-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinterpret.py
815 lines (692 loc) · 31.3 KB
/
interpret.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import argparse
import asyncio
import copy
import importlib
import json
import multiprocessing as mp
import os
import pickle
import sys
from datetime import datetime
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import requests
import torch
import torch.nn as nn
from baukit import Trace
from datasets import load_dataset
from transformer_lens import HookedTransformer
from activation_dataset import check_use_baukit, make_tensor_name
from config import BaseArgs, InterpArgs, InterpGraphArgs
from autoencoders.learned_dict import LearnedDict
# set OPENAI_API_KEY environment variable from secrets.json['openai_key']
# needs to be done before importing openai interp bits
with open("secrets.json") as f:
secrets = json.load(f)
os.environ["OPENAI_API_KEY"] = secrets["openai_key"]
mp.set_start_method("spawn", force=True)
from neuron_explainer.activations.activation_records import \
calculate_max_activation
from neuron_explainer.activations.activations import (
ActivationRecord, ActivationRecordSliceParams, NeuronId, NeuronRecord)
from neuron_explainer.explanations.calibrated_simulator import \
UncalibratedNeuronSimulator
from neuron_explainer.explanations.explainer import \
TokenActivationPairExplainer
from neuron_explainer.explanations.prompt_builder import PromptFormat
from neuron_explainer.explanations.scoring import (
aggregate_scored_sequence_simulations, simulate_and_score)
from neuron_explainer.explanations.simulator import ExplanationNeuronSimulator
from neuron_explainer.fast_dataclasses import loads
EXPLAINER_MODEL_NAME = "gpt-4" # "gpt-3.5-turbo"
SIMULATOR_MODEL_NAME = "text-davinci-003"
OPENAI_MAX_FRAGMENTS = 50000
OPENAI_FRAGMENT_LEN = 64
OPENAI_EXAMPLES_PER_SPLIT = 5
N_SPLITS = 4
TOTAL_EXAMPLES = OPENAI_EXAMPLES_PER_SPLIT * N_SPLITS
REPLACEMENT_CHAR = "�"
MAX_CONCURRENT: Any = None
BASE_FOLDER = "/mnt/ssd-cluster/sweep_interp"
# Replaces the load_neuron function in neuron_explainer.activations.activations because couldn't get blobfile to work
def load_neuron(
layer_index: Union[str, int],
neuron_index: Union[str, int],
dataset_path: str = "https://openaipublic.blob.core.windows.net/neuron-explainer/data/collated-activations",
) -> NeuronRecord:
"""Load the NeuronRecord for the specified neuron from OpenAI's original work with GPT-2."""
url = os.path.join(dataset_path, str(layer_index), f"{neuron_index}.json")
response = requests.get(url)
if response.status_code != 200:
raise ValueError(f"Neuron record not found at {url}.")
neuron_record = loads(response.content)
if not isinstance(neuron_record, NeuronRecord):
raise ValueError(f"Stored data incompatible with current version of NeuronRecord dataclass.")
return neuron_record
def make_feature_activation_dataset(
model: HookedTransformer,
learned_dict: LearnedDict,
layer: int,
layer_loc: str,
device: str = "cpu",
n_fragments=OPENAI_MAX_FRAGMENTS,
max_features: int = 0, # number of features to store activations for, 0 for all
random_fragment=True, # used for debugging
):
"""
Takes a specified point of a model, and a dataset.
Returns a dataset which contains the activations of the model at that point,
for each fragment in the dataset, transformed into the feature space
"""
model.to(device)
model.eval()
learned_dict.to_device(device)
use_baukit = check_use_baukit(model.cfg.model_name)
if max_features:
feat_dim = min(max_features, learned_dict.n_feats)
else:
feat_dim = learned_dict.n_feats
sentence_dataset = load_dataset("openwebtext", split="train", streaming=True)
if model.cfg.model_name == "nanoGPT":
tokenizer_model = HookedTransformer.from_pretrained("gpt2", device=device)
else:
tokenizer_model = model
tensor_name = make_tensor_name(layer, layer_loc, model.cfg.model_name)
# make list of sentence, tokenization pairs
iter_dataset = iter(sentence_dataset)
# Make dataframe with columns for each feature, and rows for each sentence fragment
# each row should also have the full sentence, the current tokens and the previous tokens
n_thrown = 0
n_added = 0
batch_size = min(20, n_fragments)
fragment_token_ids_list = []
fragment_token_strs_list = []
activation_maxes_table = np.zeros((n_fragments, feat_dim), dtype=np.float16)
activation_data_table = np.zeros((n_fragments, feat_dim * OPENAI_FRAGMENT_LEN), dtype=np.float16)
with torch.no_grad():
while n_added < n_fragments:
fragments: List[torch.Tensor] = []
fragment_strs: List[str] = []
while len(fragments) < batch_size:
print(
f"Added {n_added} fragments, thrown {n_thrown} fragments\t\t\t\t\t\t",
end="\r",
)
sentence = next(iter_dataset)
# split the sentence into fragments
sentence_tokens = tokenizer_model.to_tokens(sentence["text"], prepend_bos=False).to(device)
n_tokens = sentence_tokens.shape[1]
# get a random fragment from the sentence - only taking one fragment per sentence so examples aren't correlated]
if random_fragment:
token_start = np.random.randint(0, n_tokens - OPENAI_FRAGMENT_LEN)
else:
token_start = 0
fragment_tokens = sentence_tokens[:, token_start : token_start + OPENAI_FRAGMENT_LEN]
token_strs = tokenizer_model.to_str_tokens(fragment_tokens[0])
if REPLACEMENT_CHAR in token_strs:
n_thrown += 1
continue
fragment_strs.append(token_strs)
fragments.append(fragment_tokens)
tokens = torch.cat(fragments, dim=0)
assert tokens.shape == (batch_size, OPENAI_FRAGMENT_LEN), tokens.shape
# breakpoint()
if use_baukit:
with Trace(model, tensor_name) as ret:
_ = model(tokens)
mlp_activation_data = ret.output.to(device)
mlp_activation_data = nn.functional.gelu(mlp_activation_data)
else:
_, cache = model.run_with_cache(tokens)
mlp_activation_data = cache[tensor_name].to(device)
for i in range(batch_size):
fragment_tokens = tokens[i : i + 1, :]
activation_data = mlp_activation_data[i : i + 1, :].squeeze(0)
token_ids = fragment_tokens[0].tolist()
feature_activation_data = learned_dict.encode(activation_data)
feature_activation_maxes = torch.max(feature_activation_data, dim=0)[0]
activation_maxes_table[n_added, :] = feature_activation_maxes.cpu().numpy()[:feat_dim]
feature_activation_data = feature_activation_data.cpu().numpy()[:, :feat_dim]
activation_data_table[n_added, :] = feature_activation_data.flatten()
fragment_token_ids_list.append(token_ids)
fragment_token_strs_list.append(fragment_strs[i])
n_added += 1
if n_added >= n_fragments:
break
print(f"Added {n_added} fragments, thrown {n_thrown} fragments")
# Now we build the dataframe from the numpy arrays and the lists
print(f"Making dataframe from {n_added} fragments")
df = pd.DataFrame()
df["fragment_token_ids"] = fragment_token_ids_list
df["fragment_token_strs"] = fragment_token_strs_list
maxes_column_names = [f"feature_{i}_max" for i in range(feat_dim)]
activations_column_names = [
f"feature_{i}_activation_{j}" for j in range(OPENAI_FRAGMENT_LEN) for i in range(feat_dim)
] # nested for loops are read left to right
assert feature_activation_data.shape == (OPENAI_FRAGMENT_LEN, feat_dim)
df = pd.concat([df, pd.DataFrame(activation_maxes_table, columns=maxes_column_names)], axis=1)
df = pd.concat(
[df, pd.DataFrame(activation_data_table, columns=activations_column_names)],
axis=1,
)
print(f"Threw away {n_thrown} fragments, made {len(df)} fragments")
return df
def get_df(
feature_dict: LearnedDict,
model_name: str,
layer: int,
layer_loc: str,
n_feats: int,
save_loc: str,
device: str,
force_refresh: bool = False,
) -> pd.DataFrame:
# Load feature dict
feature_dict.to_device(device)
df_loc = os.path.join(save_loc, f"activation_df.hdf")
reload_data = True
if os.path.exists(df_loc) and not force_refresh:
start_time = datetime.now()
base_df = pd.read_hdf(df_loc)
print(f"Loaded dataset in {datetime.now() - start_time}")
# Check that the dataset has enough features saved
if f"feature_{n_feats - 1}_activation_0" in base_df.keys():
reload_data = False
else:
print("Dataset does not have enough features, remaking")
if reload_data:
model = HookedTransformer.from_pretrained(model_name, device=device)
base_df = make_feature_activation_dataset(
model,
learned_dict=feature_dict,
layer=layer,
layer_loc=layer_loc,
device=device,
max_features=n_feats,
)
# save the dataset, saving each column separately so that we can retrive just the columns we want later
print(f"Saving dataset to {df_loc}")
os.makedirs(save_loc, exist_ok=True)
base_df.to_hdf(df_loc, key="df", mode="w")
# save the autoencoder being investigated
os.makedirs(save_loc, exist_ok=True)
torch.save(feature_dict, os.path.join(save_loc, "autoencoder.pt"))
return base_df
async def interpret(base_df: pd.DataFrame, save_folder: str, n_feats_to_explain: int) -> None:
for feat_n in range(0, n_feats_to_explain):
if os.path.exists(os.path.join(save_folder, f"feature_{feat_n}")):
print(f"Feature {feat_n} already exists, skipping")
continue
activation_col_names = [f"feature_{feat_n}_activation_{i}" for i in range(OPENAI_FRAGMENT_LEN)]
read_fields = [
"fragment_token_strs",
f"feature_{feat_n}_max",
*activation_col_names,
]
# check that the dataset has the required columns
if not all([field in base_df.columns for field in read_fields]):
print(f"Dataset does not have all required columns for feature {feat_n}, skipping")
continue
df = base_df[read_fields].copy()
sorted_df = df.sort_values(by=f"feature_{feat_n}_max", ascending=False)
sorted_df = sorted_df.head(TOTAL_EXAMPLES)
top_activation_records = []
for i, row in sorted_df.iterrows():
top_activation_records.append(
ActivationRecord(
row["fragment_token_strs"],
[row[f"feature_{feat_n}_activation_{j}"] for j in range(OPENAI_FRAGMENT_LEN)],
)
)
random_activation_records: List[ActivationRecord] = []
# Adding random fragments
# random_df = df.sample(n=TOTAL_EXAMPLES)
# for i, row in random_df.iterrows():
# random_activation_records.append(ActivationRecord(row["fragment_token_strs"], [row[f"feature_{feat_n}_activation_{j}"] for j in range(OPENAI_FRAGMENT_LEN)]))
# making sure that the have some variation in each of the features, though need to be careful that this doesn't bias the results
random_ordering = torch.randperm(len(df)).tolist()
skip_feature = False
while len(random_activation_records) < TOTAL_EXAMPLES:
try:
i = random_ordering.pop()
except IndexError:
skip_feature = True
break
# if there are no activations for this fragment, skip it
if df.iloc[i][f"feature_{feat_n}_max"] == 0:
continue
random_activation_records.append(
ActivationRecord(
df.iloc[i]["fragment_token_strs"],
[df.iloc[i][f"feature_{feat_n}_activation_{j}"] for j in range(OPENAI_FRAGMENT_LEN)],
)
)
if skip_feature:
# Add placeholder folder so that we don't try to recompute this feature
os.makedirs(os.path.join(save_folder, f"feature_{feat_n}"), exist_ok=True)
print(f"Skipping feature {feat_n} due to lack of activating examples")
continue
neuron_id = NeuronId(layer_index=2, neuron_index=feat_n)
neuron_record = NeuronRecord(
neuron_id=neuron_id,
random_sample=random_activation_records,
most_positive_activation_records=top_activation_records,
)
slice_params = ActivationRecordSliceParams(n_examples_per_split=OPENAI_EXAMPLES_PER_SPLIT)
train_activation_records = neuron_record.train_activation_records(slice_params)
valid_activation_records = neuron_record.valid_activation_records(slice_params)
explainer = TokenActivationPairExplainer(
model_name=EXPLAINER_MODEL_NAME,
prompt_format=PromptFormat.HARMONY_V4,
max_concurrent=MAX_CONCURRENT,
)
explanations = await explainer.generate_explanations(
all_activation_records=train_activation_records,
max_activation=calculate_max_activation(train_activation_records),
num_samples=1,
)
assert len(explanations) == 1
explanation = explanations[0]
print(f"Feature {feat_n}, {explanation=}")
# Simulate and score the explanation.
format = PromptFormat.HARMONY_V4 if SIMULATOR_MODEL_NAME == "gpt-3.5-turbo" else PromptFormat.INSTRUCTION_FOLLOWING
simulator = UncalibratedNeuronSimulator(
ExplanationNeuronSimulator(
SIMULATOR_MODEL_NAME,
explanation,
max_concurrent=MAX_CONCURRENT,
prompt_format=format,
)
)
scored_simulation = await simulate_and_score(simulator, valid_activation_records)
score = scored_simulation.get_preferred_score()
assert len(scored_simulation.scored_sequence_simulations) == 10
top_only_score = aggregate_scored_sequence_simulations(
scored_simulation.scored_sequence_simulations[:5]
).get_preferred_score()
random_only_score = aggregate_scored_sequence_simulations(
scored_simulation.scored_sequence_simulations[5:]
).get_preferred_score()
print(
f"Feature {feat_n}, score={score:.2f}, top_only_score={top_only_score:.2f}, random_only_score={random_only_score:.2f}"
)
feature_name = f"feature_{feat_n}"
feature_folder = os.path.join(save_folder, feature_name)
os.makedirs(feature_folder, exist_ok=True)
pickle.dump(
scored_simulation,
open(os.path.join(feature_folder, "scored_simulation.pkl"), "wb"),
)
pickle.dump(neuron_record, open(os.path.join(feature_folder, "neuron_record.pkl"), "wb"))
# write a file with the explanation and the score
with open(os.path.join(feature_folder, "explanation.txt"), "w") as f:
f.write(
f"{explanation}\nScore: {score:.2f}\nExplainer model: {EXPLAINER_MODEL_NAME}\nSimulator model: {SIMULATOR_MODEL_NAME}\n"
)
f.write(f"Top only score: {top_only_score:.2f}\n")
f.write(f"Random only score: {random_only_score:.2f}\n")
def run(dict: LearnedDict, cfg: InterpArgs):
assert cfg.df_n_feats >= cfg.n_feats_explain
df = get_df(
feature_dict=dict,
model_name=cfg.model_name,
layer=cfg.layer,
layer_loc=cfg.layer_loc,
n_feats=cfg.df_n_feats,
save_loc=cfg.save_loc,
device=cfg.device,
)
asyncio.run(interpret(df, cfg.save_loc, n_feats_to_explain=cfg.n_feats_explain))
def get_score(lines: List[str], mode: str):
if mode == "top":
return float(lines[-3].split(" ")[-1])
elif mode == "random":
return float(lines[-2].split(" ")[-1])
elif mode == "top_random":
score_line = [line for line in lines if "Score: " in line][0]
return float(score_line.split(" ")[1])
else:
raise ValueError(f"Unknown mode: {mode}")
def run_folder(cfg: InterpArgs):
base_folder = cfg.load_interpret_autoencoder
all_encoders = os.listdir(cfg.load_interpret_autoencoder)
all_encoders = [x for x in all_encoders if (x.endswith(".pt") or x.endswith(".pkl"))]
print(f"Found {len(all_encoders)} encoders in {cfg.load_interpret_autoencoder}")
for i, encoder in enumerate(all_encoders):
print(f"Running encoder {i} of {len(all_encoders)}: {encoder}")
learned_dict = torch.load(os.path.join(base_folder, encoder), map_location=torch.device(cfg.device))
cfg.save_loc = os.path.join(BASE_FOLDER, encoder)
run(learned_dict, cfg)
def make_tag_name(hparams: Dict) -> str:
tag = ""
if "tied" in hparams.keys():
tag += f"tied_{hparams['tied']}"
if "dict_size" in hparams.keys():
tag += f"dict_size_{hparams['dict_size']}"
if "l1_alpha" in hparams.keys():
tag += f"l1_alpha_{hparams['l1_alpha']:.2}"
if "bias_decay" in hparams.keys():
tag += "0.0" if hparams["bias_decay"] == 0 else f"{hparams['bias_decay']:.1}"
return tag
def run_from_grouped(cfg: InterpArgs, results_loc: str):
"""
Run autointerpretation across a file of learned dicts as outputted by big_sweep.py or similar.
Expects results_loc to a .pt file containing a list of tuples of (learned_dict, hparams_dict)
"""
# First, read in the results file
results = torch.load(results_loc)
time_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
os.makedirs(os.path.join("auto_interp_results", time_str), exist_ok=True)
# Now split the results out into separate files
for learned_dict, hparams_dict in results:
filename = make_tag_name(hparams_dict) + ".pt"
torch.save(learned_dict, os.path.join("auto_interp_results", time_str, filename))
cfg.load_interpret_autoencoder = os.path.join("auto_interp_results", time_str)
run_folder(cfg)
def read_transform_scores(transform_loc: str, score_mode: str, verbose: bool = False) -> Tuple[List[int], List[float]]:
transform_scores = []
transform_ndxs = []
# list all the features by looking for folders
feat_folders = [x for x in os.listdir(transform_loc) if x.startswith("feature_")]
if len(feat_folders) == 0:
return [], []
transform = transform_loc.split('/')[-1]
print(f"{transform=} {len(feat_folders)=}")
for feature_folder in feat_folders:
feature_ndx = int(feature_folder.split("_")[1])
folder = os.path.join(transform_loc, feature_folder)
if not os.path.exists(folder):
continue
if not os.path.exists(os.path.join(folder, "explanation.txt")):
continue
explanation_text = open(os.path.join(folder, "explanation.txt")).read()
# score should be on the second line but if explanation had newlines could be on the third or below
# score = float(explanation_text.split("\n")[1].split(" ")[1])
lines = explanation_text.split("\n")
score = get_score(lines, score_mode)
if verbose:
print(f"{feature_ndx=}, {transform=}, {score=}")
transform_scores.append(score)
transform_ndxs.append(feature_ndx)
return transform_ndxs, transform_scores
def read_scores(results_folder: str, score_mode: str = "top") -> Dict[str, Tuple[List[int], List[float]]]:
assert score_mode in ["top", "random", "top_random"]
scores: Dict[str, Tuple[List[int], List[float]]] = {}
transforms = os.listdir(results_folder)
transforms = [transform for transform in transforms if os.path.isdir(os.path.join(results_folder, transform))]
if "sparse_coding" in transforms:
transforms.remove("sparse_coding")
transforms = ["sparse_coding"] + transforms
for transform in transforms:
transform_ndxs, transform_scores = read_transform_scores(os.path.join(results_folder, transform), score_mode)
if len(transform_ndxs) > 0:
scores[transform] = (transform_ndxs, transform_scores)
return scores
def parse_folder_name(folder_name: str) -> Tuple[str, str, int, float, str]:
"""
Parse the folder name to get the hparams
"""
# examples: tied_mlpout_l1_r2, tied_residual_l5_r8
tied, layer_loc, layer_str, ratio_str, *extras = folder_name.split("_")
if extras:
extra_str = "_".join(extras)
else:
extra_str = ""
layer = int(layer_str[1:])
ratio = float(ratio_str[1:])
if ratio == 0:
ratio = 0.5
return tied, layer_loc, layer, ratio, extra_str
def run_list_of_learned_dicts(dicts: List[Tuple[str, LearnedDict]], cfg):
"""
Run autointerpretation across a folder of learned dicts as outputted by big_sweep.py or similar, where the layer/layer_loc are the same.
"""
for name, dict in dicts:
print(f"Running {name}")
run(dict, cfg)
def worker(queue, device_id):
device = f"cuda:{device_id}"
while not queue.empty():
learned_dict, cfg = queue.get()
print(f"Running {cfg.save_loc}")
cfg.device = device
learned_dict.to_device(device)
run(learned_dict, cfg)
def interpret_across_baselines(n_gpus: int = 3):
baselines_dir = "/mnt/ssd-cluster/baselines"
save_dir = "/mnt/ssd-cluster/auto_interp_results/"
os.makedirs(save_dir, exist_ok=True)
base_cfg = InterpArgs()
if n_gpus > 1:
job_queue: mp.Queue = mp.Queue()
all_folders = os.listdir(baselines_dir)
for folder in all_folders:
layer_str, layer_loc = folder.split("_")
layer = int(layer_str[1:])
layer_baselines = os.listdir(os.path.join(baselines_dir, folder))
for baseline_file in layer_baselines:
cfg = copy.deepcopy(base_cfg)
cfg.layer = layer
cfg.layer_loc = layer_loc
cfg.save_loc = os.path.join(save_dir, folder, baseline_file[:-3])
cfg.n_feats_explain = 150
if not cfg.layer_loc == "residual":
continue
if "nmf" in baseline_file:
continue
learned_dict = torch.load(
os.path.join(baselines_dir, folder, baseline_file),
map_location=cfg.device,
)
print(f"{layer=}, {layer_loc=}, {baseline_file=}")
if n_gpus == 1:
run(learned_dict, cfg)
else:
job_queue.put((learned_dict, cfg))
if n_gpus > 1:
processes = [mp.Process(target=worker, args=(job_queue, i)) for i in range(n_gpus)]
for p in processes:
p.start()
for p in processes:
p.join()
def interpret_across_big_sweep(l1_val: float, n_gpus: int = 1):
base_cfg = InterpArgs()
base_dir = "/mnt/ssd-cluster/bigrun0308"
save_dir = "/mnt/ssd-cluster/auto_interp_results/"
n_chunks_training = 10
os.makedirs(save_dir, exist_ok=True)
all_folders = os.listdir(base_dir)
if n_gpus != 1:
job_queue: List[Tuple[Callable, InterpArgs]] = []
for folder in all_folders:
try:
tied, layer_loc, layer, ratio, extra_str = parse_folder_name(folder)
except:
continue
print(f"{tied}, {layer_loc=}, {layer=}, {ratio=}")
if layer_loc != "residual":
continue
if tied != "tied":
continue
if ratio != 2:
continue
if extra_str != "":
continue
cfg = copy.deepcopy(base_cfg)
autoencoders = torch.load(
os.path.join(base_dir, folder, f"_{n_chunks_training - 1}", "learned_dicts.pt"),
map_location=cfg.device,
)
# find ae with matching l1_val
matching_encoders = [ae for ae in autoencoders if abs(ae[1]["l1_alpha"] - l1_val) < 1e-4]
if not len(matching_encoders) == 1:
print(f"Found {len(matching_encoders)} matching encoders for {folder}")
matching_encoder = matching_encoders[0][0]
# save the learned dict
save_str = f"l{layer}_{layer_loc}/{tied}_r{ratio}_l1a{l1_val:.2}"
# os.makedirs(os.path.join(save_dir, save_str), exist_ok=True)
# torch.save(matching_encoder, os.path.join(save_dir, save_str, "learned_dict.pt"))
# run the interpretation
cfg.load_interpret_autoencoder = os.path.join(save_dir, save_str, "learned_dict.pt")
cfg.layer = layer
cfg.layer_loc = layer_loc
cfg.save_loc = os.path.join(save_dir, save_str)
cfg.n_feats_explain = 150
if n_gpus == 1:
run(matching_encoder, cfg)
else:
cfg.device = f"cuda:{len(job_queue) % n_gpus}"
job_queue.append((matching_encoder, cfg))
if n_gpus > 1:
with mp.Pool(n_gpus) as p:
p.starmap(run, job_queue)
def interpret_across_chunks(l1_val: float, n_gpus: int = 1):
base_cfg = InterpArgs()
base_dir = "/mnt/ssd-cluster/longrun2408"
save_dir = "/mnt/ssd-cluster/auto_interp_results_overtime/"
os.makedirs(save_dir, exist_ok=True)
all_folders = os.listdir(base_dir)
if n_gpus != 1:
job_queue: List[Tuple[Callable, InterpArgs]] = []
for folder in all_folders:
for n_chunks in [1, 4, 16, 32]:
tied, layer_loc, layer, ratio, extra_str = parse_folder_name(folder)
if layer != base_cfg.layer:
continue
cfg = copy.deepcopy(base_cfg)
autoencoders = torch.load(
os.path.join(base_dir, folder, f"_{n_chunks - 1}", "learned_dicts.pt"),
map_location=cfg.device,
)
# find ae with matching l1_val
matching_encoders = [ae for ae in autoencoders if abs(ae[1]["l1_alpha"] - l1_val) < 1e-4]
if not len(matching_encoders) == 1:
print(f"Found {len(matching_encoders)} matching encoders for {folder}")
matching_encoder = matching_encoders[0][0]
# save the learned dict
save_str = f"l{layer}_{layer_loc}/{tied}_r{ratio}_nc{n_chunks}_l1a{l1_val:.2}"
os.makedirs(os.path.join(save_dir, save_str), exist_ok=True)
torch.save(matching_encoder, os.path.join(save_dir, save_str, "learned_dict.pt"))
# run the interpretation
cfg.load_interpret_autoencoder = os.path.join(save_dir, save_str, "learned_dict.pt")
cfg.layer = layer
cfg.layer_loc = layer_loc
cfg.save_loc = os.path.join(save_dir, save_str)
cfg.n_feats_explain = 100
if n_gpus == 1:
run(matching_encoder, cfg)
else:
cfg.device = f"cuda:{len(job_queue) % n_gpus}"
job_queue.append((matching_encoder, cfg))
if n_gpus > 1:
with mp.Pool(n_gpus) as p:
p.starmap(run, job_queue)
def read_results(activation_name: str, score_mode: str) -> None:
results_folder = os.path.join("/mnt/ssd-cluster/auto_interp_results", activation_name)
scores = read_scores(
results_folder, score_mode
) # Dict[str, Tuple[List[int], List[float]]], where the tuple is (feature_ndxs, scores)
if len(scores) == 0:
print(f"No scores found for {activation_name}")
return
transforms = scores.keys()
plt.clf() # clear the plot
# plot the scores as a violin plot
colors = [
"red",
"blue",
"green",
"orange",
"purple",
"pink",
"black",
"brown",
"cyan",
"magenta",
"grey",
]
# fix yrange from -0.2 to 0.6
plt.ylim(-0.2, 0.6)
# add horizontal grid lines every 0.1
plt.yticks(np.arange(-0.2, 0.6, 0.1))
plt.grid(axis="y", color="grey", linestyle="-", linewidth=0.5, alpha=0.3)
# first we need to get the scores into a list of lists
scores_list = [scores[transform][1] for transform in transforms]
# remove any transforms that have no scores
scores_list = [scores for scores in scores_list if len(scores) > 0]
violin_parts = plt.violinplot(scores_list, showmeans=False, showextrema=False)
for i, pc in enumerate(violin_parts["bodies"]):
pc.set_facecolor(colors[i % len(colors)])
pc.set_edgecolor(colors[i % len(colors)])
pc.set_alpha(0.3)
# add x labels
plt.xticks(np.arange(1, len(transforms) + 1), transforms, rotation=90)
# add standard errors around the means but don't plot the means
cis = [1.96 * np.std(scores[transform][1], ddof=1) / np.sqrt(len(scores[transform][1])) for transform in transforms]
for i, transform in enumerate(transforms):
plt.errorbar(
i + 1,
np.mean(scores[transform][1]),
yerr=cis[i],
fmt="o",
color=colors[i % len(colors)],
elinewidth=2,
capsize=20,
)
plt.title(f"{activation_name} {score_mode}")
plt.xlabel("Transform")
plt.ylabel("GPT-4-based interpretability score")
plt.xticks(rotation=90)
# and a thicker line at 0
plt.axhline(y=0, linestyle="-", color="black", linewidth=1)
plt.tight_layout()
save_path = os.path.join(results_folder, f"{score_mode}_means_and_violin.png")
print(f"Saving means and violin graph to {save_path}")
plt.savefig(save_path)
if __name__ == "__main__":
cfg: BaseArgs
if len(sys.argv) > 1 and sys.argv[1] == "read_results":
cfg = InterpGraphArgs()
if cfg.score_mode == "all":
score_modes = ["top", "random", "top_random"]
else:
score_modes = [cfg.score_mode]
base_path = "/mnt/ssd-cluster/auto_interp_results"
if cfg.run_all:
activation_names = [x for x in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, x))]
else:
activation_names = [f"{cfg.model_name.split('/')[-1]}_layer{cfg.layer}_{cfg.layer_loc}"]
for activation_name in activation_names:
for score_mode in score_modes:
read_results(activation_name, score_mode)
elif len(sys.argv) > 1 and sys.argv[1] == "run_group":
cfg = InterpArgs()
run_from_grouped(cfg, cfg.load_interpret_autoencoder)
elif len(sys.argv) > 1 and sys.argv[1] == "big_sweep":
sys.argv.pop(1)
# l1_val = 0.00018478
l1_val = 0.0008577 # 8e-4 in logspace(-4, -2, 16)
# l1_val = 0.00083768 # 8e-4 in logspace(-4, -2, 14)
# l1_val = 0.0007197 # 8e-4 in logspace(-4, -2, 8)
# l1_val = 1e-3
# l1_val = 0.000316 # early one for mlp??
interpret_across_big_sweep(l1_val)
elif len(sys.argv) > 1 and sys.argv[1] == "all_baselines":
sys.argv.pop(1)
interpret_across_baselines()
elif len(sys.argv) > 1 and sys.argv[1] == "chunks":
l1_val = 0.0007197 # 8e-4 in logspace(-4, -2, 8)
sys.argv.pop(1)
interpret_across_chunks(l1_val)
else:
cfg = InterpArgs()
if os.path.isdir(cfg.load_interpret_autoencoder):
run_folder(cfg)
else:
learned_dict = torch.load(cfg.load_interpret_autoencoder, map_location=cfg.device)
save_folder = f"/mnt/ssd-cluster/auto_interp_results/l{cfg.layer}_{cfg.layer_loc}"
cfg.save_loc = os.path.join(save_folder, cfg.load_interpret_autoencoder)
run(learned_dict, cfg)