
lr=args.lr*(0.1**(epoch//decay))
for param in optimizer.param_groups:
param['lr']=lr
def main():
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
CarSet = CarDataSet(ROOT, TRAIN, MASK)
# split train val
# train_idx, valid_idx = augmented_train_valid_split(CarSet, test_size = 0.15,shuffle = True ,random_seed=args.seed)
# train_sampler = SubsetRandomSampler(train_idx)
# val_samper = SubsetRandomSampler(valid_idx)
train_loader = DataLoader(CarSet,
# sampler=train_sampler,
shuffle=True,
batch_size=args.batch_size,
**kwargs)
# val_loader = DataLoader(CarSet,
# sampler=val_samper,
# batch_size=2,
# **kwargs)
model = uNet(NUM_CLASS)
if args.cuda:
model.cuda()
optimizer=optim.Adam(model.parameters(),lr=args.lr,betas=(0.9, 0.999))
writer=SummaryWriter('logs/'+datetime.now().strftime('%B-%d'))
best_loss=1e+5
iters=0
# resume training
if args.resume:
model,optimizer,args.start_epoch,best_loss,iters = resume(args.resume,model)
for epoch in range(args.start_epoch ,args.epochs):
adjust_lr(optimizer,epoch,decay=5)
t1=time.time()
loss, iters = train(epoch,
model,
optimizer,
train_loader,
writer,
iters)
is_best = loss < best_loss
best_loss = min(best_loss, loss)
state={
'epoch':epoch,
'state_dict':model.state_dict(),
'optimizer':optimizer,
'loss':best_loss,
'iters': iters,
}
save_checkpoint(state, is_best)
writer.close()
if __name__ == '__main__':
main()