-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_mae_cross.py
253 lines (207 loc) · 9.55 KB
/
models_mae_cross.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import time
from functools import partial
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils
from timm.models.vision_transformer import PatchEmbed, Block
from models_crossvit import CrossAttentionBlock
from util.pos_embed import get_2d_sincos_pos_embed
class SupervisedMAE(nn.Module):
def __init__(self, img_size=384, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False):
super().__init__()
# --------------------------------------------------------------------------
# MAE encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAE decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.shot_token = nn.Parameter(torch.zeros(512))
# Exemplar encoder with CNN
self.decoder_proj1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(2) #[3,64,64]->[64,32,32]
)
self.decoder_proj2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.InstanceNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(2) #[64,32,32]->[128,16,16]
)
self.decoder_proj3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.InstanceNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(2) # [128,16,16]->[256,8,8]
)
self.decoder_proj4 = nn.Sequential(
nn.Conv2d(256, decoder_embed_dim, kernel_size=3, stride=1, padding=1),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1,1))
# [256,8,8]->[512,1,1]
)
self.decoder_blocks = nn.ModuleList([
CrossAttentionBlock(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
# Density map regresssion module
self.decode_head0 = nn.Sequential(
nn.Conv2d(decoder_embed_dim, 256, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, 256),
nn.ReLU(inplace=True)
)
self.decode_head1 = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, 256),
nn.ReLU(inplace=True)
)
self.decode_head2 = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, 256),
nn.ReLU(inplace=True)
)
self.decode_head3 = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, 256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 1, kernel_size=1, stride=1)
)
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=False)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=False)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.shot_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x):
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward_decoder(self, x, y_, shot_num=3):
# embed tokens
x = self.decoder_embed(x)
# add pos embed
x = x + self.decoder_pos_embed
# Exemplar encoder
y_ = y_.transpose(0,1) # y_ [N,3,3,64,64]->[3,N,3,64,64]
y1=[]
C=0
N=0
cnt = 0
for yi in y_:
cnt+=1
if cnt > shot_num:
break
yi = self.decoder_proj1(yi)
yi = self.decoder_proj2(yi)
yi = self.decoder_proj3(yi)
yi = self.decoder_proj4(yi)
N, C,_,_ = yi.shape
y1.append(yi.squeeze(-1).squeeze(-1)) # yi [N,C,1,1]->[N,C]
if shot_num > 0:
y = torch.cat(y1,dim=0).reshape(shot_num,N,C).to(x.device)
else:
y = self.shot_token.repeat(y_.shape[1],1).unsqueeze(0).to(x.device)
y = y.transpose(0,1) # y [3,N,C]->[N,3,C]
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x, y)
x = self.decoder_norm(x)
# Density map regression
n, hw, c = x.shape
h = w = int(math.sqrt(hw))
x = x.transpose(1, 2).reshape(n, c, h, w)
x = F.interpolate(
self.decode_head0(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False)
x = F.interpolate(
self.decode_head1(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False)
x = F.interpolate(
self.decode_head2(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False)
x = F.interpolate(
self.decode_head3(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False)
x = x.squeeze(-3)
return x
def forward(self, imgs, boxes, shot_num):
# if boxes.nelement() > 0:
# torchvision.utils.save_image(boxes[0], f"data/out/crops/box_{time.time()}_{random.randint(0, 99999):>5}.png")
with torch.no_grad():
latent = self.forward_encoder(imgs)
pred = self.forward_decoder(latent, boxes, shot_num) # [N, 384, 384]
return pred
def mae_vit_base_patch16_dec512d8b(**kwargs):
model = SupervisedMAE(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_large_patch16_dec512d8b(**kwargs):
model = SupervisedMAE(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_huge_patch14_dec512d8b(**kwargs):
model = SupervisedMAE(
patch_size=14, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_base_patch16_fim4(**kwargs):
model = SupervisedMAE(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=4, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_base_patch16_fim6(**kwargs):
model = SupervisedMAE(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=6, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
# set recommended archs
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b
mae_vit_base4_patch16 = mae_vit_base_patch16_fim4 # decoder: 4 blocks
mae_vit_base6_patch16 = mae_vit_base_patch16_fim6 # decoder: 6 blocks
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b