Skip to content

Latest commit

 

History

History
61 lines (45 loc) · 1.72 KB

README.md

File metadata and controls

61 lines (45 loc) · 1.72 KB

Visual Odometry Pipeline

Conda environment

Install conda and than run this:

conda env create --file vision.yml

Run the Pipeline

# usage: main.py [-h] [--parking] [--kitty] [--malaga] [--plot] [--plot2]

# optional arguments:
#   -h, --help     show this help message and exit
#   --parking, -p  the parking dataset
#   --kitty, -k    the kitty dataset
#   --malaga, -m   the malaga dataset
#   --plot, -o     plot the results
#   --plot2, -o2   plot ground truth vs vo pipeline

# Example for plotting and selecting the parking dataset
# plot2 plots the groundtruth and vo pipeline output (only the camera poses (only kitti and parking))
python src/main.py -o -p

Download datasets

To download the zipfiles for the project you can use this script. (I hope it works on windows/mac)

python data/download.py

Tasks

  • how to use dataclass => code example
  • put init camera pose stuff into a init file
  • Add PnP and write code example with the just the next frame
  • add visualisation that shows which 3D points the next camera posed used
  • implemented continuous pipeline (works with all frames)
  • add feature matches visualisation (use heatmap if image is not working)
  • KLT Tracker: Use this algorithm to track the pixels inside the matches

Bonus

  • Boundle Adjustment
  • Record Dataset
  • Loop detection
  • Compare Sift vs Harris vs FAST vs SURF
  • (Kalman Filter)

Done

  • Feature detection and matching ( Use library, OpenCV, use efficent version?, SIFT / RANSAC ? ) $\sqrt{}$
  • Setup pipeline and visualization $\sqrt{}$
  • Triangulation $\sqrt{}$

Documentation

Major classes and important architecture decisions