forked from udacity/AIND-Isolation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame_agent.py
717 lines (593 loc) · 25.2 KB
/
game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
"""Finish all TODO items in this file to complete the isolation project, then
test your agent's strength against a set of known agents using tournament.py
and include the results in your report.
"""
from numpy.random import choice
from math import log, sqrt
import json
class SearchTimeout(Exception):
"""Subclass base exception for code clarity. """
pass
def custom_score(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
This should be the best heuristic function for your project submission.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
# Strategy: if there are many spaces available, then chase an opponent
# otherwise move opposite direction to opponent.
player_loc = game.get_player_location(player)
opponent_loc = game.get_player_location(game.get_opponent(player))
total_size = game.width * game.height
blank_space_fraction = float(len(game.get_blank_spaces())) / total_size
d = distance(player_loc, opponent_loc)
return (0.5 - blank_space_fraction) * float(d)
def distance(p1, p2):
return (p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2
def custom_score_2(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
# Strategy: make player "aggressive" and invaide available for opponent moves.
opponent = game.get_opponent(player)
opp_moves = game.get_legal_moves(opponent)
own_moves = game.get_legal_moves(player)
if game.active_player == player:
player_loc = game.get_player_location(player)
for m in opp_moves:
if m == player_loc:
return 10
return float(len(own_moves))
else:
opponent_loc = game.get_player_location(opponent)
for m in own_moves:
if m == opponent_loc:
return -10
return float(len(own_moves))
def custom_score_3(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
# Strategy: make player prefer discovering of empty fields and minimise distance of current player to blank spaces
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
player_loc = game.get_player_location(player)
score = float(own_moves - opp_moves)
# strategy is to fill diagonal and center crosses
if player_loc[0] == player_loc[1] or (player_loc[0] % 2 == player_loc[1] % 2):
score += 0.5
# if number of moves equal - select with biggest number of moves
score += 0.2 * own_moves
return score
class IsolationPlayer:
"""Base class for minimax and alphabeta agents -- this class is never
constructed or tested directly.
******************** DO NOT MODIFY THIS CLASS ********************
Parameters
----------
search_depth : int (optional)
A strictly positive integer (i.e., 1, 2, 3,...) for the number of
layers in the game tree to explore for fixed-depth search. (i.e., a
depth of one (1) would only explore the immediate sucessors of the
current state.)
score_fn : callable (optional)
A function to use for heuristic evaluation of game states.
timeout : float (optional)
Time remaining (in milliseconds) when search is aborted. Should be a
positive value large enough to allow the function to return before the
timer expires.
"""
def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.):
self.search_depth = search_depth
self.score = score_fn
self.time_left = None
self.TIMER_THRESHOLD = timeout
class MinimaxPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using depth-limited minimax
search. You must finish and test this player to make sure it properly uses
minimax to return a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
************** YOU DO NOT NEED TO MODIFY THIS FUNCTION *************
For fixed-depth search, this function simply wraps the call to the
minimax method, but this method provides a common interface for all
Isolation agents, and you will replace it in the AlphaBetaPlayer with
iterative deepening search.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
return self.minimax(game, self.search_depth)
except SearchTimeout:
pass # Handle any actions required after timeout as needed
# Return the best move from the last completed search iteration
return best_move
def minimax(self, game, depth):
"""Implement depth-limited minimax search algorithm as described in
the lectures.
This should be a modified version of MINIMAX-DECISION in the AIMA text.
https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
self.timeout_test()
moves_scores = dict([(move, self.min_value(game.forecast_move(move), depth - 1)) for move in self.moves(game)])
if len(moves_scores) == 0:
return (-1, -1)
return max(moves_scores, key= moves_scores.get)
def timeout_test(self):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
def moves(self, game):
self.timeout_test()
if self is game.active_player:
return game.get_legal_moves(self)
else:
return game.get_legal_moves(game.get_opponent(self))
def min_value(self, game, depth):
self.timeout_test()
if self.cutoff_test(game, depth):
return self.evaluate(game)
value = float("inf")
for move in self.moves(game):
self.timeout_test()
value = min(value, self.max_value(game.forecast_move(move), depth - 1))
return value
def max_value(self, game, depth):
self.timeout_test()
if self.cutoff_test(game, depth):
return self.evaluate(game)
value = float("-inf")
for move in self.moves(game):
self.timeout_test()
value = max(value, self.min_value(game.forecast_move(move), depth - 1))
return value
def cutoff_test(self, game, depth):
self.timeout_test()
if depth == 0:
return True
if game.is_winner(self):
return True
if game.is_loser(self):
return True
return False
def evaluate(self, game):
self.timeout_test()
return self.score(game, self)
class AlphaBetaPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
try:
depth = 0
scores = dict()
for x in iter(int, 1):
depth = depth + 1
best_move = self.alphabeta(game, depth, scores)
except SearchTimeout:
# Handle any actions required after timeout as needed
return best_move
# Return the best move from the last completed search iteration
return best_move
def alphabeta(self, game, depth, scores, alpha=float("-inf"), beta=float("inf")):
"""Implement depth-limited minimax search with alpha-beta pruning as
described in the lectures.
This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
self.timeout_test()
value = float("-inf"); a = float("-inf"); b = float("inf"); max_move = (-1, -1)
for move in self.moves(game):
self.timeout_test()
result = self.min_value(game.forecast_move(move), depth - 1, a, b, scores)
if result > value:
value = result; max_move = move
if value >= b:
return move
a = max(value, a)
return max_move
def timeout_test(self):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
def moves(self, game):
self.timeout_test()
if self is game.active_player:
return game.get_legal_moves(self)
else:
return game.get_legal_moves(game.get_opponent(self))
def max_value(self, game, depth, alpha, beta, scores):
self.timeout_test()
if self.cutoff_test(game, depth):
return self.evaluate(game)
value = float("-inf"); a = alpha; b = beta;
sorted_m = self.sort_moves(game, scores, self.moves(game))
self.timeout_test()
for move in sorted_m:
self.timeout_test()
new_state = game.forecast_move(move)
self.timeout_test()
#new_state.print_board()
new_value = self.min_value(new_state, depth - 1, a, b, scores)
scores[new_state.hash()] = new_value
value = max(value, new_value)
if value >= b:
return value
a = max(value, a)
return value
def sort_moves(self, game, scores, moves):
return moves
if len(moves) < 1:
return moves
valued = dict()
second_order = []
for move in moves:
new_state = game.forecast_move(move)
new_state_h = new_state.hash()
if new_state_h in scores:
#print("Saved")
valued[move] = scores[new_state_h]
else:
second_order.append(move)
return sorted(valued, key=valued.__getitem__, reverse=True) + second_order
def min_value(self, game, depth, alpha, beta, scores):
self.timeout_test()
if self.cutoff_test(game, depth):
return self.evaluate(game)
value = float("inf"); a = alpha; b = beta;
sorted_m = self.sort_moves(game, scores, self.moves(game))
self.timeout_test()
for move in sorted_m:
self.timeout_test()
new_state = game.forecast_move(move)
self.timeout_test()
new_value = self.max_value(new_state, depth - 1, a, b, scores)
scores[new_state.hash()] = new_value
value = min(value, new_value)
if value <= a:
return value
b = min(value, b)
return value
def cutoff_test(self, game, depth):
self.timeout_test()
if depth == 0:
return True
if game.is_winner(self):
return True
if game.is_loser(self):
return True
return False
def evaluate(self, game):
self.timeout_test()
return self.score(game, self)
class MonteCarloPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
# NO MORE THAN 10 S
def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.):
super(MonteCarloPlayer, self).__init__(search_depth, score_fn, timeout)
# read file with data to variable
self.probs = []
# with open('data.json', 'r') as fp:
# self.probs = json.load(fp)
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
self.setup_probs(game)
best_move = (-1, -1)
try:
best_move = self.return_best(game)
self.monte_carlo(game)
print("finish one step")
print(best_move)
except SearchTimeout:
# Handle any actions required after timeout as needed
if best_move == (-1, -1):
print("Not solved")
return best_move
# Return the best move from the last completed search iteration
return best_move
def return_best(self, game):
next_move = self.best_move(game, self.moves(game))
return next_move
def monte_carlo(self, game):
self.timeout_test()
path = []
unexplored_state = self.selection(game, path)
# value should be 1 or 0
value = self.run_simulation(unexplored_state)
self.back_propagate(value, path, unexplored_state)
def selection(self, game, path):
self.timeout_test()
if not self.has_state(game):
return game
max_value = -1; max_state = None
path.append(game)
children = self.moves(game)
self.timeout_test()
values = {}
# return undiscovered state
for move in children:
self.timeout_test()
state = game.forecast_move(move)
if not self.has_state(state):
return state
else:
new_value = self.get_value_in_state(state)
values[state] = new_value
# continue to search using best node.
if len(values) > 0:
if self is game.active_player:
max_state = sorted(values, key=values.__getitem__, reverse=False)[0]
else:
max_state = sorted(values, key=values.__getitem__, reverse=True)[0]
else:
raise SearchTimeout()
return self.selection(max_state, path)
def best_move(self, game, moves):
self.timeout_test()
values = {}
for move in moves:
#self.timeout_test()
state = game.forecast_move(move)
if state.is_winner(self):
return move
if self.has_state(state):
new_value = self.get_value_in_state(state)
values[move] = new_value
if len(values) > 0:
if self is game.active_player:
max_move = sorted(values, key=values.__getitem__, reverse=False)[0]
else:
max_move = sorted(values, key=values.__getitem__, reverse=True)[0]
else:
print("problem with values")
raise SearchTimeout()
return max_move
def run_simulation(self, game):
self.timeout_test()
if game.is_winner(self):
return 1
if game.is_loser(self):
return 0
next_states = []; weights = []
for move in self.moves(game):
self.timeout_test()
state = game.forecast_move(move)
weight = self.heuristic(state, self)
self.timeout_test()
next_states.append(state)
weights.append(weight)
p = self.weights_to_probabilities(weights)
next_state = choice(next_states, p=p)
return self.run_simulation(next_state)
def weights_to_probabilities(self, weights):
self.timeout_test()
s = sum(weights)
if s == 0:
#print("ups")
return [float(1.0) / len(weights) for x in weights]
return [float(x) / s for x in weights]
def heuristic(self, game, player):
self.timeout_test()
own_moves = len(game.get_legal_moves(player))
return float(own_moves)
def back_propagate(self, value, path, unexplored_state):
self.timeout_test()
# is it win or lose?
self.probs[unexplored_state.move_count][self.state_hash(unexplored_state)] = (value, 1)
v = value
for node in path:
self.timeout_test()
v = 1 - v
node_hash = self.state_hash(node)
win, total = self.probs[node.move_count][node_hash]
self.probs[node.move_count][node_hash] = (win + v, total + 1)
def get_value_in_state(self, state):
win, total = self.probs[state.move_count][self.state_hash(state.hash)]
n = sum([x[1] for x in self.probs[state.move_count].values()])
return (win / float(total) + sqrt(2 * log(total) / n))
def has_state(self, state):
return (self.state_hash(state) in self.probs[state.move_count])
def setup_probs(self, game):
self.timeout_test()
if len(self.probs) > 0:
return
for i in range(game.width * game.height):
self.probs.append(dict())
self.probs[game.move_count][self.state_hash(game)] = (0, 0)
def state_hash(self, state):
return state.hash()
def timeout_test(self):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
def moves(self, game):
self.timeout_test()
if self is game.active_player:
return game.get_legal_moves(self)
else:
return game.get_legal_moves(game.get_opponent(self))
# think about saving probs by move_count (layers)
# saves probabilities to file and run it during simulation
def save(self):
with open('data.json', 'w') as fp:
json.dump(self.probs, fp)