forked from udacity/AIND-Sudoku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
178 lines (147 loc) · 5.91 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
assignments = []
rows = 'ABCDEFGHI'
cols = '123456789'
def assign_value(values, box, value):
"""
Please use this function to update your values dictionary!
Assigns a value to a given box. If it updates the board record it.
"""
# Don't waste memory appending actions that don't actually change any values
if values[box] == value:
return values
values[box] = value
if len(value) == 1:
assignments.append(values.copy())
return values
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
Args:
values(dict): a dictionary of the form {'box_name': '123456789', ...}
Returns:
the values dictionary with the naked twins eliminated from peers.
"""
def is_naked_twins(b1, b2):
if b1 == b2:
return False
return values[b1] == values[b2] and len(values[b1]) == 2
all_naked_twins = []
# Find all instances of naked twins
for unit in unitlist:
all_naked_twins += [(box1, box2, values[box1]) for box1 in unit for box2 in unit if
is_naked_twins(box1, box2)]
# Eliminate the naked twins as possibilities for their peers
for twins in all_naked_twins:
common_peers = set(peers[twins[0]]).intersection(set(peers[twins[1]]))
value = twins[2]
for p in common_peers:
assign_value(values, p, values[p].replace(value[0], ""))
assign_value(values, p, values[p].replace(value[1], ""))
return values
def cross(A, B):
"Cross product of elements in A and elements in B."
return [a+b for a in A for b in B]
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]
diag_units = [[t[0] + t[1] for t in zip(rows, cols)]] + [[t[0] + t[1] for t in zip(rows, cols[::-1])]]
unitlist = row_units + column_units + square_units + diag_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s],[]))-set([s])) for s in boxes)
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args:
grid(string) - A grid in string form.
Returns:
A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
return dict(zip(boxes, ['123456789' if x == '.' else x for x in grid]))
def display(values):
"""
Display the values as a 2-D grid.
Args:
values(dict): The sudoku in dictionary form
"""
width = 1 + max(len(values[s]) for s in boxes)
line = '+'.join(['-' * (width * 3)] * 3)
for r in rows:
print(''.join(values[r + c].center(width) + ('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
return
def eliminate(values):
resolvedBoxes = [x for x in values.keys() if len(values[x]) == 1]
def removeFromPeers(k, v):
for p in peers[k]:
assign_value(values, p, values[p].replace(v, ""))
for b in resolvedBoxes:
removeFromPeers(b, values[b])
return values
def only_choice(values):
for unit in unitlist:
counts = {}
for d in '123456789':
counts[d] = [box for box in unit if d in values[box]]
for digit, boxes in counts.items():
if len(boxes) == 1:
assign_value(values, boxes[0], digit)
return values
def reduce_puzzle(values):
stalled = False
while not stalled:
# Check how many boxes have a determined value
solved_values_before = len([box for box in values.keys() if len(values[box]) == 1])
# Use the Eliminate Strategy
eliminate(values)
# Use the Only Choice Strategy
only_choice(values)
# Use the Naked Twins Strategy
naked_twins(values)
# Check how many boxes have a determined value, to compare
solved_values_after = len([box for box in values.keys() if len(values[box]) == 1])
# If no new values were added, stop the loop.
stalled = solved_values_before == solved_values_after
# Sanity check, return False if there is a box with zero available values:
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
values = reduce_puzzle(values)
if values is False:
return False
if all(len(values[s]) == 1 for s in boxes):
return values
unfilled = [box for box in values.keys() if len(values[box]) > 1]
selected_box = min(unfilled, key=lambda x: len(values[x]))
# Now use recursion to solve each one of the resulting sudokus, and if one returns a value (not False), return that answer!
alternatives = list(values[selected_box])
for value in alternatives:
new_values = values.copy()
assign_value(new_values, selected_box, value)
answer = search(new_values)
if answer:
return answer
return False
def solve(grid):
"""
Find the solution to a Sudoku grid.
Args:
grid(string): a string representing a sudoku grid.
Example: '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns:
The dictionary representation of the final sudoku grid. False if no solution exists.
"""
return search(grid_values(grid))
if __name__ == '__main__':
diag_sudoku_grid = '...7.2.4.........7217....9.6.......3.2..48..........1..5..........3.......6......'
display(solve(diag_sudoku_grid))
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')