-
Notifications
You must be signed in to change notification settings - Fork 26
/
text_graph.py
102 lines (85 loc) · 4.01 KB
/
text_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import flair
from flair.data import Sentence
from flair.models import SequenceTagger
from flair.embeddings import WordEmbeddings, FlairEmbeddings, StackedEmbeddings, DocumentPoolEmbeddings, BertEmbeddings, ELMoEmbeddings, OpenAIGPTEmbeddings, TransformerXLEmbeddings
import torch
# create a StackedEmbedding object that combines glove and forward/backward flair embeddings
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import jaccard_similarity_score
#import numpy as np
from docx import Document
import sys
import numpy as np
from itertools import islice
from collections import deque
import matplotlib
import umap
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.mplot3d import proj3d
import matplotlib.cm as cm
from torch.nn import CosineSimilarity
from sty import fg, bg, ef, rs, RgbFg
from sklearn.preprocessing import MinMaxScaler
import syntok.segmenter as segmenter
from ansi2html import Ansi2HTMLConverter
def visualize3DData (X, scores, word_list):
"""Visualize data in 3d plot with popover next to mouse position.
Args:
X (np.array) - array of points, of shape (numPoints, 3)
Returns:
None
"""
fig = plt.figure(figsize = (16,10))
ax = fig.add_subplot(111, projection = '3d')
im = ax.scatter(X[:, 0], X[:, 1], X[:, 2], c = np.asarray(scores), depthshade = False, picker = True, s=30, cmap = "rainbow")
fig.colorbar(im)
def distance(point, event):
"""Return distance between mouse position and given data point
Args:
point (np.array): np.array of shape (3,), with x,y,z in data coords
event (MouseEvent): mouse event (which contains mouse position in .x and .xdata)
Returns:
distance (np.float64): distance (in screen coords) between mouse pos and data point
"""
assert point.shape == (3,), "distance: point.shape is wrong: %s, must be (3,)" % point.shape
# Project 3d data space to 2d data space
x2, y2, _ = proj3d.proj_transform(point[0], point[1], point[2], plt.gca().get_proj())
# Convert 2d data space to 2d screen space
x3, y3 = ax.transData.transform((x2, y2))
return np.sqrt ((x3 - event.x)**2 + (y3 - event.y)**2)
def calcClosestDatapoint(X, event):
""""Calculate which data point is closest to the mouse position.
Args:
X (np.array) - array of points, of shape (numPoints, 3)
event (MouseEvent) - mouse event (containing mouse position)
Returns:
smallestIndex (int) - the index (into the array of points X) of the element closest to the mouse position
"""
distances = [distance (X[i, 0:3], event) for i in range(X.shape[0])]
return np.argmin(distances)
def annotatePlot(X, index):
"""Create popover label in 3d chart
Args:
X (np.array) - array of points, of shape (numPoints, 3)
index (int) - index (into points array X) of item which should be printed
Returns:
None
"""
# If we have previously displayed another label, remove it first
if hasattr(annotatePlot, 'label'):
annotatePlot.label.remove()
# Get data point from array of points X, at position index
x2, y2, _ = proj3d.proj_transform(X[index, 0], X[index, 1], X[index, 2], ax.get_proj())
annotatePlot.label = plt.annotate(word_list[index][0][0:100],
xy = (x2, y2), xytext = (-10, 10), textcoords = 'offset points', ha = 'left', va = 'bottom', size = 6,
bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
arrowprops = dict(arrowstyle = '->'))
fig.canvas.draw()
def onMouseMotion(event):
"""Event that is triggered when mouse is moved. Shows text annotation over data point closest to mouse."""
closestIndex = calcClosestDatapoint(X, event)
annotatePlot (X, closestIndex)
fig.canvas.mpl_connect('motion_notify_event', onMouseMotion) # on mouse motion
plt.show()