-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtest_op.py
180 lines (154 loc) · 9.65 KB
/
test_op.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# MIT License
# Copyright (c) 2018 Changan Wang
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
import math
LIB_NAME = 'extra_losses'
def load_op_module(lib_name):
lib_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'build/lib{0}.so'.format(lib_name))
oplib = tf.load_op_library(lib_path)
return oplib
op_module = load_op_module(LIB_NAME)
features = [[0.1, 0.2, -0.3, -0.4], [-1.1, -1.2, 1.3, 1.4], [2.1, 2.2, -2.3, -2.4]]
labels = [3, 2, 1]
weights = [[0., 0.1, 0.2, 0.3], [0.4, 0.5, 0.6, 0.7], [0.8, 0.9, 1.0, 1.1], [1.2, 1.3, 1.4, 1.5], [1.6, 1.7, 1.8, 1.9]]
normed_weights_array = [[0., 0.26726124, 0.5345225, 0.8017837 ],
[0.35634834, 0.4454354, 0.53452253, 0.62360954],
[0.4181667, 0.4704375, 0.52270836, 0.5749792 ],
[0.4429281, 0.47983876, 0.51674944, 0.5536601 ],
[0.45621276, 0.48472607, 0.5132393, 0.54175264]]
class LargeMarginSoftmaxTest(tf.test.TestCase):
def testLargeMarginSoftmax(self):
with tf.device('/gpu:0'):
# map C++ operators to python objects
large_margin_softmax = op_module.large_margin_softmax
var_weights = tf.Variable(weights, name='weights')
result = large_margin_softmax(features, var_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=result[0], name=None))
with self.test_session() as sess:
sess.run(var_weights.initializer)
print('large_margin_softmax in gpu:', sess.run([loss, result[1]]))
with tf.device('/cpu:0'):
# map C++ operators to python objects
large_margin_softmax = op_module.large_margin_softmax
result = large_margin_softmax(features, weights, labels, 1, 4, 1000., 0.000025, 35., 0.)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=result[0], name=None))
with self.test_session() as sess:
print('large_margin_softmax in cpu:', sess.run([loss, result[1]]))
@ops.RegisterGradient("LargeMarginSoftmax")
def _large_margin_softmax_grad(op, grad, _):
'''The gradients for `LargeMarginSoftmax`.
'''
inputs_features = op.inputs[0]
inputs_weights = op.inputs[1]
inputs_labels = op.inputs[2]
cur_lambda = op.outputs[1]
#loss = op.outputs[0]
margin_order = op.get_attr('margin_order')
grads = op_module.large_margin_softmax_grad(inputs_features, inputs_weights, inputs_labels, grad, cur_lambda[0], margin_order)
#print(grads)
return [grads[0], grads[1], None, None]
class LargeMarginSoftmaxGradTest(tf.test.TestCase):
def testLargeMarginSoftmaxGrad(self):
with tf.device('/cpu:0'):
large_margin_softmax = op_module.large_margin_softmax
inputs_features = tf.constant(features, dtype=tf.float32)
inputs_weights = tf.constant(weights, dtype=tf.float32)
result = large_margin_softmax(inputs_features, inputs_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)[0]
with tf.Session() as sess:
print('backprop large_margin_softmax in cpu:')
print(tf.test.compute_gradient_error(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient_error(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(weights)))
print(tf.test.compute_gradient(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(weights)))
with tf.device('/gpu:0'):
large_margin_softmax = op_module.large_margin_softmax
inputs_features = tf.constant(features, dtype=tf.float32)
inputs_weights = tf.constant(weights, dtype=tf.float32)
result = large_margin_softmax(inputs_features, inputs_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)[0]
with tf.Session(config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False)) as sess:
print('backprop large_margin_softmax in gpu:')
print(tf.test.compute_gradient_error(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient_error(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(weights)))
print(tf.test.compute_gradient(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(weights)))
class AngularSoftmaxTest(tf.test.TestCase):
def testAngularSoftmax(self):
with tf.device('/gpu:0'):
# map C++ operators to python objects
angular_softmax = op_module.angular_softmax
var_weights = tf.Variable(weights, name='weights')
normed_weights = tf.nn.l2_normalize(var_weights, 1, 1e-10, name='weights_normed')
result = angular_softmax(features, normed_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=result[0], name=None))
with self.test_session() as sess:
sess.run(var_weights.initializer)
print('angular_softmax in gpu:', sess.run([loss, result[1]]))
with tf.device('/cpu:0'):
# map C++ operators to python objects
angular_softmax = op_module.angular_softmax
normed_weights = tf.nn.l2_normalize(tf.constant(weights), 1, 1e-10, name='weights_normed')
result = angular_softmax(features, normed_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=result[0], name=None))
with self.test_session() as sess:
print('angular_softmax in cpu:', sess.run([loss, result[1]]))
@ops.RegisterGradient("AngularSoftmax")
def _angular_softmax_grad(op, grad, _):
'''The gradients for `AngularSoftmax`.
'''
inputs_features = op.inputs[0]
inputs_weights = op.inputs[1]
inputs_labels = op.inputs[2]
cur_lambda = op.outputs[1]
#loss = op.outputs[0]
margin_order = op.get_attr('margin_order')
grads = op_module.angular_softmax_grad(inputs_features, inputs_weights, inputs_labels, grad, cur_lambda[0], margin_order)
#print(grads)
return [grads[0], grads[1], None, None]
class AngularSoftmaxGradTest(tf.test.TestCase):
def testAngularSoftmaxGrad(self):
with tf.device('/cpu:0'):
angular_softmax = op_module.angular_softmax
inputs_features = tf.constant(features, dtype=tf.float32)
inputs_weights = tf.constant(normed_weights_array, dtype=tf.float32)
#normed_weights = tf.nn.l2_normalize(inputs_weights, 1, 1e-10, name='weights_normed')
result = angular_softmax(inputs_features, inputs_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)[0]
with tf.Session() as sess:
print('backprop angular_softmax in cpu:')
print(tf.test.compute_gradient_error(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient_error(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(normed_weights_array)))
print(tf.test.compute_gradient(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(normed_weights_array)))
with tf.device('/gpu:0'):
angular_softmax = op_module.angular_softmax
inputs_features = tf.constant(features, dtype=tf.float32)
inputs_weights = tf.constant(normed_weights_array, dtype=tf.float32)
#normed_weights = tf.nn.l2_normalize(inputs_weights, 1, 1e-10, name='weights_normed')
result = angular_softmax(inputs_features, inputs_weights, labels, 1, 4, 1000., 0.000025, 35., 0.)[0]
with tf.Session(config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False)) as sess:
#print(sess.run(normed_weights))
print('backprop angular_softmax in gpu:')
print(tf.test.compute_gradient_error(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient(inputs_features, [3, 4], result, [3, 5], delta=0.001, x_init_value=np.array(features)))
print(tf.test.compute_gradient_error(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(normed_weights_array)))
print(tf.test.compute_gradient(inputs_weights, [5, 4], result, [3, 5], delta=0.001, x_init_value=np.array(normed_weights_array)))
if __name__ == "__main__":
tf.test.main()