forked from facebookresearch/multipathnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
370 lines (316 loc) · 10.6 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
------------------------------------------------------------------------------]]
require 'torch'
require 'nn'
require 'optim'
require 'xlua'
local tnt = require 'torchnet'
require 'engines.fboptimengine'
require 'fbcoco'
local json = require 'cjson'
local utils = paths.dofile 'utils.lua'
local model_utils = paths.dofile 'models/model_utils.lua'
opt = {
epoch = 1,
dataset = 'pascal',
train_set = 'trainval',
test_set = 'test',
model = 'alexnet',
year = '2007',
proposal_dir = 'data/proposals/',
proposals = 'deepmask',
images_per_batch = 2,
scale = 600,
max_size = 1000,
learningRate = 1e-3,
dampening = 0,
weightDecay = 0.0005,
momentum = 0.9,
learningRateDecay = 0,
nEpochs = 400,
epochSize = 100,
nDonkeys = 4,
batchSize = 128,
manualSeed = 555,
step = 300,
best_proposals_number = 1000,
snapshot = 100,
criterion = 'ce',
decay = 0.1,
bbox_regression = 1,
retrain = 'no',
train_min_gtroi_size = 0,
train_remove_dropouts = false,
retrain_mean_std = '',
train_nGPU = 1,
test_nGPU = 1,
train_nsamples = -1, -- all samples
test_nsamples = -1, -- all samples
test_best_proposals_number = 500,
disable_memory_efficient_forward=false,
checkpoint=false,
resume='',
extra_proposals_file = '',
method='sgd',
sample_n_per_box = 0,
sample_sigma = 1,
train_min_proposal_size = 0,
integral=false,
imagenet_classes='',
test_num_per_image=100,
save_folder='',
phase2_epoch=-1,
phase2_learningRate=-1,
phase2_step=-1,
phase2_decay=-1,
fg_threshold = -1, -- if -1, then set to bg_threshold_max
bg_threshold_min = 0.1,
bg_threshold_max = 0.5,
}
opt = xlua.envparams(opt)
if opt.fg_threshold < 0 then
opt.fg_threshold = opt.bg_threshold_max
end
if opt.manualSeed == -1 then --random
opt.manualSeed = torch.random(10000)
end
print(opt)
model_opt = {}
require 'cutorch'
math.randomseed(opt.manualSeed)
cutorch.manualSeedAll(opt.manualSeed)
torch.manualSeed(opt.manualSeed)
---------------------------------------------------------------------------------------
-- model
---------------------------------------------------------------------------------------
assert(opt.images_per_batch % opt.train_nGPU == 0, "images_per_batch must be a multiple of train_nGPU")
opt.num_classes = opt.dataset == 'pascal' and 21 or 81
local model_data = paths.dofile('models/'..opt.model..'.lua')
local model, transformer, info = table.unpack(model_data)
if opt.train_remove_dropouts then
model_utils.removeDropouts(model)
end
-- serialize transformer for donkeys and to be loaded for testing
opt.transformer = paths.concat(opt.save_folder, 'transformer.t7')
torch.save(opt.transformer, transformer)
if opt.retrain ~= 'no' then
print('Loading a retrain model:'..opt.retrain)
model = torch.load(opt.retrain)
transformer = torch.load(opt.transformer)
end
local getIterator = require 'data'
local iterator = getIterator()
local integral_switches
if opt.integral then
if opt.retrain == 'no' then
integral_switches = model_utils.integral(model)
else
local switch = model:findModules'nn.ModeSwitch'[1]
integral_switches = switch:get(1):findModules'nn.SelectTable'
end
end
model:cuda()
if not opt.bbox_mask_1d then
model_utils.addBBoxNorm(model, g_mean_std)
end
model_utils.testModel(model)
-- set up testing
local test_year = (opt.year == '2007,2012') and '2007' or opt.year
local dataset_name = opt.dataset..'_'..opt.test_set..test_year
local test_folder_name = opt.dataset == 'pascal' and ('VOC'..test_year) or 'coco'
local test_proposals_path = utils.makeProposalPath(opt.proposal_dir, test_folder_name, opt.proposals, opt.test_set)
--------------------------------------------------------------------------
-- training
--------------------------------------------------------------------------
local samples = {}
local function createCriterion()
criterion = nn.ParallelCriterion()
:add(nn.CrossEntropyCriterion(), 1)
:add(nn.BBoxRegressionCriterion(), opt.bbox_regression)
return criterion:cuda()
end
local dataTimer = tnt.TimeMeter()
local timer, batchTimer = tnt.TimeMeter({ unit = true }), tnt.TimeMeter()
local trainLoss = tnt.AverageValueMeter()
local primary_loss = tnt.AverageValueMeter()
local bboxregr_loss = tnt.AverageValueMeter()
local engine = tnt.FBOptimEngine()
local function json_log(t) print('json_stats: '..json.encode(t)) end
-----------------------------------------------------------------------------
local function log(state, extra)
local info = {
epoch = state.epoch + 1,
learningRate = state.learningRate,
decay = state.decay,
train_time = timer.timer:time().real,
train_loss = trainLoss:value(),
primary_loss = primary_loss:value(),
bboxregr_loss = bboxregr_loss:value(),
}
json_log(utils.merge_table{opt, model_opt, extra, info})
end
local function save(model, state, epoch)
opt.test_model = 'model_'..epoch..'.t7'
opt.test_state = 'optimState_'..epoch..'.t7'
local model_path = paths.concat(opt.save_folder, opt.test_model)
local state_path = paths.concat(opt.save_folder, opt.test_state)
print("Saving model to "..model_path)
torch.save(model_path, utils.checkpoint(model))
print("Saving state to "..state_path)
torch.save(state_path, state)
end
local function validate(model)
if opt.test_nGPU > 1 then
print("test_nGPU > 1, running tester in separate threads")
local test_runner = paths.dofile'test_runner.lua'
test_runner:setup(opt.test_nGPU, dataset_name, test_proposals_path)
local res = test_runner:test()
test_runner = nil
tester = nil -- global var
return res
else
print("test_nGPU == 1, running tester in main thread")
model:evaluate()
local ds = paths.dofile'DataSetJSON.lua':create(dataset_name, test_proposals_path, opt.test_nsamples)
ds:loadROIDB(opt.test_best_proposals_number)
local tester = fbcoco.Tester_FRCNN(model,transformer,ds,{opt.scale}, opt.max_size, opt)
local res = tester:test()
model:training()
return res
end
end
engine.hooks.onStart = function(state)
state.learningRate = opt.learningRate
state.decay = opt.decay
state.step = opt.step
utils.cleanupOptim(state)
if opt.checkpoint then
local filename = checkpoint.resume(state)
if filename then
print("WARNING: restarted from checkpoint:", filename)
elseif opt.resume ~= '' then
print("resuming from checkpoint:", opt.resume)
checkpoint.apply(state, opt.resume)
end
end
end
engine.hooks.onStartEpoch = function(state)
local epoch = state.epoch + 1
if epoch == opt.phase2_epoch then
print("switching to phase 2")
if state.network.setPhase2 then
state.network:setPhase2()
end
if opt.phase2_learningRate >= 0 then
print("setting learning rate to " .. opt.phase2_learningRate)
state.learningRate = opt.phase2_learningRate
local optimizer = state.optimizer
for k,v in pairs(optimizer.modulesToOptState) do if v[1] then
for i,u in ipairs(v) do
if u.dfdx then
local curdev = cutorch.getDevice()
cutorch.setDevice(u.dfdx:getDevice())
u.dfdx:zero()
cutorch.setDevice(curdev)
u.learningRate = state.learningRate
end
end
end end
end
if opt.phase2_step >= 0 then
print("setting step to " .. opt.phase2_step)
state.step = opt.phase2_step
end
if opt.phase2_decay >= 0 then
print("setting decay to " .. opt.phase2_decay)
state.decay = opt.phase2_decay
end
end
if opt.checkpoint and epoch % opt.snapshot == 0 then
checkpoint.checkpoint(state, opt)
end
print("Training epoch " .. epoch .. "/" .. opt.nEpochs)
trainLoss:reset()
primary_loss:reset()
bboxregr_loss:reset()
timer:reset()
state.n = 0
end
engine.hooks.onSample = function(state)
cutorch.synchronize(); collectgarbage();
dataTimer:stop()
utils.recursiveCast(samples, state.sample, 'torch.CudaTensor')
if opt.integral then
assert(samples[2][3])
for i,v in ipairs(integral_switches) do
v.index = samples[2][3]
v.gradInput = {}
end
end
state.sample.input = samples[1]
state.sample.target = samples[2]
end
engine.hooks.onUpdate = function(state)
cutorch.synchronize(); collectgarbage();
state.n = state.n + 1
local err = state.criterion.output
trainLoss:add(err)
primary_loss:add(state.criterion.criterions[1].output)
bboxregr_loss:add(state.criterion.criterions[2].output)
timer:incUnit()
print(('Epoch: [%d][%d/%d]\tTime %.3f (%.3f) DataTime %.3f Err %.4f'):format(
state.epoch + 1, state.n, opt.epochSize, batchTimer:value(), timer:value(), dataTimer:value(), err))
dataTimer:reset()
dataTimer:resume()
batchTimer:reset()
end
engine.hooks.onEndEpoch = function(state)
local epoch = state.epoch + 1
if epoch % state.step == 0 then
print('Dropping learning rate')
state.learningRate = state.learningRate * state.decay
local optimizer = state.optimizer
for k,v in pairs(optimizer.modulesToOptState) do if v[1] then
for i,u in ipairs(v) do
if u.dfdx then
local curdev = cutorch.getDevice()
cutorch.setDevice(u.dfdx:getDevice())
u.dfdx:mul(state.decay)
cutorch.setDevice(curdev)
u.learningRate = u.learningRate * state.decay
end
end
end end
end
log(state, {finished = 0, voc_metric = 0, coco_metric = 0})
if epoch % opt.snapshot == 0 then
save(state.network, state.optimizer, epoch)
local res = validate(state.network)
log(state, {
voc_metric = res[2],
coco_metric = res[1],
})
end
end
engine.hooks.onEnd = function(state)
print("Done training. Running final validation")
save(state.network, state.optimizer, 'final')
opt.test_nsamples = 4952
local res = validate(state.network)
log(state, {
voc_metric = res[2],
coco_metric = res[1],
})
end
engine:train{
network = model,
criterion = createCriterion(),
config = opt,
maxepoch = opt.nEpochs,
optimMethod = optim[opt.method],
iterator = iterator,
}