-
Notifications
You must be signed in to change notification settings - Fork 2
/
tau_model.py
640 lines (601 loc) · 29 KB
/
tau_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Internal TauModel class.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from future.builtins import * # NOQA
from future.utils import native_str
from collections import OrderedDict
import os
from copy import deepcopy
from itertools import count
from math import pi
import numpy as np
from .helper_classes import DepthRange, SlownessModelError, TauModelError
from .slowness_model import SlownessModel
from .tau_branch import TauBranch
from .velocity_model import VelocityModel
class TauModel(object):
"""
Provides storage of all the TauBranches comprising a model.
"""
def __init__(self, s_mod, radius_of_planet, is_spherical=True, cache=None,
debug=False, skip_calc=False):
self.debug = debug
# Depth for which tau model as constructed.
self.source_depth = 0.0
self.radius_of_planet = radius_of_planet
# True if this is a spherical slowness model. False if flat.
self.is_spherical = is_spherical
# Ray parameters used to construct the tau branches. This may only be
# a subset of the slownesses/ray parameters saved in the slowness
# model due to high slowness zones (low velocity zones).
self.ray_params = None
# 2D NumPy array containing a TauBranch object
# corresponding to each "branch" of the tau model, First list is P,
# second is S. Branches correspond to depth regions between
# discontinuities or reversals in slowness gradient for a wave type.
# Each branch contains time, distance, and tau increments for each ray
# parameter in ray_param for the layer. Rays that turn above the branch
# layer get 0 for time, distance, and tau increments.
self.tau_branches = None
self.s_mod = s_mod
# Branch with the source at its top.
self.source_branch = 0
# Depths that should not have reflections or phase conversions. For
# instance, if the source is not at a branch boundary then
# no_discon_depths contains source depth and reflections and phase
# conversions are not allowed at this branch boundary. If the source
# happens to fall on a real discontinuity then it is not included.
self.no_discon_depths = []
if cache is None:
self._depth_cache = OrderedDict()
elif cache is not False:
self._depth_cache = cache
else:
self._depth_cache = None
if not skip_calc:
self.calc_tau_inc_from()
def calc_tau_inc_from(self):
"""
Calculates tau for each branch within a slowness model.
"""
# First, we must have at least 1 slowness layer to calculate a
# distance. Otherwise we must signal an exception.
if self.s_mod.get_num_layers(True) == 0 \
or self.s_mod.get_num_layers(False) == 0:
raise SlownessModelError(
"Can't calculate tauInc when get_num_layers() = 0. "
"I need more slowness samples.")
self.s_mod.validate()
# Create an array holding the ray parameter that we will use for
# constructing the tau splines. Only store ray parameters that are
# not in a high slowness zone, i.e. they are smaller than the
# minimum ray parameter encountered so far.
num_branches = len(self.s_mod.critical_depths) - 1
self.tau_branches = np.empty((2, num_branches), dtype=TauBranch)
# Here we find the list of ray parameters to be used for the tau
# model. We only need to find ray parameters for S waves since P
# waves have been constructed to be a subset of the S samples.
ray_num = 0
min_p_so_far = self.s_mod.s_layers[0]['top_p']
temp_ray_params = np.empty(2 * self.s_mod.get_num_layers(False) +
len(self.s_mod.critical_depths))
# Make sure we get the top slowness of the very top layer
temp_ray_params[ray_num] = min_p_so_far
ray_num += 1
for curr_s_layer in self.s_mod.s_layers:
# Add the top if it is strictly less than the last sample added.
# Note that this will not be added if the slowness is continuous
# across the layer boundary.
if curr_s_layer['top_p'] < min_p_so_far:
temp_ray_params[ray_num] = curr_s_layer['top_p']
ray_num += 1
min_p_so_far = curr_s_layer['top_p']
if curr_s_layer['bot_p'] < min_p_so_far:
# Add the bottom if it is strictly less than the last sample
# added. This will always happen unless we are
# within a high slowness zone.
temp_ray_params[ray_num] = curr_s_layer['bot_p']
ray_num += 1
min_p_so_far = curr_s_layer['bot_p']
# Copy tempRayParams to ray_param while chopping off trailing zeros
# (from the initialisation), so the size is exactly right. NB
# slicing doesn't really mean deep copy, but it works for a list of
# doubles like this
self.ray_params = temp_ray_params[:ray_num]
if self.debug:
print("Number of slowness samples for tau:" + str(ray_num))
for wave_num, is_p_wave in enumerate([True, False]):
# The minimum slowness seen so far.
min_p_so_far = self.s_mod.get_slowness_layer(0, is_p_wave)['top_p']
# for critNum, (topCritDepth, botCritDepth) in enumerate(zip(
# self.s_mod.critical_depths[:-1],
# self.s_mod.critical_depths[1:])):
# Faster:
for crit_num, top_crit_depth, bot_crit_depth in zip(
count(), self.s_mod.critical_depths[:-1],
self.s_mod.critical_depths[1:]):
top_crit_layer_num = top_crit_depth['p_layer_num'] \
if is_p_wave else top_crit_depth['s_layer_num']
bot_crit_layer_num = (
bot_crit_depth['p_layer_num']
if is_p_wave else bot_crit_depth['s_layer_num']) - 1
self.tau_branches[wave_num, crit_num] = \
TauBranch(top_crit_depth['depth'], bot_crit_depth['depth'],
is_p_wave)
self.tau_branches[wave_num, crit_num].debug = self.debug
self.tau_branches[wave_num, crit_num].create_branch(
self.s_mod, min_p_so_far, self.ray_params)
# Update minPSoFar. Note that the new minPSoFar could be at
# the start of a discontinuity over a high slowness zone,
# so we need to check the top, bottom and the layer just
# above the discontinuity.
top_s_layer = self.s_mod.get_slowness_layer(top_crit_layer_num,
is_p_wave)
bot_s_layer = self.s_mod.get_slowness_layer(bot_crit_layer_num,
is_p_wave)
min_p_so_far = min(
min_p_so_far, min(top_s_layer['top_p'],
bot_s_layer['bot_p']))
bot_s_layer = self.s_mod.get_slowness_layer(
self.s_mod.layer_number_above(bot_crit_depth['depth'],
is_p_wave), is_p_wave)
min_p_so_far = min(min_p_so_far, bot_s_layer['bot_p'])
# Here we decide which branches are the closest to the Moho, CMB,
# and IOCB by comparing the depth of the top of the branch with the
# depths in the Velocity Model.
best_moho = 1e300
best_cmb = 1e300
best_iocb = 1e300
for branch_num, t_branch in enumerate(self.tau_branches[0]):
if abs(t_branch.top_depth - self.s_mod.v_mod.moho_depth) <= \
best_moho:
# Branch with Moho at its top.
self.moho_branch = branch_num
best_moho = abs(t_branch.top_depth -
self.s_mod.v_mod.moho_depth)
if abs(t_branch.top_depth - self.s_mod.v_mod.cmb_depth) < best_cmb:
self.cmb_branch = branch_num
best_cmb = abs(t_branch.top_depth - self.s_mod.v_mod.cmb_depth)
if abs(t_branch.top_depth - self.s_mod.v_mod.iocb_depth) < \
best_iocb:
self.iocb_branch = branch_num
best_iocb = abs(t_branch.top_depth -
self.s_mod.v_mod.iocb_depth)
# Now set moho_depth etc. to the top of the branches we have decided
# on.
self.moho_depth = self.tau_branches[0, self.moho_branch].top_depth
self.cmb_depth = self.tau_branches[0, self.cmb_branch].top_depth
self.iocb_depth = self.tau_branches[0, self.iocb_branch].top_depth
self.validate()
def __str__(self):
desc = "Delta tau for each slowness sample and layer.\n"
for j, ray_param in enumerate(self.ray_params):
for i, tb in enumerate(self.tau_branches[0]):
desc += (
" i " + str(i) + " j " + str(j) + " ray_param " +
str(ray_param) +
" tau " + str(tb.tau[j]) + " time " +
str(tb.time[j]) + " dist " +
str(tb.dist[j]) + " degrees " +
str(tb.dist[j] * 180 / pi) + "\n")
desc += "\n"
return desc
def validate(self):
# Could implement the model validation; not critical right now
return True
def depth_correct(self, depth):
"""
Called in TauPTime. Computes a new tau model for a source at depth
using the previously computed branches for a surface source. No
change is needed to the branches above and below the branch
containing the depth, except for the addition of a slowness sample.
The branch containing the source depth is split into 2 branches,
and up going branch and a downgoing branch. Additionally,
the slowness at the source depth must be sampled exactly as it is an
extremal point for each of these branches. Cf. [Buland1983]_, page
1290.
"""
if self.source_depth != 0:
raise TauModelError("Can't depth correct a TauModel that is not "
"originally for a surface source.")
if depth > self.radius_of_planet:
raise TauModelError("Can't depth correct to a source deeper than "
"the radius of the planet.")
return self.load_from_depth_cache(depth)
def load_from_depth_cache(self, depth):
# Very simple and straightforward LRU cache implementation.
if self._depth_cache is not None:
# Retrieve and later insert again to get LRU cache behaviour.
try:
value = self._depth_cache.pop(depth)
except KeyError:
value = self._load_from_depth_cache(depth)
self._depth_cache[depth] = value
# Pop first key-value pairs until at most 128 elements are still
# in the cache.
while len(self._depth_cache) > 128:
self._depth_cache.popitem(last=False)
return value
else:
return self._load_from_depth_cache(depth)
def _load_from_depth_cache(self, depth):
depth_corrected = self.split_branch(depth)
depth_corrected.source_depth = depth
depth_corrected.source_branch = depth_corrected.find_branch(depth)
depth_corrected.validate()
return depth_corrected
def split_branch(self, depth):
"""
Returns a new TauModel with the branches containing depth split at
depth. Used for putting a source at depth since a source can only be
located on a branch boundary.
"""
# First check to see if depth happens to already be a branch
# boundary, then just return original model.
for tb in self.tau_branches[0]:
if tb.top_depth == depth or tb.bot_depth == depth:
return deepcopy(self)
# Depth is not a branch boundary, so must modify the tau model.
index_p = -1
p_wave_ray_param = -1
index_s = -1
s_wave_ray_param = -1
out_s_mod = self.s_mod
out_ray_params = self.ray_params
# Do S wave first since the S ray param is > P ray param.
for is_p_wave in [False, True]:
split_info = out_s_mod.split_layer(depth, is_p_wave)
out_s_mod = split_info.s_mod
if split_info.needed_split and not split_info.moved_sample:
# Split the slowness layers containing depth into two layers
# each.
new_ray_param = split_info.ray_param
# Insert the new ray parameters into the ray_param array.
above = out_ray_params[:-1]
below = out_ray_params[1:]
index = (above > new_ray_param) & (new_ray_param > below)
if np.any(index):
index = np.where(index)[0][0] + 1
out_ray_params = np.insert(out_ray_params, index,
new_ray_param)
if is_p_wave:
index_p = index
p_wave_ray_param = new_ray_param
else:
index_s = index
s_wave_ray_param = new_ray_param
# Now add a sample to each branch above the depth, split the branch
# containing the depth, and add a sample to each deeper branch.
branch_to_split = self.find_branch(depth)
new_tau_branches = np.empty((2, self.tau_branches.shape[1] + 1),
dtype=TauBranch)
for i in range(branch_to_split):
new_tau_branches[0, i] = deepcopy(self.tau_branches[0, i])
new_tau_branches[1, i] = deepcopy(self.tau_branches[1, i])
# Add the new ray parameter(s) from splitting the S and/or P
# wave slowness layer to both the P and S wave tau branches (if
# splitting occurred).
if index_s != -1:
new_tau_branches[0, i].insert(s_wave_ray_param, out_s_mod,
index_s)
new_tau_branches[1, i].insert(s_wave_ray_param, out_s_mod,
index_s)
if index_p != -1:
new_tau_branches[0, i].insert(p_wave_ray_param, out_s_mod,
index_p)
new_tau_branches[1, i].insert(p_wave_ray_param, out_s_mod,
index_p)
for p_or_s in range(2):
new_tau_branches[p_or_s, branch_to_split] = TauBranch(
self.tau_branches[p_or_s, branch_to_split].top_depth, depth,
p_or_s == 0)
new_tau_branches[p_or_s, branch_to_split].create_branch(
out_s_mod,
self.tau_branches[p_or_s, branch_to_split].max_ray_param,
out_ray_params)
new_tau_branches[p_or_s, branch_to_split + 1] = \
self.tau_branches[p_or_s, branch_to_split].difference(
new_tau_branches[p_or_s, branch_to_split],
index_p, index_s, out_s_mod,
new_tau_branches[p_or_s, branch_to_split].min_ray_param,
out_ray_params)
for i in range(branch_to_split + 1, len(self.tau_branches[0])):
for p_or_s in range(2):
new_tau_branches[p_or_s, i + 1] = \
deepcopy(self.tau_branches[p_or_s, i])
if index_s != -1:
# Add the new ray parameter from splitting the S wave
# slownes layer to both the P and S wave tau branches.
for p_or_s in range(2):
new_tau_branches[p_or_s, i + 1].insert(
s_wave_ray_param, out_s_mod, index_s)
if index_p != -1:
# Add the new ray parameter from splitting the P wave
# slownes layer to both the P and S wave tau branches.
for p_or_s in range(2):
new_tau_branches[p_or_s, i + 1].insert(
p_wave_ray_param, out_s_mod, index_p)
# We have split a branch so possibly source_branch, moho_branch,
# cmb_branch and iocb_branch are off by 1.
out_source_branch = self.source_branch
if self.source_depth > depth:
out_source_branch += 1
out_moho_branch = self.moho_branch
if self.moho_depth > depth:
out_moho_branch += 1
out_cmb_branch = self.cmb_branch
if self.cmb_depth > depth:
out_cmb_branch += 1
out_iocb_branch = self.iocb_branch
if self.iocb_depth > depth:
out_iocb_branch += 1
# No overloaded constructors - so do it this way to bypass the
# calc_tau_inc_from in the __init__.
tau_model = TauModel(
out_s_mod,
radius_of_planet=out_s_mod.v_mod.radius_of_planet,
is_spherical=self.is_spherical, cache=False,
debug=self.debug, skip_calc=True)
tau_model.source_depth = self.source_depth
tau_model.source_branch = out_source_branch
tau_model.moho_branch = out_moho_branch
tau_model.moho_depth = self.moho_depth
tau_model.cmb_branch = out_cmb_branch
tau_model.cmb_depth = self.cmb_depth
tau_model.iocb_branch = out_iocb_branch
tau_model.iocb_depth = self.iocb_depth
tau_model.ray_params = out_ray_params
tau_model.tau_branches = new_tau_branches
tau_model.no_discon_depths = self.no_discon_depths + [depth]
tau_model.validate()
return tau_model
def find_branch(self, depth):
"""Finds the branch that either has the depth as its top boundary, or
strictly contains the depth. Also, we allow the bottom-most branch to
contain its bottom depth, so that the center of the planet is contained
within the bottom branch."""
for i, tb in enumerate(self.tau_branches[0]):
if tb.top_depth <= depth < tb.bot_depth:
return i
# Check to see if depth is centre of the planet.
if self.tau_branches[0, -1].bot_depth == depth:
return len(self.tau_branches) - 1
else:
raise TauModelError("No TauBranch contains this depth.")
def get_tau_branch(self, branch_nu, is_p_wave):
if is_p_wave:
return self.tau_branches[0, branch_nu]
else:
return self.tau_branches[1, branch_nu]
def get_branch_depths(self):
"""
Return an array of the depths that are boundaries between branches.
:return:
"""
branch_depths = [self.get_tau_branch(0, True).top_depth]
branch_depths += [
self.get_tau_branch(i - 1, True).bot_depth
for i in range(1, len(self.tau_branches[0]))]
return branch_depths
def serialize(self, filename):
"""
Serialize model to numpy npz binary file.
Summary of contents that have to be handled during serialization::
TauModel
========
cmb_branch <type 'int'>
cmb_depth <type 'float'>
debug <type 'bool'>
iocb_branch <type 'int'>
iocb_depth <type 'float'>
moho_branch <type 'int'>
moho_depth <type 'float'>
no_discon_depths <type 'list'> (of float!?)
radius_of_planet <type 'float'>
ray_params <type 'numpy.ndarray'> (1D, float)
s_mod <class 'obspy.taup.slowness_model.SlownessModel'>
source_branch <type 'int'>
source_depth <type 'float'>
is_spherical <type 'bool'>
tau_branches <type 'numpy.ndarray'> (2D, type TauBranch)
TauBranch
=========
debug <type 'bool'>
bot_depth <type 'float'>
dist <type 'numpy.ndarray'>
is_p_wave <type 'bool'>
max_ray_param <type 'float'>
min_ray_param <type 'float'>
min_turn_ray_param <type 'float'>
tau <type 'numpy.ndarray'>
time <type 'numpy.ndarray'>
top_depth <type 'float'>
SlownessModel
=============
debug <type 'bool'>
p_layers <type 'numpy.ndarray'>
p_wave <type 'bool'>
s_layers <type 'numpy.ndarray'>
s_wave <type 'bool'>
allow_inner_core_s <type 'bool'>
critical_depths <type 'numpy.ndarray'>
fluid_layer_depths <type 'list'> (of DepthRange)
high_slowness_layer_depths_p <type 'list'> (of DepthRange)
high_slowness_layer_depths_s <type 'list'> (of DepthRange)
max_delta_p <type 'float'>
max_depth_interval <type 'float'>
max_interp_error <type 'float'>
max_range_interval <type 'float'>
min_delta_p <type 'float'>
radius_of_planet <type 'float'>
slowness_tolerance <type 'float'>
v_mod <class 'obspy.taup.velocity_model.VelocityModel'>
VelocityModel
=============
cmb_depth <type 'float'>
iocb_depth <type 'float'>
is_spherical <type 'bool'>
layers <type 'numpy.ndarray'>
max_radius <type 'float'>
min_radius <type 'int'>
model_name <type 'unicode'>
moho_depth <type 'float'>
radius_of_planet <type 'float'>
"""
# a) handle simple contents
keys = ['cmb_branch', 'cmb_depth', 'debug', 'iocb_branch',
'iocb_depth', 'moho_branch', 'moho_depth', 'no_discon_depths',
'radius_of_planet', 'ray_params', 'source_branch',
'source_depth', 'is_spherical']
arrays = {k: getattr(self, k) for k in keys}
# b) handle .tau_branches
i, j = self.tau_branches.shape
for j_ in range(j):
for i_ in range(i):
# just store the shape of self.tau_branches in the key names
# for later reconstruction of array in deserialization.
key = 'tau_branches__%i/%i__%i/%i' % (j_, j, i_, i)
arrays[key] = self.tau_branches[i_][j_]._to_array()
# c) handle simple contents of .s_mod
dtypes = [(native_str('debug'), np.bool_),
(native_str('p_wave'), np.bool_),
(native_str('s_wave'), np.bool_),
(native_str('allow_inner_core_s'), np.bool_),
(native_str('max_delta_p'), np.float_),
(native_str('max_depth_interval'), np.float_),
(native_str('max_interp_error'), np.float_),
(native_str('max_range_interval'), np.float_),
(native_str('min_delta_p'), np.float_),
(native_str('radius_of_planet'), np.float_),
(native_str('slowness_tolerance'), np.float_)]
slowness_model = np.empty(shape=(), dtype=dtypes)
for dtype in dtypes:
key = dtype[0]
slowness_model[key] = getattr(self.s_mod, key)
arrays['s_mod'] = slowness_model
# d) handle complex contents of .s_mod
arrays['s_mod.p_layers'] = self.s_mod.p_layers
arrays['s_mod.s_layers'] = self.s_mod.s_layers
arrays['s_mod.critical_depths'] = self.s_mod.critical_depths
for key in ['fluid_layer_depths', 'high_slowness_layer_depths_p',
'high_slowness_layer_depths_s']:
data = getattr(self.s_mod, key)
if len(data) == 0:
arr_ = np.array([])
else:
arr_ = np.vstack([data_._to_array() for data_ in data])
arrays['s_mod.' + key] = arr_
# e) handle .s_mod.v_mod
dtypes = [(native_str('cmb_depth'), np.float_),
(native_str('iocb_depth'), np.float_),
(native_str('is_spherical'), np.bool_),
(native_str('max_radius'), np.float_),
(native_str('min_radius'), np.int_),
(native_str('model_name'), np.str_,
len(self.s_mod.v_mod.model_name)),
(native_str('moho_depth'), np.float_),
(native_str('radius_of_planet'), np.float_)]
velocity_model = np.empty(shape=(), dtype=dtypes)
for dtype in dtypes:
key = dtype[0]
velocity_model[key] = getattr(self.s_mod.v_mod, key)
arrays['v_mod'] = velocity_model
arrays['v_mod.layers'] = self.s_mod.v_mod.layers
# finally save the collection of (structured) arrays to a binary file
np.savez_compressed(filename, **arrays)
@staticmethod
def deserialize(filename, cache=None):
"""
Deserialize model from numpy npz binary file.
"""
# XXX: Make this a with statement when old NumPy support is dropped.
npz = np.load(filename)
try:
model = TauModel(s_mod=None,
radius_of_planet=float(npz["radius_of_planet"]),
cache=cache, skip_calc=True)
complex_contents = [
'tau_branches', 's_mod', 'v_mod',
's_mod.p_layers', 's_mod.s_layers', 's_mod.critical_depths',
's_mod.fluid_layer_depths',
's_mod.high_slowness_layer_depths_p',
's_mod.high_slowness_layer_depths_s', 'v_mod.layers']
# a) handle simple contents
for key in npz.keys():
# we have multiple, dynamic key names for individual tau
# branches now, skip them all
if key in complex_contents or key.startswith('tau_branches'):
continue
arr = npz[key]
if arr.ndim == 0:
arr = arr[()]
setattr(model, key, arr)
# b) handle .tau_branches
tau_branch_keys = [key for key in npz.keys()
if key.startswith('tau_branches_')]
j, i = tau_branch_keys[0].split("__")[1:]
i = int(i.split("/")[1])
j = int(j.split("/")[1])
branches = np.empty(shape=(i, j), dtype=np.object_)
for key in tau_branch_keys:
j_, i_ = key.split("__")[1:]
i_ = int(i_.split("/")[0])
j_ = int(j_.split("/")[0])
branches[i_][j_] = TauBranch._from_array(npz[key])
# no idea how numpy lays out empty arrays of object type,
# make a copy just in case..
branches = np.copy(branches)
setattr(model, "tau_branches", branches)
# c) handle simple contents of .s_mod
slowness_model = SlownessModel(v_mod=None,
skip_model_creation=True)
setattr(model, "s_mod", slowness_model)
for key in npz['s_mod'].dtype.names:
# restore scalar types from 0d array
arr = npz['s_mod'][key]
if arr.ndim == 0:
arr = arr.flatten()[0]
setattr(slowness_model, key, arr)
# d) handle complex contents of .s_mod
for key in ['p_layers', 's_layers', 'critical_depths']:
setattr(slowness_model, key, npz['s_mod.' + key])
for key in ['fluid_layer_depths', 'high_slowness_layer_depths_p',
'high_slowness_layer_depths_s']:
arr_ = npz['s_mod.' + key]
if len(arr_) == 0:
data = []
else:
data = [DepthRange._from_array(x) for x in arr_]
setattr(slowness_model, key, data)
# e) handle .s_mod.v_mod
velocity_model = VelocityModel(
model_name=native_str(npz["v_mod"]["model_name"]),
radius_of_planet=float(npz["v_mod"]["radius_of_planet"]),
min_radius=float(npz["v_mod"]["min_radius"]),
max_radius=float(npz["v_mod"]["max_radius"]),
moho_depth=float(npz["v_mod"]["moho_depth"]),
cmb_depth=float(npz["v_mod"]["cmb_depth"]),
iocb_depth=float(npz["v_mod"]["iocb_depth"]),
is_spherical=bool(npz["v_mod"]["is_spherical"]),
layers=None
)
setattr(slowness_model, "v_mod", velocity_model)
setattr(velocity_model, 'layers', npz['v_mod.layers'])
finally:
if hasattr(npz, 'close'):
npz.close()
else:
del npz
return model
@staticmethod
def from_file(model_name, cache=None):
if os.path.exists(model_name):
filename = model_name
else:
filename = os.path.join(os.path.dirname(__file__), "data",
model_name.lower() + ".npz")
return TauModel.deserialize(filename, cache=cache)